	HS Code（AHTN 2012）	Dessripioio of Goods	$\left\|\begin{array}{l} \text { Base Rate (\%) } \\ \text { (MFN } 1 / 1 / 2014) \end{array}\right\|$	$\begin{aligned} & \text { AHKFTA } \\ & \text { Category } \end{aligned}$	AHKFra Tarith Rate																			
					2019	2020	2021	2022	${ }^{2023}$	2024	2025	2026	2027	2028	2029	2030	${ }^{2031}$	2032	${ }^{2033}$	2034	${ }^{2035}$	${ }^{2036}$	2037	2038
1	00，02，100	Purebred breeding animals	10	NT1	3\％	${ }_{8 \%}$	6\％	5\％	${ }^{4 \%}$	3\％	${ }^{2 \%}$	\％	0\％	0\％	\％	\％	\％	\％	\％	\％	\％	\％\％	\％	0\％
2	${ }^{0,0,02,900}$	－other	10	EL	O	－	－	U	－	－		－	0	0	O	0	O	0	－	0	－	U	0	0
3	00，01，010	－Pue bied breatiga animas	5	EL	U	－	U	U	\bigcirc	\bigcirc	\bigcirc	ט	U	\bigcirc	ט	U	\bigcirc	0	U	\bigcirc	\bigcirc	U	U	\bigcirc
4	00，01，900	Oner	5	${ }^{\text {EL }}$	O	0	\bigcirc	\bigcirc	U	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	O	ט	\bigcirc	\bigcirc	U	\bigcirc	\bigcirc	U	0	\bigcirc
5	00，019，000	－Other	10	${ }^{\text {EL }}$	ט	ט	\bigcirc	－	－	\bigcirc	－	U	U	ט	U	ט	\bigcirc	ט	U	－	\bigcirc	ט	U	\bigcirc
${ }^{6}$	01，02，100	－Pue bied beeding animas	5	EL	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\checkmark	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\checkmark	0	－	0	0	\bigcirc	\bigcirc	\bigcirc	0	\bigcirc	\bigcirc
7	0，022，990	－－Male catte（ Inculung oxen）	10	EL	0	ט	ט	ט	0	ט	U	\bigcirc	U	\bigcirc	0	U	U	ט	U	\bigcirc	\bigcirc	U	U	\bigcirc
${ }^{8}$	01，022，990	－omer	10	EL	0	0	0	0	0	\bigcirc	0	0	0		0	0	\bigcirc	0	U	0	\bigcirc	0	0	0
9	0，023，100	－－Puebebrea breeding animals	10	EL	，	0	0	0	0	\bigcirc	O	O	0	O	0	0	\bigcirc	ט	0	\bigcirc	U	U	U	U
10	0，02，${ }^{\text {a }}$ ， 0	－other	10	EL	－	－	ט	\bigcirc	\bigcirc	\bigcirc	\bigcirc	ט	ט	u	U	U	ט	ט	U	\bigcirc	\bigcirc	U	U	U
11	0，02，9，010	－Puebired breatiga aimals	10	EL	0	\bigcirc	0	\bigcirc	\bigcirc	\bigcirc	\bigcirc	－	\bigcirc	ט	\bigcirc	O	－	ט	0	\bigcirc	\bigcirc	－	O	\bigcirc
12	0，02，090	Oner	10	EL	U	\bigcirc	U	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	U	\bigcirc	U	U	U	U	U	U	U	U	U	\bigcirc
${ }^{13}$	0，03， 0,00	Purebreabreeing ainals	5	HSL	5\％	5\％	5\％	5\％	5\％	5\％	5\％	5\％	5\％	5\％	5\％	5\％	5\％	5\％	5\％	5\％	5\％	5\％	${ }^{5 \%}$	5\％
$1{ }^{14}$	0，0，099，100	－Weghing less han 50 kg	10	${ }^{\text {EL }}$	\bigcirc	\bigcirc	\bigcirc	－	－	－	\bigcirc	0	－	\bigcirc	\bigcirc	－	－	U	U	－	－	－	U	\bigcirc
15	01，09，200	Weighig 50 kgor more	10	${ }^{\text {EL }}$	U	\bigcirc	\bigcirc	U	U	\bigcirc	\bigcirc	\bigcirc	U	\bigcirc	\bigcirc	0	0	0	U	0	0	0	U	\bigcirc
${ }^{16}$	01，04，010	－Pure breab beeding animals	10	${ }^{\text {sL }}$	10\％	0\％	10\％	10\％	0\％	0\％	0\％	10\％	${ }^{8 \%}$	7\％	${ }^{6 \%}$	${ }^{5 \%}$	4%	3\％	${ }^{2 \%}$	\％	\％	0%	\％	\％
17	00，041，090	－other	10	sL	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	${ }^{8 \%}$	7\％	${ }^{6 \%}$	${ }^{5 \%}$	4\％	${ }^{3 \%}$	${ }^{2 \%}$	1\％	\％	\％	\％	0\％
$1{ }^{18}$	0，042，010	－Purebied breading animals	10	st	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	8\％	7\％	6\％	5\％	4\％	3\％	2%	1\％	\％	\％	\％	0\％
19	01，042，990	－－Oher	10	HSL	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％
20	0，051，110	…tieding fows	10	HSL	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％
21	0，05，1，90	－OMmer	10	EL	\bigcirc	O	\bigcirc	U	${ }^{4}$	U	U	U	U	U	U	U	U	\bigcirc	\bigcirc	\bigcirc	©	\bigcirc	O	\bigcirc
22	${ }^{0,05,51,210}$	－－${ }^{\text {reeding tureses }}$	10	HSL	${ }^{10 \%}$	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	0\％	10\％	10\％	${ }^{10 \%}$	10\％	10\％	\％\％	10\％
${ }^{23}$	0，05，2，20	－omer	10	EL	\bigcirc	\checkmark	U	ט	U	\bigcirc	－	U	\bigcirc	U	\bigcirc	U	－	\checkmark	\bigcirc	\bigcirc	\bigcirc	－	\bigcirc	\bigcirc
${ }^{24}$	00，05，310	－Breaing utokings	10	EL	O	－	O	U	O	－	－	－	U	ט	O	O	O	ט	U	U	O	U	U	\bigcirc
25	${ }^{0,0,05,390}$	－other	10	${ }^{\text {EL }}$	\bigcirc	ט	\bigcirc	\bigcirc	－	\bigcirc	－	，	\bigcirc	\bigcirc	U	\checkmark	\bigcirc							
26	0，05，4，40	Breeding gosings	10	EL	0	0	0	U	\bigcirc	0	\bigcirc	0	0	\bigcirc	\bigcirc	0	0	0	U	\bigcirc	\bigcirc	U	U	\bigcirc
27	0，05，490	－Oner	10	${ }^{\text {EL }}$	U	\bigcirc	－	\bigcirc	\bigcirc	\bigcirc	－	\bigcirc	－	\bigcirc	ט	－	－	\bigcirc	－	\bigcirc	\bigcirc	－	ט	\bigcirc
${ }^{28}$	00，05，510	－Breading guineat ows	10	${ }^{\text {EL }}$	\bigcirc	－	\bigcirc	\bigcirc	U	\bigcirc	\bigcirc													
29	01，05，590	－oner	10	${ }_{\text {EL }}$	U	U	U	U	U	－	U	U	U	U	U	U	U	U	－	U	U	U	U	\bigcirc
30	00，059，410	－Breading tows，other than fighting cocks	10	EL	0	0	0	U	0	0	0	0	0	0	0	0	0	0	U	0	0	0	U	\bigcirc
${ }^{31}$	01，059，40	\cdots FFghing cooks	10	EL	0	0	0	0	0	0	0	0	0	O	0	0	0	0	U	U	\bigcirc	U	U	\bigcirc
32	01，059，491	\cdots Weighing not moret tran 2 kg	10	EL	ט	\bigcirc	ט	\bigcirc	\bigcirc	U	U	\bigcirc	U	U	0	U	U	ט	ט	\bigcirc	U	U	U	U
${ }^{33}$	01，05，499	－Oner	10	EL	\bigcirc	\bigcirc	\bigcirc	－	\bigcirc	\bigcirc	\bigcirc	0	\bigcirc	\bigcirc	\bigcirc	－	\bigcirc	\bigcirc	U	\bigcirc	\bigcirc	0	U	0
${ }^{34}$	0，059，910	－Breading ducks	10	${ }_{\text {EL }}$	U	ט	U	U	U	－	ט	U	U	U	U	U	U	U	U	U	U	U	U	\bigcirc
35	01，05，920	－Omer ducks	10	EL	U	\bigcirc	\bigcirc	\bigcirc	－	\bigcirc	\bigcirc	U	U	\bigcirc	U	ט	U	\bigcirc	U	0	\bigcirc	ט	U	\bigcirc
${ }^{36}$	0，059，930	－Breeding geses，uneess and gunea iows	10	EL	0	0	0	0	\bigcirc	\bigcirc	－	0	U	0	0	0	\bigcirc	0	U	0	0	0	U	\bigcirc
37	01，05，9，90	－－Other geses，uluey）sand suneat iows	10	${ }^{\text {EL }}$	ט	\bigcirc	\bigcirc	ט	U	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	U	U	U	\bigcirc	U	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
${ }^{38}$	00，061，100	Primaes	10	${ }^{\text {EL }}$	U	\bigcirc	\bigcirc	\bigcirc	U	\bigcirc	－	0	U	\bigcirc	U	0	U	\bigcirc	U	\bigcirc	\bigcirc	\bigcirc	U	\bigcirc
33	0，06，200	Whales，dolphins and porpoises（mammals of the order Cetacea）；manatees and dugongs（mammals of the order Sirenia）；seals，sea lions and walruses （mammals of the suborder Pinnipedia）	10	${ }^{\text {EL }}$	ט	\checkmark	u	u	u	u	u	u	，	\checkmark	\checkmark									
$4{ }^{40}$	0，061，300	－Camels and onter camelis（ Camelidae ）	10	EL	U	0	0	U	U	\bigcirc	U	0	U	U	\bigcirc	U	U	，	U	\bigcirc	0	U	U	0
41	00，061，400	－Rabols and hares	10	${ }_{\text {EL }}$	U	－	U	ט	ט	\checkmark	\checkmark	U	U	U	U	U	U	U	U	\checkmark	\checkmark	U	U	－
42	00，06，900	－other	10	EL	O	0	O	－	O	0	U	O	O	O	O	O	O	O	U	－	\bigcirc	U	U	\bigcirc
${ }^{43}$	01，062，000	－Repries（nowuding snakes and utrites）	10	EL	0	0	0	U	0	\bigcirc	0	0	0	0	0	0	U	0	\bigcirc	0	0	0	U	0
4	00，06，100	－Birsof trey	10	${ }^{\text {EL }}$	0	\bigcirc	\bigcirc	U	\bigcirc	\bigcirc	\bigcirc	0	\bigcirc	\bigcirc	\bigcirc	\bigcirc	－	\bigcirc	\bigcirc	\bigcirc	\bigcirc	U	\bigcirc	\bigcirc
${ }^{45}$	${ }^{0,0,063,200}$	－－Psittaciformes（including parrots，parakeets， macaws and cockatoos）	10	EL	\bigcirc	－	\bigcirc	\bigcirc	＂	\bigcirc	\bigcirc	¢	\bigcirc	－	＂	－	\bigcirc							
${ }^{46}$	${ }^{0,1,063,300}$	\cdots	10	${ }^{\text {EL }}$	U	0	U	0	0	\bigcirc	－	0	0	U	U	\bigcirc	\bigcirc	U	U	\bigcirc	\bigcirc	－	U	U
${ }^{47}$	${ }^{0,1063,900}$	Other	10	${ }^{\text {EL }}$	\bigcirc	\bigcirc	\bigcirc	U	U	－	－	U	\checkmark	－	\bigcirc	－	U	0	U	\bigcirc	\bigcirc	\bigcirc	U	${ }^{\circ}$
${ }^{48}$	0，064，100	Beos	10	${ }^{\text {EL }}$	－	\bigcirc	－	－	－	\bigcirc	－	－	－	－	－	－	－	\bigcirc	U	－	\bigcirc	U	U	\bigcirc
49	0，064，900	－other	10	EL	U	ט	ט	ט	0	，	－	ט	U	0	0	U	U	0	U	ט	\bigcirc	ט	U	\bigcirc
50	0，0，69，000	－other	10	EL	0	0	O	O	\bigcirc	\bigcirc	\bigcirc	0	0	O	O	O	U		U	\bigcirc	\bigcirc	\bigcirc	－	\bigcirc
51	02，011，000	－Cacassese and haltracacases	${ }^{30}$	${ }^{\text {EL }}$	\checkmark	\bigcirc	\checkmark	\checkmark	U	\bigcirc	\bigcirc	－	U	\bigcirc	U	－	\checkmark	，	U	\checkmark	\bigcirc	\bigcirc	\bigcirc	－
52	02，02， 2000	－Oher cus with bone in	${ }^{30}$	${ }^{\text {EL }}$	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	，	\bigcirc	\bigcirc	0	\bigcirc	\bigcirc	0	\bigcirc	\bigcirc	U	\bigcirc	\bigcirc	\bigcirc	－	O
${ }^{53}$	02，013，000	－Boness	${ }^{30}$	EL	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	，	\bigcirc	－	－	\bigcirc	－	－	\bigcirc	－	U	\bigcirc	\checkmark	\bigcirc	－	－
54	02，021，000	－Cacassese and haltracasases	30	${ }^{\text {EL }}$	ט	\bigcirc	\bigcirc	－	\bigcirc	\bigcirc	－	\bigcirc	U	\bigcirc	U	ט	ט	\bigcirc	U	\bigcirc	－	\bigcirc	－	O
55	02，02，, 000	－Oner culs with bone in	${ }^{30}$	EL	O	－	O	U	0	\bigcirc	U	O	U	0	U	O	O		U	－		U	0	0
56	02，023，000	－Boneess	30	EL	0	U	0	U	0	\bigcirc	－	0	U	\bigcirc	\checkmark	0	0	0	0	0	0	\bigcirc	0	\bigcirc
57	02，031，00	．Carcasses anc haltracarasses	${ }^{30}$	EL	0	0	\bigcirc	U	U	U	\bigcirc	0	U	ט	0	0	\bigcirc	ט	\bigcirc	\bigcirc	\bigcirc	0	0	\bigcirc
${ }^{58}$	02，03，200	Tams，stoudess and cust tereo	${ }^{30}$	${ }_{\text {EL }}$	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\checkmark	\bigcirc	\bigcirc	\bigcirc	U	\bigcirc	\checkmark	\bigcirc	\bigcirc	U	\checkmark	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
59	${ }^{02,03,9000}$	Other	${ }^{30}$	${ }^{\text {EL }}$	\bigcirc	\bigcirc	－	\bigcirc	${ }^{\circ}$	\checkmark	\bigcirc	－	U	\checkmark	\bigcirc	－	\bigcirc	\bigcirc	\checkmark	－	\bigcirc	${ }^{\circ}$	\square°	${ }^{\circ}$
80	02，032，100	－Cacassese and haltracarases	30	${ }^{\text {EL }}$	U	U	U	－	U	\bigcirc	－	\bigcirc	U	U	U	U	U	－	U	\bigcirc	－	\bigcirc	U	\bigcirc
61	${ }^{02,032,200}$		${ }^{30}$	${ }^{\text {EL }}$	\bigcirc	0	\bigcirc	U	＂	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\checkmark	\bigcirc	\bigcirc	\bigcirc	0	U	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
${ }^{62}$	02，032，900	－other	${ }^{30}$	EL	\checkmark	\bigcirc	\checkmark	\checkmark		\checkmark	U	\bigcirc	\bigcirc	\bigcirc	0	\checkmark	\bigcirc	U	U	\bigcirc	\checkmark	\bigcirc	\bigcirc	\bigcirc
${ }^{63}$	02，04， 000	－Carcasses and half－carcasses of lamb，fresh or chilled	${ }^{30}$	IsL	${ }^{30 \%}$	30\％	30%	${ }^{30 \%}$	30\％	30\％	${ }^{30 \%}$	30\％	30\％	30\％	30\％	${ }^{30 \%}$	30\％	30\％	30\％	30\％	${ }^{30 \%}$	30\％	30\％	30%
${ }^{64}$	02，02， 100	－Carcases and haltracasases	${ }^{30}$	HSL	${ }^{30 \%}$	30\％	30\％	${ }^{30 \%}$	30\％	30\％	30\％	30\％	30\％	30\％	30\％	${ }^{30 \%}$	${ }^{30 \%}$	30\％	30\％	30\％	30\％	30\％	30\％	${ }^{30 \%}$
${ }^{65}$	${ }^{02,022,200}$	－Onhe cuss wit bone in	${ }^{30}$	HSL	30\％	30\％	30\％	30\％	30\％	30\％	30\％	30\％	30\％	30\％	30\％	30\％	30\％	30\％	${ }^{30 \%}$	30%	30\％	30\％	30\％	${ }^{30 \%}$
${ }_{6} 6$	02，02， 300	－Boness	${ }^{30}$	HSL	30\％	30\％	30\％	30\％	30\％	30\％	30\％	30\％	30\％	30\％	30\％	30%	${ }^{30 \%}$	30\％	30\％	30\％	30%	30%	30\％	${ }^{30 \%}$
${ }^{67}$	${ }^{02,023,000}$	－Carassese and hallcaracasses oflamb，tozen	${ }^{30}$	HSL	30\％	30\％	30\％	30\％	30\％	30\％	30\％	${ }^{30 \%}$	30\％	30\％	30\％	30\％	30\％	30\％	30\％	30\％	30\％	30\％	30\％	10\％
${ }^{68}$	02，044，100	－Cacasases and haltaracasses	${ }^{30}$	HSL	30\％	30\％	30\％	30\％	30\％	30\％	30\％	30\％	${ }^{30 \%}$	${ }^{30 \%}$	30\％	30\％	30\％	30\％	30\％	30\％	30\％	30\％	30\％	30\％
${ }^{69}$	00，24，2， 200	－Onere cus with bone in	${ }^{30}$	HSL	30\％	30\％	30\％	30\％	30\％	30\％	30\％	30\％	30\％	30\％	30\％	30%	${ }^{30 \%}$	30\％	${ }^{30 \%}$	30\％	30\％	30\％	30\％	30\％
70	${ }^{02,044,300}$	－－Bonesss	${ }^{30}$	Hst	${ }^{30 \%}$	${ }^{30 \%}$	30\％	${ }^{30 \%}$	30\％	30\％	30\％	30\％	30\％	30\％	${ }^{30 \%}$	30\％	${ }^{30 \%}$	30\％	${ }^{30 \%}$	30\％	30\％	${ }^{30 \%}$	30\％	30\％
71	${ }^{02,045,000}$	－Meatot goals		HSL	30\％	30\％	${ }^{30 \%}$	${ }^{30 \%}$	30\％	30\％	30\％	30\％	30\％	${ }^{30 \%}$	30\％	${ }^{30 \%}$	30\％	${ }^{30 \%}$	${ }^{30 \%}$	30\％	30\％	30\％	30\％	\％\％
72	02，55，000	Meat of horses，asses，mules or hinnies，fresh， chilled or frozen．	${ }^{30}$	EL	U	\bigcirc	U	U	U	U	U	U	\bigcirc	U	\bigcirc	U	${ }^{\text {u }}$	U	0	U	U	U	U	U
${ }^{73}$	02，06，000	－ot bovine a amas，tess or criled	${ }^{30}$	EL	－	\checkmark		，	－		，	，	U	，	\bigcirc	，	\checkmark	${ }^{\circ}$	${ }^{\circ}$	，		${ }^{\circ}$	${ }^{\circ}$	\bigcirc
74	${ }^{02,062,100}$	－Torgues	${ }^{30}$	${ }^{\text {EL }}$	\checkmark	\checkmark	，	\bigcirc	\checkmark	\bigcirc	\bigcirc	\bigcirc	U	\bigcirc	\checkmark	\bigcirc	\bigcirc	\bigcirc	\checkmark	\bigcirc	U	\bigcirc	\checkmark	\bigcirc
75	10.020200	Livers	${ }^{30}$	${ }^{\text {EL }}$	U	－	\bigcirc	U	\bigcirc	\bigcirc	\bigcirc	0	U	\bigcirc	0	U	U	－	U	＂	U	－	U	\bigcirc
$7{ }^{76}$	02，02，2900	－Other	30	${ }^{\text {EL }}$	0	0	0	0	0	\bigcirc	－	0	U	\bigcirc	0	0	0	0			\bigcirc	0	－	\bigcirc
77	02，063，000	－ot swive，test or chlled	${ }^{30}$	${ }^{\text {EL }}$	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc		\bigcirc	0		\bigcirc	\bigcirc	\bigcirc	\bigcirc			\bigcirc	\bigcirc	－	\bigcirc
78	${ }^{02,064,100}$	Lues	${ }^{30}$	${ }^{\text {EL }}$	0	0	0	0	－	\bigcirc	－	0	0	0	0	U	ט	\bigcirc	U	0	0	\bigcirc	0	0
79	${ }^{02,064,900}$	Onher	${ }^{30}$	${ }_{\text {EL }}$	\checkmark	\bigcirc	\checkmark	\checkmark	\checkmark	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\checkmark	\checkmark	\bigcirc	U	\checkmark	U	\bigcirc	\checkmark	\bigcirc
80	02，06，000	－Oner，tesso or criled	${ }^{30}$	HSL	30%	30\％	30\％	${ }^{30 \%}$	30\％	30\％	30\％	30\％	30\％	30\％	30\％	30\％	30\％	30%	30\％	30%	30%	30\％	30\％	${ }^{30 \%}$
${ }^{81}$	02，06， 000	－Oher，fiozen	${ }^{30}$	HSL	30\％	30\％	30\％	30\％	30\％	30\％	30\％	${ }^{30 \%}$	30\％	30\％	30\％	30\％	30\％	30\％	${ }^{30 \%}$	30\％	30\％	30\％	30\％	30%
82	02，071，100		${ }^{30}$	EL	O	，	U	U	U	，	U	，	U	－	U	U	U	ט	U	U	U	U	0	U
${ }^{83}$	02，07，200	－Not cutin pieces，forem	${ }^{30}$	${ }^{\text {EL }}$	－	，	\bigcirc	－	－	\bigcirc	\bigcirc	\bigcirc	O	\bigcirc	U	－	\bigcirc	\bigcirc	－	－	－	－	\bigcirc	\bigcirc
84	${ }^{02,071,300}$	－Culs and oftal，festo or chiled	${ }^{30}$	${ }^{\text {EL }}$	U	\bigcirc	ט	U	\bigcirc	\bigcirc	\bigcirc	\bigcirc	ט	\bigcirc	U	ט	U	U	U	\bigcirc	\bigcirc	U	U	\bigcirc
${ }^{85}$	02，07，410	\cdots Wing	${ }^{30}$	${ }^{\text {EL }}$	－	\bigcirc		\bigcirc	\bigcirc	\bigcirc	－	\bigcirc	\bigcirc	\bigcirc	－	\bigcirc								
${ }^{86}$	102，07，420	\cdots Thigh	${ }^{30}$	EL	U	0	\bigcirc	U	\bigcirc	\bigcirc	ט	\bigcirc	\bigcirc	\bigcirc	\checkmark	\bigcirc								

${ }^{167}$	${ }^{\text {03，024，100 }}$	－Herings（Clupa hazenuus，clupea palasi）	10	${ }^{\text {NT2 }}$	${ }^{\text {\％}}$	9\％	\％	${ }^{8 \%}$	6\％	6\％	${ }^{5 \%}$	5\％	${ }^{4 \%}$	4%	3\％	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	0\％	\％	0\％	${ }^{0 \%}$	${ }^{0 \%}$	${ }^{0 \%}$
$1{ }^{168}$	03，044，200	Anchoves EEgrauls spp．）	10	${ }^{\text {NT2 }}$	9\％	9\％	${ }_{8}{ }^{8}$	8\％	6\％	6\％	${ }_{5 \%}^{5 \%}$	${ }_{5 \%}^{5 \%}$	4\％	$4{ }^{4 \%}$	3\％	${ }^{3}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％	0\％	\％	\％
${ }^{169}$	03， 24,300	－Sardines（SArfina pilchardus ，Sardinops spp ．）， sardinella（Sardinella spop．），brisising or sprats （Spratus spratus ）	10	NT2	${ }^{9 \%}$	\％	${ }^{\text {\％}}$	${ }^{8 \%}$	6\％	${ }^{6 \%}$	${ }^{5 \%}$	${ }^{5 \%}$	4%	${ }^{4 \%}$	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％	\％	\％	\％\％
${ }^{170}$	03，024，400	－Mackerel（Scomber scombrus ，Scomber australasicus，Scomber japonicus）	10	T2	${ }^{9}$	\％	${ }^{8 \%}$	${ }^{8 \%}$	6\％	6\％	${ }^{5 \%}$	${ }^{5 \%}$	${ }^{4 \%}$	${ }^{4 \%}$	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	0\％	\％	0\％	\％	\％	\％
${ }^{171}$	${ }^{03,24,5,500}$	－Jack and hose mackerel（Trachurus spo．）	10	N2	${ }^{9 \%}$	${ }^{9 \%}$	${ }^{8 \%}$	${ }^{8}$	6\％	6\％	${ }_{5 \%}^{5 \%}$	${ }^{5 \%}$	${ }_{4}^{4 \%}$	${ }^{4 \%}$	${ }^{3} \%$	${ }^{3} \%$	${ }^{2 \%}$	${ }^{2 \%}$	0\％	\％	\％\％	\％	\％	0\％
172	${ }^{03,024,600}$	－Cobial（RaChencento	10	N2	${ }^{9 \%}$	9\％	\％	${ }^{8 \%}$	6\％	6\％	5\％	5\％	${ }^{4 \%}$	${ }^{4 \%}$	${ }^{3}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	0\％	0\％	\％	\％
${ }^{173}$	03，04，${ }^{\text {a }}$ O	－Swortish（Xephias gadius）	10	NT2	9\％	\％	\％	8%	6\％	6\％	5\％	5\％	4\％	4\％	3\％	3\％	2\％	${ }^{2 \%}$	0\％	\％	0\％	\％	\％	\％
174	03，02， 100	- Cod（Gadus morhua，Gadus ogac，Gadus macrocephalus ）	${ }^{10}$	NT2	${ }^{9 \%}$	\％$\%$	${ }^{8 \%}$	8\％	6\％	6\％	5\％	5\％	4%	4\％	${ }^{3} \%$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％\％	0\％	\％	\％	\％	\％
175	03，05，200	－Hadoock（Mearogogamus aegelinus ）	10	NT2	\％${ }^{\text {\％}}$	9\％	${ }^{8 \%}$	${ }^{8 \%}$	6\％	6\％	${ }_{5 \%}$	${ }_{5 \%}$	4%	${ }^{4 \%}$	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	0\％	\％	\％	0\％	0\％	\％
176	${ }^{03,02,300}$	－Coants（Pollachius siens ）	10	NT2	${ }^{9 \%}$	9\％	\％	${ }^{8 \%}$	6\％	6\％	${ }_{5 \%}$	${ }_{5 \%}$	$4{ }^{4}$	$4{ }^{4}$	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％	\％	\％	\％
177	${ }^{03,05,400}$	－－Hake（Meriococis spo，UTophycis spo．）．	${ }^{10}$	N2	${ }^{9}$	9\％	8%	${ }^{8 \%}$	6\％	6\％	5\％	5\％	${ }^{4 \%}$	4%	3\％	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％	\％	\％	\％
${ }^{178}$	03，02，500	Alska Polack（Theragra chalogarama）	10	NT2	9\％	\％	${ }^{8 \%}$	8\％	6\％	6\％	5\％	${ }_{5 \%}$	$4{ }^{4 \%}$	$4{ }^{4 \%}$	3\％	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％\％	\％	\％	\％	\％	\％
${ }^{179}$	03，02，500	Blue whitings（Micromesistius poutassou，	10	NT2	${ }^{9 \%}$	9\％	\％	${ }^{8 \%}$	6\％	6%	${ }^{5 \%}$	${ }^{5 \%}$	4\％	${ }^{4 \%}$	3\％	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	0\％	0\％	\％\％	0\％
180	03，025，900	－Oner	10	т2	9\％	9\％	8\％	8\％	6\％	6\％	5\％	5%	4\％	${ }^{4 \%}$	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％\％	\％	0\％	0\％	0\％	0\％
${ }^{181}$	${ }^{03,027,100}$	－Tilapas（ Oreochromis spo．）	10	HSL	\％	10\％	10\％	\％	\％	\％	\％	10\％	10\％	10\％	\％	\％\％	\％\％	10\％	0\％	\％\％	\％	\％\％	\％	\％\％
182	${ }^{03,02,2,210}$	－Yelowail catish（Pargasius par	10	${ }^{\text {IsL }}$	0\％	0\％	10\％	0\％	10\％	0\％	0\％	10\％	10\％	10\％	0\％	0\％	10\％	10\％	0\％	10\％	0\％	0\％	0\％	0\％
183	03，027，200	－omer	10	Hst	10\％	0\％	10\％	10\％	0\％	0\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	0\％	0\％
184	${ }^{03,02,310}$	\cdots－Migal（Cirininus crimosus）	${ }^{10}$	HSL	\％\％	10\％	10\％	10\％	0\％	0\％	10\％	10\％	10\％	10\％	10\％	0\％	10\％	10\％	10\％	10\％	0\％	10\％	0\％	0\％
${ }^{185}$	${ }^{03,027,390}$	－－Other	10	HSL	10\％	10\％	10\％	${ }^{10 \%}$	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	0\％	10\％	10\％	10\％	\％	\％
${ }^{186}$	03，027，400	－Eess（Anguilla spo ．	${ }^{10}$	N2	9\％	9\％	${ }^{8 \%}$	${ }^{8 \%}$	6%	6\％	5\％	5\％	4\％	4\％	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	0\％	0\％	0\％	0\％	\％
187	03，027，900	－Other	10	HSL	\％	10\％	10\％	10\％	0\％	\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	0\％	0\％
188	03，08， 100	－Dogith and others Sanks	10	NT2	9%	9%	${ }^{8 \%}$	${ }_{8 \%}$	6\％	6\％	5\％	5\％	4\％	${ }^{4 \%}$	3\％	3\％	${ }^{2 \%}$	2\％	0\％	\％	\％	\％	0\％	0\％
${ }^{189}$	${ }^{03,082,200}$	－Raps sans skales（Rajidae $)$	10	N2	${ }^{9 \%}$	9\％	8%	8\％	6\％	${ }^{6 \%}$	${ }^{5 \%}$	${ }^{5 \%}$	4%	$4{ }^{4 \%}$	3\％	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％\％	\％	\％	0\％	\％	0\％
190	${ }^{03,02,3,30}$	Toontish（Oissositiolus spo．）	10	N2	${ }^{9 \%}$	9\％	${ }^{8 \%}$	${ }^{8 \%}$	6\％	${ }^{6 \%}$	${ }^{5 \%}$	${ }^{5 \%}$	${ }^{4 \%}$	$4{ }^{4 \%}$	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	0\％	\％\％	0\％	\％	\％\％	0\％
191	03，08，400	Seabass（Iicentractus spo．）	10	NT2	${ }^{9}$	9\％	${ }^{8} \%$	${ }^{8 \%}$	6\％	6\％	5\％	5\％	$4{ }^{4 \%}$	4%	${ }^{3} \%$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	0\％	\％	\％	\％
192	${ }^{03,02,500}$	－Seabream（Sparioal	10	N2	\％	\％	${ }^{8 \%}$	${ }^{8 \%}$	${ }^{6 \%}$	6\％	5\％	${ }^{5 \%}$	4%	4%	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％	0\％	\％	\％
193	03，02，912	－Longitim mjarat（Pentaprion longimanus）	${ }^{10}$	N2	9\％	9\％	8\％	8\％	6\％	6\％	5\％	5\％	4\％	$4{ }^{4}$	3\％	${ }^{3 \%}$	2\％	${ }^{2 \%}$	0\％	\％	\％	0\％	\％	0\％
194	${ }^{03,02,913}$		10	N2	\％	9\％	\％	8\％	\％	6\％	5\％	5\％	$4{ }^{4 \%}$	4%	\％	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％	0\％	0\％	\％
195	03，02，914		${ }^{10}$	NT2	9\％	9\％	8\％	${ }^{8 \%}$	6\％	6\％	5\％	5\％	${ }^{4 \%}$	4\％	3\％	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％ 0	\％\％	0\％	0\％	\％
196	03，02，915	－．．．Indian mackerel（ Rastrelliger kanaguuta ）and	10	${ }^{\text {N2 }}$	${ }^{9 \%}$	${ }^{9 \%}$	${ }^{8 \%}$	${ }^{8 \%}$	${ }^{6 \%}$	${ }^{6 \%}$	${ }^{5 \%}$	${ }^{5 \%}$	${ }^{4 / 6}$	${ }^{4 \%}$	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％\％	\％\％	\％	\％\％	\％	\％\％
${ }^{197}$	${ }^{\text {03，028，916 }}$	Torpedo scads（Megalaspis cordyla）spotted sicklefish（Drepane punctata ）and great barracudas（Sphyraena barracuda ）	10	NT2	${ }^{9 \%}$	\％	${ }^{8 \%}$	${ }^{8 \%}$	${ }^{6 \%}$	${ }^{6 \%}$	${ }^{5 \%}$	${ }^{5 \%}$	${ }^{4 \%}$	${ }^{4 \%}$	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％	\％	\％	0\％
198	03，02，917	$-\cdots$ Siler pomfrets（Pampus argenteus ）and black pomfrets（Parastromatus niger ）	${ }^{10}$	${ }^{\text {N2 }}$	${ }^{9 \%}$	\％	${ }^{8 \%}$	${ }^{8 \%}$	${ }^{6 \%}$	${ }^{6 \%}$	${ }^{5 \%}$	${ }^{5 \%}$	${ }^{46}$	${ }^{4 \%}$	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	0\％	\％	\％\％	\％\％	0\％	0\％
199	03，02，918		${ }^{10}$	NT	${ }^{9}$	${ }^{9 \%}$	${ }^{8 \%}$	${ }^{8 \%}$	${ }^{6 \%}$	6\％	${ }^{5 \%}$	${ }^{5 \%}$	${ }^{4 \%}$	${ }^{4 \%}$	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	0\％	\％	\％	\％	\％	\％
200	${ }^{03,02,9,99}$	\cdots	${ }^{10}$	T2	${ }^{\text {\％}}$	\％${ }^{\text {\％}}$	${ }^{8 \%}$	8\％	6\％	6\％	5\％	${ }^{5 \%}$	${ }^{4 \%}$	4\％	3\％	3\％	${ }^{2 \%}$	${ }^{2 \%}$	${ }^{0}$	\％	\％	0\％	\％	\％
201	03，02，922	- Rohu（Labeo rohita））calla（Catla cata）and swamp bart（ Puntius chola）	10	HsL	\％	${ }^{10 \%}$	10\％	\％\％	\％	\％	\％	0\％	10\％	\％	10\％	\％	\％	\％	\％	0\％	0\％	0\％	\％\％	\％
202	${ }^{03,02,9,94}$	${ }^{- \text {Snakesskingourami（Tichoogsistr pectoralis）}}$	10	HSL	0\％	10\％	\％	\％	10\％	0\％	0\％	\％	0\％	0\％	0\％	0\％	0\％	\％\％	0\％	10\％	\％	0\％	0\％	\％
${ }^{203}$	00，08，926	．．．．Indian threadfins（Polynemus indicus ）and siver grunts（pomadasys argenteus ）	${ }^{10}$	Ist	\％\％	10\％	10\％	\％	\％\％	\％\％	\％\％	10\％	10\％	\％	0\％	0\％	0\％	\％\％	\％	0\％	\％	0\％	\％	0\％
204	${ }^{03,028,97}$		${ }^{10}$	st	0\％	${ }^{10 \%}$	0\％	\％\％	\％	\％	0\％	0\％	0\％	\％	0\％	0\％	\％	\％	\％	\％	\％\％	\％\％	\％\％	0\％
205	${ }^{03,02,928}$		${ }^{20}$	EL	U	${ }^{\circ}$	${ }^{\text {u }}$	U	U	U	${ }^{\text {u }}$	${ }^{\circ}$	${ }^{\circ}$	U	U	U	U	U	${ }^{\circ}$	${ }^{\circ}$	\bigcirc	${ }^{\circ}$	\square^{\sim}	${ }^{\circ}$
206	03，02，929	－${ }^{\text {O Oher }}$	${ }^{10}$	HSL	－	10\％	0\％	0\％	\％\％	0\％	\％ 0	0\％	10\％	\％	0\％	10\％	\％	\％	\％	\％\％	0\％	\％	10\％	10\％
207	03，02，000	－Lvers and oos	${ }^{10}$	N2	\％	\％	8\％	8\％	6%	6\％	5\％	${ }^{5 \%}$	4%	4\％	3\％	3\％	${ }^{2 \%}$	${ }^{2 \%}$	0\％	0\％	0\％	0\％	0\％	0\％
208	${ }^{03,03,100}$	－Sockeye salmon（red salmon）（Oncorhynchus nerka ）	${ }^{10}$	N2	\％	\％	${ }^{8 \%}$	${ }^{8 \%}$	6\％	6\％	5\％	5\％	$4{ }^{4 \%}$	4%	${ }^{3} \%$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％	\％	\％	\％
209	03，03，200	－Other Pacific salmon（Oncorhynchus gorbuscha Oncorhynchus keta，Oncorhynchus tschawytscha，Oncorhynchus kisutch， Oncorhynchus masou and Oncorhynchus rhodurus）	${ }^{10}$	NT2	\％	\％	${ }^{8 \%}$	${ }^{8 \%}$	${ }^{6 \%}$	6\％	${ }^{5 \%}$	5\％	4\％	4\％	3\％	3\％	2\％	2%	0\％	\％	\％	\％	\％	\％
210	${ }^{03,03,300}$	－Atlantic salmon（Salmo salar ）and Danube salmon（Hucho hucho ）	${ }^{10}$	NT2	${ }^{9 \%}$	9\％	8%	${ }^{8 \%}$	6\％	${ }^{6 \%}$	${ }^{5 \%}$	5\％	${ }^{4 \%}$	${ }^{4 / 8}$	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	0\％	0\％	\％\％	0\％
${ }^{211}$	03，03，400	－Trout（Salmo trutta，Oncorhynchus mykiss， Oncorhynchus clarki，Oncorhynchus aguabonita， Oncorhynchus chrysogaster ）	10	Nт2	\％	\％	${ }^{8 \%}$	8\％	6\％	6\％	5\％	5\％	4\％	4\％	3%	3\％	2%	2\％	\％	0\％	\％	0\％	0\％	\％
212	03，03，900	Other	10	N2	9\％	9\％	8%	${ }_{8 \%}$	6\％	6\％	5\％	5\％	4\％	4\％	${ }^{3} \%$	3\％	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％	0\％	0\％	0\％
${ }^{213}$	${ }^{\text {03，032，300 }}$	${ }^{-}$－Tlapas（ Ofreochromis spo．）	${ }^{10}$	HSL	\％	10\％	${ }^{10 \%}$	10\％	\％	10\％	10\％	10\％	${ }^{10 \%}$	10\％	10\％	${ }^{10 \%}$	${ }^{10 \%}$	${ }^{10 \%}$	10\％	10\％	\％	10\％	10\％	10\％
214	00，032，400	－Catfish（Pangasius spp ．，Silurus spp ．，Clarias spp ．，Ictalurus spp ．）	10	HsL	10\％	0\％	10\％	\％	0\％	10\％	\％\％	\％	0\％	10\％	10\％	\％\％	10\％	0\％	\％\％	10\％	0\％	10\％	10\％	10\％
215	03，02，500	Carp（Cyyrinus carpio，Carassius carassius， Ctenopharyngodon idellus，Hypophthalmichthys spp．，Cirrhinus spp．，Mylopharyngodon piceus）	10	HSL	10\％	10\％	0\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％
216	03，02，600	－Eess（Angulla spo．）．	10	N2	\％	9\％	${ }^{8 \%}$	8\％	6\％	6\％	5\％	${ }^{5 \%}$	${ }^{4 \%}$	${ }^{4 \%}$	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	0\％	0\％	\％	0\％	0\％	0\％
${ }^{217}$	${ }^{03,02,2900}$	－Other	10	HSL	\％\％	10\％	10\％	10\％	${ }^{10 \%}$	10\％	${ }^{10 \%}$	10\％	10\％	10\％	10\％	${ }^{10 \%}$	${ }^{10 \%}$	10\％	10\％	10\％	${ }^{10 \%}$	10\％	0\％	\％
218	03，03，100	Halibut（Reinhardtius hippoglossoides， Hippoglossus hippoglossus，Hippoglossus stenolepis ）	${ }^{10}$	N2	${ }^{9 \%}$	9\％	${ }^{8 \%}$	${ }^{8 \%}$	6%	6\％	5\％	5\％	4\％	4\％	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％	\％	\％	\％
219	03，03，200	－Paice P（Peumonecoses palassa）	10	N2	${ }^{9 \%}$	\％	8\％	8\％	6%	6\％	5\％	5%	4\％	4\％	3\％	3\％	${ }^{2 \%}$	${ }^{2 \%}$	0\％	\％	0\％	0\％	0\％	0\％
220	${ }^{03,03,3,300}$	－Sole（Soloes spo．）	${ }^{10}$	N2	${ }^{9 \%}$	9\％	8\％	${ }^{8 \%}$	6\％	6\％	5\％	5\％	$4{ }^{4 \%}$	4%	3\％	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	0\％	\％	0\％	0\％	0\％	0\％
221	${ }^{03,03,400}$	－Tubots（ Peeta maxima）	${ }^{10}$	N2	9\％	9\％	${ }^{8 \%}$	${ }^{8 \%}$	6%	6\％	5\％	5\％	$4{ }^{4}$	4\％	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％	0\％	\％	\％
222	03，03，900	－Oner	10	N2	\％	9\％	${ }^{8 \%}$	${ }^{8 \%}$	6\％	6\％	5\％	5\％	4\％	4\％	${ }^{3 \%}$	3\％	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	0\％	\％	\％	\％
223	${ }^{03,034,100}$	A Abacore or Iongimed tunas（Thumusal	${ }^{10}$	NT2	${ }^{9}$	\％	${ }^{8 \%}$	${ }^{8 \%}$	6\％	6\％	5\％	${ }^{5 \%}$	${ }^{4 \%}$	${ }^{4 \%}$	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％\％	\％	\％	0\％	0\％	0\％
${ }^{224}$	03，034，200	－Yelowwin tunas（Thumus alocaeas）	10	N2	\％	\％	8%	${ }^{8}$	6\％	6\％	5\％	5\％	4%	${ }^{4 \%}$	${ }^{3 \%}$	3\％	${ }^{2 \%}$	${ }^{2 \%}$	\％\％	\％	0\％	0\％	\％	0\％
225	${ }^{03,03,3,300}$	－Skipiack or stipeebelile boomio	${ }^{10}$	N2	${ }^{9 \%}$	9\％	${ }^{8 \%}$	${ }^{8 \%}$	6%	6\％	5\％	5\％	$4{ }^{4 \%}$	${ }^{4 \%}$	${ }^{3 \%}$	3\％	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	0\％	0\％	0\％	0\％
226	${ }^{03,034,400}$	－Bigeye tuns（Tumus obesus）	${ }^{10}$	N2	${ }^{9 \%}$	${ }^{9 \%}$	8\％	8\％	6\％	${ }^{6 \%}$	${ }^{5 \%}$	5\％	$4{ }^{4 \%}$	${ }^{4 \%}$	3\％	3\％	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％	\％	\％	\％
${ }^{227}$	${ }^{03,03,500}$	－－Atlantic and Pacific bluefin tunas（Thunnus thynnus ，Thunnus orientalis ）．	${ }^{10}$	N2	${ }^{9 \%}$	${ }^{9}$	${ }^{8 \%}$	${ }^{8 \%}$	6\％	6\％	5\％	5\％	4%	4%	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％\％	\％	\％	\％
${ }^{228}$	${ }^{03,034,600}$	－－Suutem buluein unas（Thumus macovii）	${ }^{10}$	N2	${ }^{9 \%}$	9\％	${ }^{8 \%}$	8%	6\％	6\％	${ }^{5 \%}$	5\％	4%	4\％	3\％	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％\％	\％	\％	0\％	\％\％	\％
229	03，034，900	－Oner	10	NT2	\％	9\％	8\％	${ }_{8 \%}$	6\％	6\％	5\％	5\％	4%	4\％	3\％	3\％	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％	\％	\％	\％
230	${ }^{03,03,100}$	Hering（Clupea harenus，COLPea palasisi）	10	N2	${ }^{9 \%}$	9\％	8\％	${ }^{8 \%}$	6\％	6\％	5\％	5\％	4\％	4\％	3\％	3\％	${ }^{2 \%}$	${ }^{2 \%}$	\％\％	\％	\％	\％	\％	\％
${ }^{231}$	03，05，300		${ }^{10}$	N2	${ }^{\text {\％}}$	${ }^{\text {\％}}$	${ }^{8 \%}$	${ }^{8 \%}$	6\％	6\％	${ }^{5 \%}$	${ }^{5 \%}$	${ }^{4 \%}$	${ }^{4 \%}$	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％\％	\％	\％	\％	\％	\％
232	0，0，05，400	－Mackerel（Scomber scombrus ，Scomber australasicus，Scomber japonicus）	${ }^{10}$	N2	\％	\％	${ }^{8} \%$	${ }^{8 \%}$	6\％	6\％	${ }^{5 \%}$	${ }^{\text {5\％}}$	${ }^{4 \%}$	${ }^{4 \%}$	3\％	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	0\％	\％	0\％	0\％	0\％	\％\％
${ }^{233}$	03，03，500	－Jack and hosese mackeel（Trachurs spo ．）	${ }^{10}$	N2	9\％	\％	${ }_{8 \%}$	${ }^{8 \%}$	6\％	6\％	5\％	${ }^{5 \%}$	${ }^{4 \%}$	4%	3\％	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	0\％	\％	\％	\％
234	${ }^{03,03,500}$	－Cobia（Fachlyentron canauim）	10	N2	${ }^{9 \%}$	${ }^{9 \%}$	${ }^{8 \%}$	${ }^{8 \%}$	${ }^{6 \%}$	6\％	5\％	5\％	4\％	4%	${ }^{3} \%$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％	0\％	\％	\％
235	${ }^{03,05,7,00}$	－Sworith（Xiphas gadus ）	10	NT2	${ }^{9 \%}$	\％	${ }^{8}$	8\％	6\％	6\％	5\％	5\％	4%	4%	3\％	3\％	${ }^{2 \%}$	${ }^{2 \%}$	\％\％	\％	\％	\％	\％	\％
${ }^{236}$	03，30，300	$\begin{aligned} & - \text { Cod (Gadus morhua, Gadus ogac , } \\ & \text { Gadus macrocephaus) } \\ & \hline \end{aligned}$	${ }^{10}$	NT2	9\％	\％	${ }^{8} \%$	8\％	${ }^{6 \%}$	6\％	5\％	${ }^{5 \%}$	4\％	${ }^{4 \%}$	3\％	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％	0\％	\％	\％
${ }^{237}$	${ }^{\text {03，036，400 }}$	－－Haddock（Meanogrammus aeglefins ）	${ }^{10}$	N2	${ }^{9 \%}$	9\％	${ }^{8 \%}$	${ }^{8 \%}$	6\％	6\％	5\％	${ }^{5 \%}$	${ }^{4 \%}$	${ }^{4 \%}$	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％	0\％	\％	0\％
${ }^{238}$	${ }^{03,06,500}$	－Coalifs（Pollachius simens ）	${ }^{10}$	N2	\％	9\％	${ }^{8 \%}$	8\％	6\％	6\％	${ }^{5 \%}$	${ }^{5 \%}$	4\％	$4{ }^{4 \%}$	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％	0\％	\％	\％
239	${ }^{03,03,600}$		10	NT2	${ }^{9}$	9\％	8\％	${ }^{\text {\％}}$	6\％	6\％	5\％	${ }^{5 \%}$	4%	${ }^{4 \%}$	${ }^{3} \%$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％	0\％	\％	\％
240	00，30，700	Haska Polack（Theragra chalcogramma）	10	NT2	9\％	9\％	8\％	${ }^{8 \%}$	6\％	6\％	${ }_{5 \%}$	${ }^{5 \%}$	4%	4\％	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	0\％	\％	\％	\％	\％

${ }^{241}$	${ }^{10,303,800}$		10	${ }^{\text {NT2 }}$	${ }^{9 \%}$	${ }^{9 \%}$	${ }^{8 \%}$	${ }^{8 \%}$	${ }^{6 \%}$	${ }^{6 \%}$	${ }^{5 \%}$	${ }^{5 \%}$	${ }^{4 \%}$	${ }^{4 \%}$	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％	\％\％	${ }^{0 \%}$	${ }^{\circ} \%$
242	03，33，900	－ooner	10	NT2	\％	${ }^{9} \%$	8\％	${ }^{8 \%}$	6\％	6\％	5\％\％	${ }^{5 \%}$	4%	4%	${ }^{3 \%}$	3\％	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％	0\％	\％	\％
$2{ }^{24}$	03，38，100	－Dogits and others shans	10	NT2	\％	${ }^{9 \%}$	${ }_{8} \%$	${ }^{8} \%$	6\％	6\％	5\％	5\％	${ }^{4 \%}$	${ }^{4 \%}$	${ }^{3}$	3\％	${ }^{2 \%}$	${ }^{2 \%}$	\％	0\％	\％	\％	\％	0\％
24	03，38，200	－Rays and skraes（Ralidae ）	10	NT2	9\％	\％	${ }_{8 \%}$	${ }^{8 \%}$	6\％	6\％	${ }^{5 \%}$	${ }^{5 \%}$	4\％	${ }^{4 \%}$	${ }^{3}$	3\％	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％	\％	\％	\％
245	${ }^{03,08,300}$	Toontis（OISssosichus spp．，	10	NT2	${ }^{9}$	9\％	${ }^{8 \%}$	${ }^{8 \%}$	${ }^{6 \%}$	${ }^{6 \%}$	${ }^{5 \%}$	${ }^{5 \%}$	${ }^{4 \%}$	${ }^{4 \%}$	${ }^{3 \%}$	${ }^{\text {3\％}}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％	\％	\％	${ }_{0} \%$
$2{ }^{246}$	03，38，400	Seabas（İCentractus spo．）	10	N2	9\％	${ }^{9}$	${ }_{8 \%}$	${ }^{8 \%}$	6\％	6\％	${ }^{5 \%}$	5\％	4\％	4\％	${ }^{3}$	3\％	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％	\％	\％	\％
247	03，03，912	Longin moiara（Pentapion longimanus）	10	NT2	9\％	3\％	8\％	8\％	6\％	6\％	5\％	5\％	4\％	4\％	3\％	3\％	${ }^{2 \%}$	2\％	0\％	\％	，	\％	\％	\％
${ }^{248}$	${ }^{03,03,9,913}$	－Bunnose Izadilish（Trachinoeophaus myoos	10	NT2	${ }^{9 \%}$	9\％	${ }^{8 \%}$	${ }^{8 \%}$	6\％	6\％	5\％	5\％	4%	4%	3\％	${ }^{3 \%}$	2%	2%	\％	\％\％	\％\％	\％	0\％	\％
249	03，03，914	－．．Savala hairtails（Lepturacanthus Savala ）， Belanger＇s craakers（Johnius belangerii），Reeve＇s croakers（Chrysochir aureus ）and bigeye croakers （Pennahia anea ）	10	Nт2	9\％	9\％	8\％	${ }^{8 \%}$	6\％	6\％	5\％	5\％	4\％	4\％	3\％	${ }^{3 \%}$	${ }^{2 \%}$	2%	\％	\％	0\％	\％	0\％	\％
250	00，03，915	－．．．Indian mackerel（ Rastrtelliger kanaguuta ）and	10	NT2	${ }^{9 \%}$	\％	8\％	${ }^{8 \%}$	6\％	6\％	5\％	5\％	${ }^{4 \%}$	4\％	3\％	3\％	${ }^{2 \%}$	2\％	\％	\％	\％	\％	0\％	0\％
251	03，03，916		10	NT2	9\％	${ }^{\text {\％}}$	8\％	${ }^{8 \%}$	6\％	6\％	5\％	${ }^{5 \%}$	4\％	4\％	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％	\％	\％	0\％
252	3，038，97	$\begin{aligned} & \text {-- - Silver pomfrets (Pampus argenteus) and } \\ & \text { black pomfrets (Parastromatus niger) } \end{aligned}$	10	N2	${ }^{9 \%}$	${ }^{9}$	${ }^{8 \%}$	8\％	${ }^{6 \%}$	6\％	5\％	5\％	${ }^{4 \%}$	4\％\％	${ }^{3 \%}$	3\％	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％	\％	\％	\％
233	03，03，918	\cdots Mangrove red snappers（Lutianus	${ }^{10}$	NT2	\％	\％	8\％	${ }^{8 \%}$	${ }^{6 \%}$	6\％	${ }^{5 \%}$	${ }^{5 \%}$	${ }^{4 \%}$	4%	3\％	3\％	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％	\％	\％	\％
254	03，03，919	－Onter	10	NT2	${ }^{9 \%}$	\％	8\％	8\％	6\％	6\％	5\％	5\％	4\％	4%	3\％	${ }^{3 \%}$	2\％	2\％	\％	\％	\％	0\％	\％	\％
255	03，38，922	－．．Rohu（LLabeo rohita））catal（Catla catla）and swamp babl（Puntus chola）	10	HSL	10\％	10\％	10\％	10\％	10\％	10\％	10\％	0\％	10\％	10\％	10\％	0\％	10\％	10\％	0\％	10\％	10\％	0\％	\％	0\％
256	38，24	Snakeskin gouran（Trichoosserer pectorals	10	Hst	10\％	10\％	10\％	10\％	10\％	10\％	${ }^{10 \%}$	10\％	10\％	10\％	10\％	10\％	10\％	0\％	10\％	10\％	10\％	0\％	10\％	10\％
${ }^{257}$	${ }^{03,038,926}$	－－－Indian threadfins（Polynemus indicus ）and silver grunts（pomadasys argenteus ）	10	Hst	10\％	10\％	${ }^{10 \%}$	10\％	10\％	10\％	${ }^{10 \%}$	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	0\％	10\％	10\％
258	03，08，927	－－－Hilsas shac（Tenualosa ilsha ）	10	Ist	\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	\％	10\％	10\％	10\％	10\％	\％	\％	10\％	10\％	10\％	10\％
259	00，03，928	Wallago（Wallago attu ）and giant river－catfish （Sperata seenghala ）	${ }^{20}$	${ }^{\text {EL }}$	ט	\bigcirc	\bigcirc	U	\bigcirc	O	\checkmark	0	U	U	U	O	O	ט	ט	U	\checkmark	\checkmark	ט	\checkmark
220	03，03，929	－${ }^{\text {－Oner }}$	10	HSL	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	${ }^{10 \%}$	0\％
221	03，03， 010	－Livers	10	${ }^{\text {NT2 }}$	9\％	\％$\%$	${ }_{8 \%}$	${ }^{8 \%}$	6\％	6%	5\％	5\％	${ }^{4 \%}$	4\％	3\％	3\％	${ }^{2 \%}$	${ }^{2 \%}$	\％	0\％	0\％	0\％	0\％	0\％
262	03，03， 202	－－Roes	10	NT2	\％	\％	8\％	\％	6\％	6\％	5\％	5\％	4\％	4\％	3\％	3\％	2%	2\％	\％	0\％	\％	\％	\％	\％
263	03，04， 100	－Tlapas（ Ofreochmomis sp．）．	10	NT2	${ }^{9}$	\％	\％	${ }^{8} \%$	6\％	${ }^{6 \%}$	5\％	5\％	4\％	${ }^{4 \%}$	${ }^{3}$	3\％	${ }^{2 \%}$	2\％	\％	\％	0\％	\％	\％	\％
264	${ }^{03,03,200}$	－Catish（Pangasius spp ．，Silurus spp ．，Clarias spp ．，Ctaluurus spp ．）	10	N2	${ }^{9 \%}$	${ }^{9}$	${ }^{8 \%}$	${ }^{8 \%}$	${ }^{6 \%}$	${ }^{6 \%}$	${ }^{5 \%}$	${ }^{5 \%}$	${ }^{4 \%}$	${ }^{4 \%}$	${ }^{3 \%}$	${ }^{\text {3\％}}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	${ }^{0 \%}$	0\％	\％	${ }^{0 \%}$	\％\％
265	03，04，300	－Nie Perch LLees siloticus ）	10	N2	\％	9\％	${ }^{8 \%}$	${ }^{8 \%}$	${ }^{6 \%}$	6\％	${ }^{5 \%}$	${ }^{5 \%}$	${ }^{4 \%}$	4\％	${ }^{3 \%}$	${ }^{\text {3\％}}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％	\％	\％	\％
266	03，04，3，00	－Oner	10	NT2	${ }^{9 \%}$	${ }^{9 \%}$	${ }^{8 \%}$	8\％	6\％	6\％	${ }^{5 \%}$	5\％	4%	4%	3\％	3\％	2\％	2\％	\％	\％\％	\％	\％\％	\％\％	0\％
287	03， 04,100		10	NT2	9\％	9\％	8\％	8\％	6\％	6\％	5\％	5\％	4\％	4\％	3\％	3\％	2\％	2\％	\％	0\％	0\％	0\％	0\％	0\％
228	03，04，200	－Trout（Salmo trutta ，Oncorhynchus mykiss Oncorhynchus clarki，Oncorhynchus aguabonita， Oncorhynchus chrysogaster ）	10	NT2	\％	\％	8\％	8\％	6\％	6\％	5\％	5\％	4\％	4\％	3\％	${ }^{3 \%}$	2\％	2\％	\％	\％	0\％	\％\％	0\％	\％
269	03，04， 300	- Flat fish（Pleuronectidae ，Bothidae, Cynoglossidae, Citharidae ）	10	N2	9\％	${ }^{\text {\％}}$	${ }_{8 \%}$	${ }^{8}$	6\％	6\％	5\％	5\％	4\％	4\％	3\％	3\％	${ }^{2 \%}$	${ }^{2 \%}$	0\％	0\％	0\％	0\％	\％	\％
270	03，04，400	Melanonidae，Merlucciidae，Moridae and Muraenolepididae	10	Nт2	9\％	\％	8\％	${ }^{8} \%$	6\％	6\％	5\％	5\％	4\％	4\％	3\％	${ }^{3 \%}$	2\％	2\％	\％	\％	\％	\％\％	\％	\％
271	03，04，500	－Sworitis（Xephis sladus）	10	N2	${ }^{9}$	\％	${ }_{8 \%}$	${ }^{8 \%}$	6\％	6\％	${ }^{5 \%}$	5\％	4\％	4\％	3\％	3\％	${ }^{2 \%}$	${ }^{2 \%}$	0\％	0\％	\％\％	\％	\％	0\％
272	${ }^{03,04,600}$		10	NT2	9\％	9\％	8%	${ }^{8 \%}$	6\％	6\％	5\％	5\％	4%	4%	3\％	3\％	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％	0\％	\％	0\％
273	${ }^{03,04,900}$	－Oner	10	N2	9\％	${ }^{9 \%}$	${ }_{8}^{8 \%}$	${ }^{8} \%$	${ }^{6 \%}$	6\％	${ }^{5 \%}$	5\％	4%	4%	${ }^{3 \%}$	3\％	${ }^{2 \%}$	${ }^{2 \%}$	0\％	\％	\％	\％	\％	\％
${ }^{274}$	03，04， 100	－Tilapias（Oreochromis spp．），catfish（Pangasius carp（Cyprinus carpio，Carassius carassius， Ctenopharyngodon idellus，Hypophthalmichthys spp．，Cirrhinus spp．，Mylopharyngodon piceus ）， eels（Anguilla spp．），Nile perch（Lates niloticus ） and snakeheads（Channa spp．）	10	NT2	\％	9\％	8\％	8\％	6\％	6\％	5\％	5\％	4\％	4\％	3\％	3\％	2\％	2\％	\％	\％\％	0\％	0\％	\％\％	\％
275	${ }^{03,04,2,200}$	Salmondae	10	NT2	9\％	${ }^{9}$	${ }_{8 \%}$	${ }^{8 \%}$	\％	6\％	5\％	5\％	4\％	4%	${ }^{3 \%}$	3\％	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％	\％	\％	0\％
276	03，04，500	位 Euclichthyidae，Gadidae，Macrouridae， Melanonidae，Merlucciidae，Moridae and Muraenolepididae	10	NT2	9\％	9\％	${ }^{8 \%}$	8\％	6\％	6\％	5\％	5\％	4\％	4\％	3\％	3\％	2\％	2\％	\％	\％	0\％	0\％	\％\％	\％
277	03，054，400		10	N2	9\％	9\％	8\％	8\％	6\％	6\％	5\％	5\％	4\％	4\％	3\％	3\％	2\％	2\％	\％	\％	0\％	\％	\％	\％
278	03，04，500	\cdots Toothish（Oissosstichus spp ．）	10	NT2	9\％	\％	${ }^{8 \%}$	${ }^{8 \%}$	6\％	6\％	5\％	5\％	4\％	4\％	3\％	3\％	2\％	2\％	\％	\％	\％	0\％	\％	\％
279	03，04，900	－－oner	10	NT2	\％	${ }^{\text {\％}}$	${ }_{8} 8$	8\％	6\％	${ }^{6 \%}$	5\％	5\％	${ }^{4 \%}$	${ }^{4 \%}$	${ }^{\text {3\％}}$	${ }^{\text {3\％}}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％	\％	\％	\％
280	03，04， 100	－Tilapas（Ofeochromis spo．${ }^{\text {I }}$	10	NT2	9\％	${ }^{\text {\％}}$	${ }_{8 \%}$	${ }^{8} \%$	6\％	6\％	5\％	5\％	4\％	4\％	3\％	3\％	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％	0\％	\％	\％
281	03，04，200	－Cattish（Pangasius spp ．，Silurus spp ．，Clarias spp ．，lctalurus spp ．）	10	NT2	9\％	9\％	${ }^{8 \%}$	8\％	6\％	6\％	5\％	5\％	4\％	4\％	3\％	3\％	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	0\％	\％	\％	\％\％
282	03，06，300		10	NT2	9\％	${ }^{9}$	8%	${ }_{8 \%}$	6\％	6\％	5\％	${ }^{5 \%}$	4%	4%	3\％	3\％	${ }^{2 \%}$	${ }^{2 \%}$	\％	0\％	\％	0\％	\％	\％
283	${ }^{\text {03，} 26,9,000}$	－－omer	${ }^{10}$	NT2	\％\％	9\％	8\％	8\％	6\％	6\％	5\％	5\％	$4{ }^{4 \%}$	4%	3\％	3\％	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	0\％	0\％	0\％	\％\％
284	${ }^{03,04,100}$	- Cod（Gadus mortua，Gadus ogac Gadus macrocephaus ）	10	NT2	\％$\%$	9\％	8\％	${ }^{8 \%}$	6\％	6\％	5\％	5\％	$4{ }^{4 \%}$	4%	3\％	${ }^{3 \%}$	${ }^{2 \%}$	2\％	\％	\％	\％	0\％	\％	0\％
285	03，04，200	－－Hadocok（Meanogrammus aegeifins ）	10	NT2	9\％	9\％	8\％	8%	6\％	6\％	5\％	5\％	4%	4%	3\％	3\％	${ }^{2 \%}$	2\％	\％	0\％	\％	0\％	0\％	0\％
${ }^{286}$	${ }^{03,04,3,300}$	－Coantis（Pollechius siens ）	10	N2	${ }^{9 \%}$	${ }^{9 \%}$	${ }^{8 \%}$	${ }^{8 \%}$	${ }^{6 \%}$	${ }^{6 \%}$	${ }^{5 \%}$	${ }^{5 \%}$	${ }^{4 \%}$	${ }^{4 \%}$	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	0\％	\％	0\％	\％\％	\％	\％\％
287	${ }^{03,04,4,00}$	－Hake（Merilucicis spo，UTophycis spo．）	10	NT2	\％	${ }^{9 \%}$	${ }^{8 \%}$	${ }^{8 \%}$	${ }^{6 \%}$	${ }^{6 \%}$	5\％	${ }^{5 \%}$	4\％	4%	3\％	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％	\％	\％	\％\％
${ }^{288}$	03，04，500	－Alasa Pollack（Theraga cralogamma）	10	${ }^{\text {NT2 }}$	${ }^{9 \%}$	${ }^{\text {\％}}$	${ }_{8 \%}$	${ }^{8 \%}$	6\％	6\％	5\％	5\％	4\％	4%	3\％	3\％	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	0\％	0\％	\％	0\％
229	${ }^{03,04,900}$	－Oner	10	NT2	9\％	${ }^{9}$	${ }^{8}$	${ }^{8} \%$	6\％	6\％	5\％	5\％	4%	4%	${ }^{3 \%}$	3\％	${ }^{2 \%}$	${ }^{2 \%}$	0\％	\％	\％	\％	\％	\％
220	03，48，100		10	NT2	9\％	9\％	8\％	8\％	6\％	6\％	5\％	5\％	4\％	4%	3\％	3\％	2\％	2\％	0\％	0\％	0\％	0\％	0\％	\％
291	03，04，200	Trout（Salmo tutta Oncorhynchus mykiss， Oncorhynchus clarki，Oncorhynchus aguabonita， Oncorhynchus gilae，Oncorhynchus apache and Oncorhynchus chrysogaster ）	10	NT2	\％	9\％	8\％	8\％	6\％	6\％	5\％	5\％	4\％	4\％	3\％	3\％	2%	2%	\％	0\％	\％	0\％	0\％	0\％
292	03，04，300	Flat fish（Pleuronectidae，Bothidae Cynoglossidae，Soleidae，Scophthalmidae and Citharidae ）	10	NT2	9\％	9\％	8\％	8\％	6\％	6\％	5\％	5\％	4\％	4\％	3\％	3\％	2\％	2\％	0\％	0\％	0\％	0\％	\％	\％\％
${ }^{293}$	03，08，4，400	${ }^{- \text {－Swortith（Xphias gladus ）}}$	10	NT2	9\％	\％${ }^{\text {\％}}$	8\％	8\％	6\％	6\％	5\％	5\％	4%	4%	${ }^{3 \%}$	3\％	${ }^{2 \%}$	2\％	\％	0\％	0\％	0\％	0\％	0\％
294	${ }^{03,04,5,500}$	－Toontifis（ Oissositichus sp ．）	10	NT2	\％	9\％	8%	8%	6\％	6\％	5\％	5\％	4\％	4%	3\％	3\％	${ }^{2 \%}$	2\％	\％	\％	\％	\％	\％	\％\％
$2{ }^{25}$	048，600	Herings CIupean haeronus，CIupea palasisi）	${ }^{10}$	NT2	${ }^{9 \%}$	${ }^{9 \%}$	${ }^{8 \%}$	8%	${ }^{6 \%}$	6\％	5\％	5\％	4\％	4%	3\％	3\％	${ }^{2 \%}$	${ }^{2 \%}$	\％	0\％	\％	\％	\％	\％
${ }^{296}$	3，048，700		10	NT2	${ }^{9 \%}$	${ }^{9 \%}$	${ }^{8}$	${ }^{8 \%}$	6\％	6\％	${ }^{5 \%}$	${ }^{5 \%}$	${ }^{4 \%}$	${ }^{4 \%}$	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	0\％	\％\％	\％	\％
297	03，08，9，00	－Oner	10	NT2	9\％	${ }^{9}$	8%	${ }^{8 \%}$	6\％	6\％	5\％	5\％	$4{ }^{4 \%}$	4%	3\％	3\％	${ }^{2 \%}$	2\％	\％	\％	\％	\％	0\％	0\％
298	03，49， 100		10	NT2	9\％	9\％	8\％	8\％	6\％	6\％	5\％	5\％	$4{ }^{4 \%}$	4%	${ }^{3 \%}$	3\％	2%	2%	\％	\％	0\％	0\％	0\％	0\％
299	03，09，200	\cdots	10	NT2	\％	9\％	${ }^{8 \%}$	${ }^{8 \%}$	6\％	6\％	5\％	5\％	4%	4%	3\％	3\％	${ }^{2 \%}$	2\％	\％	\％	\％	\％	\％	\％
300	03，49，9，300	－Tilapias（Oreochromis spp．），catfish（Pangasius spp．，Silurus spp．，Clarias spp．，Ictalurus spp．）， carp（Cyprinus carpio，Carassius carassius， Ctenopharyngodon idellus，Hypophthalmichthys spp．，Cirrhinus spp．，Mylopharyngodon piceus ）， eels（Anguilla spp ．），Nile perch（Lates niloticus ） and snakeheads（Channa spp．）	10	NT2	9\％	\％	8\％	8\％	6\％	6\％	5\％	5\％	4\％	4\％	3\％	3\％	2%	2%	\％	\％	\％	\％\％	\％\％	\％\％

香港•ASEAN FTAにかかる調査報告書
 別添2－4 原産地品の関税撤廃スケジュール

 （ラオス）| ${ }^{301}$ | ${ }^{\text {03，04，9，400 }}$ | Alaska Placac（Theraga charcogamma） | 10 | N2 | ${ }^{9 \%}$ | 9\％ | ${ }^{8 \%}$ | ${ }^{8 \%}$ | 6\％ | ${ }^{6}$ | ${ }^{5 \%}$ | ${ }^{5 \%}$ | 4\％ | ${ }^{4 \%}$ | ${ }^{3 \%}$ | ${ }^{3 \%}$ | ${ }^{2 \%}$ | ${ }^{2 \%}$ | \％\％ | 0\％ | 0\％ | \％ | \％ | 0\％ |
| :---: |
| 302 | 03，04，500 | | 10 | NT2 | \％ | 9\％ | 8\％ | 8\％ | 6\％ | 6\％ | 5\％ | 5\％ | 4\％ | 4\％ | 3\％ | 3\％ | 2\％ | 2\％ | \％ | \％ | 0\％ | \％ | \％ | \％\％ |
| ${ }^{303}$ | 03，04，9，900 | －Other | 10 | N2 | 9\％ | 9\％ | 8\％ | 8\％ | 6\％ | 6\％ | 5\％ | 5\％ | 4% | 4\％ | 3\％ | 3\％ | ${ }^{2 \%}$ | 2\％ | \％ | 0\％ | 0\％ | 0\％ | 0\％ | 0\％ |
| 304 | 03，05，000 | －Flours，meals and pellets of fish，fit for human consumption | 10 | N2 | 9\％ | 9\％ | ${ }^{8 \%}$ | ${ }^{8 \%}$ | 6\％ | 6\％ | 5\％ | 5\％ | 4\％ | 4\％ | ${ }^{3 \%}$ | ${ }^{3 \%}$ | ${ }^{2 \%}$ | ${ }^{2 \%}$ | \％ | \％ | \％ | \％ | \％ | 0\％ |
| ${ }^{305}$ | ${ }^{03,05,010}$ | | 10 | N2 | 9\％ | ${ }^{9}$ | ${ }^{8}$ | ${ }^{\text {8\％}}$ | 6\％ | ${ }^{6 \%}$ | ${ }^{5 \%}$ | 5\％ | ${ }^{4 \%}$ | ${ }^{4 \%}$ | 3\％ | 3\％ | ${ }^{2 / 2}$ | ${ }^{2 \%}$ | \％ | \％ | \％ | 0\％ | \％ | \％ |
| ${ }^{306}$ | ${ }^{03,052,090}$ | －Other | 10 | N2 | 9\％ | 9\％ | 8% | 8\％ | 6\％ | 6\％ | 5\％ | 5\％ | 4% | 4% | ${ }^{3 \%}$ | 3\％ | ${ }^{2 \%}$ | ${ }^{2 \%}$ | \％\％ | \％\％ | \％ | \％ | \％ | \％ |
| 307 | 03，55，100 | Tilapias（Oreochromis spp ．），catfish（Pangasius
 spp．，Silurus spp．，Clarias spp．，Ictalurus spp ．）， carp（Cyprinus carpio，Carassius carassius， Ctenopharyngodon idellus，Hypophthalmichthys spp．，Cirrhinus spp．，Mylopharyngodon piceus ）， eels（Anguilla spp．），Nile perch（Lates niloticus ） and snakeheads（Channa spp．） | 10 | NT2 | \％ | 9\％ | 8\％ | 8\％ | 6\％ | 6\％ | 5\％ | 5\％ | 4\％ | 4% | 3\％ | 3\％ | 2% | 2\％ | \％ | \％ | \％ | \％ | \％ | \％\％ |
| 308 | 03，05，200 | －Fish of the families Bregmacerotidae， Euclichthyidae Gadidae，Macrouridae， Melanonidae，Merlucciidae，Moridae and Muraenolepididae | 10 | NT2 | \％ | \％ | 8% | ${ }^{8 \%}$ | 6\％ | 6\％ | 5\％ | 5\％ | 4\％ | 4\％ | 3\％ | 3\％ | 2\％ | 2% | \％\％ | \％ | \％ | \％ | \％ | \％ |
| 309 | 03，05，910 | y－Freshwater garfish（Xenentodon cancila a，yellowstriped goatish（Upeneus vittatus ）and long－
 rakered trevall（ Ulua mentalis ） | 10 | N2 | \％ | 9\％ | ${ }^{\text {8\％}}$ | ${ }^{8 \%}$ | 6\％ | 6\％ | 5\％ | 5\％ | 4\％ | ${ }^{4 \%}$ | 3\％ | 3\％ | 2\％ | 2\％ | \％ | 0\％ | \％ | \％ | \％\％ | 0\％ |
| 310 | 03，55，920 | －－Savalai hairtails（Lepturacanthus savala ）， Belanger＇s croakers（Johnius belangerii ），Reeve＇s croakers（Chrysochir aureus ）and bigeye croakers （Pennahia anea） | 10 | NT2 | \％ | \％ | 8\％ | ${ }^{8 \%}$ | 6\％ | 6\％ | 5\％ | 5\％ | 4\％ | 4\％ | 3\％ | 3\％ | 2\％ | 2\％ | \％\％ | 0\％ | \％ | \％ | \％\％ | \％\％ |
| ${ }^{311}$ | ${ }^{03,55,930}$ | －${ }^{\text {Onher }}$ | 10 | N2 | 9\％ | 9\％ | $8{ }^{\text {8\％}}$ | 8\％ | 6\％ | 6\％ | ${ }^{5 \%}$ | 5\％ | 4\％ | ${ }^{4 \%}$ | 3\％ | 3\％ | 2\％ | ${ }^{2 \%}$ | 0\％ | 0\％ | 0\％ | 0\％ | 0\％ | \％ |
| 312 | 03，054，100 | －Pacific salmon（Oncorhynchus nerka， Oncorhynchus gorbuscha，Oncorhynchus keta， Oncorhynchus tschawytscha，Oncorhynchus kisutch，Oncorhynchus masou and Oncorhynchus rhodurus ），Atlantic salmon（Salmo salar ）and Danube salmon（Hucho hucho ） | 10 | NT2 | \％ | 9\％ | 8\％ | 8\％ | 6\％ | 6\％ | 5\％ | 5\％ | 4\％ | 4% | 3\％ | 3\％ | 2% | 2\％ | \％ | 0\％ | \％\％ | \％ | \％\％ | \％\％ |
| ${ }^{313}$ | ${ }^{03,054,200}$ | Ierings Clupea hazeronus，Cupea palasii） | 10 | N2 | 9\％ | \％ | ${ }^{8 \%}$ | ${ }^{8 \%}$ | 6\％ | 6\％ | ${ }^{5 \%}$ | ${ }^{5 \%}$ | ${ }^{4 \%}$ | ${ }^{4 \%}$ | 3\％ | 3\％ | ${ }^{2 \%}$ | ${ }^{2 \%}$ | \％ | \％ | 0\％ | \％ | \％ | \％ |
| 314 | 00，054，300 | －Trout（Salmo trutta，Oncorhynchus mykiss ， Oncorhynchuuc clarki，Oncortychus aguabonita， Oncorynnchus giliee，Oncorhynchus apache and Oncorhynchus chrysogaster ） | 10 | NT2 | \％ | \％ | 8\％ | 8\％ | 6\％ | 6\％ | 5\％ | 5\％ | 4\％ | 4\％ | 3\％ | 3\％ | 2\％ | 2\％ | \％ | \％ | \％ | \％\％ | \％ | \％ |
| ${ }^{315}$ | 03，554，400 | Tilapias（Oreochromis spp ．），catish（Pangasius spp．，Sliurus spp．，Clarias spp．，Ictalurus spp． Ctenopharyngodon idellus，Hypophthalmichthys spp．，Cirrhinus spp．，Mylopharyngodon piceus ）， eels（Anguilla spp．），Nile perch（Lates niloticus ） and snakeheads（Channa spp．）． | 10 | N2 | 9\％ | 9\％ | 8\％ | 8\％ | 6\％ | 6\％ | 5\％ | 5\％ | 4\％ | 4% | 3\％ | 3\％ | 2\％ | 2\％ | \％ | \％\％ | \％ | \％ | \％ | \％\％ |
| ${ }^{316}$ | 03，04，900 | －Oner | 10 | N2 | 9\％ | 9\％ | 8% | 8% | 6\％ | 6\％ | 5\％ | 5\％ | 4\％ | 4\％ | 3\％ | 3\％ | ${ }^{2 \%}$ | 2\％ | 0\％ | 0\％ | 0\％ | \％ | \％\％ | 0\％ |
| 317 | 03，05， 100 | $\underset{\substack{-. \\ \text { macrocepphalus } \\ \text { ）}}}{\text {（Garhua，Gadus ogac，Gadus }}$ | 10 | N2 | 9% | 9\％ | 8\％ | ${ }^{8 \%}$ | 6\％ | 6\％ | 5\％ | 5\％ | 4\％ | 4\％ | 3\％ | 3\％ | 2% | 2\％ | \％ | 0\％ | \％ | \％ | \％ | \％ |
| ${ }^{318}$ | ${ }^{03,05,920}$ | \cdots | 10 | N2 | \％ | 9\％ | ${ }^{8 \%}$ | ${ }^{8 \%}$ | 6\％ | 6\％ | 5\％ | 5\％ | ${ }^{4 \%}$ | ${ }^{4 \%}$ | ${ }^{3 \%}$ | 3\％ | ${ }^{2 \%}$ | ${ }^{2 \%}$ | \％ | \％\％ | \％\％ | \％ | \％ | \％ |
| 319 | 03，55，990 | \cdots | 10 | N2 | \％ | 9\％ | 8\％ | 8\％ | 6\％ | 6\％ | 5\％ | 5\％ | 4% | 4% | 3\％ | 3\％ | ${ }^{2 \%}$ | 2\％ | \％\％ | 0\％ | 0\％ | \％\％ | 0\％ | 0\％ |
| 320 | ${ }^{03,55,100}$ | －Herings（Clupa hamenous，Clupea palasi） | 10 | N2 | \％ | \％ | ${ }^{8 \%}$ | ${ }^{8 \%}$ | \％ | \％ | 5\％ | 5\％ | 4% | ${ }^{4 \%}$ | ${ }^{3 \%}$ | 3\％ | ${ }^{2 \%}$ | ${ }^{2 \%}$ | \％ | \％ | \％ | \％ | 0\％ | \％ |
| ${ }^{321}$ | 00，05，200 | - Cod（Gadus morrua，Gadus ogac，Gadus macrocephalus ） | 10 | NT2 | ${ }^{9} \%$ | ${ }^{9 \%}$ | \％ | ${ }^{8 \%}$ | 6\％ | 6\％ | ${ }^{5 \%}$ | ${ }^{5 \%}$ | ${ }^{4 \%}$ | ${ }^{4 \%}$ | 3\％ | ${ }^{3 \%}$ | ${ }^{2 \%}$ | ${ }^{2 \%}$ | \％ | \％ | 0\％ | ${ }^{0 \%}$ | \％ | \％ |
| 332 | 03，56，300 | \cdots Anchonves（Egraumis spo．） | 10 | N2 | \％ | ${ }^{9 \%}$ | ${ }^{8 \%}$ | ${ }^{8 \%}$ | 6\％ | 6\％ | 5\％ | 5\％ | ${ }^{4 \%}$ | ${ }^{4 \%}$ | ${ }^{3 \%}$ | ${ }^{3 \%}$ | ${ }^{2 \%}$ | ${ }^{2 \%}$ | \％\％ | 0\％ | \％ | \％\％ | \％\％ | \％ |
| ${ }^{323}$ | 03，56，400 | －Tilapias（Oreochromis spp．），catfish（Pangasius spp．，Silurus spp．，Clarias spp．，Ictalurus spp．）， carp（Cyprinus carpio，Carassius carassius， Ctenopharyngodon idellus，Hypophthalmichthys spp．，Cirrhinus spp．，Mylopharyngodon piceus ）， eels（Anguilla spp ．），Nile perch（Lates niloticus ） and snakeheads（Channa spp．）． | 10 | NT2 | 9\％ | 9\％ | 8\％ | 8\％ | 6\％ | 6\％ | 5\％ | 5\％ | 4\％ | 4\％ | 3\％ | 3\％ | 2\％ | 2\％ | \％ | \％ | \％ | \％ | \％\％ | \％\％ |
| 324 | ${ }^{03,06,9,910}$ | \cdots Maine ish | 10 | N2 | \％ | 9\％ | ${ }^{8 \%}$ | 8% | 6% | ${ }^{6 \%}$ | ${ }^{5 \%}$ | 5\％ | 4\％ | ${ }^{4 \%}$ | 3\％ | ${ }^{3 \%}$ | ${ }^{2 \%}$ | ${ }^{2 \%}$ | \％\％ | 0\％ | \％\％ | 0\％ | 0\％ | \％\％ |
| 325 | 03，56，990 | \cdots Onter | ${ }^{10}$ | N2 | \％ | 9\％ | ${ }^{8}$ | ${ }^{8}$ | 6\％ | 6\％ | 5\％ | 5\％ | 4\％ | ${ }^{4 \%}$ | ${ }^{3 \%}$ | 3\％ | 2% | 2\％ | \％ | \％ | \％ | \％ | \％ | \％ |
| 336 | 00，05，100 | －Shakk fins | 10 | ${ }^{12}$ | \％ | ${ }^{\text {\％}}$ | ${ }^{8 \%}$ | ${ }^{8 \%}$ | 6\％ | ${ }^{6 \%}$ | ${ }^{5 \%}$ | 5\％ | ${ }^{4 \%}$ | ${ }^{4 \%}$ | ${ }^{3}$ | 3\％ | 2% | 2\％ | \％ | \％ | \％ | \％ | \％ | \％\％ |
| 327 | ${ }^{03,05,210}$ | \cdots Fshmms | 10 | N2 | 9\％ | 9\％ | ${ }^{8}$ | ${ }^{8}$ | ${ }^{6}$ | ${ }^{6 \%}$ | 5\％ | 5\％ | ${ }^{4 \%}$ | ${ }^{4 \%}$ | ${ }^{3 \%}$ | ${ }^{3 \%}$ | ${ }^{2 \%}$ | ${ }^{2 \%}$ | \％ | \％ | \％ | \％ | \％ | \％ |
| ${ }^{328}$ | 00，05，290 | ‥－oner | 10 | N2 | \％ | 9\％ | ${ }^{8 \%}$ | ${ }^{\text {8\％}}$ | 6\％ | 6\％ | 5\％ | 5\％ | 4\％ | ${ }^{4 \%}$ | ${ }^{3 \%}$ | 3\％ | ${ }^{2 \%}$ | ${ }^{2 \%}$ | 0\％ | \％\％ | \％ | \％ | \％ | \％ |
| 329 | 03，05，900 | －Oner | 10 | N2 | \％ | 9\％ | ${ }_{8 \%}$ | ${ }_{8 \%}$ | 6\％ | 6\％ | 5\％ | 5\％ | 4% | $4{ }^{4 \%}$ | 3\％ | 3\％ | ${ }^{2 \%}$ | 2% | \％ | 0\％ | 0\％ | \％ | \％ | \％ |
| 330 | 03，061，100 | Rock lobster and other sea crawfish（Palinurus spp．，Panulirus spp．，Jasus spp．） | 10 | IsL | 10\％ | 0\％ | 0\％ | 10\％ | 0\％ | ${ }^{10 \%}$ | 0\％ | 10\％ | 10\％ | 10\％ | 10\％ | 10\％ | 0\％ | 0\％ | 10\％ | 10\％ | 10\％ | 0\％ | 10\％ | \％ |
| ${ }^{331}$ | 03，06，200 | $\stackrel{\text { cosenems }}{ }$ | 10 | ISL | 0\％ | 0\％ | 0\％ | 10\％ | 10\％ | 10\％ | 10\％ | 10\％ | 10\％ | 10\％ | 10\％ | 10\％ | 10\％ | 10\％ | 10\％ | 10\％ | 10\％ | 10\％ | 10% | 10\％ |
| 332 | ${ }^{03,061,410}$ | \cdots－Sot stell crabs | 10 | HsL | \％\％ | 10\％ | 10\％ | 10\％ | 10\％ | 10\％ | 10\％ | 10\％ | 10\％ | 10% | 10\％ | 10\％ | 10\％ | 10\％ | 10\％ | 10\％ | 10\％ | 10\％ | 10% | 10\％ |
| ${ }^{333}$ | ${ }^{03,061,490}$ | －－other | 10 | HSL | 10\％ | 10\％ | 10% | 10\％ | 10\％ | 10\％ | 10\％ | 10\％ | 10\％ | 10\％ | 10\％ | 10\％ | 10\％ | 10\％ | 10\％ | 10\％ | 10\％ | 10\％ | 10% | 10\％ |
| ${ }^{33}$ | 00，06，500 | | 10 | Hst | 10\％ |
| 335 | 00，061，600 | - Cold－water shimps and prawns（Pandalus spp． Crangon crangon ） | ${ }^{10}$ | Ist | 0\％ | 10\％ | 10\％ | ${ }^{10 \%}$ | 10\％ | 10\％ | \％\％ | 10\％ | 10\％ | 10\％ | 10\％ | 10\％ | 0\％ | 10\％ | 10\％ | 10\％ | 10\％ | 10\％ | 10\％ | 10\％ |
| 133 | 00，06，7710 | | ${ }^{10}$ | IsL | 10\％ | 10\％ | 10\％ | ${ }^{10 \%}$ | 10\％ | 10\％ | 10\％ | 10\％ | 10\％ | 10\％ | 10\％ | 10\％ | 10\％ | 10\％ | 10\％ | 10\％ | 10\％ | 10\％ | 10\％ | 10\％ |
| ${ }^{337}$ | ${ }^{03,061,20}$ | \cdots－Whiteleg shinpos（Litoenaeus vamame） | 10 | HsL | 10\％ | 0\％ | 10\％ | 10\％ | ${ }^{10 \%}$ | 10\％ | 10\％ | 10\％ | 10\％ | 10\％ | 10\％ | ${ }^{10 \%}$ | 10\％ | 10\％ | 10\％ | 10\％ | 10\％ | 10\％ | 10\％ | 0\％ |
| ${ }^{338}$ | ${ }^{03,66,7,30}$ | Giant tiver fraws（Macocorachim mose | 10 | IsL | 10\％ | 10\％ | 10\％ | 0\％ | 10\％ | 10\％ | 10\％ | \％ | ${ }^{10 \%}$ | ${ }^{10 \%}$ | 10\％ | 10\％ | ${ }^{10 \%}$ | 10\％ | 10\％ | ${ }^{10 \%}$ | 10\％ | \％ | 10\％ | \％\％ |
| 339 | ${ }^{03,061,790}$ | \cdots | 10 | HSL | 0\％ | 10\％ | 0\％ | ${ }^{10 \%}$ | 10\％ | 10\％ | 0\％ | 10\％ | 10\％ | 10\％ | 10\％ | 10\％ | 10\％ | 10\％ | 10\％ | 10\％ | 10\％ | 10\％ | 10\％ | 10\％ |
| 330 | 03，06，900 | －－Other，including flours，meals and pellets of crustaceans，fit for human consumption | 10 | ist | \％ | 0\％ | 0\％ | 10\％ | 10\％ | 10\％ | \％ | 10\％ | 10\％ | 10\％ | 10\％ | 10\％ | 10% | \％ | \％ | 10\％ | 10\％ | 10\％ | \％ | 10\％ |
| $3{ }^{31}$ | ${ }^{03,062,110}$ | \cdots | 10 | N2 | ${ }^{9 \%}$ | ${ }^{9 \%}$ | ${ }^{8 \%}$ | ${ }^{8 \%}$ | 6\％ | 6\％ | ${ }^{5 \%}$ | ${ }^{5 \%}$ | ${ }^{4 \%}$ | ${ }^{4 \%}$ | ${ }^{3 \%}$ | ${ }^{3 \%}$ | ${ }^{2 \%}$ | ${ }^{2 \%}$ | \％ | \％ | \％ | \％ | 0\％ | \％\％ |
| ${ }^{342}$ | ${ }^{03,062,120}$ | －Other，IVe | 10 | N2 | 9\％ | 9\％ | 8% | 8\％ | 6\％ | 6\％ | 5\％ | 5\％ | 4% | 4% | 3\％ | 3\％ | ${ }^{2 \%}$ | 2\％ | \％\％ | 0\％ | 0\％ | \％ | \％ | \％ |
| ${ }^{343}$ | ${ }^{03,02,130}$ | \cdots Fesshor conlied | 10 | N2 | ${ }^{9 \%}$ | 9\％ | ${ }^{8 \%}$ | ${ }^{8}$ | ${ }^{6 \%}$ | ${ }^{6 \%}$ | 5\％ | 5\％ | 4% | 4% | ${ }^{3 \%}$ | ${ }^{3 \%}$ | ${ }^{2 \%}$ | 2% | \％ | \％ | 0\％ | \％ | 0\％ | \％ |
| ${ }^{34}$ | 03，02，191 | | 10 | HSL | 10\％ |
| 345 | ${ }^{03,02,199}$ | \cdots | 10 | HSL | \％\％ | 10\％ | 0\％ | 10\％ | 10\％ | 10\％ | 10\％ | 10\％ | 10\％ | 10\％ | 10\％ | 10\％ | 10\％ | 10\％ | 10\％ | 10\％ | 10\％ | 10\％ | 10\％ | 10\％ |
| ${ }^{346}$ | ${ }^{03,062,210}$ | \cdots－\quad Beeding | 10 | N2 | ${ }^{9 \%}$ | 9\％ | ${ }^{8 \%}$ | ${ }^{8}$ | ${ }^{6 \%}$ | ${ }^{6 \%}$ | 5\％ | ${ }^{5 \%}$ | 4% | 4% | ${ }^{3 \%}$ | ${ }^{3 \%}$ | ${ }^{2 \%}$ | ${ }^{2 \%}$ | 0\％ | \％ | \％\％ | 0\％ | 0\％ | \％\％ |
| ${ }^{37}$ | 00，062，220 | \cdots Oner，Ive | 10 | N2 | 9\％ | 9\％ | ${ }^{8 \%}$ | 8\％ | 6\％ | 6\％ | 5\％ | 5\％ | 4\％ | 4\％ | 3\％ | 3\％ | ${ }^{2 \%}$ | 2\％ | 0\％ | 0\％ | 0\％ | 0\％ | 0\％ | 0\％ |
| ${ }^{348}$ | 03，062，230 | \cdots Fresho corilied | 10 | N2 | 9\％ | 9\％ | 8\％ | 8\％ | 6\％ | 6\％ | 5\％ | 5\％ | 4% | 4\％ | 3\％ | 3\％ | 2% | 2% | \％ | 0\％ | \％ | 0\％ | \％ | \％\％ |
| 349 | 00，062291 | ．－．Inatight oonlaners | 10 | HsL | 10\％ |
| ${ }^{350}$ | ${ }^{03,062,299}$ | \cdots Onter | 10 | HSL | 10\％ | ${ }^{10 \%}$ | 10\％ | ${ }^{10 \%}$ | 10\％ | 10\％ | ${ }^{10 \%}$ | 10\％ | ${ }^{10 \%}$ | ${ }^{10 \%}$ | ${ }^{10 \%}$ | 10\％ | ${ }^{10 \%}$ | ${ }^{10 \%}$ | ${ }^{10 \%}$ | ${ }^{10 \%}$ | ${ }^{10 \%}$ | 10\％ | ${ }^{10 \%}$ | ${ }^{10 \%}$ |
| ${ }^{351}$ | ${ }^{03,02,410}$ | －Live | 10 | N2 | ${ }^{9 \%}$ | ${ }^{9 \%}$ | ${ }^{8 \%}$ | ${ }^{8 \%}$ | 6\％ | 6\％ | 5\％ | 5\％ | 4\％ | ${ }^{4 \%}$ | 3\％ | ${ }^{3 \%}$ | ${ }^{2 \%}$ | 2% | 0\％ | \％ | 0\％ | \％\％ | 0\％ | \％\％ |
| 352 | ${ }^{03,02,220}$ | Fieshor chilied | 10 | N2 | 9\％ | 9\％ | ${ }^{8 \%}$ | ${ }^{8 \%}$ | 6\％ | 6\％ | 5\％ | 5\％ | 4% | $4{ }^{4}$ | 3\％ | 3\％ | ${ }^{2 \%}$ | 2% | \％ | \％ | 0\％ | \％ | \％ | \％ |
| ${ }^{353}$ | ${ }^{03,02,491}$ | －Inaitight onlainers | 10 | HsL | 0\％ | 10\％ | 10\％ | 10\％ | 10\％ | 10\％ | 10\％ | 10\％ | 10\％ | 10\％ | 10\％ | 10\％ | 10\％ | 10\％ | 10\％ | 10\％ | 10\％ | 10\％ | 10\％ | 10\％ |
| ${ }^{354}$ | ${ }^{03,02,499}$ | Other | 10 | ${ }^{\text {HSL }}$ | 10\％ | 10\％ | ${ }^{10 \%}$ | 10\％ | 10\％ | 10\％ | 10\％ | 10\％ | 10\％ | 10\％ | 10\％ | 10\％ | 10\％ | 10\％ | 10\％ | 10\％ | 10\％ | 10\％ | 10\％ | 10\％ |
| 355 | ${ }^{03,02,500}$ | －Noway losesers（Nephros novegecius ） | 10 | HSL | 0\％ | 10\％ | 10\％ | 10\％ | 10\％ | 10\％ | 10\％ | 10\％ | 10\％ | 10\％ | 10\％ | 10\％ | 10\％ | 10\％ | 10\％ | 10\％ | 10% | 10\％ | 10\％ | 10\％ |
| ${ }^{356}$ | ${ }^{03,02,8610}$ | ${ }^{\text {Breading }}$ | 10 | N2 | ${ }^{9 \%}$ | 9\％ | ${ }^{8 \%}$ | ${ }^{8 \%}$ | ${ }^{6 \%}$ | ${ }^{6 \%}$ | 5\％ | ${ }^{5 \%}$ | 4% | 4% | ${ }^{3 \%}$ | ${ }^{3 \%}$ | ${ }^{2 \%}$ | ${ }^{2 \%}$ | \％ | \％ | \％\％ | \％ | \％ | \％ |
| ${ }^{357}$ | 00，062，620 | －omer，ive | 10 | N2 | 9\％ | 9\％ | 8\％ | 8\％ | 6\％ | 6\％ | 5\％ | 5\％ | 4\％ | 4\％ | 3\％ | 3\％ | ${ }^{2 \%}$ | ${ }^{2 \%}$ | 0\％ | 0\％ | 0\％ | \％ | \％ | \％\％ |
| ${ }^{358}$ | 0，0，062，630 | \cdots Fresso ocrilied | 10 | N2 | 9% | 9\％ | 8% | 8% | 6\％ | 6\％ | 5\％ | 5\％ | 4\％ | 4\％ | 3\％ | 3\％ | 2\％ | 2\％ | \％ | \％ | \％ | \％ | \％ | 0\％ |
| 359 | ${ }^{03,02,6841}$ | \cdots Inatigitit onlaners | 10 | N2 | ${ }^{9 \%}$ | 9\％ | ${ }^{8 \%}$ | ${ }^{8 \%}$ | ${ }^{6 \%}$ | ${ }^{6 \%}$ | ${ }^{5 \%}$ | ${ }^{5 \%}$ | ${ }^{4 \%}$ | ${ }^{4 \%}$ | ${ }^{3 \%}$ | ${ }^{3 \%}$ | ${ }^{2 \%}$ | ${ }^{2 \%}$ | \％ | 0\％ | 0% | \％ | \％ | \％ |
| ${ }^{360}$ | ${ }^{03,026,849}$ | \cdots Other | 10 | N2 | ${ }_{9}{ }^{\text {\％}}$ | 9\％ | ${ }^{8 \%}$ | ${ }^{8 \%}$ | ${ }^{6}$ | ${ }^{6 \%}$ | ${ }_{5 \%}$ | 5\％ | ${ }_{4}{ }^{4}$ | ${ }^{4 \%}$ | ${ }^{3 \%}$ | ${ }^{3 \%}$ | ${ }^{2 \%}$ | ${ }^{2 \%}$ | \％\％ | 0\％ | \％ | 0\％ | 0\％ | \％\％ |
| 361 | ${ }^{03,06,299}$ | \cdots In arifigh comainers | 10 | HSL | 10\％ |
| ${ }^{362}$ | | Other | 10 | HSL | 0\％ | 10\％ | 0\％ | 10\％ | 10\％ | 10\％ | 10\％ | 10\％ | 10\％ | 10\％ | 10\％ | 10\％ | 10\％ | \％\％ | 10\％ | 0\％ | 10\％ | 10\％ | 0\％ | 0\％ |
| ${ }^{363}$ | ${ }^{03,02,711}$ | \cdots Giant tiger prawns Peenaeus monocom） | 10 | N2 | 9\％ | 9\％ | 8% | ${ }^{8 \%}$ | 6% | 6\％ | 5\％ | 5\％ | 4% | 4% | 3\％ | 3\％ | ${ }^{2 \%}$ | 2% | 0\％ | 0\％ | 0\％ | 0\％ | \％ | 0\％ |
| 364 | 03，062，712 | Shrims（LItoenaeus vamnamel | 10 | NT2 | 9\％ | 9\％ | 8\％ | 8\％ | 6\％ | 6\％ | 5\％ | 5\％ | 4\％ | 4% | 3\％ | 3\％ | 2% | 2\％ | \％ | 0\％ | \％ | \％ | \％ | \％ |

${ }^{365}$	${ }^{03,062,719}$	Onher	10	${ }^{\text {NT2 }}$	9\％	9\％	${ }^{8 \%}$	${ }^{8 \%}$	6\％	${ }^{6 \%}$	${ }^{5 \%}$	${ }^{5 \%}$	${ }^{4 \%}$	${ }^{4 \%}$	3\％	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	0\％	0\％	\％	\％	\％	\％
366	03，62，721	Giant tiger rawns Penazaus monoorn）	10	NT2	\％	\％	${ }_{8 \%}$	${ }^{8 \%}$	6\％	6\％	5\％	${ }^{5 \%}$	4\％	4%	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％	\％	\％	\％
$\stackrel{367}{ }$	03，62，722	Whitees Shinims（Liopenaeus vamame）	10	NT2	${ }^{9 \%}$	${ }^{9 \%}$	8%	${ }^{8 \%}$	6\％	6\％	5\％	5\％	4\％	4%	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	0\％	\％	\％	\％	\％
368	03，62，729	－－Other	10	NT2	\％	9\％	8\％	${ }^{8 \%}$	6\％	6\％	5\％	5\％	4\％	${ }^{4 \%}$	3\％	3\％	2\％	2\％	0\％	\％\％	0\％	0\％	0\％	0\％
369	03，62，731	Giant iger rawns（Penaeus monoolon）	10	NT2	9\％	9\％	${ }^{8 \%}$	${ }^{8 \%}$	${ }^{6 \%}$	6\％	${ }^{5 \%}$	${ }_{5 \%}^{5 \%}$	${ }^{4 \%}$	${ }^{4 \%}$	${ }^{3 \%}$	\％	${ }^{2 \%}$	${ }^{2 \%}$	0\％	0\％	\％	\％	\％	0\％
330	03，62，732	Whiteleg shimps（Ltoenaeaus vamame）	10	NT2	${ }^{9 \%}$	\％	${ }^{8 \%}$	${ }^{8 \%}$	${ }^{6 \%}$	${ }^{6 \%}$	${ }^{5 \%}$	${ }^{5 \%}$	${ }^{4 \%}$	4\％	3\％	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	0\％	\％	\％\％	\％	\％	\％\％
371	${ }^{03,62,739}$	Onter	10	N2	${ }^{9 \%}$	9\％	${ }^{8 \%}$	${ }^{8 \%}$	6\％	6\％	5\％	${ }^{5 \%}$	${ }^{4 \%}$	4%	${ }^{3} \%$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％\％	\％	\％	\％	\％	\％\％
332	03，62，741	Inarigiticomaners	10	NT2	9\％	9\％	8\％	8\％	6\％	6\％	${ }^{5 \%}$	${ }^{5 \%}$	${ }^{4 \%}$	4%	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	0\％	\％	\％	0\％	0\％	\％\％
373	03，62，749	Onher	10	NT2	9\％	9\％	${ }^{8 \%}$	${ }^{8 \%}$	6\％	6\％	5\％	5\％	4%	4\％	3\％	3\％	2\％	2\％	0\％	0\％	\％	0\％	\％	\％
374	03，62，791	－Inarigit onlaniers	10	HSL	10\％	10\％	${ }^{10 \%}$	10\％	0\％	\％	\％\％	10\％	10\％	10\％	10\％	0\％	\％	10\％	0\％	10\％	0\％	10\％	10\％	10\％
375	${ }^{03,62,799}$	－omer	10	HSL	10\％	10\％	10\％	${ }^{10 \%}$	0\％	10\％	10\％	10%	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	0\％	\％
376	03，02，910	Lve	10	NT2	\％	9\％	\％	${ }^{8 \%}$	6\％	6\％	5\％	${ }^{5 \%}$	$4{ }^{4 \%}$	${ }^{4 \%}$	3\％	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	0\％	0\％	\％	\％	\％	\％
377	03，062，220	－Fieshor ochliled	10	NT2	9\％	9\％	\％	8\％	6\％	6\％	5\％	5\％	4\％	4%	3\％	3\％	${ }^{2 \%}$	${ }^{2 \%}$	\％	0\％	\％	\％	\％	\％
378	${ }^{03,062,330}$	－Fous，meals arnp pelles	10	N2	9\％	\％\％	${ }^{8 \%}$	${ }^{8 \%}$	6\％	${ }^{6} \%$	${ }_{5 \%}$	${ }_{5 \%}$	4\％	4%	${ }^{3 \%}$	${ }^{\text {3\％}}$	${ }^{2 \%}$	${ }^{2} \%$	0\％	\％\％	0\％	0\％	0\％	\％
379	03，02，291	－Inaitight onnaines	10	HSL	10\％	10\％	\％	10\％	0\％	0\％	0\％	10\％	10\％	10\％	0\％	0\％	10\％	10\％	10\％	10\％	10\％	${ }^{10 \%}$	0\％	\％
380	03，62，999	Oner	10	HsL	10\％	10\％	\％	10\％	0\％	\％\％	\％	\％	10\％	10\％	10\％	10\％	10\％	10\％	0\％	10\％	10\％	10\％	10\％	\％
${ }^{381}$	03，07，110	－Live	10	NT2	9\％	9\％	${ }^{8 \%}$	${ }^{8 \%}$	6\％	6\％	${ }^{5 \%}$	5\％	4\％	4%	3\％	${ }^{3 \%}$	${ }^{2 \%}$	2\％	0\％	0\％	\％	0\％	\％	\％
332	${ }^{03,071,120}$	－FFessor corilied	10	NT2	\％	9\％	8%	8\％	6\％	6\％	5\％	5\％	4%	4%	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	0\％	\％	\％	0\％	\％	0\％
333	${ }^{03,071,910}$	\cdots	10	N2	${ }^{9 \%}$	\％$\%$	${ }^{8 \%}$	${ }^{8 \%}$	6\％	6\％	5\％	${ }^{5 \%}$	4%	4%	${ }^{3} \%$	3\％	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％	\％	\％	\％
384	03，071，200	\cdots Oried，salted ofin bine	${ }^{10}$	NT2	\％	\％\％	8\％	8%	6\％	6\％	5\％	5\％	4\％	4\％	3\％	3\％	2\％	2\％	0\％	0\％	\％	\％	\％	\％
385	03，77，930	\cdots Smoked	10	Hst	\％\％	10\％	10\％	10\％	10\％	10\％	0\％	10\％	10\％	10\％	0\％	0\％	10\％	10\％	0\％	0\％	0\％	0\％	0\％	\％
386	03，072，10	－Live	10	NT2	9\％	9\％	8\％	${ }_{8 \%}$	6\％	6\％	5\％	5\％	4\％	${ }^{4 \%}$	${ }^{3 \%}$	${ }^{\text {3\％}}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	0\％	\％	0\％	0\％	\％\％
${ }^{387}$	03，72，120	－Fresho or chled	10	N2	\％	9\％	${ }_{8}^{8 \%}$	${ }^{8 \%}$	6\％	6\％	${ }^{5 \%}$	${ }^{5 \%}$	4%	${ }^{4 \%}$	${ }^{3 \%}$	3\％	${ }^{2 \%}$	${ }^{2 \%}$	\％	${ }^{0} 8$	\％	\％	\％	\％
388	03，72，910	\cdots	10	NT2	9\％	\％$\%$	${ }_{8 \%}$	8%	6\％	6\％	5\％	5\％	4\％	4\％	3\％	3\％	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％	\％	\％	\％
339	03，72，220	－Dieied，salled ori binine：smoked	10	HSL	\％\％	10\％	10\％	10\％	10\％	10\％	\％	10\％	10\％	10\％	10\％	10\％	10\％	0\％	0\％	10\％	10\％	10\％	\％	\％
330	${ }^{03,073,110}$	． Live	10	NT2	9\％	9\％	8\％	8\％	6\％	6\％	5\％	5\％	4%	4\％	3\％	3\％	2\％	2\％	0\％	0\％	0\％	\％	\％	0\％
${ }^{391}$	03，73，120	\cdots Fresh or chilled	10	NT2	9\％	9\％	\％	${ }^{8 \%}$	6\％	6\％	5\％	5\％	4%	4%	3\％	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	0\％	\％	\％	0\％	0\％	\％
392	03，73，910	\cdots	10	N2	9\％	9\％	8%	${ }_{8} 8$	6\％	6\％	5\％	5\％	4\％	$4{ }^{4 \%}$	3\％	3\％	2%	${ }^{2 \%}$	\％	\％	\％	\％	\％	\％
33	03，73，920	－Dined，sated orimbine：smoked	10	HSL	10\％	10\％	0\％	10\％	0\％	0\％	0\％	0\％	10\％	10\％	0\％	0\％	0\％	0\％	0\％	\％\％	\％	10\％	0\％	\％
334	${ }^{03,074,110}$	\cdots	${ }^{10}$	NT2	${ }^{9 \%}$	${ }^{9 \%}$	${ }^{8 \%}$	${ }^{8 \%}$	6\％	6\％	5\％	5\％	${ }^{4 \%}$	4%	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	0\％	0\％	\％	0\％	0\％	0\％
${ }^{395}$	03，74，120	－Fresh or chilled	10	N2	9\％	9\％	${ }^{8 \%}$	${ }^{8 \%}$	6\％	${ }^{6 \%}$	${ }^{5 \%}$	${ }^{5 \%}$	${ }^{4 \%}$	${ }^{4 \%}$	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	2\％	0\％	\％	\％\％	\％	\％	\％\％
396	03，74，910	\cdots	10	NT2	${ }^{9}$	9\％	${ }_{8 \%}$	8\％	6\％	6\％	5\％	5\％	4\％	4\％	${ }^{3 \%}$	3\％	2\％	2\％	\％	\％	\％	\％	\％	\％
397	03，74，920	－Died，salate orim bine	10	N2	\％	${ }^{9 \%}$	${ }^{8 \%}$	8%	6\％	6\％	5\％	5\％	4\％	4%	${ }^{3 \%}$	${ }^{3} \%$	2\％	${ }^{2 \%}$	0\％	\％\％	\％	0\％	\％	\％
${ }^{398}$	${ }^{03,074,930}$	－Smoked	10	HSL	0\％	0\％	10\％	10\％	10\％	10\％	0\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	\％
399	${ }^{03,075,110}$	．－Live	10	NT2	9\％	${ }^{9 \%}$	8%	${ }^{8 \%}$	6\％	6\％	5\％	5\％	4%	4%	3\％	3\％	${ }^{2 \%}$	${ }^{2 \%}$	0\％	0\％	0\％	0\％	\％	\％
400	03，75，120	${ }_{\text {－Fiesso oranlied }}$	10	N2	${ }^{9 \%}$	9\％	${ }^{8 \%}$	${ }^{8 \%}$	6\％	6\％	5\％	5\％	4\％	4\％	3\％	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％	\％	\％	\％
401	03，75，910	－Fiozen	${ }^{10}$	NT2	\％	\％\％	8\％	8\％	6\％	6\％	5\％	5\％	4\％	4%	3\％	3\％	2\％	${ }^{2 \%}$	0\％	0\％	\％	\％	\％	\％
402	03，075，20	\cdots－Dined salade oribibine	10	N2	9\％	9\％	8\％	8%	6\％	6\％	5\％	5\％	4%	4%	3\％	3\％	2%	2\％	0\％	0\％	\％	\％	\％	\％
403	${ }^{03,075,330}$	－Smoked	${ }^{10}$	HSL	\％\％	10\％	${ }^{10 \%}$	10\％	0\％	\％\％	\％	0\％	10\％	10\％	0\％	0\％	0\％	\％\％	\％\％	0\％	\％	10\％	0\％	0\％
204	03，76，010	－－Lve	10	NT2	${ }^{9}$	9\％	${ }^{8 \%}$	${ }^{8 \%}$	6\％	6\％	5\％	5\％	4\％	4\％	${ }^{3 \%}$	${ }^{\text {3\％}}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％	\％	\％	\％
405	03，76，020	－－Festh，ofiled of tozen	10	N2	\％	\％$\%$	${ }_{8 \%}$	8%	6\％	6\％	5\％	5\％	4\％	4\％	3\％	3\％	2%	2\％	\％	\％	\％	\％	\％	\％
406	03，76，030	－－Diede，salted ofi binime；smoked	10	HSL	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	\％
407	${ }^{03,077,110}$	－Live	10	N2	9\％	9\％	8%	8\％	6\％	6\％	5\％	5\％	$4{ }^{4 \%}$	4%	3\％	${ }^{3 \%}$	2\％	2\％	0\％	0\％	0\％	\％	\％	0\％
408	${ }^{03,077,120}$	\cdots Festo or chiled	10	N2	\％	9\％	${ }^{8 \%}$	${ }^{8 \%}$	6\％	6\％	5\％	5\％	4%	4%	${ }^{3 \%}$	${ }^{3 \%}$	2\％	${ }^{2 \%}$	0\％	\％	\％	\％	\％	\％
409	${ }^{03,077,910}$	\cdots	10	N2	9\％	9\％	8\％	${ }^{8 \%}$	6\％	6\％	5\％	5\％	4\％	$4{ }^{4 \%}$	3\％	3\％	2%	${ }^{2 \%}$	\％	\％	\％	\％	\％	\％
410	03，077，20	\cdots Dine，salede orinbine：smoked	10	HSL	10\％	10\％	10\％	10\％	10\％	10\％	0\％	10\％	10\％	10\％	10\％	10\％	10\％	\％\％	10\％	0\％	\％\％	10\％	10\％	\％
411	03，078，10	－Live	10	NT2	9\％	9\％	8\％	8%	6\％	6\％	5\％	5\％	4%	4\％	3\％	3\％	2\％	2%	0\％	0\％	\％	\％	\％	\％
${ }^{412}$	${ }^{03,78,120}$	${ }_{-}$Freshor orniled	10	NT2	${ }^{9 \%}$	9\％	${ }^{8 \%}$	${ }^{\text {8\％}}$	6\％	6\％	${ }^{5 \%}$	${ }^{5 \%}$	${ }^{4 \%}$	4\％	3\％	${ }^{3} \%$	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％	\％	\％	\％
$4{ }^{413}$	03，78，910	\cdots	${ }^{10}$	NT2	\％	9\％	${ }_{8} 8$	8\％	6\％	6\％	5\％	5\％	4\％	4\％	3\％	3\％	2\％	2\％	\％	\％	\％	\％	\％	\％
${ }^{414}$	03，78，920	\cdots－Dine，salted orin bine：smoked	${ }^{10}$	${ }^{\text {HSL }}$	\％	10\％	10\％	10\％	\％	10\％	10\％	10\％	10\％	10\％	0\％	10\％	10\％	10\％	\％	\％	\％	\％	\％	\％
415	03，09，10	－Live	10	NT2	\％	9\％	8\％	${ }^{8 \%}$	6\％	6\％	5\％	5\％	4%	4\％	3\％	3\％	2\％	2\％	0\％	0\％	0\％	0\％	0\％	0\％
${ }^{416}$	${ }^{03,079,120}$	\cdots Fesh or conled	10	N2	9\％	${ }^{9 \%}$	${ }^{8 \%}$	${ }^{8 \%}$	6\％	6\％	5\％	5\％	4\％	4%	${ }^{3 \%}$	${ }^{\text {3\％}}$	${ }^{2 \%}$	${ }^{2 \%}$	0\％	\％	\％	\％	\％	\％\％
$4{ }^{417}$	${ }^{03,0,9,9910}$	\cdots	10	N2	9\％	${ }^{9}$	8%	${ }_{8 \%}$	6\％	6\％	5\％	${ }^{5 \%}$	$4{ }^{4 \%}$	$4{ }^{4 \%}$	${ }^{3}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％	\％	\％	0\％
418	03，079，920	－Diede，salled ori binine：snoked	10	Hst	0\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％
419	${ }^{03,079,990}$	\cdots Oner	${ }^{10}$	NT2	9\％	\％\％	8\％	${ }^{8 \%}$	6\％	6%	5\％	5\％	$4{ }^{4 \%}$	4%	3\％	3\％	${ }^{2 \%}$	${ }^{2 \%}$	0\％	0\％	0\％	\％	0\％	\％
420	03，88，110	－Live	10	NT2	\％	9\％	8\％	8\％	6\％	${ }^{6 \%}$	${ }^{5 \%}$	5\％	${ }^{4 \%}$	4%	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％	\％	\％	\％
${ }^{221}$	03，88，120	－－Fesho or chiled	10	NT2	9\％	\％	${ }^{8}$	8\％	6\％	6\％	5\％	${ }^{5 \%}$	${ }^{4 \%}$	4\％	${ }^{3 \%}$	3\％	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％	\％	\％	\％
${ }^{422}$	03，08，910	\cdots	${ }^{10}$	N2	9\％	${ }^{9 \%}$	${ }^{8 \%}$	${ }^{8 \%}$	\％	6\％	5\％	5\％	${ }^{4 \%}$	4%	3\％	${ }^{\text {3\％}}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％\％	\％	\％	\％	\％
${ }^{223}$	03，81，920	\cdots ． Diede，salled orin bine	10	N2	9\％	9\％	${ }^{8}$	${ }^{8 \%}$	6\％	6\％	${ }^{5 \%}$	5\％	4%	4%	${ }^{3} \%$	${ }^{3}$	2\％	${ }^{2 \%}$	\％	\％	\％	\％	\％	\％
${ }^{224}$	${ }^{03,081,930}$	－Smoked	${ }^{10}$	HSL	\％\％	10\％	10\％	10\％	0\％	\％	\％\％	10\％	${ }^{10 \%}$	10\％	\％	0\％	10\％	10\％	10\％	10\％	0	\％	10\％	\％
${ }^{425}$	${ }^{03,082,10}$	－${ }^{\text {Live }}$	${ }^{10}$	NT2	9\％	${ }^{9 \%}$	8%	${ }^{8 \%}$	6\％	6\％	5\％	5\％	$4{ }^{4 \%}$	$4{ }^{4 \%}$	3\％	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	0\％	\％	0\％	\％	\％	0\％
426	${ }^{03,082,120}$	\cdots Fesh oc ofilled	10	${ }^{\text {NT2 }}$	\％	\％\％	${ }_{8 \%}$	${ }^{8 \%}$	6\％	6\％	5\％	5\％	4\％	4%	3\％	${ }^{3 \%}$	2%	2%	0\％	\％\％	\％	\％	\％	\％
${ }^{427}$	${ }^{03,082,910}$	\cdots	${ }^{10}$	N2	${ }^{9 \%}$	\％\％	8\％	8\％	6\％	6\％	5\％	${ }^{5 \%}$	4%	4%	3\％	3\％	${ }^{2 \%}$	${ }^{2 \%}$	0\％	0\％	0\％	0\％	0\％	\％
${ }^{428}$	${ }^{03,082,920}$	$\cdots{ }^{\text {．－Died，salled orim bine }}$	${ }^{10}$	NT2	${ }^{9}$	${ }^{9 \%}$	8%	8\％	6\％	${ }^{6 \%}$	5\％	5\％	${ }^{4 \%}$	${ }^{4 \%}$	3\％	3\％	2%	${ }^{2 \%}$	\％	\％	\％	\％	\％	\％
${ }^{229}$	${ }^{03,082,3,30}$	－Smoked	10	HSL	\％	\％	10\％	10\％	10\％	\％	10\％	10\％	10\％	10\％	10\％	10\％	0\％	10\％	\％	\％	10\％	10\％	\％\％	\％\％
${ }^{430}$	${ }^{03,083,10}$	－Live	${ }^{10}$	NT2	\％	${ }^{9} \%$	${ }_{8 \%}$	${ }^{8 \%}$	${ }^{6 \%}$	6\％	5\％	${ }^{5 \%}$	$4{ }^{4 \%}$	4%	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	0\％	\％	0\％	\％	\％
${ }^{231}$	03，83，020	－Fresh or chilled	${ }^{10}$	NT2	9\％	9\％	${ }^{8 \%}$	${ }^{8 \%}$	6\％	6\％	5\％	5\％	4%	4\％	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％	\％	\％	\％
432	${ }^{03,083,30}$	－Fiozen	10	N2	9\％	9\％	8%	${ }^{8 \%}$	6\％	6\％	5\％	5\％	$4{ }^{4 \%}$	4%	3\％	3\％	2\％	2\％	0\％	\％	0\％	\％	\％	0\％
${ }^{433}$	${ }^{03,083,40}$	－－Diede，salted ofin bine	${ }^{10}$	N2	9\％	9\％	${ }^{8 \%}$	${ }^{8 \%}$	6\％	6\％	5\％	5\％	4%	4%	${ }^{3} \%$	${ }^{3 \%}$	2%	2%	\％	\％	\％	\％	\％	\％
${ }^{434}$	${ }^{03,083,50}$	－Smoked	${ }^{10}$	HSL	10\％	${ }^{10 \%}$	${ }^{10 \%}$	10\％	10\％	10\％	${ }^{10 \%}$	10\％	10\％	10\％	${ }^{10 \%}$	10\％	10\％	10\％	10\％	10\％	10\％	${ }^{10 \%}$	10\％	0\％
435	${ }^{03,089,010}$	－Live	${ }^{10}$	N2	\％${ }^{\text {\％}}$	\％\％	8\％	${ }^{8 \%}$	6\％	6\％	5\％	${ }^{5 \%}$	4\％	4%	3\％	3\％	${ }^{2 \%}$	${ }^{2 \%}$	0\％	0\％	0\％	0\％	0\％	\％
436	${ }^{03,089,020}$	－Fressor orilied	${ }^{10}$	NT2	${ }^{9 \%}$	9\％	8%	${ }^{8 \%}$	6\％	6\％	5\％	5\％	${ }^{4 \%}$	$4{ }^{4 \%}$	${ }^{3 \%}$	3\％	${ }^{2 \%}$	${ }^{2 \%}$	0\％	\％\％	\％	\％	\％	\％\％
$4{ }^{47}$	${ }^{03,089,30}$	－－Fiozen	${ }^{10}$	N2	${ }^{9}$	9\％	${ }^{8 \%}$	${ }^{8 \%}$	6\％	6\％	5\％	${ }^{5 \%}$	4\％	4%	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％	\％	\％	\％
${ }^{438}$	03，89，940	－－Dined，salued ori bine	${ }^{10}$	NT2	9\％	9\％	8\％	${ }^{8 \%}$	6\％	6\％	5\％	5%	4%	$4{ }^{4 \%}$	3\％	3\％	${ }^{2 \%}$	${ }^{2 \%}$	0\％	0\％	\％	\％	\％	\％
439	03，89，050	－－smoked	${ }^{10}$	Hst	\％\％	0\％	10\％	10\％	10\％	\％	\％	10\％	10\％	\％	\％	0\％	10\％	10\％	\％	0\％	\％	${ }^{10 \%}$	10\％	10\％
$4{ }^{40}$	$103,089,000$	－Other	10	NT2	9\％	9\％	8\％	8\％	6\％	6\％	5\％	5\％	4%	4%	3\％	${ }^{3 \%}$	2\％	2\％	0\％	0\％	\％	0\％	0\％	0\％
${ }^{441}$	${ }^{04,011,010}$	－－rnlouvidom	5	HSL	${ }^{5 \%}$	5\％	${ }^{5 \%}$	5\％	${ }^{5 \%}$	5\％	5\％	5\％	5\％	${ }^{5 \%}$	5\％	5\％	5\％	${ }^{5 \%}$	5\％	5\％	5\％	5\％	${ }^{5 \%}$	${ }^{5 \%}$
$4{ }^{42}$	04，011，900	－Other	${ }^{5}$	${ }^{\text {HSL }}$	${ }^{5 \%}$	${ }_{5 \%}$	5\％	${ }^{5 \%}$	${ }_{5 \%}^{5 \%}$	${ }^{5 \%}$	${ }^{5 \%}$	${ }^{5 \%}$	${ }_{5 \%}$	${ }^{5 \%}$	${ }^{5 \%}$	${ }^{5 \%}$	${ }^{5 \%}$	${ }^{5 \%}$	${ }^{5 \%}$	${ }^{5 \%}$	${ }^{5 \%}$	${ }^{5 \%}$	${ }^{5 \%}$	${ }^{5 \%}$
${ }^{443}$	${ }^{04,012,010}$	－－Inlouid tom	${ }^{5}$	NT1	${ }^{4 \%}$	4\％	4\％	3\％	${ }^{3 \%}$	2\％	2\％	\％\％	\％	0\％	\％\％	0\％	\％	\％	0\％	\％\％	0\％	\％	\％	\％
${ }^{444}$	${ }^{04,012,090}$	－Other	${ }^{5}$	NT	${ }^{4 / 8}$	4\％	4\％	3\％	3\％	${ }^{2 \%}$	${ }^{2 \%}$	\％\％	\％	0\％	\％\％	\％	0\％	0\％	0\％	\％\％	\％	\％	\％	\％\％
445	04，04，010	－－Mikiniliuad tom	5	NT1	${ }^{4 \%}$	4%	${ }^{4 \%}$	3\％	3\％	2\％	${ }^{2 \%}$	0\％	\％	\％	\％	0\％	\％	0\％	0\％	\％\％	\％	\％	\％	\％
$4{ }^{46}$	04，04，020	－－Mikin fozeniom	5	NT1	${ }^{4 \%}$	4%	4%	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	0\％	\％	\％	\％	\％	\％	\％	\％	0\％	\％	\％	\％
$4{ }^{47}$	04，014，909	－Onter	5	NT1	$4{ }^{4}$	4\％	4%	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	2%	\％\％	\％	\％	\％	0\％	0\％	\％	\％	\％	\％	\％	0\％	0\％
448	04，015，010	－－Inloudidom	5	HSL	${ }^{5 \%}$	${ }^{5 \%}$	5\％	${ }^{5 \%}$	${ }^{5 \%}$	5\％	5\％	5\％	5\％	5\％	5\％	${ }^{5 \%}$	${ }^{5 \%}$	5\％	${ }^{5 \%}$	5\％	${ }^{5 \%}$	${ }^{5 \%}$	${ }^{5 \%}$	${ }^{5 \%}$
449	04，015，900	－Other	5	HSL	${ }^{5 \%}$	5\％	5\％	5\％	5\％	5\％	5\％	5\％	5\％	${ }^{5 \%}$	5\％	5\％	5\％	5\％	5\％	5\％	5\％	5\％	5\％	5\％
450	04，02，（041		${ }^{5}$	NT1	${ }^{4 \%}$	4\％	4%	3\％	3\％	2\％	${ }^{2 \%}$	\％	\％	0\％	\％\％	\％\％	\％	\％	0\％	\％\％	\％	0\％	0\％	\％
$4{ }^{451}$	04，021，049	\cdots Other	${ }^{5}$	NT1	${ }^{4 \%}$	4\％	4\％	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	0\％	\％	0\％	\％	\％	\％	0\％	0\％	\％	\％	\％	0\％	\％
45	091	eis of fa goss wight of 20 kg or more	${ }^{5}$	NT1	${ }^{4 \%}$	4\％	$4{ }^{4 \%}$	${ }^{3}$	${ }^{3}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	0\％	\％	\％\％	\％	\％	\％	\％\％	\％	\％	\％	\％	\％
${ }^{453}$	04，021，099	－other	5	NT1	4\％	4\％	${ }^{4 \%}$	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	0\％	0\％	0\％	\％	\％	\％	0\％	\％	\％	\％	\％	\％	\％\％
45	$104,022,120$	In	5	NT1	${ }^{4 \%}$	4%	${ }^{4 \%}$	3\％	3\％	${ }^{2 \%}$	${ }^{2 \%}$	\％	0\％	0\％	\％	\％	\％	\％	\％	\％	\％	\％	0\％	\％\％

${ }^{455}$	04，02，190	－orner	5	${ }^{\text {NT1 }}$	${ }^{4 \%}$	${ }^{4 \%}$	4\％	3\％	${ }^{\text {\％}}$	${ }^{2 \%}$	${ }^{2 \%}$	0\％	0\％	0\％	0\％	0\％	0\％	\％	0\％	\％	\％	\％	\％\％	O\％
456	0，4，22，920	In connaines of ta gos weight of 20 kg ormore	5	NT1	4%	4\％	4\％	3\％	${ }^{3 \%}$	${ }^{2 \%}$	2%	\％	\％	0\％	\％	\％	0\％	\％	\％	\％	\％	0\％	\％	\％
45	04，022，990	－oner	5	NT1	$4{ }^{4 \%}$	${ }_{4}^{4 \%}$	$4{ }^{4 \%}$	${ }^{3 \%}$	3\％	${ }^{2 \%}$	${ }^{2 \%}$	\％	0\％	0\％	\％	\％	\％	\％	\％	0\％	\％	\％	0\％	\％\％
${ }^{458}$	04，029，100	－Not contataining added sugar or other sweetening	5	${ }^{\text {HSL }}$	${ }^{5 \%}$	${ }^{5 \%}$	5\％	5\％	${ }^{5 \%}$	${ }^{5 \%}$	${ }^{5 \%}$	5\％	${ }^{5 \%}$	5\％	${ }^{5 \%}$	${ }^{5 \%}$	${ }^{5 \%}$	${ }^{5 \%}$	${ }^{5 \%}$	${ }^{5 \%}$	${ }^{5 \%}$	${ }^{5 \%}$	${ }^{5 \%}$	${ }^{5 \%}$
459	04，029，900	－－Omer	5	${ }^{\text {HSL }}$	${ }^{5 \%}$	5\％	5\％	5\％	5\％	5\％	5\％	5\％	5\％	5\％	5\％	${ }^{5 \%}$	5\％	5\％	5\％	5\％	5\％	5\％	5\％	${ }^{5 \%}$
480	04，03， 0,20	－Inliquid fom，whenereo or oro oondersed	${ }^{20}$	ISL	0\％	20\％	0\％	20\％	20\％	20\％	0\％	20\％	0\％	0\％	0\％	20\％	20\％	20\％	0\％	20\％	20\％	\％	\％	\％
461	00，03，090	－Oner	${ }^{20}$	HsL	0\％	0\％	\％	20\％	20\％	20\％	20\％	20\％	20\％	20\％	${ }^{20 \%}$	0\％	\％\％	${ }^{20 \%}$	20\％	20\％	20\％	0\％	0\％	0\％
462	00，03，010	－Butemik	${ }^{20}$	HSL	20\％	20\％	20\％	20\％	20\％	\％\％	20\％	20\％	20\％	20\％	20\％	20\％	20\％	20\％	20\％	20\％	20\％	0\％	0\％	\％\％
$4{ }^{463}$	04，03，9，90	－Oner	20	HsL	\％\％	20\％	20\％	${ }^{20 \%}$	${ }^{20 \%}$	${ }^{20 \%}$	${ }^{20 \%}$	20\％	20\％	20\％	20\％	20\％	20\％	20\％	20\％	20\％	${ }^{20 \%}$	${ }^{20 \%}$	0\％	20\％
464	04，04， 000	－Whey and modified whey，whether or not concentrated or containing added sugar or other sweetening matter	5	NT1	4\％	${ }^{4 \%}$	4\％	3\％	${ }^{3 \%}$	2\％	${ }^{2 \%}$	0\％	\％	\％	\％	\％	\％	\％	\％	\％	0\％	\％	\％\％	\％
${ }^{465}$	04，049，000	－Other	5	NT1	${ }^{4 \%}$	${ }^{4 \%}$	4\％	${ }^{3 \%}$	${ }^{3 \%}$	2\％	${ }^{2 \%}$	\％	\％	0\％	0\％	\％	\％	\％	\％	\％	\％\％	0\％	0\％	\％
${ }^{466}$	00，05，000	－Buter	10	NT1	9\％	8%	6\％	5\％	4\％	3\％	${ }^{2 \%}$	\％\％	0\％	0\％	0\％	\％	\％\％	0\％	\％	\％\％	0\％	\％	0\％	\％\％
467	${ }^{00,05,0,000}$	－Dins speass	10	NT1	9\％	8\％	6\％	5\％	${ }^{4 \%}$	3\％	${ }^{2 \%}$	0\％	\％	\％\％	\％	\％	\％\％	\％	\％	\％	0\％	0\％	\％	\％
${ }^{468}$	04，595，010	－Ambydous buteratat	10	${ }^{\text {NT1 }}$	${ }^{9 \%}$	${ }^{8 \%}$	${ }^{6 \%}$	${ }^{5 \%}$	${ }^{4 \%}$	${ }^{3}$	${ }^{2 \%}$	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	0\％
469	00，05，9，20	－Buteooll	10	${ }^{\text {NT1 }}$	${ }^{9} \%$	${ }^{8 \%}$	6\％	${ }^{5 \%}$	${ }^{4 \%}$	${ }^{3}$	${ }^{2 \%}$	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％
470	04，05， 030	Ghee	10	NT1	\％	8\％	6\％	5\％	4\％	3\％	${ }^{2 \%}$	\％	\％	0\％	\％	\％	0\％	0\％	\％	0\％	\％	\％	\％	0\％
${ }^{471}$	${ }^{\text {04，05，9，900 }}$	Onher	${ }^{10}$	NT	${ }^{9 \%}$	${ }^{8 \%}$	6\％	5\％	${ }^{4 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	\％	\％	0\％	\％	\％	\％	\％	\％	\％	0\％	\％\％	0\％	\％
${ }^{472}$	00，06，010	$\ddot{\sim}$	${ }^{10}$	NT1	${ }^{9}$	${ }^{8 \%}$	6\％	${ }^{5 \%}$	${ }^{4 \%}$	3\％	${ }^{2 \%}$	\％	\％	\％	\％	\％	\％	0\％	\％	\％	\％	\％	\％	\％\％
473	00，06，0，20	－Cund	10	N1	9\％	${ }^{8 \%}$	6\％	5\％	${ }^{4 \%}$	3\％	${ }^{2 \%}$	\％	\％	\％	\％	\％	\％	\％	\％	0\％	0\％	0\％	0\％	\％
${ }^{474}$	04，062，010	In packeges of a g osos weght exceeding 20kg	10	NT1	${ }^{9 \%}$	${ }^{8 \%}$	6\％	${ }_{5 \%}^{5 \%}$	${ }^{4 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	\％	0\％	0\％	\％	0\％	\％	0\％	\％	\％	\％	\％	\％	0\％
475	00，06， $0^{\text {aso }}$	－other	10	NT	${ }^{9 \%}$	${ }^{8 \%}$	6\％	${ }^{5 \%}$	${ }^{4 \%}$	3\％	${ }^{2 \%}$	\％	0\％	\％	\％	\％	\％	0\％	0\％	\％	\％	\％	0\％	\％\％
476	${ }^{04,063,000}$	－Processed cheses，notyated or powdered	10	NT1	9\％	${ }^{8 \%}$	6\％	5\％	4\％	3\％	${ }^{2 \%}$	\％\％	0\％	0\％	\％	0\％	0\％	0\％	\％	0\％	0\％	\％	\％\％	\％
${ }^{477}$	0，4，64，000	－Blue－veined cheese and other cheese containing veins produced by Penicillium roqueforti	10	NT1	${ }^{9 \%}$	${ }^{8 \%}$	6\％	5\％	4%	${ }^{3 \%}$	${ }^{2 \%}$	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％
${ }^{478}$	04，099，000	－omer chese	10	NT1	\％	$8{ }_{8}$	6\％	5\％	${ }^{4 \%}$	3\％	${ }^{2 \%}$	0\％	\％	0\％	\％	\％	0\％	0\％	\％	0\％	0\％	\％\％	\％	\％
479	00，071，100	$\cdots \mathrm{Ot}$ ows ot the specise Gallus domesticus	${ }^{30}$	${ }^{\text {EL }}$	U	0	O	\bigcirc	U	U	O	U	O	0	U	0	0	U	U	U	0	U	0	U
480	${ }^{00,071,910}$	－Of tucks	${ }^{30}$	${ }^{\text {EL }}$	U	0	\bigcirc	\bigcirc	U	U	0	U	U	\bigcirc	0	U	\bigcirc	U	U	U	U	U	0	0
${ }^{481}$	00，07，，990	－Omer	${ }^{30}$	${ }^{\text {EL }}$	－	\bigcirc	\bigcirc	\bigcirc	\bigcirc	U	－	－	\bigcirc	－	－	－	\bigcirc	0	－	U	U	\bigcirc	－	\bigcirc
${ }^{482}$	${ }^{04,02,2,100}$	Of tows oft hespecies Gallus domesitius	${ }^{30}$	${ }^{\text {EL }}$	\checkmark	\bigcirc	\checkmark	－	\checkmark	\checkmark	\checkmark	－	\checkmark	\checkmark	U	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	ט	ט	ט	U
${ }^{483}$	00，02， 9,90	\cdots	${ }^{30}$	EL	U	\bigcirc	0	U	U	U	\bigcirc	0	\bigcirc	\bigcirc	U	U	\bigcirc	0	U	U	0	ט	0	\bigcirc
484	00，072，990	－oner	${ }^{30}$	EL	U	－	－	O	O	O	－	U	U	O	U	U	O	－	U	U	U	U	O	\bigcirc
485	00，0，9，0，00	\cdots Of tows ot the species Gillus domestious	${ }^{30}$	EL	0	\bigcirc	0	0	U	0	0	U	0	0	U	0	0	0	U	U	0	U	U	\bigcirc
${ }^{486}$	${ }^{00,097,020}$	Of cuoks	${ }^{30}$	${ }^{\text {EL }}$	0	\bigcirc	\bigcirc	U	\bigcirc	0	\bigcirc	\bigcirc	\bigcirc	\bigcirc	0	－	\bigcirc	\bigcirc	\bigcirc	U	\bigcirc	0	U	\bigcirc
${ }^{487}$	00，07，9090	－other	${ }^{30}$	EL	\bigcirc	\bigcirc	\bigcirc	U	U	U	－	U	U	0	\bigcirc	\bigcirc	U	\bigcirc	\bigcirc	ט	－	U	0	\bigcirc
${ }^{488}$	00，08，100	－Died	10	NT2	9\％	\％	\％	\％	${ }^{6 \%}$	6\％	${ }^{5 \%}$	5\％	4%	4\％	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	0\％	\％	\％	\％	\％
${ }^{289}$	04，08，900	Oner	10	${ }^{\text {NT2 }}$	\％	\％	8\％	8\％	6\％	6\％	5\％	5\％	4\％	4\％	3\％	3\％	2\％	2%	\％	0\％	\％	\％	\％	\％
490	00，08， 100	－Died	10	NT2	9\％	9\％	8%	${ }^{8 \%}$	6\％	6%	5%	5\％	${ }^{4 \%}$	4%	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％	0\％	\％	\％
${ }^{491}$	00，08，9，900	－Other	10	NT2	9\％	\％	8%	8\％	6\％	6\％	5\％	5\％	${ }^{4 \%}$	4\％	3\％	${ }^{3 \%}$	${ }^{2 \%}$	2\％	\％	\％\％	\％\％	0\％	0\％	\％\％
492	00，00，000	Natural honey．	10	NT1	9\％	${ }^{8 \%}$	6\％	5\％	${ }^{4 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	0\％	\％	\％\％	\％	\％	\％	0\％	\％	\％	0\％	0\％	\％\％	\％
${ }^{493}$	00，00，0010	－Bris nests	10	${ }^{\text {NT1 }}$	${ }^{9}$	${ }^{8 \%}$	6\％	${ }^{5 \%}$	$4{ }^{4 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	0\％	\％	\％
44	04，00，0，90	－orner	10	NT1	9\％	${ }^{8 \%}$	6\％	5%	$4{ }^{46}$	3\％	${ }^{2 \%}$	0\％	0\％	0\％	0\％	\％	\％\％	\％	\％	\％\％	\％	0\％	\％	\％
${ }^{495}$	05，010，000	Human hair，unworked，whether or not washed or scoured；waste of human hair．	10	NT2	${ }^{\text {\％\％}}$	9\％	${ }^{8} \%$	\％	6\％	6\％	5\％	5\％	$4{ }^{4 \%}$	4%	3\％	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％	\％	\％	0\％
${ }^{496}$	05，02，000	－Pigs＇，hogs＇or boars＇bristles and hair and waste thereof	10	${ }^{\text {NT2 }}$	${ }^{9 \%}$	${ }^{9 \%}$	${ }^{\text {8\％}}$	${ }^{8 \%}$	${ }^{6 \%}$	6\％	${ }^{5 \%}$	5\％	${ }^{4 \%}$	${ }^{4 \%}$	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％\％	\％	\％	\％
497	05，02，000	－other	10	${ }^{\text {NT2 }}$	\％	\％	8\％	${ }^{8 \%}$	6\％	6\％	5\％	5\％	4\％	4\％	${ }^{3 \%}$	${ }^{3}$	${ }^{2 \%}$	2\％	\％	0\％	\％	\％	\％	\％
${ }^{298}$	05，00，000	Guts，bladders and stomachs of animals（other than fish），whole and pieces thereof，fresh， chilled，frozen，salted，in brine，dried or smoked．	10	EL	u	\checkmark	u	u	u	u	u	u	ט	u	u	u	u	u	u	u	\checkmark	u	u	\cup
499	00，05，000	－－Duckieateres	10	NT2	\％	${ }^{9}$	${ }^{8}$	${ }^{8 \%}$	${ }^{6 \%}$	${ }^{6 \%}$	${ }^{5 \%}$	${ }^{5 \%}$	${ }^{4 \%}$	${ }^{4 \%}$	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％	0\％	\％	\％
500	05，05，0，00	－－omer	10	NT2	\％	\％	$8{ }_{8} 8$	${ }_{8}^{8}$	6\％	6\％	5\％	5\％	4\％	4\％	${ }^{3 \%}$	3\％	${ }^{2 \%}$	2\％	\％	\％	\％\％	\％	\％	\％
501	05，59，0，10	Dock feateres	10	NT2	${ }^{9 \%}$	${ }^{9 \%}$	${ }^{8 \%}$	${ }^{8 \%}$	${ }^{6 \%}$	${ }^{6 \%}$	${ }^{5 \%}$	${ }^{5 \%}$	${ }^{4 \%}$	$4{ }^{4 \%}$	${ }^{3 \%}$	${ }^{3}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％	\％	\％	\％
502	05，05，900	－other	10	${ }^{\text {NT2 }}$	9\％	\％	8\％	8\％	6\％	6\％	5\％	5\％	4%	4\％	3\％	${ }^{3}$	${ }^{2 \%}$	2\％	\％	0\％	\％	\％	\％	\％
503	00，06，1，00	－ossein and bones teated with acd	10	NT2	${ }^{9}$	9\％	8%	${ }^{8 \%}$	${ }^{6 \%}$	${ }^{6 \%}$	${ }^{5 \%}$	5\％	${ }^{4 \%}$	4\％	3\％	${ }^{3 \%}$	2%	2%	\％	\％\％	\％	0\％	0\％	\％
504	05，06，000	－omer	10	NT2	${ }^{9 \%}$	${ }^{9 \%}$	${ }^{\text {\％}}$	${ }^{8 \%}$	${ }^{6 \%}$	6\％	${ }^{5 \%}$	5\％	${ }^{4 \%}$	4\％	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％	\％	\％	\％
505	10，07，010	－Phinocoros homs wory power aran wase	10	${ }^{\text {EL }}$	0	\bigcirc	0	0	ט	ט	0	U	U	U	U	0	\bigcirc	0	U	U	0	U	\bigcirc	\bigcirc
506	00，07，090	－－other	10	EL	U	\bigcirc	\bigcirc	－	U	U	－	－	\bigcirc	U	\square	U	－	U	－	U	U	\bigcirc	－	U
507	${ }^{0.5,07,010}$	－－Hons，anters，hooves，nalis，daus and beaks	10	EL	U	\checkmark	＂	\checkmark	\checkmark	U	\bigcirc	ט	\checkmark	－	－	－	－	，	\checkmark	＂	，	\checkmark	\checkmark	\bigcirc
508	05，07，020	－Torotsesstell	10	EL	\bigcirc	\bigcirc	\bigcirc	－	\bigcirc	\bigcirc	\bigcirc	U	U	0	U	\bigcirc	U	\bigcirc	U	\checkmark	U	\bigcirc	\cup	\bigcirc
509	00，07，090	－other	10	EL	U	U	U	U	0	U	U	U	U	0	U	U	0	，	0	U	ט	U	ט	0
510	05，00，0010	－Coraland simlar materals	10	NT2	9\％	9\％	8\％	8%	6\％	6\％	5\％	5\％	4\％	4\％	3\％	3\％	2\％	2\％	\％	0\％	0\％	\％	\％	0\％
511	${ }^{05,80,0,020}$	－Shels of molises，crustaeans of	10	NT2	${ }^{9 \%}$	${ }^{9 \%}$	${ }^{\text {8\％}}$	${ }^{8 \%}$	${ }^{6 \%}$	${ }^{6 \%}$	${ }^{5 \%}$	5\％	${ }^{4 \%}$	4%	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	2\％	\％	\％	\％	\％	\％	\％
512	05，08，0，90	－Oher	10	N2	${ }^{9 \%}$	${ }^{9 \%}$	${ }^{8 \%}$	${ }^{8 \%}$	${ }^{6 \%}$	${ }^{6 \%}$	${ }^{5 \%}$	${ }^{5 \%}$	${ }^{46}$	${ }^{46}$	${ }^{3 \%}$	${ }^{3 \%}$	2\％	2\％	\％	\％	\％	\％	\％	\％\％
513	05，100，010	－Cantarices	10	${ }^{\text {NT2 }}$	9\％	9\％	8\％	${ }^{8 \%}$	${ }^{6 \%}$	6\％	5\％	5\％	${ }^{4 \%}$	4\％	3\％	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％	\％	0\％	\％
514	05，10，020	－Musk	10	NT2	${ }^{9 \%}$	9\％	8%	8%	${ }^{6 \%}$	${ }^{6 \%}$	${ }^{5 \%}$	5\％	${ }^{4 \%}$	4%	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％	\％	\％	\％
515	05，100，990	Other	10	NT2	9\％	\％	8%	8%	6\％	6\％	5%	5\％	$4{ }^{4 \%}$	4%	3\％	3\％	2\％	2\％	\％	\％	0\％	0\％	\％	\％
${ }^{516}$	05，11，000	－Bounie semen	5	NT1	4%	4%	$4{ }^{4 \%}$	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	0\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％
517	05，119，100	－－Products of fish or crustaceans，molluscs or other aquatic invertebrates；dead animals of Chapter 3	10	N2	9\％	9\％	8%	${ }^{8 \%}$	6\％	6\％	${ }^{5 \%}$	5\％	4\％	4\％	3\％	${ }^{3 \%}$	${ }^{2 \%}$	2%	\％	0\％	\％	0\％	\％	\％
518	05，119，910	\cdots－Domesicicanima semen	10	NT2	9\％	\％	8%	8\％	6\％	6\％	5\％	5\％	4\％	4\％	3\％	${ }^{3 \%}$	2\％	2\％	\％	0\％	\％	\％	\％	\％
519	05，19，920	－Silk womegegs	10	NT2	9\％	\％	${ }^{8 \%}$	${ }^{8 \%}$	6\％	6\％	5\％	5\％	$4{ }^{4}$	4%	3\％	${ }^{3 \%}$	2\％	2\％	\％	\％	0\％	\％	\％	\％
520	${ }^{05,119,930}$	\cdots－Naural sponges	10	NT2	9\％	${ }^{9}$	${ }^{8 \%}$	${ }^{8} \%$	6\％	6\％	${ }^{5 \%}$	5\％	${ }^{4 \%}$	4%	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％	0\％	\％	\％
521	05，119，990	－－other	10	NT2	9\％	9\％	8%	${ }^{8 \%}$	6\％	6\％	5\％	5\％	${ }^{4 \%}$	4\％	${ }^{3}$	3\％	2\％	2\％	\％	\％	\％	\％	\％	\％
52	00，01，000	- Bulbs，tubers，tuberous roots，corms，crowns and Thizomes，dormant	${ }^{5}$	${ }^{\text {NT1 }}$	${ }^{4 \%}$	${ }^{4 \%}$	4\％	3\％	${ }^{3}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	0\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％
523	00，012，010	－－Chicory pans	5	NT1	${ }^{4 \%}$	4%	$4{ }^{4}$	3\％	3\％	2\％	${ }^{2 \%}$	\％\％	\％	\％\％	\％	\％	\％	\％	\％	\％	\％\％	0\％	0\％	\％
524	${ }^{06,012,020}$	－Chiog fools	5	NT1	$4{ }^{4 \%}$	${ }^{4 \%}$	4\％	3\％	3\％	${ }^{2 \%}$	${ }^{2 \%}$	\％\％	0\％	\％\％	\％	\％	\％	0\％	\％	\％\％	0\％	\％	0\％	\％
525	${ }^{06,012,090}$	－other	${ }^{5}$	NT1	${ }^{4 \%}$	${ }^{4 \%}$	$4{ }^{4 \%}$	${ }^{3 \%}$	${ }^{3}$	${ }^{2 \%}$	${ }^{2 \%}$	\％\％	0\％	0\％	\％	\％	\％	0\％	\％	\％	0\％	0\％	\％	\％
${ }^{526}$	00，02，010	－－Otorchis	5	NT1	${ }^{4 \%}$	${ }^{4 \%}$	4\％	3\％	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％\％	0\％	0\％	\％	\％	\％	0\％	\％	\％	0\％	0\％	\％	\％
527	00，02，，020	－Ofrubertres	5	${ }^{\text {NT1 }}$	4%	4\％	4\％	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	0\％	0\％	0\％	\％	0\％	0\％	\％	\％	\％	\％	\％	\％
${ }^{528}$	00，021，090	－Other	5	NT1	4\％	${ }^{4 \%}$	4\％	3\％	3\％	2\％	${ }^{2 \%}$	\％\％	\％	0\％	\％	\％	\％\％	\％	\％	\％\％	0\％	0\％	\％	\％
529	0，0，22，000	Trees，shrubs and bushes，grafted or not，of kinds which bear edible fruit or nuts	${ }^{5}$	${ }^{\text {NT1 }}$	${ }^{4 \%}$	4\％	4\％	${ }^{3} \%$	3\％	${ }^{2 \%}$	${ }^{2 \%}$	\％	0\％	0\％	\％	\％	\％	0\％	\％	\％	\％	\％	${ }^{0}$	\％
530	00，02，000	－Rhododendidos and azales，gated of rot	10	NT2	9\％	9\％	8\％	8\％	6\％	6\％	${ }^{\text {5\％}}$	5\％	${ }^{4 \%}$	4\％	3\％	${ }^{3 \%}$	2%	2\％	\％	0\％	0\％	0\％	\％	\％
${ }^{531}$	00，024，000	－Roses，gatate or not	5	NT1	4%	$4{ }^{4 \%}$	4%	3\％	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％\％	\％	0\％	\％	\％\％	\％\％	\％\％	\％	\％	\％	0\％	\％	\％\％
532	00，02，0，010	\cdots Fooled ocrididutings and sips	10	NT2	9\％	9\％	8%	${ }^{8 \%}$	6\％	6\％	${ }^{5 \%}$	5\％	$4{ }^{4}$	4%	3\％	${ }^{3 \%}$	${ }^{2 \%}$	2\％	\％	\％	0\％	0\％	\％	\％
${ }^{533}$	00，02，0，20	－Orchid sealings	10	NT2	${ }^{9}$	${ }^{9 \%}$	8%	${ }^{8} \%$	${ }^{6 \%}$	6\％	${ }^{5 \%}$	5\％	${ }^{4 \%}$	4%	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	0\％	0\％	\％	\％
534	00，02，900	－Budedestums of tre genus Hevea	10	${ }^{\text {NT2 }}$	9\％	\％	\％	8\％	${ }^{6 \%}$	6\％	${ }^{5 \%}$	5\％	4\％	4\％	3\％	3\％	2\％	2\％	\％	\％\％	\％	\％	\％	\％
${ }^{335}$	${ }^{00,029,5050}$	Seedingo ot the genus Hevea	10	NT2	${ }^{9}$	${ }^{9}$	${ }^{8 \%}$	${ }^{8 \%}$	${ }^{6 \%}$	${ }^{6 \%}$	${ }^{5 \%}$	${ }^{5 \%}$	${ }^{4 \%}$	4%	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％	\％	0\％	\％
${ }^{536}$	00，02，900	－Buwood of the genus Hevea	10	NT2	\％	${ }^{\text {\％}}$	${ }^{8 \%}$	8\％	6\％	6\％	5\％	5\％	${ }^{4 \%}$	${ }^{4 \%}$	${ }^{3 \%}$	${ }^{3}$	${ }^{2 \%}$	2%	\％	\％	\％	\％	\％	\％
${ }^{537}$	${ }^{00,029,070}$	－Leaterelat fems	${ }^{10}$	NT2	${ }^{9 \%}$	${ }^{9 \%}$	${ }^{8 \%}$	8\％	${ }^{6 \%}$	${ }^{6 \%}$	${ }^{5 \%}$	5\％	${ }^{4 \%}$	${ }^{4 \%}$	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％\％	0\％	\％	\％
${ }^{538}$	00，02，9090	－other	10	NT2	${ }^{9 \%}$	${ }^{9 \%}$	${ }_{8}^{8 \%}$	${ }^{8 \%}$	${ }^{6 \%}$	${ }^{6 \%}$	${ }^{5 \%}$	${ }^{5 \%}$	${ }^{4 \%}$	4%	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％	\％	\％	\％
539	00，03， 100	Roses	${ }^{30}$	EL	U	\bigcirc	\bigcirc	U	U	ט	\bigcirc	U	U	U	ט	ט	ט	ט	ט	\bigcirc	\bigcirc	\bigcirc	ט	\bigcirc

香港•ASEAN FTAにかかる調査報告書

別添2－4 原産地品の関税撤廃スケジュール
（ラオス）

$5{ }^{50}$	10，031，200	－Camaions	${ }^{30}$	EL	\bigcirc	U	U	U	\bigcirc	\bigcirc	\bigcirc	U	U	\bigcirc	\bigcirc	U	U	U	U	U	U	\bigcirc	U	U
54	00，03， 300	－Ochios	${ }^{30}$	EL	\bigcirc	\bigcirc	U	U	U	U	\bigcirc	U	U	\bigcirc	U	\bigcirc	\cup	\cup	\bigcirc	\bigcirc	U	\bigcirc	\cup	\bigcirc
$5{ }^{542}$	00，03，4，400	Chnsantemums	30	EL	U	U	U	U	0	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U
543	00，03，500	－Lilies LLIum Spo．）	${ }^{30}$	EL	U	ט	U	0	\bigcirc	ט	0	ט	\bigcirc	0	ט	U	U	ט	\bigcirc	ט	\bigcirc	ט	U	U
54	00，03，900	－oner	${ }^{30}$	－	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	0	\bigcirc	0	\bigcirc	\bigcirc	\bigcirc	－	－	\bigcirc	U	\bigcirc	\bigcirc	\bigcirc	0
545	00，03， 000	－Oner	${ }^{30}$	EL	\bigcirc	\bigcirc	\bigcirc	\bigcirc	0	\bigcirc	，	\bigcirc	\bigcirc	U	U	U	U	U	－	U	U	U	${ }_{0}$	U
546	00，04， 010	－Mosses andicichens	${ }^{30}$	EL	\bigcirc	\bigcirc	\bigcirc	U	\bigcirc	\bigcirc	\bigcirc	U	\bigcirc	U	\bigcirc	U	\cup	U	U	U	U	\bigcirc	U	U
547	00，042，090	－－oter	${ }^{30}$	EL	\bigcirc	\bigcirc	\bigcirc	0	0	0	0	\bigcirc	\bigcirc	0	0	\bigcirc	U							
548	00，04，0，010	－Mosses and lichens	${ }^{30}$	EL	\bigcirc	0	\bigcirc	\bigcirc	\bigcirc	\checkmark	\bigcirc	\bigcirc	\bigcirc	\bigcirc	ט	U								
549	00，04，9090	－－oner	${ }^{30}$	EL	ט	ט	\bigcirc	U	0	\bigcirc	\bigcirc	U	U	U	U	0	U	U	U	U	0	\bigcirc	U	U
550	07，01，000	seed	5	N1	4\％	4%	4\％	3\％	3\％	2\％	2\％	\％\％	\％	\％	0\％	\％	\％	\％	\％	\％	\％	\％	\％	\％
551	07，019，000	－otrer	40	HsL	0\％	0\％	0\％	40\％	40\％	0\％	40\％	40\％	40\％	40\％\％	40%	40\％	0\％	0\％	40\％	0\％	40%	40%	\％\％	\％
55	07，02，000	Tomatoes，trest or chilled．	40	EL	U	U	0	${ }^{\circ}$	\bigcirc	\bigcirc	\bigcirc	－	\bigcirc	\checkmark	\bigcirc	－	\bigcirc	\bigcirc	－	\checkmark	U	\checkmark	\checkmark	\bigcirc
553	07，03，0011	－Bubs tor propagation	${ }^{40}$	EL	U	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	U	\bigcirc	U	\bigcirc	\cup	\bigcirc	\cup	U	U	\bigcirc	\bigcirc	\bigcirc	－	U
55	07，03，019	－oner	40	EL	U	\bigcirc	U	\bigcirc	U	\bigcirc	0	\checkmark	U	\bigcirc	\bigcirc	U	U	U	U	U	\bigcirc	\bigcirc	U	U
55	07，03，0，021	\cdots－\quad Bubs tor ropopagion	${ }^{40}$	EL	\bigcirc	－	ט	\bigcirc	\bigcirc	ט	O	U	\bigcirc	O	\bigcirc	U	U	U	U	O	U	O	\bigcirc	U
556	07，03，029	－－Oner	40	EL	\bigcirc	0	\bigcirc	\checkmark	\bigcirc	\bigcirc	0	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	U							
557	07，032，010	－Bubs for propagaion	40	Ist	40\％	20\％	${ }^{40 \%}$	40\％	40\％	40\％	40%	${ }^{40 \%}$	40%	40%	40%	${ }^{40 \%}$	0\％	0\％	40\％	${ }^{40 \%}$	40%	40%	20\％	0\％
55	07，032，090	－other	40	HSL	20\％	40\％	40\％\％	40\％	40\％	40\％	40%	40\％	40\％	40%	40\％	40\％	40%	40%	40\％	40\％	0\％	40%	2\％	\％
559	07，039，010	－－bubs for fopopagion	40	EL	ט	\checkmark	U	\bigcirc	\bigcirc	\checkmark	U	U	\bigcirc	\bigcirc	U	－	\bigcirc	－	－	\bigcirc	\bigcirc	\bigcirc	\checkmark	\bigcirc
550	07，03，900	－oner	${ }^{40}$	EL	\bigcirc	U	U	U	U	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	－	ט	－	\bigcirc	\bigcirc	－	－	－	${ }^{\circ}$
561	07，04，010	Cautiowers	40	EL	U	\bigcirc	\bigcirc	\bigcirc	0	\bigcirc	U	U	U	\bigcirc	\bigcirc	U	U	\bigcirc	U	U	\bigcirc	0	U	U
552	00，04，, 20	－Headee brocoif	${ }^{40}$	EL	\bigcirc	0	\bigcirc	U	－	\bigcirc	\bigcirc	－	O	O	\bigcirc	\bigcirc	U							
563	07，02， 000	－Bussels spous	${ }^{40}$	st	0\％	20\％	0\％	${ }^{40 \%}$	20\％	${ }^{40 \%}$	40\％	20\％	${ }^{40 \%}$	40\％	40\％	40\％	40\％	0\％	40\％	0\％	0\％	40\％	\％	20\％
554	07，04，011	－－Round（drumbead	${ }^{40}$	EL	\bigcirc	\bigcirc	U	\bigcirc	ט	\bigcirc	\bigcirc	ט	\checkmark	\bigcirc	\bigcirc	\bigcirc	\checkmark	ט	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\checkmark	0
565	07，04，0，19	－oner	40	EL	U	－	U	U	U	U	－	U	0	U	U	U	U	U	U	U		U	U	U
56	07，04，9090	－omer	40	EL	\bigcirc	\bigcirc	－	U	O	0	\bigcirc	U	0	0	0	U	ט	ט	\bigcirc	U	0	\bigcirc	\bigcirc	U
567	${ }^{07,05,1,100}$	Caboage eltuce（ nead Petuce）	40	EL	\bigcirc	\bigcirc	－	0	0	\bigcirc	－	U	0	U	0	\bigcirc	U	U	0	U	U	U	U	U
558	07，05，900	－Other	40	EL	\bigcirc	ט	0	\bigcirc	U	U	－	\bigcirc	\bigcirc	－	ט	0	U	U	\bigcirc	0	U	\bigcirc	ט	U
55	${ }^{07,052,100}$		${ }^{40}$	${ }^{\text {EL }}$	0	\bigcirc	\bigcirc	－	－	\bigcirc	0	－	\bigcirc	\bigcirc	ט	0	\bigcirc	－	0	\bigcirc	ט	－	U	U
550	07，052，900	－other	40	EL	U	－	U	U	\checkmark	－	0	－	－	U	0	－	U	U	U	U	－	－	ט	－
571	07，06，0，010	－Carals	${ }^{40}$	EL	\bigcirc	O	ט	U	0	0	O		0	O	0	U	ט	0	\bigcirc	0	\bigcirc	\bigcirc	0	U
572	00，06，0，20	－Turips	40	EL	\bigcirc	\bigcirc	－	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	ט	－	0	\bigcirc	\bigcirc	－	\bigcirc	\bigcirc	\bigcirc	\bigcirc	ט	U
573	07，09，000	－other	40	EL	\bigcirc	ט	\bigcirc	\bigcirc	U	\bigcirc	U	0	\bigcirc	U	\bigcirc	\bigcirc	\bigcirc	U						
574	07，07，000	Cucumbers and gherkins，fresh or chilled．	${ }^{40}$	${ }^{\text {EL }}$	U	U	\checkmark	U	－	U	\bigcirc	\bigcirc	\bigcirc	\bigcirc	U	U	\bigcirc	\bigcirc	\bigcirc	\bigcirc	U	\bigcirc	\bigcirc	\bigcirc
575	07，081，000	－Peas（ Pisum sativem）	40	st	0\％	0\％	\％\％	40\％	0\％	0\％	40%	0\％	40%	40%	40%	0\％	0\％	0\％	40\％	0\％	40%	40\％	\％o\％	\％\％
576	07，082，010	－French beans	${ }^{40}$	EL	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	0	0	\bigcirc	U	－	\bigcirc	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\bigcirc	\bigcirc	\checkmark	\bigcirc
57	07，082，200	－Long beans	40	EL	ט	ט	U	U	0	U	U	U	U	，	U	0	U	U	U	U	U	0	U	0
${ }^{578}$	${ }^{07,082,090}$	－Other	${ }^{40}$	EL	\bigcirc	\bigcirc	\bigcirc	－	ט	\bigcirc	\bigcirc	，	\bigcirc	\bigcirc	ט	－	－	－	U	－		\bigcirc	\bigcirc	U
579	07，09，000	－Oner egesuminus vegeatabes	${ }^{40}$	EL	\bigcirc	\bigcirc	U	\bigcirc	0	0	\bigcirc	0	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	0	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
550	07，02，200	－Asparauls	${ }^{40}$	st	0\％	0\％	\％0\％	${ }^{40 \%}$	20\％	40%	40%	40\％	40%	40%	40%	40%	40%	\％\％	40\％	0\％	\％o\％	40%	20\％	10\％
581	07，03， 000	－Aubegines（egg． Panans ）	${ }^{40}$	EL	\checkmark	${ }^{\circ}$	\checkmark	U	U	U	U	U	U	${ }^{\circ}$	U	U	－	\checkmark	U	${ }^{\circ}$	${ }^{\circ}$	${ }^{\circ}$	－	\bigcirc
58	07，044，000	－Celery other than celeriac	40	EL	U	ט	0	U	0	0	0	0	0	U	0	U	U	0	U	U	U	U	0	0
${ }^{583}$	07，05，${ }^{\text {000 }}$	Mustrooms of the genus Agaicus	40	EL	\bigcirc	\bigcirc	－	－	\bigcirc	\checkmark	${ }^{\circ}$	${ }^{\circ}$	\checkmark	\bigcirc	\bigcirc	\bigcirc	－							
58	07，05，910	\cdots	40	Hst	20\％	${ }^{40 \%}$	${ }^{40 \%}$	${ }^{40 \%}$	${ }^{40 \%}$	${ }^{40 \%}$	40%	${ }^{40 \%}$	40%	40%	40%	40%	40%	${ }^{20 \%}$	40\％	${ }^{40 \%}$	40%	40%	40\％	20\％
585	07，05，990	－other	40	HSL	20\％	20\％	${ }^{40 \%}$	${ }^{40 \%}$	${ }^{40 \%}$	40\％	40\％	${ }^{40 \%}$	${ }^{40 \%}$	40\％	40\％	40\％	40%	${ }^{40 \%}$	20\％	${ }^{40 \%}$	40\％	40\％	20\％	20\％
586	07，09，0010	－Chiliss（fuils of tonus Capsicum）	40	EL	ט	U	U	\bigcirc	ט	－	ט	ט	ט	ט	\bigcirc	\bigcirc	ט	U	\bigcirc	ט	\bigcirc	\bigcirc	ט	\bigcirc
587	07，09，900	－－omer	${ }^{40}$	EL	\bigcirc	U	\bigcirc	U																
58	00，09，7000	- Spinach，New Zealand spinach and orache spinach （garden spinach）	${ }^{40}$	EL	U	0	－	${ }^{\text {U }}$	${ }^{\circ}$	${ }^{\circ}$	0	O	0	0	0	0	0	0	0	0	＂	0	U	
559	07，09，100	－Giobe atichokes	40	HSL	20\％	${ }^{40 \%}$	40\％\％	${ }^{40 \%}$	${ }^{40 \%}$	${ }^{40 \%}$	40\％	${ }^{40 \%}$	40\％	40%	40%	40%	40%	${ }^{40 \%}$	40\％	0\％	40%	\％\％	\％	0\％
59	07，099，200	－Oives	40	EL	0	U	U	U	U	U	0	U	0	U	0	U	\checkmark	0	ט	U	0	U	\checkmark	\bigcirc
591	${ }^{07,09,3,300}$	－Pumpkins，suash and goursis （Co	${ }^{40}$	${ }^{\text {EL }}$	\bigcirc	\checkmark	U	\bigcirc	\bigcirc	\bigcirc	－	\bigcirc	\bigcirc	\bigcirc	U	U	\bigcirc	ט	\checkmark	0	\bigcirc	\bigcirc	U	\bigcirc
592	07，09，900	－－Oner	${ }^{40}$	EL	\bigcirc	\bigcirc	\bigcirc	ט	\bigcirc	\bigcirc	\checkmark	\bigcirc	U	\bigcirc	\bigcirc	\bigcirc	\checkmark	U	U	\bigcirc	${ }^{\circ}$	${ }^{\circ}$	\checkmark	\bigcirc
593	07，01，000	Potaios	40	EL	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	U	\bigcirc	\bigcirc	\bigcirc	\bigcirc	0	\bigcirc	ט	U	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\checkmark
59	07，12，100	－Peas Pisism sativum）	${ }^{40}$	Ist	20\％	${ }^{40 \%}$	${ }^{20 \% \%}$	${ }^{40 \%}$	${ }^{40 \%}$	${ }^{40 \%}$	40\％	${ }^{20 \%}$	${ }^{40 \%}$	40\％	40\％	40\％	40\％	40\％	40\％	40\％	40\％	40\％	20\％	10\％
595	07，102，200	Beans（Vigna spo．，Phaseouls spo．${ }^{\text {I }}$	40	EL	\bigcirc	U	U	ט	\bigcirc	\bigcirc	\bigcirc	U	\checkmark	\checkmark	\bigcirc	\bigcirc	U	U	\bigcirc	ט	\bigcirc	－	，	\bigcirc
${ }^{596}$	07，102，900	－Oner	${ }^{40}$	EL	\bigcirc	\bigcirc	\bigcirc	－	－	\bigcirc	\bigcirc	\bigcirc	－	\bigcirc	ט	\bigcirc	\bigcirc	－	\bigcirc	，	\bigcirc	\bigcirc	0	\bigcirc
597	07，10，300	Spinach，New Zealand spinach and orache spinach （garden spinach）	${ }^{40}$	EL	\bigcirc	\checkmark	ט	\bigcirc		＂	\bigcirc	\bigcirc	\bigcirc	\bigcirc	＂	\bigcirc	ט	\bigcirc	－	\checkmark	\bigcirc	\bigcirc	\bigcirc	\bigcirc
598	07，104，000	－Sweet com	${ }^{40}$	${ }^{\text {EL }}$	U	${ }^{\circ}$	${ }^{\circ}$	${ }^{0}$	0	0	0	${ }^{0}$	${ }^{0}$	${ }^{0}$	\bigcirc	－	${ }^{\circ}$	${ }^{\circ}$	0	${ }^{0}$	${ }^{0}$	${ }^{\circ}$	${ }^{\circ}$	${ }^{\circ}$
599	07，10，000	－Oner vegeables	40	EL	ט	\bigcirc	0	\bigcirc	0	0	\bigcirc	U	0	\bigcirc	U	ט	ט	ט	U	U	\bigcirc	ט	ט	\bigcirc
500	07，109，000	－Mxures of ivegeables	40	EL	\bigcirc	－	－	U	\bigcirc	\bigcirc	\bigcirc	－	\bigcirc	U	U	\checkmark	\bigcirc	\bigcirc	－	－	－	\bigcirc	－	\bigcirc
801	07，12，010	－－Presened by s suphur doxide gas	40	HSL	20\％	${ }^{40 \%}$	40\％	${ }^{40 \%}$	${ }^{40 \%}$	${ }^{40 \%}$	40%	40\％	40%	40%	40%	40%	40%	${ }^{40 \%}$	40\％	40%	40%	40%	40\％	20\％
802	00，12，090	－Oher	${ }^{40}$	HSL	20\％	${ }^{40 \%}$	40\％\％	${ }^{40 \%}$	${ }^{40 \%}$	40\％	40\％	${ }^{40 \%}$	${ }^{40 \%}$	40\％	40%	40\％	40\％	40\％	40\％	${ }^{40 \%}$	40\％	40\％	20\％	20\％
803	07，14，010	－－Preseneab b s suphur doxde ega	${ }^{40}$	EL	\bigcirc	0	\bigcirc	\bigcirc	0	U	－	\bigcirc	－	－	0	\bigcirc	－	U	ט	\bigcirc	\bigcirc	\bigcirc	\bigcirc	－
804	07，14，9090	－other	${ }^{40}$	EL	\bigcirc	ט	U	\bigcirc	\bigcirc	\checkmark	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	，	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	－
805	${ }^{07,15,110}$		40	EL	\bigcirc	ט	0	ט	0	－	－	－	－	\bigcirc	0	\bigcirc	－	－	U	U	\bigcirc	\bigcirc	\bigcirc	\bigcirc
806	${ }^{07,15,190}$	－oner	${ }^{40}$	EL	ט		${ }^{\circ}$	\bigcirc	U	\bigcirc	\bigcirc	\bigcirc	U	\bigcirc	U	U	\bigcirc	U	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	U
607	${ }^{00,115,910}$	－Preseseded by sulpur dioxde gas	${ }^{40}$	${ }^{\text {EL }}$	－	\bigcirc	\bigcirc	U	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	U	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	－	\bigcirc	\bigcirc
608	${ }^{07,15,9,900}$	－Oher	${ }^{40}$	${ }^{\text {EL }}$	\bigcirc	U	U	\bigcirc	U	U	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\checkmark	\checkmark	\checkmark	\bigcirc	\checkmark	\bigcirc	\bigcirc	\bigcirc
609	07，119，010	－Sweet com	40	EL	\bigcirc	ט	\bigcirc	\bigcirc	\bigcirc	${ }^{\circ}$	\bigcirc	\bigcirc	0	\bigcirc	\bigcirc	\bigcirc	\bigcirc	U	\bigcirc	0	U	－	\bigcirc	\bigcirc
$6{ }^{60}$	00，19，020	－Chilies（tuits ofgenus Capsicum ）	${ }^{40}$	EL	\bigcirc	0	\bigcirc	0	\bigcirc	－	\bigcirc	\bigcirc	－		\bigcirc	\bigcirc	\bigcirc	\bigcirc						
611	07，19，031	\cdots－Presesed by sulphur ioxide 9 as	${ }^{40}$	EL	\bigcirc	U	U	\bigcirc	0	U	0		U	\bigcirc										
6	${ }^{07,19,0,39}$	－－other	${ }^{40}$	EL	\bigcirc	ט	ט	\bigcirc	\bigcirc	\bigcirc	\bigcirc	，	－	\bigcirc										
${ }^{613}$	07，19，9090	－Onions，preseseed bs sulpur dioxde gas	40	EL	U	，	U	U	U	，	U	U	U	U	U	U	－	U	U	，	ט	ט	\checkmark	U
$6{ }^{614}$	${ }^{07,119,050}$	－Onions，preserved other than by sulphur dioxide	${ }^{40}$	EL	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	0	\bigcirc	\checkmark	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc						
615	07，119，060	\cdots	40	EL	\bigcirc	0	U	\bigcirc	U	${ }_{0}$	0	0	\bigcirc	0	0	U	ט	U	U	U	U	0	\checkmark	\bigcirc
6	${ }^{07,119,090}$	－－Oher	${ }^{40}$	EL	\bigcirc	U	U	\bigcirc	\bigcirc	－	0	\bigcirc	\bigcirc	－	\bigcirc	\bigcirc	\bigcirc	\bigcirc	0	－	－	\bigcirc	\bigcirc	\bigcirc
$6{ }^{617}$	07，12，2000	－Oino	${ }^{40}$	EL	ט	U	U	ט	ט	U	\bigcirc	－		－	ט	－	U	0	\checkmark	\bigcirc	ט	\checkmark	U	\bigcirc
$6{ }^{618}$	${ }^{07,123,100}$	Mustroms of the genus Agarcus	${ }^{40}$	EL	\bigcirc		\bigcirc	\bigcirc	\bigcirc		\bigcirc	－		\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	－	－	\bigcirc	\bigcirc		\bigcirc
619	${ }^{07,123,200}$	Wood ears Auriculazas spo．）	${ }^{40}$	EL	\bigcirc	U	O	\bigcirc	U	\bigcirc	－	U	U	－	\bigcirc	\bigcirc	\bigcirc	U	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	U
620	${ }^{07,123,300}$	－Jally fung（Teemella spo．）	${ }^{40}$	EL	\bigcirc	U	\checkmark	\bigcirc	U		\bigcirc	U	\checkmark	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\checkmark	\bigcirc	\checkmark	\bigcirc	\bigcirc	U
${ }^{621}$	${ }^{07,123,910}$	－Tuftles	${ }^{40}$	EL	\bigcirc	ט	\bigcirc	\bigcirc	U	\bigcirc	\bigcirc	U	－	－	\bigcirc	\bigcirc	\bigcirc	\bigcirc	0^{0}	\bigcirc	0	\bigcirc	\bigcirc	\bigcirc
622	${ }^{07,123,920}$	－Shiitee（dong－gu）	${ }^{40}$	EL	0	，	\bigcirc	\bigcirc	ט	\bigcirc	\checkmark	－	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc						
6^{623}	${ }^{07,123,990}$	\cdots	${ }^{40}$	${ }^{\text {EL }}$	，	\bigcirc	\bigcirc	U	U	\bigcirc	\bigcirc	\bigcirc	\bigcirc	U	－	\bigcirc	\bigcirc	U	\bigcirc	\bigcirc	U	－	\bigcirc	\bigcirc
6^{624}	${ }^{07,129,010}$	－Garic	${ }^{40}$	EL	\bigcirc	\bigcirc	\bigcirc	${ }^{\circ}$	\bigcirc	－	\checkmark	U	\bigcirc	\checkmark	\bigcirc	－	\bigcirc	U	U	\bigcirc	\bigcirc	\bigcirc	\bigcirc	－
625	07，129，990	－other	${ }^{40}$	EL	\bigcirc	\bigcirc	\checkmark	\bigcirc	0	\bigcirc	\bigcirc	\bigcirc	\bigcirc	－	U	U	\bigcirc	\bigcirc	U	U	\bigcirc	U	\bigcirc	\bigcirc
${ }^{226}$	00，13，010	－Sutabel tor sowing	${ }^{40}$	HSL	20\％	20\％	${ }^{40 \%}$	40\％	20\％	${ }^{40 \%}$	${ }^{40 \%}$	40\％	${ }^{40 \%}$	40\％	${ }^{40 \%}$	${ }^{40 \%}$	${ }^{40 \%}$	\％	${ }^{40 \%}$	${ }^{40 \%}$	40\％	40%	0\％	10\％
627	07，13，090	－other	${ }^{40}$	IsL	20\％	${ }^{40 \%}$	${ }^{40 \%}$	${ }^{40 \%}$	${ }^{40 \%}$	40\％	40\％	${ }^{40 \%}$	40\％	${ }^{40 \%}$	${ }^{40 \%}$	${ }^{40 \%}$	40\％	40\％	40\％	${ }^{40 \%}$	40\％	40\％	40\％	40\％
628	07，13，010	－－Suitabe for sowing	40	EL	ט	U	U	\bigcirc	ט	U	－	ט	ט	\bigcirc	ט	\bigcirc	\bigcirc	－	\bigcirc	ט	\bigcirc	\bigcirc	\bigcirc	\bigcirc
62	${ }^{07,132,990}$	－Oher	${ }^{40}$	EL	\bigcirc	0	U	\bigcirc	U	\bigcirc	\bigcirc	ט	\bigcirc	\bigcirc	U	ט	u	ט	\bigcirc	ט	U	\bigcirc	\bigcirc	\bigcirc

香港•ASEAN FTAにかかる調査報告書

別添2－4 原産地品の関税撤廃スケジュール
（ラオス）

630	${ }^{07,13,110}$	Sutiale for sowing	40	EL	U	U	U	U	U	U	\bigcirc	\bigcirc	U	\bigcirc	U	\bigcirc	U	U	U		U	\bigcirc		
${ }^{631}$	${ }^{07,13,190}$	\cdots Oner	${ }^{40}$	EL	\bigcirc	\cup	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	U	\bigcirc	\bigcirc	\bigcirc	U	\bigcirc						
632	07，13，210	－SUutable forsowis	${ }^{40}$	EL	\bigcirc	U	U	\bigcirc	\bigcirc	\bigcirc	U	\bigcirc												
${ }^{633}$	${ }^{07,13,290}$	\cdots	40	EL	U	O	\bigcirc	\bigcirc	U	U	ט	ט	－	U	ט	U	－	U	－	ט	U	U	－	－
634	07，13，3，310	－Sulabel torsowig	40	EL	ט	\bigcirc	0	0	O	U	ט	U	ט	ט	ט	U	U	U	U	U	U	U	\bigcirc	O
635	07，13，3，30	－ Onter	40	EL	\bigcirc	－	U	O	U	0	ט	ט	，	U	U	U	U	U	U	U	ט	U	U	U
${ }^{636}$	${ }^{07,13,410}$	Suitale for sowing	${ }^{40}$	EL	U	U	U	U	U	U	ט	U	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	U	\checkmark	\bigcirc	\bigcirc	\bigcirc	U
637	07，13，490	Other	${ }^{40}$	EL	\bigcirc	\bigcirc	\bigcirc	\bigcirc	U	0	\bigcirc	U	\bigcirc	\bigcirc	\bigcirc	U	U	\bigcirc	U	U	\bigcirc	ט	U	\bigcirc
${ }^{638}$	${ }^{07,13,5,510}$	－Sutabel tor sowing	${ }^{40}$	EL	\bigcirc	\bigcirc	\bigcirc	\checkmark	U	0	U	U	U	U	U	\cup	U	U	U	U	\checkmark	u	U	\bigcirc
639	07，13，590	－－other	${ }^{40}$	EL	0	\bigcirc	\bigcirc	\bigcirc	U	0	\bigcirc	\bigcirc	U	0	0	\checkmark	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	0	U	\bigcirc
$6{ }^{640}$	07，13，9，90	－－Sutabele forswing	${ }^{40}$	EL	ט	\bigcirc	\bigcirc	\bigcirc	－	0	\bigcirc	ט	ט	U	\bigcirc	U	－	\bigcirc	\bigcirc	U	0	\bigcirc	U	U
${ }^{641}$	07，13，990	－oner	${ }^{40}$	EL	ט	U	U	ט	ט	U	ט	ט	U	－	ט	ט	－	\bigcirc	\bigcirc	\bigcirc	ט	U	U	\bigcirc
${ }^{642}$	07，134，010	Suiabel ior sowng	${ }^{40}$	EL	\bigcirc	O	O	－	－	O	O	－	－	\bigcirc	－	O	－	－	－	ט	\bigcirc	U	－	－
643	07，134，900	－Onter	40	EL	U	\bigcirc	\bigcirc	¢	\bigcirc	U	\bigcirc	\checkmark	U	U	U	\cup	\bigcirc	U	U	\cup	U	\cup	U	\cup
64	07，13，010	－Suitabe tor sowing	40	EL	\bigcirc	\checkmark	0	\bigcirc	\bigcirc	\bigcirc	\bigcirc	，	U	\bigcirc	\bigcirc	\checkmark	U	\bigcirc						
${ }^{645}$	${ }^{07,13,090}$	Oner	${ }^{40}$	EL	\bigcirc	0	0	U	\bigcirc	U	\bigcirc	U	0	\bigcirc	\bigcirc	\bigcirc	U	U	U	ט	\bigcirc	ט	U	\bigcirc
${ }^{646}$	${ }^{07,136,000}$	－Pigoon peas（Caianus cajan）	40	Ist	20\％	0\％	10\％	0\％	0\％	0\％	${ }^{40 \%}$	40\％	40\％	40\％	40\％	40%	40%	0\％	20\％	40\％	40\％	20\％	20\％	20\％
${ }^{647}$	07，13，010	－Sulable tor sowing	40	fsL	20\％	40\％	40\％	40\％	40\％	40\％	40%	40%	40%	40%	40\％	40\％	40\％	${ }^{40 \%}$	40%	40\％	40%	20\％	20\％	40%
${ }^{648}$	07，13，9090	－other	${ }^{40}$	HsL	${ }^{40 \%}$	${ }^{40 \%}$	${ }^{40 \%}$	${ }^{40 \%}$	40\％	${ }^{40 \%}$	40%	40%	40\％	40\％	40%	40%	40%	${ }^{40 \%}$	40%	40\％	40\％	20\％	40\％	\％\％
6^{649}	${ }^{07,41,011}$	－－Dieded chips	${ }^{40}$	EL	U	U	U	U	U	U	U	U	U	ט	U	U	U	U	O	O	ט	－	O	\bigcirc
650	07，74，019	－other	40	EL	0	\bigcirc	0	O	－	\bigcirc	U	U	0	O	0	\bigcirc	－	U	－	\bigcirc	O	U	U	\bigcirc
${ }^{651}$	007，41，091	－FFozen	40	EL	U	ט	U	\bigcirc	U	U	U	\cup	U	U	\checkmark	\checkmark	\checkmark	\bigcirc	\checkmark	\checkmark	\checkmark	ט	U	\cup
${ }^{652}$	00，41，099	－other	${ }^{40}$	EL	\bigcirc	\bigcirc	\bigcirc	\bigcirc	－	－	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	ט	－	－	ט	－	ט	O	\bigcirc
653	07，42，010	－Fozen	40	EL	\bigcirc	ט	ט	\bigcirc	－	U	\bigcirc	\checkmark	\bigcirc	\bigcirc	ט	\bigcirc	\bigcirc	U	U	U	U	\bigcirc	U	\bigcirc
65		－other	${ }^{40}$	EL	U	\bigcirc	\bigcirc	\bigcirc	\bigcirc	ט	\bigcirc	ט	ט	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	0	\bigcirc	\bigcirc	\bigcirc	\bigcirc	U
65	07，14，0，010	－Foren	40	EL	0	\bigcirc	\bigcirc	\bigcirc	\bigcirc	0	\bigcirc	0	0	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	，	${ }^{\circ}$	\bigcirc	\bigcirc	，	\bigcirc
${ }^{656}$	07，14，3，90	－other	${ }^{40}$	EL	\bigcirc	0	\bigcirc	ט	\bigcirc	\bigcirc	\bigcirc	0	ט	\bigcirc	ט	ט	\bigcirc							
$6{ }^{67}$	07，14，0010	－Fozen	40	EL	U	U	U	U	－	U	U	U	U	U	－	U	－	0	0	0	U	U	O	\bigcirc
658	07，14，0，90	－other	40	EL	0	0	0	U	\bigcirc	0	\bigcirc	0	0	0	0	ט	ט	\bigcirc	U	\cup	ט	U	0	\cup
659	${ }^{\text {07，14，}, 1010}$	－Foren	${ }^{40}$	${ }^{\text {EL }}$	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	U	\bigcirc	－	\square	－	－	\bigcirc	\bigcirc	\square_{0}	\bigcirc	\bigcirc	\bigcirc	U	0	\bigcirc
680	07，14，909	Oher	40	EL	ט	U	U	U	ט	U	U	\checkmark	U	U	U	ט	\bigcirc	\bigcirc	\bigcirc	\checkmark	ט	ט	U	\cup
661	07，44，011	\cdots	40	EL	U	U	\bigcirc	U	ט	U	U	U	U	\bigcirc	ט	U	ט	，	U	ט	\bigcirc	－	U	U
$6{ }^{62}$	${ }^{07,149,019}$	－Oher	40	${ }^{\text {EL }}$	ט	－	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	ט	\bigcirc											
66	07，44，991	－Fozen	${ }^{40}$	EL	U	U	\bigcirc	U	\bigcirc	U	U	U	U	\bigcirc	\bigcirc	U	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	U	\bigcirc
$6{ }^{64}$	07，44，099	Other	${ }^{40}$	EL	\bigcirc	ט	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	ט	ט	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	U	\bigcirc	\bigcirc	\bigcirc	0
665	08，01，100	Dosicalaed	${ }^{30}$	EL	U	U	U	U	U	U	ט	U	U	U	U	\checkmark	U	0	ט	ט	U	U	U	U
${ }^{666}$	08，01，200	－In we ineres shell（endocap）	${ }^{30}$	EL	U	U	\bigcirc	U	\bigcirc	\bigcirc	\bigcirc	0	0	0	0	U	\bigcirc	0	\bigcirc	\bigcirc	\bigcirc	U	ט	\bigcirc
$6{ }^{67}$	${ }^{08,01,900}$	－Other	${ }^{30}$	${ }^{\text {EL }}$	\bigcirc	\bigcirc	－	\bigcirc	\bigcirc	0	\bigcirc	－	－	\bigcirc	－	U	${ }^{\circ}$	${ }^{\circ}$	${ }^{\circ}$	U	ט	U	U	U
${ }^{668}$	08，01，100	Instell	${ }^{30}$	EL	\bigcirc	\checkmark	\bigcirc	\bigcirc	0	0	\bigcirc	\checkmark	0	0	\bigcirc	\checkmark	\bigcirc	\bigcirc	U	ט	\checkmark	U	U	\bigcirc
669	08，012，200	Snoled	${ }^{30}$	EL	U	U	U	U	0	U	U		U	0	U	U	O	0	U	U	U	－	，	\bigcirc
670	08，013，100	－Insteal	${ }^{30}$	${ }^{\text {EL }}$	U	U	－	ט	ט	U	ט	U	U	\bigcirc	\checkmark	ט	ט	U	\checkmark	ט	\bigcirc	ט	－	\bigcirc
671	08，013，200	Shelled	${ }^{30}$	EL	0	0	\bigcirc	0	\bigcirc	0	0	0	\bigcirc	\bigcirc	\bigcirc	0	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	U	\bigcirc
672	08，021，100	－Instell	${ }^{30}$	EL	U	ט	ט	ט	ט	U	ט	ט	ט	\bigcirc	\checkmark	ט	ט	－	\checkmark	U	\bigcirc	ט	－	0
673	08，02，200	Sheled	${ }^{30}$	EL	U	U	ט	ט	ט	ט	\bigcirc	ט	ט	－	U	\checkmark	\bigcirc	0	U	0	\checkmark	－	0	\bigcirc
674	${ }^{08,02,100}$	－ n steal	${ }^{30}$	EL	0	0	O	O	0	0	\bigcirc	0	0	0	0	ט	－	0	0	U	\bigcirc	\bigcirc	ט	\bigcirc
675	08，02，200	－Shelled	${ }^{30}$	EL	U	U	U	U	U	U	U	U	U	U	U	U	U	U	ט	，	U	ט	\bigcirc	ט
676	08，023，100	Instell	${ }^{30}$	EL	U	，	\bigcirc	0	0	0	U		0	U	0	ט	－	0	\bigcirc	U	U	U	，	\bigcirc
67	08，02，200	Sheled	${ }^{30}$	EL	U	U	\bigcirc	0	0	U	0	0	U	0	ט	0	0	0	U	\cup	U	－	0	\bigcirc
678	${ }^{08,024,100}$	－Instell	${ }^{30}$	${ }^{\text {EL }}$	ט	\bigcirc	\bigcirc	\bigcirc	\bigcirc	U	\bigcirc	ט	ט	U	U	\bigcirc	－	U	－	U	\bigcirc	\bigcirc	－	\bigcirc
679	${ }^{08,042,200}$	－Sheled	${ }^{30}$	EL	\bigcirc	0	\bigcirc	\bigcirc	\bigcirc	0	\bigcirc	0	0	\bigcirc	\bigcirc	\bigcirc	\bigcirc	U	U	\bigcirc	\bigcirc	\bigcirc	，	U
680	${ }^{08,05,100}$	－Instell	${ }^{30}$	EL	U	ט	ט	ט	\bigcirc	U	\bigcirc	ט	U	\bigcirc	\bigcirc	ט	\bigcirc							
${ }^{681}$	08，05，200	－Sheled	${ }^{30}$	EL	U	－	U	U	－	U	－	U	U	U	U	U	U	U	U	－	U	，	\checkmark	\bigcirc
682	08，026，100	－Instell	${ }^{30}$	EL	0	U	U	0	\bigcirc	0	\bigcirc	－	U	0	0	0	\bigcirc	U	0	U	U	U	0	\bigcirc
68	${ }^{08,026,200}$	Shelled	${ }^{30}$	${ }^{\text {EL }}$	U	\bigcirc	\bigcirc	\bigcirc	\bigcirc	${ }^{\circ}$	\bigcirc	\checkmark	U	\bigcirc	\bigcirc	\bigcirc	\checkmark	－	U	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
88	08，02，7000	－Kola nut（Colaspo ．）	${ }^{30}$	${ }^{\text {EL }}$	U	ט	\bigcirc	ט	－	U	－	ט	ט	\bigcirc	\bigcirc	ט	ט	ט	\bigcirc	ט	ט	ט	ט	\bigcirc
885	08，08，000	－Afecanus	${ }^{30}$	EL	U		－	U	0	U	\bigcirc	0	ט	\bigcirc	－	\bigcirc	0	，	0	－	\bigcirc	U	，	0
886	08，02，900	－Oner	${ }^{30}$	EL	U	0	\bigcirc	U	－	0	－	0	ט	\bigcirc	\bigcirc	\bigcirc	－	U	－	\bigcirc	\bigcirc	U	－	\bigcirc
${ }^{687}$	08，03，000	－Panalans	${ }^{40}$	${ }^{\text {EL }}$	U	U	\bigcirc	U	\bigcirc	U	\bigcirc	U	U	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	U	－	\bigcirc	\bigcirc	\bigcirc	\bigcirc
${ }^{688}$	${ }^{08,03,0000}$	－Oner	${ }^{40}$	EL	ט	ט	\bigcirc	\bigcirc	－	\bigcirc	\bigcirc	ט	\bigcirc	\bigcirc	\bigcirc	\bigcirc	－	\bigcirc	\checkmark	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
689	00，04，，000	－Dates	${ }^{30}$	EL		\checkmark	\checkmark	ט	U	U	U		U	U	U	ט	U	U	U	－	\checkmark	\checkmark	U	\bigcirc
690	08，02， 000	－Fgs	${ }^{30}$	EL	0	0	\checkmark	0	\bigcirc	0	，	0	0	0	ט	ט	\bigcirc	0	0	0	\bigcirc	0	0	0
${ }^{691}$	${ }^{08,03,0,000}$	－Preapoles	${ }^{40}$	${ }_{\text {EL }}$	\bigcirc	U	\bigcirc	U	\bigcirc	\bigcirc	\bigcirc	－	\bigcirc	\bigcirc	\bigcirc	\bigcirc	－	\bigcirc						
692	08，04，000	－Avocaos	${ }^{30}$	${ }^{\text {EL }}$	U	\bigcirc	\bigcirc	ט	U	U	\bigcirc	U	ט	ט	\checkmark	ט	－	ט	U	U	\checkmark	ט	\bigcirc	\bigcirc
693	${ }^{08,05,0,010}$	－Guavas	40	EL	U	\bigcirc	\bigcirc	\bigcirc	－	0	\bigcirc	\bigcirc	U	0	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	－	－	，	U	\bigcirc
69	08，04， 0,20	－Mangos	${ }^{40}$	${ }^{\text {EL }}$	0	U	U	0	\bigcirc	\bigcirc	0	U	0	\bigcirc	0	U	0	ט		U	\bigcirc	\bigcirc	0	U
695	${ }^{08,05,5,30}$	－Mangoseens	40	EL	U	0	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	0	\bigcirc	\bigcirc	\bigcirc	－	\bigcirc	\bigcirc	－	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
${ }^{996}$	${ }^{08,05,010}$	－－Fesh	40	EL	U	\bigcirc	U	ט	－	0	－	0	0		\bigcirc	－	－		，	－	\bigcirc	U	－	U
697	08，05，020	－oried	${ }^{40}$	EL	U	－	U	U	\bigcirc	U	U		U	\bigcirc	ט	U	\bigcirc	U	U	U	u	u	U	U
${ }^{998}$	08，052，000	－Mandarins（including tangerines and satsumas）； clementines，wikings and similar citrus hybrids	40	EL	－	－	－	U	－	0	－	－	U	\bigcirc	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	－	－	${ }^{\circ}$	－
699	08，054，000	－Grapefutit inouding pomelos	${ }^{40}$	${ }^{\text {EL }}$	\checkmark	\checkmark	\bigcirc	\checkmark	\bigcirc	\checkmark	\checkmark	\bigcirc	\bigcirc	0	0	\bigcirc	\checkmark	\bigcirc	0	U	\bigcirc	\checkmark	U	\bigcirc
700	08，05， 000	－Lemons（Citrus limon，Citrus limonum ）and limes （Citrus aurantifolia，Citrus latifolia ）	${ }^{40}$	${ }^{\text {EL }}$	0	U	\checkmark	U	\bigcirc	\checkmark	－	U	ט	0	＂	U	U	＂	U	U	－	U	${ }^{\circ}$	\bigcirc
701	08，55，000	－other	${ }^{40}$	${ }^{\text {EL }}$	U	\bigcirc	\bigcirc	\bigcirc	U	U	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	U	ט	ט	\bigcirc	ט	U	ט	－	\bigcirc
702	08，061，000	－Fiesh	${ }^{30}$	Hst	${ }^{30 \%}$	30\％	30\％	30\％	30\％	30\％	${ }^{30 \%}$	30\％	${ }^{30 \%}$	30\％	30\％	30\％	${ }^{30 \%}$	30\％	${ }^{30 \%}$	30\％	30\％	30\％	30\％	30\％
703	08，02，2000	－Died	${ }^{30}$	${ }^{\text {ISL }}$	30\％	30\％	30\％	30\％	30\％	30\％	10\％	30\％	${ }^{30 \%}$	30\％	30\％	30\％	30\％	30\％	30\％	30\％	30\％	30\％	30\％	30\％
704	${ }^{08,071,100}$	－Watemelons	${ }^{40}$	${ }^{\text {EL }}$	U	\bigcirc	\bigcirc	\bigcirc	\bigcirc	ט	\bigcirc	－	\checkmark	\bigcirc	\bigcirc	ט	\checkmark							
705	08，07，900	－Oner	40	${ }_{\text {EL }}$	U	\bigcirc	ט	ט	ט	ט	ט	ט	ט	\bigcirc	\bigcirc	U	ט	－	ט	U	\bigcirc	U	U	U
706	08，02，010	－Maraid backrosos sol（beiks soo）	${ }^{40}$	EL	U	\bigcirc	ט	ט	0	ט	－	0	0	0	0	0	0	0	0	0	\bigcirc	0	\bigcirc	\bigcirc
207	${ }^{08,02,0,090}$	－Oner	${ }^{40}$	${ }^{\text {EL }}$	U	U	\bigcirc	U	U	U	－	－	\bigcirc	\bigcirc	\bigcirc	\bigcirc	U	\bigcirc	\checkmark	\bigcirc	－	U	ט	\bigcirc
708	08，08，000	${ }^{\text {－Appes }}$	${ }^{30}$	${ }_{\text {EL }}$	U	\bigcirc	\bigcirc		\bigcirc	${ }^{\circ}$	\bigcirc													
709	08，03，000	－Peas	${ }^{30}$	${ }^{\text {EL }}$	U	\bigcirc	\bigcirc	U	\bigcirc	U	\bigcirc	U	\bigcirc	\bigcirc	\bigcirc	\bigcirc	U	U	U	\bigcirc	\bigcirc	ט	U	\bigcirc
710	00，04，000	－auines	${ }^{30}$	EL	0	U	\bigcirc	\bigcirc	\bigcirc	0	\bigcirc	\bigcirc	\bigcirc	\bigcirc	U	\bigcirc	\checkmark	U	U	\bigcirc	U	\bigcirc	\bigcirc	\bigcirc
${ }^{711}$	00，09，000	Approcos	${ }^{30}$	Ist	30\％	30\％	30\％	30\％	30\％	30\％	${ }^{30 \%}$	${ }^{30 \%}$	${ }^{30 \%}$	30\％	30\％	${ }^{30 \%}$	${ }^{30 \%}$	${ }^{30 \%}$	${ }^{30 \%}$	30\％	30\％	30\％	30\％	30\％
712	${ }^{08,092,100}$	－Sour chereies（Prunus cerasus）	${ }^{30}$	HsL	30\％	30\％	30\％	30\％	30\％	30\％	30\％	30\％	30\％	30\％	30\％	30\％	30\％	30\％	30\％	30\％	30\％	30\％	30\％	30\％
${ }^{713}$	${ }^{08,02,900}$	－－omer	${ }^{30}$	HsL	${ }^{30 \%}$	30\％	30\％	${ }^{30 \%}$	30\％	30\％	${ }^{30 \%}$	${ }^{30 \%}$	${ }^{30 \%}$	30\％	30\％	30\％	${ }^{30 \%}$	30\％	30\％	30\％	30\％	30\％	30\％	30\％
714	${ }^{08,03,0300}$	－Peaches，inculding necalirines	${ }^{30}$	IsL	${ }^{30 \%}$	${ }^{30 \%}$	30\％	30\％	30\％	30\％	30\％	${ }^{30 \%}$	${ }^{30 \%}$	${ }^{30 \%}$	30\％	30\％	${ }^{30 \%}$	${ }^{30 \%}$	${ }^{30 \%}$	30\％	30\％	30\％	30\％	30\％
715	${ }^{08,04,010}$	${ }^{- \text {－Pums }}$	${ }^{30}$	${ }^{\text {ISL }}$	${ }^{30 \%}$	30\％	30\％	30\％	30\％	${ }^{30 \%}$	${ }^{30 \%}$	${ }^{30 \%}$	${ }^{30 \%}$	${ }^{30 \%}$	30\％	${ }^{30 \%}$	${ }^{30 \%}$	${ }^{30 \%}$	${ }^{30 \%}$	${ }^{\text {30\％}}$	30\％	${ }^{30 \%}$	30\％	30\％
${ }^{716}$	${ }^{08,04,020}$	－ － Soes	${ }^{30}$	Hst	${ }^{30 \%}$	${ }^{30 \%}$	${ }^{30 \%}$	${ }^{30 \%}$	30\％	30\％	0\％	${ }^{30 \%}$	${ }^{30 \%}$	${ }^{30 \%}$	${ }^{\text {30\％}}$	${ }^{30 \%}$	${ }^{30 \%}$	${ }^{30 \%}$	${ }^{30 \%}$	30\％	${ }^{30 \%}$	${ }^{30 \%}$	${ }^{30 \%}$	${ }^{30 \%}$
${ }^{277}$	00，01，000	－Strawberies	${ }^{30}$	HSL	30\％	30\％	30\％	30\％	30\％	30\％	${ }^{30 \%}$	30\％	${ }^{30 \%}$	30\％	30\％	${ }^{30 \%}$	${ }^{30 \%}$	30\％	${ }^{30 \%}$	30\％	30\％	30\％	30\％	30\％
778	08，102，000	$\begin{array}{\|l} \text { - Raspberries blackberies, muberies and } \\ \hline \text { loganberies } \end{array}$	30	HSL	30\％	30\％	30\％	0\％				30\％	0\％	30\％		${ }^{30 \%}$	30\％	30\％	30\％	30\％	30\％	30\％	30\％	30\％
719	08，10，000	－Back，while orred durants and gooseemeries		HSL	30\％			30\％	30\％	30\％	30\％					30\％	30\％	30\％	30%		30\％	30\％	30\％	30\％

香港•ASEAN FTAにかかる調査報告書

別添2－4 原産地品の関税撤廃スケジュール
（ラオス）

720	08，040，000	－Cranberries，bilberries and other fruits of the genus Vaccinium	${ }^{30}$	｜TsL	${ }^{30 \%}$	80\％	30\％	30\％	${ }^{30 \%}$	80\％	80\％	${ }^{30 \%}$	30\％	［30\％	130\％	${ }^{30 \%}$	30\％	30\％	30\％	${ }^{\text {30\％}}$	30\％	30\％	30\％	\％0\％
${ }^{221}$	08，10，000	－Kwifut	${ }^{30}$	ISL	${ }^{30 \%}$	30\％	30\％	30\％	30\％	30\％	30\％	${ }^{30 \%}$	30\％	30\％	30\％	30\％	${ }^{30 \%}$	30\％	0\％	${ }^{30 \%}$	${ }^{30 \%}$	${ }^{30 \%}$	30\％	
72	08，10，000	－Durians	${ }^{30}$	${ }^{\text {HSL }}$	${ }^{30 \%}$	30\％	${ }^{30 \%}$	30\％	30\％	30\％	30\％	${ }^{30 \%}$	30\％	30\％	30\％	${ }^{30 \%}$	${ }^{30 \%}$	${ }^{30 \%}$	30\％	30\％	${ }^{30 \%}$	30\％	30\％	30\％
723	08，007，000	－Pesimmons	${ }^{30}$	EL	U	\bigcirc	U	U	U	0	U	ט	U	U	U	U	U	U	U	U	U	U	U	U
72	${ }^{08,10,0,010}$	Longans（nouluing maa kucing）	${ }^{30}$	EL	－	U	U	U	U	U	O	U	U	0	U	U	U	U	U	U	U	U	U	U
725	08，10， 020	－Lybees	${ }^{30}$	EL	U	U	0	\checkmark	\checkmark	U	U	U	U	U	0	U	U	U	U	U	U	U	U	\bigcirc
726	08，10，0，30	－Rambuan	${ }^{30}$	EL	\bigcirc	U	U	，	O	U	U	U	\bigcirc	U	0	0	\bigcirc	U	U	0	0	U	U	\bigcirc
${ }^{277}$	${ }^{08,10,9040}$	－Langat，staturut	${ }^{30}$	EL	\bigcirc	\bigcirc	0	U	U	0	ט	U	\bigcirc	U	ט	U	U	U	U	U	U	U	0	\bigcirc
728	08，10，${ }^{\text {a } 50}$	－Jackrivit（Cempedak and nangka）	${ }^{30}$	EL	\bigcirc	U	0	U	U	\bigcirc	U	U	U	U	\bigcirc	U	U	ט	U	ט	U	U	U	U
729	08，10， 0 ，60	－－Tamainds	${ }^{30}$	${ }^{\text {EL }}$	U	\bigcirc	U	\bigcirc	U	\bigcirc	U	U	U	\bigcirc	U	U	\bigcirc	\bigcirc	\bigcirc	U	U	U	U	U
730	08，10，091	\cdots Salacal（sanke futi）	${ }^{30}$	Ist	30\％	30\％	30\％	30\％	30\％	30\％	30\％	30\％	30\％	30\％	30\％	30\％	30\％	30\％	30\％	30\％	30\％	30\％	30\％	30\％
${ }^{731}$	08，10，092	－ 0 Dragon fut	${ }^{30}$	${ }^{\text {HSL }}$	30\％	30\％	30\％	30\％	30\％	30\％	30\％	30\％	30\％	30\％	30\％	30\％	${ }^{30 \%}$	30\％	${ }^{30 \%}$	30\％	30\％	30\％	30\％	30\％
732	08，10，093	．－Sapoollal（cku futit）	${ }^{30}$	HSL	${ }^{30 \%}$	${ }^{30 \%}$	30\％	${ }^{30 \%}$	30\％	30\％	30\％	${ }^{30 \%}$	30\％	30\％	${ }^{30 \%}$	30\％	${ }^{30 \%}$	${ }^{30 \%}$	30\％	30\％	30\％	30\％	30\％	30\％
733	08，10，0，99	－．omer	${ }^{30}$	Hst	30\％	30\％	0\％	30\％	30\％	30\％	30\％	30\％	30\％	30\％	30\％	30\％	30\％	30\％	30\％	30\％	30\％	30\％	30\％	30\％
${ }^{734}$	08，111，000	－Stawemers	${ }^{30}$	EL	0	\bigcirc	O	U	0	，	0	\bigcirc	U	0	0	0	\bigcirc	\bigcirc	O	\bigcirc	U	O	U	\bigcirc
735	08，12，000	－Raspberries，blackberries，mulberries，loganberries， black，white or red currants and gooseberries	${ }^{30}$	EL	U	U	U	U	U	U	U	U	U	\bigcirc	U	\bigcirc	U	U	U	U	u	U	u	U
736	08，19，000	－Oner	${ }^{30}$	EL	U	\bigcirc	U	0	\bigcirc	\bigcirc	U	U	U	\checkmark	0	\bigcirc	U	U	\bigcirc	\bigcirc	\bigcirc	U	U	\bigcirc
${ }^{737}$	08，12，000	－Cheres	${ }^{30}$	EL	U	\bigcirc	U	0	U	0	0	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	U	U	\bigcirc	\bigcirc	\bigcirc	U	U	\bigcirc
738	${ }^{08,12,0,10}$	－－Stawereries	${ }^{30}$	EL	U	\bigcirc	－	\bigcirc	－	－	U	\bigcirc	U	U	\bigcirc	U	U	U	\bigcirc	\checkmark	U	U	\checkmark	U
739	08，12，090	－－omer	${ }^{30}$	${ }^{\text {EL }}$	U	U	U	U	\bigcirc	U	U	U	0	\bigcirc	ט	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	0	U	U
770	08，13，000	－Apricois	${ }^{30}$	Ist	${ }^{30 \%}$	${ }^{30 \%}$	30\％	${ }^{30 \%}$	30\％	30\％	30\％	${ }^{30 \%}$	30\％	30\％	30\％	30\％	30\％	${ }^{30 \%}$	${ }^{30 \%}$	${ }^{30 \%}$	30\％	30\％	30\％	${ }^{30 \%}$
$7{ }^{741}$	08，132，000	－Punes	${ }^{30}$	${ }^{\text {HSL }}$	${ }^{30 \%}$	30%	30\％	${ }^{30 \%}$	30\％	30\％	30\％	30%	$3{ }^{30 \%}$	${ }^{30 \%}$	30\％	30\％	30%	30\％	${ }^{30 \%}$	30\％	30%	30\％	30\％	30\％
742		－Apples	${ }^{30}$	ist	30\％	30\％	30\％	30\％	30\％	30\％	30\％	30\％	30\％	30\％	30\％	30\％	30\％	30\％	30\％	30\％	30\％	30\％	30\％	30\％
773	08，134，010	－Lorgans	${ }^{30}$	EL	0	ט	ט	U	U	－	0	U	U	\bigcirc	0	0	0	O	ט	\bigcirc	U	ט	0	\bigcirc
744	${ }^{08,13,0,20}$	－Tamainds	${ }^{30}$	${ }^{\text {EL }}$	U	\bigcirc	U	ט	U	U	U	U	U	\bigcirc	U	U	U	U	U	U	U	U	U	\bigcirc
775	${ }^{08,13,9,90}$	－other	${ }^{30}$	EL	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\checkmark	\checkmark	0	U	\bigcirc	\bigcirc	\bigcirc	\bigcirc	U	0	0	U	0	0^{0}
$7{ }^{746}$	08，13，010	$\begin{aligned} & - \text { Of which cashew nuts or Brazil nuts predominate } \\ & \text { by weight } \end{aligned}$	${ }^{30}$	EL	U	\bigcirc	\bigcirc	${ }^{0}$	${ }^{0}$	${ }^{\circ}$	－	\bigcirc	${ }^{\circ}$	0	0	U	${ }^{0}$	${ }^{\circ}$	\bigcirc	${ }^{\circ}$	${ }^{\circ}$	${ }^{\circ}$	${ }^{\circ}$	${ }^{0}$
$7{ }^{77}$	08，13， 2,20	－Ot wich oner nus predominate by wigh	${ }^{30}$	EL	U	\bigcirc	0	\bigcirc	，	，	\bigcirc	U	0	\bigcirc	\bigcirc	0	\bigcirc	\bigcirc	0	U	\bigcirc	，	，	U
$7{ }^{788}$	${ }^{08,135,3030}$	－Of which dates predominiate by weigh	${ }^{30}$	${ }^{\text {EL }}$	U	\bigcirc	U	U	U	\bigcirc	\bigcirc	U	\bigcirc	\bigcirc	\bigcirc	ט	\bigcirc	\bigcirc	\bigcirc	U	\bigcirc	0	U	U
749	08，135，40	- Of which avocados or oranges or mandarins （inculuding tangerines and satsumas）predominate by weight	${ }^{30}$	EL	U	U	U	ט	U	－	U	U	U	U	U	U	U	U	\bigcirc	U	\bigcirc	U	U	O
750	08，13，．990	－Other	${ }^{30}$	EL	U	\bigcirc	0	\checkmark	\bigcirc	¢	\bigcirc	¢	U	\bigcirc	\bigcirc	0	\bigcirc	\bigcirc	0	，	，	U	U	U
${ }^{751}$	08，40，000	Peel of citrus fruit or melons（including watermelons），fresh，frozen，dried or provisionally preserved in brine，in sulphur water or in other preservative solutions	${ }^{30}$	EL	\checkmark	\checkmark	u	，	u	\checkmark	\checkmark	u	，	u	u	u	u	u	，	，	，	u	\checkmark	\checkmark
75	$0^{09,011,10}$	\cdots Araica WE or Roussa OiB	${ }^{40}$	EL	\bigcirc	\bigcirc	\bigcirc	ט	\bigcirc	\bigcirc	\bigcirc	－	\bigcirc											
753	09，011，190	\cdots	${ }^{40}$	EL	U	\checkmark	U	ט	0	U	ט	ט	ט	\checkmark	ט	U	ט	ט	ט	0	U	U	－	U
754	09，01，210	\cdots－Arabica WIB or roubsa OB	${ }^{40}$	EL	－	\bigcirc	U	ט	－	U	U	ט	\bigcirc	\bigcirc	\bigcirc	U	\bigcirc	\bigcirc	\bigcirc	U	U	U	U	－
75	${ }^{09,011,290}$	${ }^{- \text {－other }}$	${ }^{40}$	${ }^{\text {EL }}$	U	U	U	\bigcirc	U	U	\bigcirc	U	U	U	U	－	U	0°	U	${ }^{\circ}$	U	U	U	\bigcirc
${ }^{756}$	${ }^{09,012,110}$	Ungound	${ }^{40}$	EL	U	\checkmark	U	－	\checkmark	\checkmark	\checkmark	\checkmark	\bigcirc	\bigcirc	\bigcirc	U	\bigcirc	\checkmark	\checkmark	ט	－	\bigcirc	\bigcirc	\bigcirc
757	$0^{09,012,120}$	－Giound	${ }^{40}$	EL	U	\bigcirc	－		\bigcirc	U	\bigcirc	U	\bigcirc	\bigcirc	\bigcirc	0	\bigcirc	\bigcirc	－	\bigcirc	O	U	U	－
758	${ }^{09,012,210}$	\cdots－Unground	${ }^{40}$	EL	－	\bigcirc	\bigcirc	0	\bigcirc															
759	$109,012,220$	－Ground	${ }^{40}$	EL	ט	\bigcirc	0	U	\bigcirc	U	U	U	\bigcirc	\bigcirc	U	\bigcirc	\bigcirc	\bigcirc	\bigcirc	U	\bigcirc	U	U	U
780	09，09，9，010	－Cootee usks and skins	${ }^{40}$	EL	O	\bigcirc	0	0	0	0	－	0	\bigcirc	0	\bigcirc	0	\bigcirc	0	0	0	0	－	U	\bigcirc
761	09，019，020	－Cofte sussitules onlaning coftee	${ }^{40}$	EL	U	\bigcirc	U	U	\bigcirc	\bigcirc	\checkmark	U	\bigcirc	\checkmark	\bigcirc									
762	09，021，010	－－Leaves	${ }^{40}$	EL	U	\bigcirc	－	－	\bigcirc	\bigcirc	\bigcirc	－	－	\bigcirc	0	－	U	U	－	U	\bigcirc	U	U	U
763	09，021，090	－other	${ }^{40}$	EL	0	\bigcirc	U	ט	\bigcirc	\bigcirc	U	\bigcirc	\bigcirc	\bigcirc	U	U	O	\bigcirc	\bigcirc	0	\bigcirc	0	U	\bigcirc
784	09，022，010	－－Leaves	40	EL	\checkmark	\bigcirc	U	ט	\bigcirc	\bigcirc	0	0	，	\bigcirc	\bigcirc	U	0	\bigcirc	\bigcirc	0	0	\bigcirc	U	\bigcirc
765	09，022，090	Other	${ }^{40}$	EL	U	－	U	－	U	U	U	－	－	0	U	U	U	U	－	U	\bigcirc	\bigcirc	U	U
766	09，02， 0,10	－Leaves	${ }^{40}$	EL	U	\bigcirc	U	U	U	U	U	\bigcirc	0	\bigcirc	\bigcirc	－	U	\bigcirc	\bigcirc		\bigcirc	\bigcirc	0	\bigcirc
$7{ }^{767}$	09，02， 0 ，90	－omer	${ }^{40}$	EL	－	\bigcirc	－	，	\bigcirc	\bigcirc	－	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	U	\bigcirc	\bigcirc	\square°	\bigcirc	${ }^{\circ}$	${ }^{\circ}$	\bigcirc
788	00，024，010	－－Leaves	${ }^{40}$	EL	U	\checkmark	U	ט	\checkmark	\checkmark	\checkmark	U	\bigcirc	\bigcirc	\bigcirc	\checkmark	\checkmark	\bigcirc	\bigcirc	\bigcirc	0	\bigcirc	\checkmark	\checkmark
769	09，024，900	－－Other	${ }^{40}$	EL	0	\bigcirc	＂	U	\bigcirc	0	U	0	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	0	0	\bigcirc	－	0	U	\bigcirc
770	00，030，00	Mate．	${ }^{40}$	EL	U	\checkmark	U	ט	\checkmark	\bigcirc	U	ט	\checkmark	\bigcirc	\bigcirc	\checkmark	\checkmark	－	\bigcirc	\bigcirc	\checkmark	\bigcirc	\checkmark	\checkmark
771	00，04，110	White	${ }^{30}$	EL	0	\bigcirc	U	\bigcirc	U	\bigcirc		\bigcirc	U	U	0									
772	09，041，120	－вack	${ }^{30}$	EL	U	U	U	－	U	U	U	U	U	\bigcirc	ט	0	U	0	－	U	U	0	U	U
773	09，041，190	－other	${ }^{30}$	EL	U	\checkmark	U	U	¢	U	U	O	0	\bigcirc	U	U	¢	U	\bigcirc	0	0	0	0	0
774	${ }^{09,04,2,10}$	White	${ }^{30}$	EL	\bigcirc	U	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	0	\bigcirc	\bigcirc	\bigcirc	\bigcirc	U	U	\bigcirc	\bigcirc	U	U	\bigcirc
775	${ }^{09,041,20}$	\cdots	${ }^{30}$	${ }^{\text {EL }}$	\checkmark	\checkmark	U	ט	U	U	U	U	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\checkmark	\checkmark	\checkmark	\bigcirc	\checkmark	\checkmark	\checkmark	\bigcirc
776	${ }^{09,041,230}$	－－．other	${ }^{30}$	EL	U	\bigcirc	U	U	＂	0	－	O	\bigcirc	\bigcirc	\bigcirc	0	\bigcirc	\bigcirc	\bigcirc	0	0	0	0	0
777	00，042，10	$\begin{aligned} & - \text { - Chillies (Fruits of the genus } \\ & \text { Capsicum) } \end{aligned}$	${ }^{30}$	EL	U	U	U	U	－	\bigcirc	\bigcirc	ט	\bigcirc	U	\bigcirc	－	U	－	\bigcirc	U	U	U	U	－
778	${ }^{09,042,190}$	…oter	${ }^{30}$	EL	U	\bigcirc	U	U	\bigcirc	\bigcirc	ט	\bigcirc	\bigcirc	\bigcirc	ט	0	\bigcirc	U	0	，	\bigcirc	\bigcirc	\bigcirc	U
779	09，042，210	$\begin{aligned} & \text {-- Chillies (Fruits of the genus } \\ & \text { Capsicum) } \end{aligned}$	${ }^{30}$	EL	U	\bigcirc	U	ט	－	0	\bigcirc	0	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	U	－	\bigcirc	－	U	\bigcirc
780	${ }^{09,042,230}$	…ther	${ }^{30}$	EL	\bigcirc	\bigcirc	，	U		－		，	\bigcirc	\bigcirc	\bigcirc	\bigcirc	，	\bigcirc	\bigcirc	\bigcirc	－	，	\bigcirc	\bigcirc
${ }^{781}$	$0^{09,05,000}$	－Nether crushed nor ground	${ }^{20}$	${ }^{\text {EL }}$	U	\checkmark	U	ט	\checkmark	U	U	\checkmark	\checkmark	\bigcirc	ט	\checkmark	\checkmark	\bigcirc	ט	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\checkmark
782	0，0，52，000	－Cussed of ground	${ }^{20}$	EL	U	\bigcirc	U	ט	U	\bigcirc	0	U	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	－	－	\bigcirc	－	\bigcirc	\bigcirc	U
783	09，061，100	Cinamon（Cinamomum zevanicum Bume	${ }^{20}$	${ }^{\text {EL }}$	\bigcirc	ט	\checkmark	－	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	u	\checkmark	\checkmark	\checkmark	－	－	\checkmark	\checkmark	\checkmark	\bigcirc
${ }^{884}$	${ }^{09,06,9,90}$	－－oter	${ }^{20}$	EL	${ }^{\circ}$	\bigcirc	${ }^{\circ}$	${ }^{\circ}$	\bigcirc	0^{0}	\square°	\square_{0}	\bigcirc	\checkmark	${ }^{\circ}$	0^{0}	U	0	${ }^{\circ}$	\bigcirc	\bigcirc	U	U	${ }^{\circ}$
785	${ }^{09,062,000}$	－Cusied of ground	${ }^{20}$	${ }^{\text {EL }}$	\checkmark	\bigcirc	U	U	\checkmark	\bigcirc	U	U	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	U	\bigcirc	\bigcirc	\bigcirc	U	\bigcirc
786	${ }^{09,071,000}$	－Nether crushed nor ground	${ }^{20}$	${ }^{\text {EL }}$	U	\bigcirc	U	U	\bigcirc	\bigcirc	U	U	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	－	\bigcirc	，	\bigcirc	0	\bigcirc
${ }^{787}$	${ }^{09,072,000}$	－Custed of ground	${ }^{20}$	${ }^{\text {EL }}$	U	\bigcirc	U	U	\bigcirc	\bigcirc	U	U	\bigcirc	0	\bigcirc	U	U	\bigcirc						
788	${ }^{09,081,100}$	－Neither cussmed ror fround	${ }^{20}$	${ }^{\text {EL }}$	\bigcirc	\bigcirc	U	U	\bigcirc	\checkmark	\checkmark	\checkmark	\bigcirc	，	\bigcirc	\bigcirc	\bigcirc							
789	${ }^{09,081,200}$	${ }^{-C \text { Custred of ground }}$	${ }^{20}$	${ }^{\text {EL }}$	U	\bigcirc	U	U	－	\bigcirc	U	\bigcirc	U	\bigcirc	\bigcirc	0	\bigcirc	\bigcirc	0	\bigcirc	\bigcirc	\bigcirc	\bigcirc	－
790	${ }^{09,082,100}$	－Neither custed or fround	${ }^{20}$	${ }^{\text {EL }}$	U	\bigcirc	U	U	\bigcirc	\bigcirc	0	\bigcirc	U	\bigcirc										
791	09，082，200	－－Custed of found	${ }^{20}$	EL	U	\bigcirc	U	U	－	\bigcirc	U	\bigcirc	－	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	－	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
792	09，083，100	－－Neitere crushea noo ground	${ }^{20}$	EL	U	ט	U	U	U	U	0	－	U	ט	ט	U	ט	ט	U	ט	0	ט	U	U
793	00，083，200	－Cussede of gound	${ }^{20}$	${ }^{\text {EL }}$	0	\bigcirc	U	0	\bigcirc	U	0	U	U	\bigcirc	U	\bigcirc	U	\bigcirc						
794	${ }^{09,092,100}$	－Neltere cousted or foround	5	T1	4%	${ }_{4}^{4 \%}$	4%	${ }^{3 \%}$	${ }^{3 \%}$	2\％	${ }^{2 \%}$	0\％	0\％	0\％	0\％	\％	0\％	0\％	\％	\％	\％	0\％	\％	0\％
795	09，092，200	Crushed of fround	5	${ }^{\text {N11 }}$	${ }^{4 \%}$	$4{ }^{4 \%}$	4\％	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	0\％	0\％	\％	0\％	0\％	0\％	\％	\％	0\％	\％	\％
796	${ }^{09,093,100}$	－Neither cossted oro fround	5	NT1	4\％	${ }^{4 \%}$	4\％	3\％	3\％	2\％	${ }^{2 \%}$	0\％	\％	0\％	0\％	\％	0\％	\％	\％	\％	\％	\％	\％	0\％
797	09，093，200	－Cussed of fround	5	NT1	4\％	${ }^{4 \%}$	4\％	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	0\％	\％	0\％	0\％	\％	\％	\％	\％	0\％	\％	\％	\％	\％
798	${ }^{09,096,110}$	－－Otanise	5	HSL	5\％	5\％	5\％	${ }^{5 \%}$	${ }^{5 \%}$	${ }^{5 \%}$	5\％	${ }_{5 \%}^{5 \%}$	${ }^{5 \%}$	${ }^{5 \%}$	${ }^{5 \%}$	${ }^{5 \%}$	${ }^{5 \%}$	5\％	${ }^{5 \%}$	${ }^{5 \%}$	${ }^{5 \%}$	${ }^{5 \%}$	${ }^{5 \%}$	5\％
799	09，096，120	－Of badan	5	HSL	5\％	5\％	5\％	${ }^{5 \%}$	${ }^{5 \%}$	5\％	5\％	${ }^{5 \%}$	${ }^{5 \%}$	5\％	5\％	${ }^{5 \%}$	${ }^{5 \%}$	5\％	5\％	5\％	${ }^{5 \%}$	5\％	5\％	5\％
800	${ }^{09,096,130}$	－－Otcaraway	5	NT1	${ }^{4 \%}$	$4{ }^{4 \%}$	4%	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	0\％	0\％	\％	\％	\％	\％	\％	\％	\％	\％	\％
801	${ }^{09,096,190}$	－Other	5	NT1	4%	${ }^{4 \%}$	$4{ }^{46}$	${ }^{3 \%}$	${ }^{3 \%}$	2\％	${ }^{2 \%}$	\％	\％	\％	0\％	\％	\％	0\％	0\％	0\％	0\％	\％	\％	\％\％
802	${ }^{09,096,210}$	－－Otanse	5	HSL	${ }^{5 \%}$	${ }^{5 \%}$	${ }^{5 \%}$	${ }_{5 \%}$	${ }^{5 \%}$	${ }^{5 \%}$	${ }^{5 \%}$	${ }^{5 \%}$	${ }^{5 \%}$	${ }^{5 \%}$	${ }^{5 \%}$	${ }^{5 \%}$	${ }^{5 \%}$	${ }^{5 \%}$	${ }^{5 \%}$	${ }^{5 \%}$	${ }^{5 \%}$	${ }^{5 \%}$	${ }^{5 \%}$	${ }^{5 \%}$
803	00，096，200	$\cdots \mathrm{Of}$ badan	5	HSL	5\％	5\％	5\％	5\％	${ }^{5 \%}$	${ }^{5 \%}$	5\％	5\％	${ }^{5 \%}$	5\％	5\％	${ }^{5 \%}$	${ }^{5 \%}$	${ }^{5 \%}$	5\％	5\％	5\％	5\％	5\％	${ }^{5 \%}$
804	${ }^{09,096,230}$	－－Of caraway		NT1	4%	4%	4%	${ }^{3 \%}$	${ }^{3 \%}$	2\％	${ }^{2 \%}$	\％	\％	\％	0\％	\％	\％	\％	\％	0\％	\％	\％	\％	\％
805	00，086，290	\cdots	5	NT1	4%	4\％	4\％	3\％	3\％	${ }^{2 \%}$	2%	\％	\％	0\％	0\％	\％	\％	\％	\％	\％	\％	\％	\％	\％
806	${ }^{09,010,100}$	Vether crushed nor found	${ }^{30}$	EL	U	U	0	U	U	U	U	U	U	U	\bigcirc	0	\bigcirc	－	U	O	\bigcirc	\bigcirc	U	U

（ラオス）

	${ }^{\text {ara } 0,2000}$	aof goum						O																
\％	90，02000	－sation	${ }^{30}$	${ }_{\text {EL }}$	\bigcirc	，	，	\bigcirc	\bigcirc	，	\bigcirc	，	\bigcirc	，	，	，	ט	U	，	\bigcirc	\bigcirc	0	\bigcirc	\bigcirc
${ }^{209}$	$0^{\text {ar，} 0,3,000}$	－Tumenecerumema）	${ }^{30}$	${ }_{\text {EL }}$	U	0	ט	0	0	0	0	，	0	，	\bigcirc	U	\bigcirc	0	0	－	U	U	0	
${ }^{30}$	09，0，9，10	． coury	${ }_{10}$	N2	9	${ }^{9}$	${ }^{80}$	8	${ }^{6}$	${ }^{6 \%}$	${ }^{5 \%}$	${ }^{5 \%}$	${ }^{6 \%}$	${ }^{40}$	${ }^{3 \%}$	${ }^{3}$	${ }^{20}$	${ }^{2 \%}$	\％	\％	\％	\％	${ }^{0}$	\％
${ }^{311}$	09，0，909	－．oner	${ }^{10}$	N2	${ }^{96}$	${ }^{3 \%}$	88	${ }^{8 \%}$	6	\％\％	${ }_{5}{ }^{6}$	${ }^{5 \%}$	${ }_{4}$	48	${ }^{3} 8$	${ }^{3 \%}$	${ }^{28}$	${ }^{26}$	\％	0	\％	${ }^{0}$	\％	\％
812	${ }^{\text {09，} 0,990}$	\cdots	5	NT	${ }_{48}^{48}$	${ }_{4}^{46}$	${ }_{48}$	${ }^{3}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％
${ }^{813}$	${ }^{\text {0，} 10,9890}$	－－\％oter	5	NT	${ }^{48}$	${ }^{4 \%}$	${ }^{4 \%}$	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	0%	\％	\％	\％	0%	${ }_{0}$	${ }^{\circ}$	${ }^{\infty}$	\％	\％	\％
$8{ }^{814}$	10.017100	－Sead	5	NT	48	${ }_{4} 8$	4\％	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	0	\％	\％	\％	\％	0%	\％	\％	\％	\％	\％	\％	\％
${ }^{815}$	10.011 .90	－oner	5	N1	${ }^{4 \%}$	${ }^{4 \%}$	48	3\％	${ }^{3 \%}$	2%	2%	\％	\％	\％	\％	\％	\％	O\％	\％	\％	\％	\％	\％	\％
${ }^{816}$	10.09190	Soed	5	NT	${ }_{46}$	${ }_{4}^{46}$	${ }^{4 \%}$	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	0%	\％	0	\％	\％	\％	\％	\％	0	\％	\％\％	\％
8	${ }^{10,019991}$	－mesm	5	NT	${ }^{48}$	${ }^{4 \%}$	4\％	${ }^{3 \%}$	3\％	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％
88	10.01999	－．oner	${ }^{5}$	N1	4\％	${ }_{4 \%}$	${ }_{48}$	${ }^{3 \%}$	${ }^{3}$	${ }^{2 \%}$	${ }_{2 \%}$	\％	\％	0%	\％	\％	0%	O\％	\％	\％	0%	\％	\％	\％
${ }^{819}$	10．01990	－ooner	5	NT	${ }^{4 \%}$	4\％	$4{ }^{48}$	${ }^{3 \%}$	${ }^{36}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	0%	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％
830	10.021 .00	－soed	${ }^{5}$	NT	4%	${ }_{4 \%}$	4%	${ }^{3 \%}$	\％	${ }^{2 \%}$	${ }_{2 \%}$	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％
${ }^{821}$	10.029000	Ooner	${ }^{5}$	NT	4%	${ }^{4 \%}$	4\％	${ }^{3 \%}$	${ }^{3}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	${ }^{\circ}$	\％	\％	\％	\％	\％	\％	\％	${ }^{6}$	\％	\％	\％
${ }^{32}$	10.0 ， 1000	－sead	5	NT	${ }_{48}$	${ }^{*}$	${ }_{4}^{4 \%}$	${ }^{3}$	${ }^{3}$	${ }^{2 \%}$	${ }^{2 \%}$	0	${ }^{0 \%}$	${ }^{6}$	\％	0	0	\％	\％	\％	${ }^{\circ}$	${ }^{\text {amb }}$	0%	\％
${ }^{238}$	$10.03,000$	Oner	5	NT	＊\％	${ }^{4 \%}$	4\％	${ }^{\text {3\％}}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％\％	\％\％	\％	\％	\％	\％	\％	${ }^{\text {\％}}$	\％	\％	\％
${ }^{32}$	10，04， 000	－sed	5	NT	${ }^{4 \%}$	${ }^{48}$	48	${ }^{3 \%}$	${ }^{3 \%}$	2%	${ }^{2 \%}$	\％	\％	\％	\％	\％	\％	\％	${ }^{\circ}$	\％	\％	\％	\％	\％
${ }^{235}$	10，9，9，000	－oner	5	N1	${ }_{4}^{4 \%}$	${ }_{4}^{4 \%}$	4\％	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }_{2 \%}$	\％\％	\％	\％	0	\％	\％	\％	\％	\％	\％	\％	\％	\％
${ }^{826}$	10.051 .00	－sed	${ }^{5}$	NT	${ }^{4 \%}$	${ }_{46}$	4\％	${ }^{3 \%}$	3\％	${ }^{2 \%}$	${ }_{28}$	\％	\％	0%	0%	0%	0%	\％	\％	\％	\％	\％	\％	0%
	10.059 .00	－Popeom	5	NT	${ }_{4 \%}$	${ }_{48}^{48}$	${ }_{4}^{4 \%}$	${ }^{3} 6$	${ }^{3} 8$	${ }^{2 \%}$	${ }^{26}$	\％	\％\％	\％	${ }^{0 \%}$	\％	\％	\％	${ }^{\text {\％}}$	\％	\％	\％	\％	\％
${ }^{828}$	10.059 .90	－omer	${ }^{5}$	Hst	${ }^{5 \%}$	${ }^{5 \%}$	5\％	${ }^{\text {5\％}}$	${ }^{5 \%}$	${ }_{5}$	${ }_{5 \%}$	${ }_{5}^{5 \%}$	${ }_{5 \%}$	5\％	5\％	${ }_{5 \%}$	${ }_{5 \%}$	${ }_{5 \%}$	${ }_{5 \%}$	${ }_{5 \%}$	${ }_{5 \%}$	${ }_{5 \%}$	${ }^{5 \%}$	${ }_{5 \%}$
${ }^{329}$	$10.00^{10,000}$	－Sumabeors smma	${ }^{5}$	${ }^{\text {EL }}$	－	－	\bigcirc	\bigcirc	0		0	，	0	0	，	，	－	0	，				0	－
${ }^{380}$	${ }^{10,061,000}$	－－omer	5	${ }^{\text {EI }}$	0	－	，	0	，	\bigcirc	\bigcirc	\bigcirc	0	，	0	0	\checkmark	\bigcirc	0	\checkmark	0	\checkmark	\bigcirc	\bigcirc
${ }^{331}$	10.02200	－Tratommantee	${ }^{5}$	${ }^{\text {EL }}$	0	0	－	0	U	－	U	0	0	，	0	\bigcirc	0	0	－	U	0	\bigcirc	0	0
	10.022×00	－omer	${ }^{5}$	${ }_{\text {EI }}$	，	U	，	U	O	，	，	，	O	O	${ }_{0}$	－		，				U		
${ }^{838}$	${ }^{10,063,300}$	． ．ulumus nee	5	${ }^{\text {Et }}$	ט	，	，	，	，	，	0	0	0	，	\bigcirc	\bigcirc	\bigcirc	0	，	U	，	，	0	－
${ }^{\text {® }}$	$10.08,900$	－Tratommen mee	5	${ }^{\text {EI }}$	，	－	U	，	－	，	－	－	\bigcirc	，	－	\bigcirc	0	，	，	，	－	，	ט	
${ }^{\text {® }}$	10.08 .901	．－Patabext ine	5	${ }^{\text {Et }}$	\bigcirc	\bigcirc	\bigcirc	\bigcirc	ט	\bigcirc	，	\bigcirc	\bigcirc	0	0	－								
${ }^{\text {w }}$	10，06， $0^{\text {a }}$	．．．oner	5	${ }^{\text {E }}$	0	0	－	0	0	0	0	0	0	0	－	－	－	，	，	，	，	，	，	
${ }^{887}$	10，04， 010	．ora ken usat toramateed	${ }^{5}$	${ }^{\text {Et }}$	0	0	0	0	\bigcirc	0	0	0	0	0	0	0	0	0	0	0	\bigcirc	0	0	\bigcirc
${ }^{\text {z88 }}$	10.049800	－oter	5	${ }^{\text {E．}}$	0	U	ט	，	，	，	U	，	U	，	，	0	，	，	－	－			，	
${ }^{83}$	$10.071,00$	－sead	${ }^{5}$	NT	48	4\％	4\％	3\％	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％
${ }^{380}$	10.789	－oner	${ }^{5}$	NT1	${ }^{4 \%}$	48	4%	${ }^{3 \%}$	${ }^{3}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	0%	${ }^{\circ}$	0\％	0%	${ }^{0 \%}$	\％	0%	0%	\％	\％	\％	${ }_{0}^{0}$
${ }^{341}$	10.081 .00	Bumeeat	${ }^{5}$	NT1	48	4%	4%	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％	\％	\％	0%	\％	\％	\％	${ }_{0}$	\％	\％	\％
${ }^{3 / 2}$	$10.022,100$	－ Sed	${ }^{5}$	NT	${ }^{4 \%}$	4%	4%	${ }^{3 \%}$	\％	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％	\％	0%	\％	\％	\％	\％	\％	\％	\％	\％
${ }^{24}$	10.029290	－ooner	${ }^{5}$	NT	${ }^{4}$	${ }_{4 \%}$	4\％	${ }^{3 \%}$	\％	${ }^{2 \%}$	${ }^{2 \%}$	\％	$\%$	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％
${ }^{84}$	10.083 .00	Canay seas	${ }^{5}$	NT	${ }_{40}$	${ }_{4}$	4%	${ }^{3 \%}$	${ }^{3}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	${ }^{0 \%}$	\％	\％	\％	\％	${ }_{6}$	\％	${ }_{6}$	\％	\％	${ }_{0}$
${ }^{245}$	10.044 .00		5	NT	\％	\％	4\％	${ }^{\text {3\％}}$	${ }^{3}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％	\％	\％\％	\％	\％	\％	\％	\％	\％	\％	\％
${ }^{\text {®／}}$	10.08500	－aunao Crenemouim mumas）	${ }^{5}$	NT	48	4%	4%	${ }^{3 \%}$	3	2%	${ }_{2 \%}$	\％	\％	0%	\％	\％	0	\％	\％	\％	\％	\％	\％	\％
${ }^{87}$	10，08，${ }^{\text {a }}$	－Truale	5	NT	${ }_{4}^{4 \%}$	${ }_{4} 46$	4\％	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	0%	\％	\％	\％	\％	$\%$	\％	\％	${ }^{\%}$	\％	\％
${ }^{88}$	10，08， 00	－orecereas	${ }_{5}$	NT	${ }_{4}^{46}$	${ }_{48}$	4\％	${ }^{3 \%}$	${ }^{3}$	${ }^{2 \%}$	${ }_{28}$	0%	0%	\％	0%	\％	0%	\％	\％	\％	\％	\％	\％	\％\％
${ }^{89}$	1，000．000	Wwatiour	5	NTI	${ }_{4}^{4}$	${ }_{4}{ }^{\text {\％}}$	4\％	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	0\％	\％	\％\％	\％	\％	\％	\％	\％	\％	${ }^{\%}$	${ }^{\text {\％}}$	\％\％
${ }^{380}$	1，010，020	Wesintur	${ }^{5}$	NT	48	${ }_{4 \%}$	4%	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	0%	0%	\％	0%	0%	0%	\％	0%	0%	\％	0%	${ }^{\circ}$	${ }_{0}^{0 \%}$
${ }^{351}$	1，02200	－maze（com four	${ }^{5}$	NT	48	48	4\％	${ }^{3 \%}$	${ }_{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	0%	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％
${ }^{352}$	${ }^{1,0,09090}$	－ －notour	${ }^{5}$	NT	48	4\％	4%	3\％	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％	\％	\％	0%	\％	\％	\％	0	\％	\％	\％
${ }^{235}$	1，020920	－ A p lour	${ }^{5}$	NT	48	4%	4%	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％	\％	0	\％	\％	\％	\％	\％	\％	\％	\％
${ }^{354}$	1，009900	－oter	5	NT	${ }_{4}^{4 \%}$	${ }_{4}^{4 \%}$	${ }^{4 \%}$	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％	\％	${ }^{\circ} \mathrm{\%}$	\％	${ }^{\text {\％}}$	\％\％	\％	\％	${ }_{0}$	\％	\％\％
${ }^{855}$	${ }^{1,031,120}$	Ooummor had weatesmona	${ }^{5}$	NT	48	${ }_{4 \%}$	4%	${ }^{3 \%}$	${ }^{3}$	${ }^{2 \%}$	${ }^{2 \%}$	${ }^{0 \%}$	0%	0%	0%	\％	0%	0%	0	0%	${ }^{\text {w }}$	0%	\％	\％
${ }^{\text {z6］}}$	${ }^{1,0031,180}$	．－omer	5	NT	4	4\％	4\％	3\％	${ }^{3}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％
${ }^{357}$	1，031，300	－ornaze（com）	5	Hst	5	${ }_{5 \%}$	5\％	${ }^{5 \%}$	5\％	${ }_{5} 5$	${ }_{5 \%}$	5\％	5\％	5\％	5\％	${ }^{5 \%}$	5\％	5%	${ }^{5 \%}$	${ }^{5 \%}$	${ }_{5}^{5 \%}$	${ }^{5 \%}$	5\％	${ }_{5}^{6 \%}$
区	1，03， 1.90	－．．omesin	5	NT	${ }^{4 \%}$	${ }^{4 \%}$	4%	${ }^{3 \%}$	${ }^{3}$	${ }^{28}$	${ }^{28}$	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％
${ }^{189}$	11，03， 2,20	．．otre	5	HL	${ }_{5 \%}$	5\％	5\％	5\％	5	5\％	${ }_{5 \%}$	5\％	5	5\％	5\％	${ }_{5 \%}$	5\％	5\％	5\％	5\％	5\％	5\％	5\％	5\％
880	1，1031，900	－other	5	NT	${ }_{46}$	${ }_{4} 4$	4%	${ }^{3 \%}$	${ }_{3}$	${ }^{2 \%}$	2%	\％	\％	\％	\％	\％	\％	\％	${ }_{0}$		${ }^{*}$	\％	\％	\％
881	${ }^{1,1,022000}$	Peles	5	NT1	${ }^{4 \%}$	4\％	4\％	${ }^{3 \%}$	${ }^{3}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％\％	0\％	\％	\％	${ }^{0} 8$	${ }^{\text {\％}}$	${ }^{0}$	${ }^{\circ}$	${ }^{\text {\％}}$	\％	${ }^{0 \%}$
${ }^{382}$	1，041200	．Ofoas	${ }^{5}$	NT1	48	${ }_{48}$	${ }^{4 \%}$	${ }^{3 \%}$	${ }^{3}$	${ }^{2 \%}$	${ }^{2 \%}$	0	0%	0%	0\％	${ }_{0}^{0 \%}$	0%	0%	0	${ }^{\circ}$	${ }_{0}$	${ }^{0}$	0%	${ }^{\circ}$
388	1，04，900	．．．ormaze（omem）	${ }^{5}$	NT1	48	4%	4%	${ }^{3 \%}$	3\％	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％	${ }^{0 \%}$	\％	0%	\％	\％	0	\％	\％	\％	${ }^{0}$
${ }^{884}$	11.041900	．．oner	${ }^{5}$	NT	48	4%	4%	3\％	\％	${ }^{2 \%}$	${ }^{2 \%}$	\％	0%	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％
	1.082200	Ofoas	5	NT	${ }^{4 \%}$	${ }_{4 \%}$	4\％	${ }^{\text {3\％}}$	\％	${ }^{2 \%}$	${ }^{2 \%}$	\％	0	\％	0%	0	0%	\％	\％	\％	${ }^{\circ}$	\％	\％	${ }^{\text {\％}}$
${ }_{866}$	${ }^{1,0,2,2300}$	－or maze（com）	5	NT1	${ }^{4} 8$	${ }^{4 \%}$	4\％	${ }^{3 \%}$	${ }^{3}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	0\％	\％\％	0\％	\％	\％	${ }^{0} 8$	${ }^{\text {\％}}$	${ }^{\text {\％}}$	${ }^{\text {\％}}$	${ }^{\text {\％}}$	\％	\％
	1，0，2920	－otbaty	5	NT	${ }^{4 \%}$	\％	4\％	${ }^{\text {3\％}}$	${ }^{3}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％	\％\％	\％	\％	\％	\％	\％	\％	\％	\％	\％
\％	1，0，2，900	－oner	5	NT	48	4%	4%	${ }^{3 \%}$	3	${ }^{2 \%}$	${ }^{2 \%}$	\％	0%	\％	0%	\％	\％	\％	\％	\％	\％	\％	\％	\％
8	1，0，3，${ }^{\text {a }}$ 00		5	NT	${ }^{4 \%}$	4%	4\％	${ }^{3 \%}$	${ }^{3}$	${ }^{2 \%}$	${ }^{26}$	\％	\％	0%	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％\％
8	1，051，00	Frur，mea axp power	${ }^{5}$	${ }^{N 1}$	${ }_{4}{ }_{4}$	${ }_{4}^{4 \%}$	4\％	${ }^{3 \%}$	3\％	${ }^{2 \%}$	${ }^{2 \%}$	\％	0%	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％
${ }^{87}$	11.022000	－Finese grauese arp peles	5	NT	${ }_{46}$	${ }^{4 \%}$	4%	${ }^{3 \%}$	${ }^{3}$	${ }^{2 \%}$	${ }^{2 \%}$	0%	0%	0%	0%	0%	0%	0%	\％	0%	${ }^{6}$	0%	\％	${ }^{\text {mox }}$
${ }^{372}$	${ }^{10,061,000}$		${ }^{5}$	N1	${ }^{48}$	4	${ }^{4 \%}$	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％	\％	\％	0	0%	\％	\％	\％	\％	\％	${ }^{0}$
${ }^{83}$	71．0220010	－Ormanoc（cassena）	${ }^{5}$	NT	4\％	4%	4\％	${ }^{36}$	3\％	${ }^{2 \%}$	${ }^{2 \%}$	\％	0%	\％	0	\％	0%	0	\％	\％	$\%$	0	\％	\cdots
${ }^{374}$	1，062921	－weal	${ }^{5}$	NT	4%	4%	4%	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	0%	${ }^{\circ}$	${ }^{\circ}$	${ }^{\circ}$	${ }^{\circ}$	\％	\％	\％	\％	\％	\％	${ }_{0}$
${ }^{825}$	1，062092	．．oner	5	NT	${ }^{4 \%}$	4\％	4\％	3\％	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	${ }_{0}$	\％	\％	${ }^{6}$	\％	\％	\％	\％	\％	\％	\％	\％	${ }^{\circ}$
${ }_{8} 86$	1，062900	－oner	${ }^{5}$	NT	${ }_{4}^{48}$	${ }_{4 \%}$	${ }_{4}^{4 \%}$	${ }^{3 \%}$	${ }^{3}$	${ }^{2 \%}$	${ }^{2 \%}$	0	\％	0%	0%	0%	\％\％	\％	\％	\％	${ }_{6}$	\％	\％	\％
${ }^{37}$	${ }^{1,0,0,3,00}$		5	NT1	${ }^{4 \%}$	${ }^{4 \%}$	4\％	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	0%	\％\％	0\％	\％	\％	\％	\％	\％	${ }^{\text {\％}}$	${ }^{\text {\％}}$	\％	\％\％
${ }^{878}$	1，07， 100	Norosesed	${ }^{5}$	NT	\％	4\％	4\％	${ }^{\text {3\％}}$	3\％	${ }^{2 \%}$	${ }^{2 \%}$	\％	0%	\％	\％\％	\％	\％	\％	\％	${ }_{6}$	\％	\％	\％	\％
\％ 89	11.027 .00	Fosed	5	NT	${ }^{4 \%}$	4\％	4\％	${ }^{3 \%}$	${ }^{3 \%}$	2%	${ }^{2 \%}$	O\％	0%	0%	0%	\％	0%	\％\％	\％	\％	\％	\％	\％	\％\％
\％	1，001，00	－wheatsach	${ }^{5}$	NT	${ }^{4 \%}$	4%	4\％	${ }^{3 \%}$	${ }^{3 \%}$	2%	${ }^{2 \%}$	\％	0%	0%	0%	0%	0%	\％	\％	\％	\％	0%	\％	\％
${ }^{81}$	17.081200	Maze（comm sach	${ }^{5}$	NT	${ }^{40}$	${ }^{4}$	${ }^{4 \%}$	${ }^{3 \%}$	${ }^{3}$	${ }^{2 \%}$	${ }^{2 \%}$	${ }^{\circ}$	\％	\％	\％	${ }^{0}$	${ }^{\text {mom }}$	\％	${ }_{0}$	\％	\％	\％	\％	\％
${ }^{\text {® } 2}$	${ }^{1,0,01,300}$	－Pouas sach	5	NT1	${ }^{4 \%}$	4%	4\％	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％	0\％	\％	\％	\％	${ }^{6}$	\％	${ }^{\text {\％}}$	\％	\％	\％\％
${ }^{83}$	1，08，400	Menoca	${ }^{5}$	vir	${ }_{48}$	${ }^{48}$	${ }^{4 \%}$	${ }^{3 \%}$	${ }^{3}$	${ }^{2 \%}$	${ }^{2 \%}$	${ }^{\circ}$	0%	\％	\％	${ }^{0 \%}$	\％	${ }^{\circ}$	${ }^{0}$	${ }^{6}$	\％	${ }^{0}$	\％	${ }^{0}$
${ }^{84}$	1，08，900	．－Sapo	${ }^{5}$	NT	4%	${ }^{4 \%}$	4%	${ }^{\text {3\％}}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	0	\％	${ }^{0 \%}$	\％	${ }^{0 \%}$	\％	\％	\％	O\％	\％	\％	\％
${ }^{285}$	1，08，9，90	．－over	${ }^{5}$	NT	${ }^{4 \%}$	${ }^{48}$	48	3\％	3\％	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	${ }^{0}$
${ }^{\text {ab }}$	1，02200	－Wum	${ }^{5}$	NT	${ }^{4 \%}$	48	4%	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％
${ }^{887}$	1 1，00，000	Wheat gluen，wemene or onot dined	${ }^{5}$	NT	48	48	4	${ }^{3 \%}$	${ }^{3 \%}$	2%	2\％	\％	\％	\％	0%	\％	0%	\％	\％	\％	\％	\％	\％	\％
${ }^{888}$	$12.01,100$	．sed	${ }^{20}$	${ }^{\text {Hest }}$	2\％	\％	2\％	20\％	\％0\％	\％	\％	208	20\％	\％	${ }^{20 \%}$	${ }^{208}$	\％	\％	\％	\％	20\％	\％	\％	
\％90	12.19390	Ooner	${ }^{20}$	HL	20%	206	20\％	20%	20\％	20\％	20\％	20\％	20\％	\％	20\％	20\％	20\％	20\％	20\％	20\％	20\％	208	208	20%
${ }^{80}$	$12.03,000$	． sed	${ }^{20}$	Hs	20%	20\％	20\％	20%	206	20\％	20%	20\％	20%	20\％	20%	20\％	20\％	\％\％	208	$2{ }^{208}$	20%	20\％	20\％	\％\％
${ }^{39}$	$12.044,00$	－－hsselt	${ }^{20}$	Hst	${ }^{20 \%}$	20%	2\％	20%	20%	20	20%	${ }^{20 \%}$	${ }^{20 \%}$	${ }^{20 \%}$	${ }^{20 \%}$	${ }^{20 \%}$	${ }^{20 \%}$	208	${ }^{20 \%}$	${ }^{20 \%}$	${ }^{208}$	${ }^{200 \%}$	$2{ }^{20 \%}$	20%
${ }^{39}$	12.04200	－Sprea，wemere orm	${ }^{20}$	${ }^{\text {sal }}$	20%	\％	\％	2	20\％	20	20\％	208	\％	206	${ }^{20 \%}$		208	20\％	${ }^{20 \%}$	20%	${ }^{20 \%}$	0	20\％	20%
${ }^{838}$	${ }^{12,030,000}$	copra．	${ }^{30}$	${ }^{\text {EL }}$		0	\bigcirc	\bigcirc	\bigcirc		\bigcirc		\bigcirc	0	\bigcirc	\bigcirc	\checkmark	\bigcirc	\bigcirc	\checkmark		\bigcirc	\checkmark	
${ }^{394}$	12000000		${ }^{20}$	${ }_{\text {EL }}$	\bigcirc	ט	\bigcirc	0	\bigcirc	\checkmark	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc									
${ }^{898}$	12.051 .00		${ }^{20}$	Hst	20%	20	\％	20\％	206	20\％	20\％	20\％	20%	20\％	20\％	20%	20\％	\％0\％	20%	20%	$2{ }^{206}$	20%	20%	20\％
${ }^{86}$	12.55 .900	Oner	${ }^{20}$	Hst	20%	20\％	20\％	20%	208	20\％	20%	20%	20%	20%	20%	${ }^{20 \%}$	${ }^{20 \%}$	208	20%	208	${ }^{208}$	20.8	20%	20%
	${ }^{2,600}$					20\％	20	207	208	20\％	200	208	${ }^{200 \%}$	20%	20\％	2008	20\％	20	20%	200	208	${ }^{2008}$	20%	

香港•ASEAN FTAにかかる調査報告書
 別添2－4 原産地品の関税撤廃スケジュール

（ラオス）

${ }^{198}$	$\left.\right\|^{12,071,010}$	orsown	${ }^{20}$	EL	\bigcirc	\bigcirc	\bigcirc	0	\bigcirc	\bigcirc	0	\bigcirc	0	\bigcirc	，		\bigcirc	\bigcirc	\bigcirc	U	，	0	0	U
${ }^{89}$	${ }^{12.071,020}$	Not suitube tor sowing	${ }^{20}$	EL	U	ט	ט	－	U	U	U	ט	－	\bigcirc	－	U	U	U	－	U	\bigcirc	U	0	\bigcirc
900	${ }^{12,072,100}$	－seed	${ }^{20}$	IsL	20\％	20\％	20\％	20\％	20\％	20\％	20\％	20\％	20\％	20\％	20\％	20\％	20\％	0\％	20\％	20\％	20\％	20\％	0\％	0\％
${ }^{201}$	12，072，900	－Other	${ }^{20}$	${ }^{\text {HSL }}$	20\％	20\％	20\％	20\％	20\％	20\％	20\％	20\％	20\％	20\％	20\％	${ }^{20 \%}$	20\％	20\％	20\％	20\％	20\％	0\％	20\％	0\％
92	${ }^{12,073,000}$	Castorol seeds	${ }^{20}$	${ }^{\text {EL }}$	U	U	U	U	U	ט	U	U	U	ט	\bigcirc	\bigcirc	U	U	U	U	U	U	\bigcirc	\bigcirc
903	$1{ }^{12,074,010}$	－Eable	${ }^{20}$	EL	O	\bigcirc	U	U	0	\bigcirc	O	U	\checkmark	U	\bigcirc	－	U	ט	\bigcirc	U	－	\bigcirc	U	U
904	12，074，090	－other	${ }^{20}$	EL	0	\bigcirc	U	\bigcirc	\bigcirc	ט	\bigcirc	\bigcirc	\bigcirc	U	\bigcirc	\bigcirc	\bigcirc	ט	\bigcirc	\bigcirc	\bigcirc	ט	U	\bigcirc
${ }^{205}$	${ }^{12,075,000}$	Msiatar seds	${ }^{20}$	EL	\bigcirc	\bigcirc	\bigcirc	\bigcirc	ט	0	U	U	\bigcirc	0	0	0	0	0	ט	U	0	\bigcirc	0	0
${ }^{206}$	${ }^{12,076,000}$	Saftower CCathame	${ }^{20}$	${ }_{\text {EL }}$	U	U	ט	U	U	U	U	－	U	\bigcirc	－	\bigcirc	ט	U	${ }^{\circ}$	U	\checkmark	U	\checkmark	\bigcirc
507	${ }^{12,077,000}$	Melon seas	${ }^{20}$	EL	\bigcirc	0	0		U	U	0	\bigcirc	\bigcirc	\bigcirc	0	，	，	0	U	U	\bigcirc	0	U	U
${ }^{208}$	${ }^{12,079,100}$	Poppy seads	bled tems	EL	$\begin{aligned} & \text { Probibitited } \\ & \text { items } \end{aligned}$	－	－	0	0	\bigcirc	0	－	\bigcirc	0	\bigcirc	0	0	0	0	U	\bigcirc	O	ט	－
909	${ }^{12,0779,940}$	－ ．lipe seeds （lipe nuts）	${ }^{20}$	${ }^{\text {EL }}$	\bigcirc	U	0	\bigcirc	0	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\checkmark	\bigcirc	\bigcirc	U	\bigcirc	\bigcirc	－	\bigcirc	\bigcirc	\bigcirc
910	12，079，990	－．Other	${ }^{20}$	${ }^{\text {EL }}$	U	\bigcirc	\bigcirc	\bigcirc	\bigcirc	U	U	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	U	0	\bigcirc	U	\bigcirc	\bigcirc	0	\bigcirc
91	12，081，000	Of soya beans		T1	4%	${ }^{4 \%}$	4%	${ }^{3 \%}$	${ }^{3}$	2\％	${ }^{2 \%}$	\％	0\％	\％	\％	0\％	\％	\％	\％	\％	\％	\％	\％	\％
912	${ }^{12,089,000}$	－other	5	${ }^{\text {NT1 }}$	4\％	4\％	4\％	3\％	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％
913	12，091，000	－Sugar beet seeds	5	NT1	4\％	${ }^{4 \%}$	4\％	3\％	3\％	2\％	2\％	0\％	0\％	0\％	\％	0\％	0\％	\％	\％	\％	\％	\％	\％	0\％
914	${ }^{12,092,100}$	－Lceene（alafaia）seeds	5	NT1	${ }^{4 \%}$	4\％	4%	3\％	3\％	2\％	2\％	\％	\％	\％	\％	\％	0\％	\％	\％	\％	\％	\％	\％	\％\％
915	${ }^{12,092,200}$	Clover（Titiolum Spo．．seeds	5	T1	${ }^{4 \%}$	${ }^{4 \%}$	4%	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％	\％	\％	\％	0\％	\％	\％	\％	\％	\％	\％
916	${ }^{12,0929300}$	－Fescus seds	5	${ }^{\text {NT1 }}$	$4{ }^{4 \%}$	4%	4\％	${ }^{3} \%$	3\％	2\％	${ }^{2 \%}$	0\％	\％	\％	\％	\％	0\％	\％	\％	\％	\％	\％	\％	\％
917	${ }^{12,0929400}$	$\begin{aligned} & - \text { Kentucky blue grass (Poa pratensis } \\ & \hline \text { L.) seeds } \\ & \hline \end{aligned}$	${ }^{5}$	NT1	4\％	4%	4\％	${ }^{3 \%}$	3\％	2\％	${ }^{2 \%}$	0\％	\％	\％	\％	\％	0\％	\％	\％	\％	\％	0\％	\％	\％
918	12，092，500	－Rye grass（Lolium multiflorum Lam，．Lolium perenne L．．）seeds．	${ }^{5}$	NT1	${ }^{4 \%}$	4\％	4%	3\％	${ }^{3 \%}$	2\％	${ }^{2 \%}$	0\％	\％	0\％	\％	\％	\％	0\％	\％	0\％	\％	\％	\％	0\％
919	${ }^{12,0292,910}$	$\cdots \mathrm{Tmothy}$ gass seads	5	NT1	$4{ }^{4 \%}$	4\％	4\％	3\％	${ }^{3 \%}$	2\％	2\％	\％	\％	\％	\％	0\％	0\％	\％	\％	0\％	0\％	0\％	0\％	0\％
920	${ }^{12,0929290}$	\cdots	5	NT1	$4{ }^{4 \%}$	$4{ }^{4}$	4%	3\％	3\％	${ }^{2 \%}$	2\％	\％	\％	\％	\％\％	\％\％	\％\％	0\％	\％	0\％	0\％	0\％	\％	\％
${ }^{221}$	${ }^{12,0929,90}$	Onher	5	${ }^{\text {NT1 }}$	4%	$4{ }^{4 \%}$	4%	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％\％	\％	\％	\％	\％	\％\％	\％	\％	\％	0\％	0\％	0\％	0\％
${ }^{222}$	${ }^{12,093,000}$	Seeds of herbaceous plants cultivated principally for their flowers	${ }^{5}$	NT1	$4{ }^{4 \%}$	4\％	4\％	${ }^{3} \%$	${ }^{3 \%}$	2\％	2\％	\％	\％	\％	\％	0\％	0\％	\％	\％	\％	\％	\％	\％	0\％
${ }^{223}$	${ }^{12,099,110}$	\cdots Onion seds	5	NT1	4\％	4\％	4\％	3\％	3\％	2\％	2\％	\％	0\％	\％	\％	\％	0\％	0\％	\％	\％	\％	\％	\％	\％
${ }^{24}$	${ }^{12,099,190}$	－－Oner	5	NT1	4\％	${ }^{4 \%}$	4\％	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％
${ }^{225}$	${ }^{12,099,910}$	－Rubber tee seeds or renat seeds	5	${ }^{\text {NT1 }}$	${ }^{4 \%}$	${ }^{4 \%}$	4%	${ }^{3 \%}$	${ }^{3 \%}$	2%	${ }^{2 \%}$	\％	\％	\％	\％	\％	\％\％	\％	\％	\％	\％	\％	\％	\％
${ }^{226}$	${ }^{12,099,990}$	－－other	5	IsL	${ }^{5 \%}$	5\％	5\％	5\％	5\％	${ }^{5 \%}$	${ }^{5 \%}$	5\％	${ }^{5 \%}$	${ }^{5 \%}$	${ }^{5 \%}$	5\％	5\％	${ }^{5 \%}$	${ }^{5 \%}$	5\％	${ }^{5 \%}$	5\％	${ }^{5 \%}$	${ }^{5 \%}$
${ }^{927}$	${ }^{12,010,000}$	－Hop cones，neither ground nor powdered nor in the form of pellets	${ }^{5}$	NT1	${ }^{4 \%}$	4%	4\％	${ }^{3} \%$	3\％	${ }^{2 \%}$	${ }^{2 \%}$	0\％	\％	\％	\％	\％	0\％	\％	\％	\％	\％	\％	\％	0\％
${ }^{228}$	12，020，000	$\begin{array}{\|l} \hline \text { - Hop cones, ground, powdered or in the form of } \\ \text { pellets; lupulin } \\ \hline \end{array}$	${ }^{5}$	T1	$4{ }^{4 \%}$	${ }^{4 \%}$	4%	3\％	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％	\％	\％	\％	\％	0\％	\％	\％	\％	\％	\％\％
${ }^{229}$	${ }^{12,12,2,010}$		${ }^{5}$	NT1	4\％	4%	4\％	${ }^{3 \%}$	${ }^{3 \%}$	2%	${ }^{2 \%}$	\％	\％	\％	\％	\％	0\％	\％	0\％	\％	0\％	0\％	0\％	\％
${ }^{390}$	$1{ }^{12,12,090}$	－other	5	NT1	4%	4%	4\％	3\％	3\％	2\％	2\％	\％	0\％	\％	0\％	0\％	0\％	\％	\％	0\％	0\％	0\％	\％	\％
${ }^{231}$	${ }^{12,113,010}$	In cut，crushed of powiered tom	bided iems	EL	${ }_{\text {Preminited }}^{\text {Piems }}$	0	U	\bigcirc	\bigcirc	0	\bigcirc	0	\bigcirc	0	0	－	0	ט	ט	0	ט	0	－	－
${ }^{932}$	${ }^{12,113,090}$	Other	bied liems	${ }^{\text {EL }}$	${ }_{\text {Prember }}^{\text {Penibied }}$	${ }^{\circ}$	u	u	\checkmark	\checkmark	0	U	－	0	0	\checkmark	U	0	U	－	0	0	\checkmark	\bigcirc
${ }^{233}$	${ }^{12,114,000}$	． popstraw	bed iems	EL	${ }_{\text {Prembited }}^{\text {Pemided }}$	${ }^{\circ}$	U	U	U	0	U	U	U	0	0	－	\bigcirc	0	U	U	U	0	U	U
${ }^{934}$	${ }^{12,119,0,011}$		ledite	EL	${ }_{\text {Prent }}^{\text {Penibied }}$	${ }^{0}$	\checkmark	\bigcirc	U	\bigcirc	\bigcirc	\bigcirc	\bigcirc	U	U	\bigcirc	\bigcirc	\bigcirc	\bigcirc	U	\bigcirc	U	U	U
${ }^{235}$	${ }^{12,119,012}$	Camass，inoterer foms	items	${ }^{\text {EL }}$	$\begin{aligned} & \text { Probibitited } \\ & \text { items } \end{aligned}$	${ }^{\circ}$	U	\checkmark	U	\bigcirc	U	\bigcirc	\bigcirc	U	U	\bigcirc	\bigcirc	\bigcirc	\bigcirc	U	U	\bigcirc	\checkmark	\bigcirc
${ }^{936}$	${ }^{12,119,013}$	\cdots－Rauwolia sepenenina rools	5	EL	U	U	\bigcirc	\checkmark	\bigcirc	U	U	\bigcirc	\bigcirc	\bigcirc	U	U	U	\bigcirc	\bigcirc	\bigcirc	\checkmark	\bigcirc	U	\bigcirc
${ }^{937}$	${ }^{12,119.014}$		5	EL	－	U	ט	ט	\bigcirc	\bigcirc	U	U	ט	\bigcirc	ט	\bigcirc	U	U	U	U	ט	U	U	\bigcirc
${ }^{938}$	${ }^{12,119,019}$	－omer	5	IsL	5\％	5\％	5\％	5\％	5\％	5\％	5\％	5\％	5\％	5\％	5\％	5\％	5\％	5\％	5\％	${ }^{5 \%}$	5\％	5\％	${ }^{5 \%}$	${ }^{5 \%}$
${ }^{939}$	${ }^{12,119,091}$	Pyerturn，inut，orvs	5	${ }^{\text {ISL }}$	5\％	${ }^{5 \%}$	5\％	5%	5\％	5\％	${ }^{5 \%}$	5\％	${ }^{5 \%}$	${ }^{5 \%}$	5\％	${ }^{\text {5\％／}}$	5\％	5\％	5\％	${ }^{5 \%}$	${ }^{5 \%}$	5\％	5\％	5\％
940	${ }^{12,119,092}$	－Preltrum，in ofter foms	5	${ }^{\text {EL }}$	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	U	\bigcirc	\bigcirc	\bigcirc	${ }^{\circ}$	\bigcirc	\bigcirc		U	\square°	\bigcirc	\bigcirc	U	U	\bigcirc
${ }^{941}$	${ }^{12,119,094}$	Sandamod	5	EL	\bigcirc	U	U	U	\checkmark	U	U	U	\checkmark	\checkmark	U	\bigcirc	U	\checkmark	\bigcirc	ט	\bigcirc	\checkmark		\bigcirc
99	${ }^{12,119,095}$	Agamood（gatan）Chips		HSL	${ }^{5 \%}$	5\％	5\％	${ }^{5 \%}$	5\％	5\％	${ }^{5 \%}$	5\％	${ }^{5 \%}$	5\％	5\％	${ }^{5 \%}$	5\％	5\％	5\％	5\％	5\％	5\％	${ }^{5 \%}$	${ }^{5 \%}$
${ }^{293}$	${ }^{12,119,096}$	－Liquiciec roots	5	NT1	4\％	4\％	4\％	3\％	3\％	2\％	2\％	\％	0\％	\％	0\％	0\％	0\％	0\％	\％	\％	0\％	0\％	0\％	\％
${ }^{94}$	${ }^{12,119,097}$	\cdots－Bark of perseal（eessea Kurzi Kosiem）	5	${ }_{\text {EL }}$	\bigcirc	\bigcirc	U	\bigcirc	－	－	\bigcirc	\bigcirc	\bigcirc	\bigcirc	－	\bigcirc	U	－	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	－
${ }^{945}$	${ }^{12,119,098}$	\cdots Onter，in utut cusseded of oowdered tom	5	${ }^{\text {EL }}$	\bigcirc	－	U	－	\bigcirc	ט	－	U	U	＂	\bigcirc	－	ט	U	U	－	ט	ט	\checkmark	\bigcirc
${ }^{946}$	${ }^{12,119,099}$	\cdots	5	EL	－	－	\bigcirc	\bigcirc	\bigcirc	U	U	U	－	－	ט	U	U	U	U	U	ט	ט	U	，
947	${ }^{12,122,10}$	Eucheuma spo．	5	HSL	${ }^{5 \%}$	5\％	5\％	5\％	5\％	5\％	5\％	5\％	5\％	5\％	5\％	5\％	5\％	5\％	5\％	5\％	5\％	5\％	5\％	${ }_{5 \%}$
948	${ }^{12,122,120}$		5	Hst	${ }^{5 \%}$	5\％	5\％	5\％	5\％	5\％	5\％	5\％	5\％	5\％	5\％	5\％	5\％	5\％	5\％	5\％	5\％	5\％	5\％	${ }_{5 \%}$
949	${ }^{12,122,190}$	－other	5	IsL	${ }^{5 \%}$	${ }^{5 \%}$	5\％	5\％	5\％	5\％	5\％	5\％	5\％	5\％	5\％	5\％	5\％	5\％	5\％	5\％	5\％	5\％	5\％	\％
950	12，12，2，911	－．ofa kind sused inphamay	5	NT1	4\％	4\％	4\％	3\％	3\％	2\％	${ }^{2 \%}$	\％	\％	\％	\％	\％	0\％	\％	\％	\％	\％	\％	\％	\％
${ }^{251}$	${ }^{12,12,2,919}$	Onter	5	NT1	4%	$4{ }^{4 \%}$	4%	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％	\％	\％	\％	\％	\％	\％	0\％	\％	0\％	\％
95	${ }^{12,12,2,920}$	－－Other，tesh，conlied of dinied	5	NT1	$4{ }^{4 \%}$	4\％	4\％	3\％	3\％	2\％	2\％	0\％	0\％	0\％	0\％	0\％	0\％	0\％	\％	\％	0\％	0\％	0\％	0\％
${ }^{953}$	${ }^{12,12,2,30}$	Ohnes，fozen	5	${ }^{\text {HSL }}$	${ }^{5 \%}$	${ }^{5 \%}$	5\％	${ }^{5 \%}$	${ }^{5 \%}$	${ }^{5 \%}$	${ }^{5 \%}$	${ }^{5 \%}$	${ }^{5 \%}$	${ }^{5 \%}$	5\％	${ }^{5 \%}$	5\％	5\％	5\％	${ }^{5 \%}$	${ }^{5 \%}$	${ }^{5 \%}$	${ }^{5 \%}$	${ }^{5 \%}$
${ }^{595}$	${ }^{12,129,100}$	Stugat beet	5	HSL	${ }^{5 \%}$	5\％	5\％	5\％	5\％	5\％	5\％	5\％	${ }^{5 \%}$	5\％	5\％	${ }^{5 \%}$	5\％	${ }^{5 \%}$	5\％	${ }^{5 \%}$	5\％	5\％	5\％	5\％
955	12，129，200	－Locust bans（carob）	5	NT1	4%	4\％	4\％	${ }^{3} \%$	3\％	2\％	${ }^{2 \%}$	0\％	\％	\％	\％	\％	0\％	\％	\％	\％	\％	\％	\％	\％
956	12，129，30	－Sulabel for fanting	5	EL	O	，	\bigcirc	ט	O	－	－	U	\bigcirc	－	，	0	0	U	U	－	\bigcirc	\bigcirc	U	0
${ }^{957}$	${ }^{12,129,390}$	Ohner	5	EL	\bigcirc	－	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	U	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc						
${ }^{958}$	${ }^{12,12,4,40}$	－ Ch coon rools	5	Ist	${ }^{5 \%}$	${ }^{5 \%}$	5\％	${ }^{5 \%}$	${ }^{5 \%}$	5\％	${ }^{5 \%}$	5\％	5\％	5\％	${ }^{5 \%}$	${ }^{5 \%}$	5\％	5\％	${ }^{5 \%}$	${ }^{5 \%}$	5\％	5%	${ }^{5 \%}$	${ }^{5 \%}$
${ }^{959}$	12，129，900	Other	5	HSL	${ }^{5 \%}$	5\％	5\％	5\％	5\％	5\％	5\％	5\％	5\％	5%	5\％	${ }^{5 \%}$	5\％	5\％	5\％	5\％	5\％	5\％	5\％	5\％
${ }^{960}$	12，13，000	Cereal straw and husks，unprepared，whether or not chopped，ground，pressed or in the form of pellets．	${ }^{5}$	NT1	4\％	4\％	4\％	3\％	3\％	${ }^{2 \%}$	2\％	\％	\％	\％	\％	\％\％	0\％	\％	\％	\％	\％	\％	\％	\％
${ }^{961}$	${ }^{12,141,000}$	－Lueeme ealatala）meal and pellels	5	NT1	4\％	4\％	4\％	3\％	3\％	2\％	2\％	\％\％	\％	\％	0\％	0\％	0\％	0\％	0\％	0\％	0\％	\％	\％	0\％
${ }^{962}$	${ }^{12,149,000}$	Oner	5	NT1	4%	$4{ }^{4 \%}$	$4{ }^{4}$	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％	\％	\％	\％	\％	\％	\％	0\％	\％	\％	\％
${ }^{963}$	${ }^{13,012,000}$	Gum Arabic	${ }^{20}$	${ }^{\text {EL }}$	U	U	－	，		U	－	－	－	－	\bigcirc	－	U	ט	ט	－	\bigcirc	U	U	
${ }^{964}$	$1{ }^{13.019 .010}$	－Gum benamin	${ }^{20}$	EL	\bigcirc	U	，	－	U	U	ט	ט	ט	\bigcirc	ט	ט	U	ט	ט	U	ט	ט	ט	\bigcirc
${ }^{965}$	${ }^{13,019,020}$	－Gum damar	${ }^{20}$	${ }^{\text {EL }}$	U	U	ט	－	U	U	U	－	\bigcirc	\bigcirc	－	－	－	U	－	U	U	U	－	U
${ }^{966}$	${ }^{13,019,030}$	Camads resins	${ }^{\text {biled diems }}$	EL	${ }_{\text {Prenibied }}^{\text {Pens }}$	0	ט	ט	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\checkmark	\bigcirc	\bigcirc	\checkmark	\bigcirc	ט	\bigcirc	＂	－	ט	u	U
${ }^{987}$	${ }^{13,019,040}$	－－Lac	${ }^{20}$	${ }^{\text {EL }}$	－	－	ט	\bigcirc	\bigcirc	\bigcirc	\bigcirc	ט		\bigcirc	\bigcirc	\bigcirc	U	\bigcirc	U	－	－	U	\bigcirc	\bigcirc
${ }^{958}$	${ }^{13,019,090}$	Other	${ }^{20}$	${ }^{\text {EL }}$	\bigcirc	0	U	0	0	U	U	U	0	0	0	0	U	0	U	0	U	\bigcirc	U	\bigcirc
${ }^{969}$	3，021，110	Puvis opi	biled tems	${ }_{\text {EL }}$	${ }_{\text {liems }}^{\text {Probited }}$	${ }^{\circ}$	－	\bigcirc	\bigcirc	\bigcirc	0	＂	－	\bigcirc	－	\bigcirc	\bigcirc	－	－	0	${ }^{\circ}$	＂	\bigcirc	\bigcirc
$9{ }^{90}$	${ }^{13,021,190}$	Ohter	biled tiems	EL		${ }^{\circ}$	\bigcirc	\bigcirc	\bigcirc	${ }^{\circ}$	${ }^{\circ}$	${ }^{\circ}$	\bigcirc	\bigcirc	\bigcirc	${ }^{0}$	U	\bigcirc	\bigcirc	${ }^{\circ}$	${ }^{\circ}$	\checkmark	\bigcirc	${ }^{\circ}$
${ }^{971}$	${ }^{13,021,200}$	－otiluorice	10	NT2	${ }^{9 \%}$	9\％	8%	8%	6\％	6\％	5\％	5\％	4\％	4\％	3\％	3\％	2\％	2\％	\％	0\％	0\％	0\％	\％	0\％
972	${ }^{13,021,300}$	－ O tops	10	NT1	9\％	8%	6\％	5\％	$4{ }^{4 \%}$	3\％	2\％	\％\％	\％	\％	\％\％	\％	0\％	0\％	\％	\％\％	0\％	\％	\％	\％
${ }^{973}$	${ }^{13,021,920}$	－Extacts and tinctues of cammais	10	NT2	${ }^{9 \%}$	${ }^{9 \%}$	${ }^{8 \%}$	${ }^{8} \%$	6\％	${ }^{6 \%}$	5\％	5\％	${ }^{4 \%}$	$4{ }^{4 \%}$	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	0\％	0\％	0\％	0\％
${ }^{974}$	${ }^{13,021,930}$	\cdots Other medicinalextacas	10	NT2	9\％	9\％	8\％	8%	6\％	6\％	5\％	5\％	$4{ }^{4 \%}$	$4{ }^{4}$	3\％	3\％	${ }^{2 \%}$	2%	\％	\％\％	0\％	\％	\％	\％
${ }^{975}$	${ }^{13,021,940}$	－－Vegetable saps and dextacts of pryethrum or of	${ }^{10}$	N2	${ }^{9 \%}$	9\％	8\％	8\％	6\％	${ }^{6 \%}$	5\％	5\％	${ }^{4 \%}$	4\％／	${ }^{3 \%}$	3\％	2\％	${ }^{2 \%}$	0\％	\％	\％	\％	0\％	0\％
${ }^{976}$	${ }^{13,021,950}$	－Japan（or Chinesel lacuere（natualacaluer）	10	${ }^{\text {NT2 }}$	${ }^{9}$	${ }^{\text {\％}}$	8%	8%	6\％	6\％	${ }^{5 \%}$	${ }^{5 \%}$	${ }^{4 \%}$	${ }^{4 \%}$	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	0\％	0\％	\％	\％\％	\％	\％\％
977	${ }^{13,021,990}$	Onter	10	NT2	${ }^{9 \%}$	${ }^{9 \%}$	${ }_{8} 8$	${ }^{8} \%$	${ }^{6 \%}$	6\％	${ }^{5 \%}$	5\％	${ }^{4 \%}$	${ }^{4 \%}$	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	2%	\％	\％	\％	0\％	\％	\％
${ }^{978}$	${ }^{13,022,000}$	－Pecicis sustances，pectinales and pectates	10	${ }^{\text {NT2 }}$	${ }^{9 \%}$	${ }^{9 \%}$	${ }_{8 \%}$	${ }_{8}^{8 \%}$	6\％	6\％	5%	${ }^{5 \%}$	4%	4%	${ }^{3 \%}$	${ }^{\text {3\％}}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％	\％	\％	\％
979	${ }^{13,023,100}$	－Agaragar	10	NT2	${ }^{9 \%}$	9\％	8\％	8%	6\％	6\％	5\％	5\％	$4{ }^{4 \%}$	4%	${ }^{3 \%}$	3\％	${ }^{2 \%}$	${ }^{2 \%}$	\％	0\％	\％	0\％	0\％	0\％
${ }^{980}$	13，023，200	－Muciages and thickeners，whether or not $-\sim$ modified，derived from locust beans，locust bean seeds or guar seeds	10	N2	9\％	\％	${ }^{8 \%}$	8\％	6\％	6\％	${ }^{5 \%}$	5\％	4%	4%	${ }^{3 \%}$	3\％	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％	\％	\％	\％\％
${ }^{281}$	${ }^{13,023,910}$	－Caragenan	10	NT2	9\％	9\％	${ }_{8 \%}$	${ }^{8 \%}$	6\％	6%	5\％	5\％	4\％	4%	${ }^{3 \%}$	3\％	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	0\％	\％	\％	\％
88	$1{ }^{13,023,990}$	Ohter	10	${ }^{\text {NT2 }}$	9\％	${ }^{9}$	${ }^{8}$	${ }^{8} \%$	\％\％	6\％	${ }^{5 \%}$	5\％	${ }^{4 \%}$	${ }^{4 \%}$	3\％	3\％	2%	${ }^{2 \%}$	\％	\％	\％	\％	\％	\％

香港•ASEAN FTAにかかる調査報告書

（ラオス）

${ }^{593}$	14，011，000	ambos	${ }^{20}$	EL	\bigcirc	\bigcirc	U	U	\bigcirc	\bigcirc	0	\bigcirc	U	\bigcirc	\bigcirc	\bigcirc	U	，	\bigcirc	U	U	\bigcirc	\bigcirc	\bigcirc
${ }^{984}$	14.012 .011	Raw	${ }^{20}$	EL	\bigcirc	\bigcirc	\cup	ט	U	ט	－	ט	ט	ט	U	U	\cup	\checkmark	U	\checkmark	\cup	ט	\bigcirc	${ }^{\circ}$
${ }^{985}$	${ }^{14,0,12,012}$	－Wasted and suphurised	${ }^{20}$	EL	\bigcirc	0	ט	ט	ט	\bigcirc	0	ט	\bigcirc	ט	U	\bigcirc	\bigcirc	0	\bigcirc	\checkmark	\checkmark	\bigcirc	\bigcirc	\bigcirc
${ }^{296}$	14，012，019	‥oner	${ }^{20}$	EL	\bigcirc	\bigcirc	－	\bigcirc	\bigcirc	U	ט	\bigcirc	\bigcirc	\bigcirc	U	U	\bigcirc	U	U	U	U	－	\bigcirc	\bigcirc
${ }^{987}$	14，012，021	\cdots－${ }^{\text {Notexeasing } 12 \mathrm{mmin} \mathrm{diameter}}$	${ }^{20}$	EL	\bigcirc	\bigcirc	U	ט	U	\checkmark	\bigcirc	\bigcirc	ט	\checkmark	U	U	\bigcirc							
${ }^{988}$	14，012，029	Onter	${ }^{20}$	EL	0	\bigcirc	－	0	U	\bigcirc	\bigcirc	U	ט	\bigcirc	U	U	U	0	U	0	U	O	0	\bigcirc
989	14，012，330	－－Splltskin	${ }^{20}$	EL	\bigcirc	\bigcirc	O	U	ט	ט	\bigcirc	ט	ט	ט	U	U	\checkmark	ט	ט	ט	\checkmark	\bigcirc	\bigcirc	\bigcirc
990	14，012，090	－－oner	${ }^{20}$	EL	ט		\bigcirc	0	\bigcirc	\bigcirc	ט	ט	ט	\bigcirc	ט	\bigcirc	ט	\bigcirc						
291	14，019，000	－orner	${ }^{20}$	EL	ט	\bigcirc	ט	ט	0	\bigcirc	－	，	，	\bigcirc	0	U	\checkmark	\checkmark	\checkmark	ט	ט	\bigcirc	\bigcirc	\bigcirc
992	14，02，2000	－Coton iniers	${ }^{20}$	EL	\bigcirc	0	U	U	－	U	U	U	U	\bigcirc	U	U	U	，	\bigcirc	U	U	ט	U	U
993	14，099，020	－－Ofa kind usad pimanaly in taming ordyeng	${ }^{20}$	EL	\bigcirc	\bigcirc	\bigcirc	U	－	U	U	ט	U	\bigcirc	U	\bigcirc	ט	U	U	U	\bigcirc	－	U	\bigcirc
994	14，099，030	－－Kapok	${ }^{20}$	EL	\bigcirc	U	\bigcirc	\bigcirc	ט	\bigcirc	U	\checkmark	\bigcirc	0	\bigcirc									
${ }^{995}$	14，099，900	－－omer	${ }^{20}$	EL	－	－	－	U	ט	\bigcirc	ט	ט	ט	\bigcirc	U	\bigcirc	\bigcirc	\bigcirc	\bigcirc	－	\bigcirc	\bigcirc	U	\bigcirc
${ }^{996}$	15，011，000	－Lad	${ }^{30}$	EL	U	ט	U	ט	ט	U	U	ט	ט	U	U	U	ט	ט	U	ט	\checkmark	ט	U	\bigcirc
997	15，012，000	－oterep pi tat	${ }^{30}$	EL	\bigcirc	0	0	\checkmark	\bigcirc	\checkmark	\bigcirc	－	\bigcirc	\checkmark	\bigcirc	\bigcirc	－	\bigcirc	ט	\checkmark	ט	\bigcirc	\bigcirc	U
998	15，019，000	－other	${ }^{30}$	EL	－	U	\bigcirc	－	－	－	ט	－	\bigcirc	－	U	－	\bigcirc	ט	U	ט	ט	\bigcirc	ט	U
99	\＃\＃\＃\＃\＃twt	Eable	${ }^{30}$	EL	\checkmark	\bigcirc	\bigcirc	\checkmark	\bigcirc	\checkmark	\bigcirc	－	\checkmark	\bigcirc	\checkmark	U	\bigcirc	\checkmark	\bigcirc	\checkmark	\checkmark	\bigcirc	\bigcirc	\bigcirc
1700	15，021，090	Onter	${ }^{30}$	EL	\bigcirc	\bigcirc	U	\bigcirc	－	ט	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	U	U	U	U	\bigcirc	U	－	\bigcirc	\bigcirc
1001	15，029，010	－－Eaibe	${ }^{30}$	EL	\bigcirc	－	\bigcirc	\bigcirc	－	－	ט	ט	\bigcirc	－	U	\bigcirc	ט	－	\bigcirc	U	\checkmark	ט	U	\bigcirc
1002	${ }^{15,029,9090}$	－Other	${ }^{20}$	EL	\bigcirc	U	0	U	\bigcirc	0	\bigcirc	0	\bigcirc	0	0	\bigcirc	0	\bigcirc	\bigcirc	0	0	\bigcirc	0	\bigcirc
1003	$15.03,0010$	－Lars seaino or oeoseseain	5	V1	4%	4%	4%	${ }^{3 \%}$	3\％	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％	\％	\％	\％	0\％	\％	\％	\％	0\％	\％	\％
1004	${ }^{15,03,090}$	－oner	5	v1	4\％	4\％	4%	${ }^{3} \%$	3\％	${ }^{2 \%}$	2\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％\％	\％	\％	\％
1705	\＃\＃\＃tutwtat	－Solid facioions	5	V1	4\％	4\％	$4{ }^{4 \%}$	3\％	3\％	2%	2\％	\％	\％	\％	\％	0\％	\％	0\％	\％	\％	\％	\％	\％	\％\％
1006	15，041，090	－Onter	5	N1	4%	4%	4%	3\％	3\％	2\％	2\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％
1007	15，042，010	－－Solidfacioios	5	V1	4\％	4\％	4%	3\％	3\％	2\％	2%	0\％	\％	\％	\％	\％	\％	\％	\％	\％	${ }^{\circ} \%$	\％	\％\％	0\％
1708	15，042，090	Oher	5	V1	4\％	4\％	4%	3\％	3\％	2\％	2\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％
1009	15，043，010	－－Solid facioion	5	T1	${ }^{4 \%}$	4\％	${ }^{4 \%}$	3\％	3\％	2\％	${ }^{2 \%}$	\％	0\％	\％$\%$	0\％	\％	\％	0\％	0\％	\％	\％	\％	\％	\％
1010	${ }^{15,043,9090}$	－－Oher	5	V1	4%	$4{ }^{46}$	$4{ }^{46}$	3\％	3\％	2\％	2\％	0\％	0\％	\％	0\％	\％	\％\％	0\％	\％	\％	\％	0\％	0\％	\％
1011	$15.50,0,10$	－tandin	5	NT1	$4{ }^{4 \%}$	$4{ }^{4 \%}$	$4{ }^{4 \%}$	${ }^{3 \%}$	3\％	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％	0\％	\％	\％	\％	\％	\％	\％	0\％	\％	\％
1012	1 15，05，090	－oner	5	NT1	4%	4%	4%	${ }^{3 \%}$	3\％	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	0\％
${ }^{1013}$	15，06，000	Other animal fats and oils and their fractions， whether or not refined，but not chemically modified．	5	${ }^{\text {NT1 }}$	4%	4%	${ }^{4 \%}$	${ }^{3 \%}$	3\％	${ }^{2 \%}$	${ }^{2 \%}$	\％	0\％	0\％	0\％	0\％	\％	\％	\％	0\％	\％\％	\％	\％	0\％
1714	15，071，000	－Cude oll，weenerero rot degummed	5	T1	4%	4\％	4\％	3\％	3\％	2\％	2\％	0\％	\％\％	0\％	\％	\％	\％	0\％	\％	\％	\％\％	0\％	\％	0\％
1015	15，079，010	FFactios of turefine s soy bean of	5	V1	4%	4\％	4%	${ }^{3 \%}$	${ }^{\text {3\％}}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	0\％	0\％	\％	\％	\％	0\％	0\％	0\％	\％	0\％	\％	\％
1016	15，079，090	－－omer	5	V1	$4{ }^{4}$	$4{ }^{4}$	4%	${ }^{3 \%}$	3\％	${ }^{2 \%}$	${ }^{2 \%}$	\％	0\％	\％	\％	\％	\％	\％	0\％	\％	\％	0\％	\％	\％
1017	15，08，000	Cnue oil	5	NT1	4%	4%	${ }^{4 \%}$	3\％	3\％	2\％	2\％	\％	0\％	0\％	\％	0\％	\％	0\％	0\％	0\％	\％\％	\％	\％	\％
1018	${ }^{15,08,0910}$	－－FFacioins of turefined ground．rut oin	5	NT1	${ }^{4 \%}$	$4{ }^{4 \%}$	4\％	${ }^{3 \%}$	3\％	${ }^{2 \%}$	${ }^{2 \%}$	0\％	0\％	\％	0\％	\％	\％	0\％	\％	\％	\％	0\％	\％	\％
1019	15，099，90	－Onher	5	NT1	4%	4%	4%	${ }^{3 \%}$	3\％	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	0\％	0\％	\％	\％	0\％	\％	\％	0\％	0\％	\％	0\％
1020	\＃\＃\＃\＃\＃\＃\＃\＃\＃	－If packings of net weight note exceesing 30 kg	5	NT1	4%	4%	4%	${ }^{3 \%}$	3\％	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％	0\％	\％	\％	0\％	\％	\％	\％	\％	\％	\％
1021	15，091，090	－other	5	vT1	4\％	4%	4\％	3\％	${ }^{3 \%}$	${ }^{2 \%}$	2\％	0\％	0\％	\％	\％	\％	\％	0\％	\％	0\％	\％	\％	\％	0\％
1022	15，099，011		5	N1	4%	4%	4%	${ }^{3 \%}$	${ }^{3} \%$	2\％	${ }^{2 \%}$	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％
1023	15，099，019	－omer	5	V1	${ }_{4}^{4 \%}$	4\％	${ }^{4 \%}$	${ }^{3 \%}$	3\％	${ }^{2 \%}$	${ }^{2 \%}$	0\％	0\％	\％	\％	0\％	\％	0\％	0\％	0\％	\％\％	\％	\％\％	0\％
1024	15，09，091	－lnpacking of ret weght notexeceading 30 kg	5	V1	4%	4\％	$4{ }^{4 \%}$	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	0\％	\％	\％	\％	\％	\％	\％	\％	0\％	0\％	0\％	0\％
1025	15，09，099	－Oner	5	V1	4%	4%	${ }^{4 \%}$	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	0\％	\％	0\％	\％\％	\％\％	0\％	0\％	0\％	\％	0\％	0\％	0\％
1026	15，100，010	－Crue oil	${ }^{10}$	N2	${ }^{9 \%}$	${ }^{9 \%}$	${ }^{8 \%}$	${ }^{8 \%}$	6\％	${ }^{6 \%}$	5\％	${ }^{5 \%}$	4\％	4%	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％	\％	\％	\％
1027	15，10，020	－Faciolos of unemined of	10	NT2	9\％	9\％	8%	${ }^{8}$	6\％	6\％	5\％	5\％	4\％	4\％	3\％	3\％	${ }^{2 \%}$	2\％	0\％	\％	\％\％	\％	\％	\％
1028	${ }^{15,100,90}$	－oner	10	NT2	9\％	${ }^{9}$	${ }^{8 \%}$	${ }^{8 \%}$	6\％	6\％	5\％	${ }^{5 \%}$	4\％	$4{ }^{4}$	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	2%	\％	\％	\％	0\％	\％	\％
1029	15，11，000	－Crude oil	10	NT2	9\％	9\％	8%	8%	6\％	6\％	5\％	${ }_{5 \%}$	4%	4%	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	2\％	\％	\％	0\％	0\％	\％	\％
1030	${ }^{15,119,011}$	－Solid tacioions	10	NT2	9\％	${ }^{9}$	${ }^{8 \%}$	${ }^{8 \%}$	6\％	6\％	5\％	${ }^{5 \%}$	4\％	$4{ }^{4}$	3\％	${ }^{3} \%$	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％	0\％	\％	\％
${ }^{1031}$	${ }^{15,119,019}$	－other	10	NT2	\％	9\％	8%	${ }^{8 \%}$	6\％	6\％	5\％	5\％	4\％	4\％	3\％	3\％	2\％	2\％	0\％	\％	\％	\％	\％	\％
1032	15，119，091	－Solid facioions	10	NT2	9\％	9\％	8%	8%	6\％	6\％	5\％	5\％	4%	4\％	3\％	3\％	2\％	2%	0\％	\％	\％	\％\％	\％	\％\％
${ }^{1033}$	15，19，092	20kg \ldots	10	т2	\％$\%$	9\％	${ }^{8 \%}$	${ }^{8 \%}$	6\％	6\％	5\％	5\％	4\％	4\％	3\％	3\％	${ }^{2 \%}$	${ }^{2 \%}$	\％\％	\％	\％	\％	0\％	\％
$1{ }^{1034}$	15，119，099	…oner	10	NT2	9\％	\％	${ }_{8 \%}$	${ }^{8 \%}$	6\％	${ }^{6 \%}$	${ }^{5 \%}$	5	${ }^{4 \%}$	$4{ }^{4}$	3\％	${ }^{3 \%}$	${ }^{2 \%}$	2\％	\％	0\％	0\％	0\％	0\％	\％
1035	15，121，100	－－Cnde oil	10	NT2	9\％	9\％	8\％	8\％	6\％	6\％	5\％	5\％	4\％	4\％	${ }^{3 \%}$	3\％	${ }^{2 \%}$	2\％	\％	\％	\％	0\％	\％	\％
1036	15，121，990	- Fractions of unrefined sunflower－seed oil or saftiower oi	10	NT2	9\％	9\％	8%	8%	6\％	6%	5\％	${ }^{5 \%}$	4%	4%	3\％	3\％	${ }^{2 \%}$	${ }^{2 \%}$	0\％	\％	\％	0\％	\％	\％
1037	${ }^{15,121,990}$	－Onter	10	NT2	9\％	9\％	8%	${ }^{8 \%}$	6\％	6\％	5\％	${ }^{5 \%}$	4%	4%	3\％	3\％	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％	0\％	\％	\％
${ }^{1038}$	15，122，100	－－Crude oil，whether or not gossypol has been removed	10	N2	9%	${ }^{9} \%$	${ }^{8}$	${ }^{8}$	6\％	6\％	5\％	${ }^{5 \%}$	4\％	4%	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	2\％	\％	\％	\％	\％	\％	\％
1039	15，122，910	\cdots	10	NT2	${ }^{9}$	${ }^{9 \%}$	8%	${ }^{8 \%}$	6\％	6\％	${ }^{5 \%}$	${ }^{5 \%}$	4\％	4%	${ }^{3 \%}$	${ }^{3 \%}$	2\％	2\％	\％	\％	\％	\％	\％	\％
1090	${ }^{15,122,990}$	－Oher	10	N2	${ }^{9}$	${ }^{9}$	${ }^{8 \%}$	${ }^{8 \%}$	6\％	6\％	${ }^{5 \%}$	${ }^{5 \%}$	4%	$4{ }^{4 \%}$	3\％	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％	0\％	\％	\％
1041	${ }^{15,131,100}$	Crude oil	${ }^{30}$	EL	ט	－	\checkmark	\bigcirc	U	U	U	ט	0	U	U	－	0	U	ט		ט	ט	ט	U
1042	${ }^{15,13,9,90}$	－Facioion so furefined coconut ol	${ }^{30}$	EL	－	\bigcirc	U	U	ט	\bigcirc	\bigcirc	\bigcirc	U	U	0	U	\bigcirc	ט	\bigcirc	U	\bigcirc	ט	－	\bigcirc
${ }^{1043}$	${ }^{15,31,91,90}$	Other	${ }^{30}$	EL	\bigcirc	${ }^{\circ}$	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc													
1044	${ }^{15,132,10}$	－Palm kemeloil	10	NT2	9\％	${ }^{9} \%$	${ }^{8 \%}$	8%	6\％	6\％	5\％	${ }^{5 \%}$	4\％	4%	${ }^{3 \%}$	3\％	${ }^{2 \%}$	2\％	\％	\％	\％	0\％	\％	\％
12045	${ }^{15,132,190}$	Ohner	10	NT2	9\％	9\％	8\％	${ }_{8 \%}$	6\％	6\％	5\％	${ }^{5 \%}$	4%	4%	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	2\％	\％	\％	\％	0\％	\％	\％
${ }^{1046}$	${ }^{15,132,991}$	Solid tracions st unefined palm kemeno oif	10	${ }^{\text {NT2 }}$	${ }^{9 \%}$	\％	8%	8%	6%	6\％	5%	${ }^{5 \%}$	4\％	4\％	3\％	${ }^{3 \%}$	2%	${ }^{2 \%}$	\％	\％	\％	\％	\％	0\％
1047	${ }^{15,132,9912}$	Solid fracions of tureinead babassuol	10	NT2	9\％	9\％	8\％	${ }^{8 \%}$	6\％	6\％	5\％	5\％	4\％	4\％	${ }^{3 \%}$	${ }^{3 \%}$	2\％	2%	0\％	0\％	\％	0\％	\％	0\％
048	${ }^{15,1329,913}$		10	NT2	\％$\%$	\％	8\％	${ }^{8} \%$	6\％	6\％	${ }^{5 \%}$	5\％	4\％	4%	3\％	3\％	${ }^{2 \%}$	${ }^{2 \%}$	\％	0\％	\％	\％	\％	\％
1049	${ }^{15,132,914}$	－Onter，of unefined babassu il	10	NT2	\％	9\％	8%	${ }^{8 \%}$	6\％	6\％	${ }^{5 \%}$	${ }^{5 \%}$	4\％	4%	3\％	${ }^{3 \%}$	${ }^{2 \%}$	2\％	\％	0\％	\％	\％	\％	\％
1050	${ }^{15,132,991}$	－－Soiditacioins of palm kemel oil	10	${ }^{\text {NT2 }}$	${ }^{9 \%}$	9\％	${ }^{8 \%}$	${ }^{8} \%$	${ }^{6 \%}$	6\％	5\％	${ }^{5 \%}$	4\％	$4{ }^{4}$	3\％	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％	0\％	\％	\％\％
1051	15，132，922		10	NT2	9\％	\％	8\％	8%	6\％	6\％	5\％	5\％	4\％	4\％	3\％	3\％	2\％	2\％	0\％	0\％	\％	\％	\％	\％
1052	${ }^{15,132,994}$	- Palm kemel lolin，refined，bleached and deodorized（RBD）	10	NT2	9\％	9\％	8\％	${ }^{8 \%}$	6\％	6\％	5\％	5\％	4\％	4\％	3\％	3\％	${ }^{2 \%}$	2\％	0\％	\％	\％\％	0\％	\％	\％
1053	${ }^{15,132,995}$		10	NT2	9\％	9\％	${ }_{8 \%}$	${ }_{8 \%}$	6\％	6\％	5\％	${ }^{5 \%}$	4%	4%	${ }^{3 \%}$	3\％	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％\％	\％	0\％	\％	\％
1054	${ }^{15,132,996}$	\cdots Oner，palm kemenolol	10	NT2	\％	9\％	${ }_{8} 8$	${ }^{8 \%}$	6\％	6\％	${ }^{5 \%}$	5\％	4%	4%	3\％	${ }^{3 \%}$	${ }^{2 \%}$	2%	\％	\％	\％	\％	\％	0\％
1055	${ }^{15,132,997}$	－－OMer，of tabassuol	10	NT2	\％${ }^{\text {\％}}$	9\％	8\％	${ }_{8 \%}$	6\％	6\％	5\％	${ }^{5 \%}$	4%	4%	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％	\％	\％	\％
1056	15，141，100	－Crude oil	10	NT1	\％	8%	6\％	5\％	4%	3\％	2\％	\％	\％	\％	0\％	\％	\％	0\％	0\％	0\％	0\％	0\％	\％	0\％
${ }^{1057}$	${ }^{15,14,910}$	\cdots	10	NT1	\％	${ }_{8}^{8 \%}$	6\％	5\％	4%	${ }^{3 \%}$	${ }^{2 \%}$	\％	\％\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％
${ }^{1058}$	15，44，990	－Other	10	NT1	${ }^{9}$	8%	6\％	5\％	$4{ }^{4 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	0\％	0\％	\％	0\％	0\％	\％	0\％	\％	\％	\％	0\％	\％	\％
1095	${ }^{15,149,10}$	…ner rape or colza oll	10	NT1	${ }^{9} \%$	8%	6\％	5\％	4%	${ }^{3 \%}$	2%	\％	0\％	\％	\％	\％	0\％	0\％	\％	\％	\％	\％	\％	0\％
1006	${ }^{15,149,190}$	Oner	${ }^{10}$	NT1	${ }^{9 \%}$	8\％	6\％	5\％	4\％	3\％	${ }^{2 \%}$	\％	0\％	\％	\％	\％	0\％	0\％	\％	\％	\％	\％	\％	0\％
1061	${ }^{15,199,910}$	－Farcions of unefined oil	10	NT1	\％${ }^{\text {\％}}$	8%	6\％	5\％	${ }^{4 \%}$	${ }^{3 \%}$	2\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％
1062	${ }^{15,149,991}$	Onter rape or colza oif	10	NT1	\％	${ }^{8 \%}$	${ }^{6 \%}$	${ }^{5 \%}$	${ }^{4 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％
1063	${ }^{15,149,999}$	－Other	10	NT1	\％	8%	6\％	5\％	4%	3\％	2\％	\％	\％	\％$\%$	\％	\％	\％\％	\％	0\％	\％	\％	\％	\％	\％
1094	${ }^{15,551,100}$	Crude oil	10	NT2	\％	${ }^{9} \%$	${ }^{8}$	${ }^{8} \%$	6\％	6\％	${ }^{5 \%}$	5\％	4%	4%	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	2\％	\％	\％	\％	\％	\％	\％
1065	${ }^{15,51,9,000}$	－Oner	10	HSL	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	\％\％	10\％	10\％	\％	10\％	10\％	\％\％	\％\％	\％	10\％
1066	15，152，100	Crude oil	10	NT2	\％	9\％	${ }^{8}$	${ }^{8 \%}$	${ }^{6 \%}$	6%	5\％	5\％	4%	4%	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	2\％	\％	0\％	\％	0\％	\％	\％
${ }^{1087}$	${ }^{15,15,9,91}$	Solidfactions	10	${ }^{\text {NT2 }}$	${ }^{9 \%}$	9\％	${ }^{8 \%}$	${ }^{8 \%}$	6\％	${ }^{6 \%}$	5\％	${ }^{5 \%}$	4\％	4%	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％	0\％	\％	\％
1088	15，152，919	Other	10	NT2	\％	\％	8%	${ }^{8 \%}$	${ }^{6 \%}$	6\％	${ }^{5 \%}$	${ }^{5 \%}$	${ }^{4 \%}$	4%	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％	0\％	\％	\％
1096	15，152，919	Sold fracions	10	NT2	${ }^{9}$	${ }^{9}$	${ }^{8 \%}$	${ }^{8 \%}$	6\％	6\％	5\％	${ }^{5 \%}$	4\％	4%	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％	0\％	\％	\％
1070	${ }^{15,152,999}$		10	NT2	\％	\％	\％	8%	6\％	6\％	5\％	5\％	4%	4%	3\％	${ }^{3 \%}$	2%	${ }_{2}^{2 \%}$	\％	\％	\％	0\％	\％	\％

香港•ASEAN FTAにかかる調査報告書

1071	${ }^{15,153,010}$	Conde of	10	｜N2	${ }^{9 \%}$	${ }^{9}$	${ }^{8 \%}$	${ }^{8 \%}$	6\％	${ }^{6 \%}$	5\％	${ }^{5 \%}$	${ }^{4 \%}$	${ }^{4 \%}$	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％	\％	\％	\％
1072	15，15，9090	Other	10	${ }_{\text {ISL }}$	10\％	10\％	\％	10\％	10\％	10\％	\％	10\％	10\％	${ }^{10 \%}$	${ }^{10 \%}$	${ }^{10 \%}$	${ }^{10 \%}$	\％\％	${ }^{10 \%}$	10\％	10\％	10\％	${ }^{10 \%}$	10\％
1073	15，15，0，010	Crude oil	10	NT2	9\％	9\％	${ }^{8 \%}$	${ }^{8 \%}$	6\％	6\％	5\％	5\％	${ }^{4 \%}$	4%	3\％	3\％	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	0\％	\％	\％	\％
1074	15，15， 2,20	－Facioios of umerine of	10	HL	0\％	0\％	10\％	10\％	10\％	10\％	\％	10\％	10\％	10\％	10\％	10\％	10\％	\％	10\％	10\％	10\％	10\％	10\％	10\％
1075	15，15，9090	－other	10	NT2	9\％	\％	${ }^{8 \%}$	${ }^{8 \%}$	6\％	\％	5\％	${ }^{5 \%}$	4%	${ }^{4 \%}$	3\％	3\％	2\％	${ }^{2 \%}$	\％	\％	\％	\％	\％	\％
$7{ }^{7}$	${ }^{15,159,011}$	Crude oil	10	T2	${ }^{9 \%}$	${ }^{9 \%}$	${ }^{8 \%}$	${ }^{8 \%}$	${ }^{6 \%}$	6\％	${ }^{5 \%}$	${ }^{5 \%}$	${ }^{4 \%}$	${ }^{4 \%}$	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	0\％	0\％	\％	\％
1077	${ }^{15,15,9,012}$	\cdots Fracions of turined ol	10	HLL	0\％	10\％	\％	0\％	10\％	10\％	\％	10\％	0\％	\％\％	10\％	10\％	\％	10\％	\％	10\％	\％	10\％	10\％	\％\％
1078	15，159，019	－Other	10	ISL	10\％	0\％	10\％	10\％	10\％	10\％	0\％	10\％	0\％	0\％	10\％	10\％	\％	\％	10\％	0\％	0\％	\％	10\％	\％
1079	${ }^{15,159,021}$	－Crude oll	10	NT2	9\％	\％\％	8\％	8\％	6\％	6\％	5\％	5\％	4\％	4\％	3\％	3\％	${ }^{2 \%}$	${ }^{2 \%}$	\％	0\％	0\％	0\％	0\％	\％
1080	${ }^{15,159,022}$	－－Factios of turefined oil	10	HSL	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	0\％	10\％	10\％	10\％	10\％	10\％	\％
1081	15，15，9，29	Onher	10	NT2	9\％	9\％	${ }^{8 \%}$	${ }^{8 \%}$	6%	6\％	${ }^{5 \%}$	${ }^{5 \%}$	$4{ }^{46}$	4\％	3\％	3\％	2\％	${ }^{2 \%}$	\％	0\％	\％	\％	\％	\％
1082	15，15，${ }^{\text {a }}$ ， 1	－－Cnde oil	10	NT2	9\％	9\％	8\％	8\％	6\％	6\％	5\％	5\％	4\％	4\％	3\％	3\％	2\％	2%	0\％	\％	\％	\％	\％	\％
1083	15，15，9，32	FFations of turefine of	10	HL	10\％	10\％	0\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	0\％	10\％	10\％	10\％	10\％	10\％	\％
1084	15，15，039	－other	10	Ist	10\％	10\％	0\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	0\％	0\％	10\％	10\％	0\％	10\％	10\％	0\％
1708	15，15，991	－－Cnue oll	10	N2	9\％	9\％	8\％	8%	6\％	6\％	5\％	5\％	4%	4%	\％	${ }^{3}$	${ }^{2 \%}$	${ }^{2} \%$	\％	0\％	0\％	\％	\％	0\％
1086	15，15，992	－Faction ofur	10	IsL	0\％	10\％	0\％	10\％	10%	10\％	10\％	0\％	10\％	10\％	10\％	10\％	0\％	0\％	0\％	0\％	0\％	0\％	10\％	0\％
1087	15，15，909	－－other	10	IsL	0\％	10\％	\％\％	10\％	10\％	10\％	0\％	10\％	10\％	10\％	10\％	10\％	10\％	0\％	10\％	\％	10\％	10\％	10\％	10\％
1088		－In packings of a net weghtot 10 kgo r more	30	EL	\bigcirc	\bigcirc	－	ט	\bigcirc	${ }^{\circ}$	0	0	U											
1089	15，61，090	－－other	${ }^{30}$	${ }_{\text {EL }}$	U	U	0	U	\bigcirc	0	\bigcirc	\bigcirc	\bigcirc	0	0	0	0	U	U	0	0	U	U	\bigcirc
1090	15，16，0，011	－ t sova beans	10	T2	\％	9\％	${ }_{8} 8$	8%	6\％	6\％	5\％	${ }^{5 \%}$	${ }^{4 \%}$	4%	3\％	${ }^{\text {3\％}}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％\％	0\％	0\％	0\％	\％
1091	${ }^{15,162,012}$	－Ot te trutiof the ol pam，crude	10	N2	${ }^{9 \%}$	${ }^{9 \%}$	${ }^{8 \%}$	${ }^{8 \%}$	${ }^{6 \%}$	6\％	5\％	${ }^{5 \%}$	${ }^{4 \%}$	${ }^{4 \%}$	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％	\％	\％	\％
1092	15，16，013	Of the triut of the ol ipam，olter than crue	10	NT2	\％	9\％	8\％	8\％	6\％	6\％	5\％	5\％	4\％	${ }^{4 \%}$	3\％	3\％	2\％	${ }^{2 \%}$	\％	\％	\％\％	\％	0\％	\％
1093	15，16，014	－ot coocous	10	N2	9\％	9\％	8\％	8\％	6\％	6\％	${ }^{5 \%}$	5\％	${ }^{4 \%}$	${ }^{46}$	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	0\％	0\％	\％	\％	\％\％
1094	${ }^{15,162,015}$	－Of pam kemens，cunde	10	ง2	${ }^{9}$	\％	${ }^{8 \%}$	${ }^{8 \%}$	6\％	${ }^{6 \%}$	${ }^{5 \%}$	${ }^{5 \%}$	${ }^{4 \%}$	${ }^{4 \%}$	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	0\％	\％	\％	\％	0\％
1095	15，16，0016	\cdots Of palm kernels，refined，bleached and deodorized（ RBD ）	${ }^{10}$	ज2	${ }^{9 \%}$	${ }^{\text {\％}}$	${ }^{8}$	${ }^{8 \%}$	${ }^{6 \%}$	\％	${ }^{5 \%}$	${ }^{5 \%}$	${ }^{4 \%}$	${ }^{4 \%}$	3\％	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％	\％	\％	\％
1096	${ }^{15,162,017}$	－ Of fround．nuts	10	Ist	0\％	10\％	10\％	\％	10\％	10\％	\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％
1097	${ }^{15,162,018}$	$\cdots \mathrm{Offinsed}$	10	HSL	10\％	10\％	0\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％
1098	${ }^{15,162,019}$	－other	10	${ }^{\text {HSL }}$	10\％	${ }^{10 \%}$	${ }^{10 \%}$	${ }^{10 \%}$	${ }^{10 \%}$	10\％	10\％	10\％	${ }^{10 \%}$	${ }^{10 \%}$	10\％	${ }^{10 \%}$	${ }^{10 \%}$	${ }^{10 \%}$	${ }^{10 \%}$	${ }^{10 \%}$	${ }^{10 \%}$	10\％	${ }^{10 \%}$	\％
1099	15，16，2，21	Of ground－nuts，soya beans，fruit of the oil palm， palm kernels or coconuts	10	${ }^{\text {NT2 }}$	9\％	9\％	8\％	8\％	${ }^{6 \%}$	6\％	5\％	5\％	4\％	4%	${ }^{\text {3\％}}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	0\％	\％	\％	0\％	\％
1100	15，162，022	$\cdots \mathrm{Of}$ inseed	10	HSL	10\％	10\％	0\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	\％
1101	${ }^{15,162,023}$	－Ootives	10	Ist	0\％	10\％	0\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	${ }^{10 \%}$	10\％	\％\％	10\％	10\％	10\％	10\％	10\％	\％
1102	15，16，2029	－OMer	10	NT2	${ }^{9}$	\％	${ }^{8} \%$	${ }^{8 \%}$	6\％	6\％	5\％	${ }^{5 \%}$	4\％	4\％	${ }^{\text {3\％}}$	${ }^{3 \%}$	2\％	2\％	\％	\％	0\％	\％	\％	\％
${ }^{1103}$	15，16，2，51	－Unefined	10	NT2	\％	\％	${ }_{8} \%$	${ }_{8 \%}$	6\％	6\％	5\％	5\％	4\％	${ }^{4 \%}$	3\％	3\％	2\％	${ }^{2 \%}$	\％	\％\％	0\％	0\％	\％	\％
1104	15，662，052	－Refineo，bieached and deodorised（RB0）	10	N2	9\％	9\％	8\％	$8{ }^{8 \%}$	6\％	6\％	5\％	${ }^{5 \%}$	${ }^{4 \%}$	${ }^{4 \%}$	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	0\％	\％	\％	\％	\％
1105	15，162，059	－Other	10	N2	\％$\%$	\％	8\％	8%	6\％	6\％	5\％	5\％	4%	4%	\％	3\％	${ }^{2 \%}$	${ }^{2} \%$	\％	0\％	0\％	0\％	0\％	\％
${ }^{1106}$		Of inseed	10	IsL	0\％	\％\％	0\％	\％	0\％	0\％	\％\％	10\％	10\％	10\％	10\％	10\％	\％	\％\％	\％	0\％	10\％	${ }^{10 \%}$	10\％	0\％
1107	15，16，2，93	Ofotives	10	HSL	10\％	10\％	0\％	10\％	10\％	10\％	0\％	10\％	10\％	10\％	10\％	10\％	10\％	0\％	10\％	0\％	10\％	10\％	10\％	0\％
1108	15，16，2094	$\cdots \mathrm{Of}$ Sola beans	10	NT2	9\％	9\％	${ }^{8 \%}$	${ }^{8 \%}$	6\％	6%	5\％	5\％	4%	4%	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	0\％	0\％	0\％	0\％	\％
1109	${ }^{15,162,095}$	－－Hydrogenated castoro il（opal wex	10	NT2	9\％	9\％	${ }^{8 \%}$	${ }^{8 \%}$	6\％	6\％	5\％	5\％	4\％	4\％	3\％	3\％	2\％	${ }^{2 \%}$	0\％	0\％	\％\％	\％	\％	0\％
1110	15，16，2，96	\cdots Refined，bleached and doodorised（RBD）palm	10	NT2	${ }^{9}$	\％	${ }_{8 \%}$	8%	6\％	6\％	5\％	5\％	${ }^{4 \%}$	${ }^{4 \%}$	${ }^{\text {3\％}}$	3\％	2\％	${ }^{2 \%}$	\％	0\％	\％	\％	\％	\％
${ }^{1111}$	15，162，097	Hydrogenated and refined，bleached and deodorised（RBD）palm kernel stearin or olein	${ }^{10}$	NT2	${ }^{9 \%}$	${ }^{9 \%}$	${ }^{8 \%}$	${ }^{8 \%}$	6\％	\％	${ }^{5 \%}$	${ }^{5 \%}$	4\％	${ }^{4 \%}$	${ }^{\text {3\％}}$	${ }^{\text {\％}}$	${ }^{2 \%}$	${ }^{2 \%}$	0\％	0\％	0\％	0\％	\％	0\％
${ }^{1112}$	15，16，2，98		10	N2	${ }^{9 \%}$	${ }^{9 \%}$	${ }_{8} 8$	${ }_{8}^{8 \%}$	6\％	${ }^{6 \%}$	5\％	${ }^{5 \%}$	${ }^{4 \%}$	${ }^{4 \%}$	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％	\％	\％	\％
${ }^{1113}$	15，162，099	\cdots－	10	N2	9\％	\％	${ }_{8 \%}$	${ }_{8 \%}$	6\％	6\％	5\％	5\％	4\％	4\％	3\％	3\％	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	0\％	\％	\％	\％
1114	15，77，1，00	－Magagine excluding liquid magaine	10	NT2	\％	\％	8%	8\％	6\％	6\％	5\％	5\％	4\％	${ }^{4 \%}$	3\％	3\％	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	0\％	\％	\％	\％
${ }^{1115}$	${ }^{15,779,010}$	－Intaialo ghee	10	N2	9\％	9\％	8%	${ }^{8 \%}$	6\％	6\％	5\％	${ }^{5 \%}$	${ }^{4 \%}$	${ }^{4 \%}$	3\％	3\％	${ }^{2 \%}$	${ }^{2 \%}$	0\％	0\％	\％\％	\％	\％	\％
${ }^{11116}$	15，77，020	LLquid magaine	10	N2	\％	9\％	8%	${ }^{8 \%}$	6\％	6\％	5\％	5\％	$4{ }^{4 \%}$	${ }^{4 \%}$	3\％	3\％	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％	\％	\％	0\％
${ }^{1117}$	${ }^{15,179,030}$	\cdots	10	NT2	\％	9\％	8%	${ }^{8 \%}$	6\％	6\％	5\％	5\％	4%	${ }^{4 \%}$	3\％	3\％	2\％	2%	\％	0\％	\％\％	\％	\％	\％
${ }^{1118}$	15，79，043	eing	10	N2	${ }^{9}$	9\％	${ }^{8 \%}$	${ }_{8}{ }^{8}$	6\％	6%	5\％	5\％	4%	4%	${ }^{3}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％	\％	\％	\％
${ }^{1119}$	15，77，044	Imaiaion lad	10	NT2	9\％	\％	${ }^{8 \%}$	${ }^{8 \%}$	6\％	6\％	5\％	5\％	4%	4%	3\％	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％	\％	\％	\％
1120	${ }^{15,179,050}$	－Sold mixues or preparations	10	NT2	9\％	9\％	8\％	8\％	6%	6\％	5\％	5\％	4\％	4%	3\％	3\％	2\％	2%	\％	0\％	\％\％	\％	\％	\％
1121	${ }^{15,79,061}$	－In wich ground．untol ipedodminates	10	NT2	9\％	\％	${ }^{8 \%}$	${ }^{8 \%}$	6\％	6\％	5\％	5\％	4%	4%	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	0\％	\％	\％	\％	\％
1122	${ }^{15,77,9,062}$	－Inwich coude pam oil presominiases	10	N2	\％	\％	${ }^{8 \%}$	${ }^{8 \%}$	6\％	6\％	5\％	5\％	$4{ }^{4 \%}$	$4{ }^{4 \%}$	3\％	3\％	${ }^{2 \%}$	2\％	0\％	0\％	\％	\％	\％	\％
${ }^{1123}$	15，77，．063	．．．－In which other palm oil predominates，in packings of a net weight of less than 20 kg	10	NT2	\％	\％	${ }_{8} 8$	8\％	6\％	6\％	5\％	${ }^{5 \%}$	\％	4%	${ }^{\text {3\％}}$	3\％	${ }^{2 \%}$	${ }^{2 \%}$	0\％	\％	0\％	\％	\％	0\％
${ }^{1124}$	${ }^{15,17}$	which other palm oil predominates，in	10	N2	${ }^{9}$	${ }_{9}{ }^{\circ}$	${ }^{8 \%}$	${ }^{8 \%}$	6\％	${ }^{6 \%}$	${ }^{5 \%}$	${ }^{5 \%}$	${ }^{4 \%}$	${ }_{4}$	${ }^{3}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	0\％	\％	\％	\％	\％
1125	15，77，9065	\cdots	10	N2	9\％	\％	${ }_{8}^{8 \%}$	${ }_{8 \%}$	6\％	6\％	${ }^{5 \%}$	5\％	4\％	${ }^{4 / 8}$	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	0\％	\％	\％	\％
${ }^{12126}$	${ }^{15,179,066}$	In Which palm keme Iolin predominiaes	10	N2	\％\％	\％	8\％	${ }^{8 \%}$	6\％	6\％	5\％	5\％	4\％	${ }^{46}$	${ }^{3 \%}$	3\％	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％\％	\％	\％	\％	\％\％
${ }^{1127}$	${ }^{15,779,067}$	In wich sovabean oliprecominiales	10	N2	9\％	\％	\％	${ }^{8 \%}$	6\％	6\％	5\％	${ }^{5 \%}$	${ }^{4 \%}$	${ }^{4 \%}$	3\％	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	0\％	\％	\％	\％	\％	\％
${ }^{1128}$	${ }^{15,779,068}$	In which lime nuto olpredominates	10	т2	9\％	\％	${ }^{8 \%}$	${ }^{8 \%}$	6%	6\％	5\％	${ }^{5 \%}$	$4{ }^{4 \%}$	${ }^{4 \%}$	${ }^{3}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	0\％	\％	\％	0\％	\％	\％
1129	15，77，969	Oher	10	N2	9\％	9\％	${ }^{8 \%}$	${ }^{8 \%}$	6\％	6\％	5\％	5\％	4%	${ }^{4 \%}$	3\％	3\％	2\％	${ }^{2 \%}$	\％	0\％	\％\％	\％	\％	\％
${ }^{1130}$	${ }^{15,77,9,90}$	－other	10	N2	${ }^{9 \%}$	${ }^{9}$	${ }_{8}^{8 \%}$	${ }_{8} 8$	6\％	6\％	${ }_{5 \%}$	5\％	${ }^{4 \%}$	4%	${ }^{3 \%}$	${ }^{3} \%$	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％	\％	0\％	\％
${ }^{1131}$	${ }^{15,180,012}$	－Animal alas and olis	10	HSL	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	0\％	10\％	10\％	0\％
${ }^{1132}$	${ }^{15,180,014}$	－Giound inut sya bean，palm or coconut oll	10	N2	9\％	9\％	${ }^{8 \%}$	${ }^{8 \%}$	6\％	6\％	5\％	5\％	4%	4%	${ }^{3 \%}$	3\％	2%	${ }^{2 \%}$	0\％	0\％	0\％	0\％	0\％	\％
${ }^{1133}$	${ }^{15,18,0,015}$	－Lissed ol ir and is tracions	10	HSL	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10%	10\％	10\％
${ }^{1134}$	${ }^{15,180,016}$	Oive of land it fractions	${ }^{10}$	HSL	10\％	10\％	\％\％	10\％	${ }^{10 \%}$	10\％	10\％	${ }^{10 \%}$	${ }^{10 \%}$	10\％	${ }^{10 \%}$	10\％	${ }^{10 \%}$	0\％	${ }^{10 \%}$	${ }^{10 \%}$	10\％	10\％	10%	${ }^{10 \%}$
${ }^{1135}$	15，88，019	－－oner	10	N2	9\％	9\％	8\％	8\％	6\％	6\％	5\％	5\％	4%	4%	3\％	3\％	2%	2%	0\％	\％\％	0\％	\％	\％	\％
${ }^{1136}$	15，18，0，20	Inedible mixtures or preparations of animal fats or oils or of fractions of different fats or oils	10	HSL	\％	10\％	10\％	10\％	10\％	10\％	0\％	\％\％	10\％	\％	10\％	10\％	10\％	10\％	${ }^{10 \%}$	10\％	10\％	10\％	\％\％	10\％
${ }^{1137}$	${ }^{15,180,031}$	－Of the futut f fte oil palm or of palm kemels	${ }^{10}$	${ }^{\text {NT2 }}$	${ }^{9 \%}$	${ }^{9 \%}$	${ }_{8 \%}$	${ }_{8 \%}$	6\％	6\％	5\％	${ }^{5 \%}$	${ }^{4 \%}$	${ }^{46}$	3\％	3\％	${ }^{2 \%}$	${ }^{2 \%}$	\％	0\％	\％\％	0\％	\％	0\％
${ }^{1138}$	15，18，0，33	－ortinsed	10	NT2	9\％	9\％	${ }^{8 \%}$	${ }^{8 \%}$	6\％	6\％	5\％	5\％	4%	${ }^{4 \%}$	${ }^{3}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％	\％	0\％	\％
${ }^{1139}$	${ }^{15,180,034}$	Orofues	10	N2	9\％	9\％	8\％	8\％	6\％	6\％	5\％	5\％	4%	$4{ }^{4 \%}$	3\％	3\％	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％	\％	\％	\％
1140	${ }^{15,18,0,35}$	－of ground．als	${ }^{10}$	HsL	${ }^{10 \%}$	10\％	\％\％	${ }^{10 \%}$	${ }^{10 \%}$	10\％	10\％	10\％	10\％	10\％	10\％	${ }^{10 \%}$	${ }^{10 \%}$	${ }^{10 \%}$	10\％	10\％	10\％	10\％	10\％	10\％
${ }^{1141}$	${ }^{15,18,0,366}$	－Ot sova beans or coconus	10	HSL	10\％	10\％	10\％	${ }^{10 \%}$	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％
${ }^{1142}$	${ }^{15,18,0,37}$	Of cotor seeds	10	NT2	9\％	9\％	8%	8\％	6\％	6\％	5\％	5\％	4%	4%	${ }^{3 \%}$	3\％	${ }^{2 \%}$	${ }^{2 \%}$	\％	0\％	\％	0\％	0\％	\％
${ }^{1143}$	15，18，0，39	－－oner	10	${ }^{\text {HSL }}$	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％
1144	15，180，060	Inedible mixtures or preparations of animal fats or oils or of fractions thereof and vegetable fats or oils or fractions thereof	${ }^{10}$	${ }^{\text {NT2 }}$	${ }^{\circ} \%$	9\％	${ }_{8 \%}$	${ }^{8 \%}$	6\％	6\％	5\％	5\％	4%	${ }^{4 \%}$	3\％	${ }^{3 \%}$	2\％	2\％	\％	0\％	0\％	\％	\％	\％
${ }^{1145}$	${ }^{15,200,010}$	－Crude giverol	${ }^{10}$	T2	\％	\％	8%	${ }^{8 \%}$	6\％	6\％	5\％	5\％	4\％	4\％	3\％	3\％	2\％	2\％	\％	0\％	\％\％	0\％	\％	\％
${ }^{1146}$	${ }^{15,200,090}$	Ofter	${ }^{10}$	IsL	10\％	10\％	10\％	${ }^{10 \%}$	10\％	10\％	10\％	10\％	${ }^{10 \%}$	10\％	10\％	10\％	10\％	10\％	${ }^{10 \%}$	10\％	${ }^{10 \%}$	10\％	${ }^{10 \%}$	10\％
${ }^{1147}$	${ }^{15,21,000}$	－Vegeabe wexes	10	N2	${ }^{\text {9\％}}$	9\％	${ }^{8 \%}$	${ }^{8 \%}$	${ }^{6 \%}$	6\％	${ }_{5 \%}$	${ }^{5 \%}$	4%	${ }^{4 \%}$	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	0\％	\％	\％	\％
${ }^{1148}$	${ }^{15,219,010}$	－Besswax and other insect wees	10	N2	9\％	9\％	8\％	${ }^{8 \%}$	6\％	6\％	5\％	5\％	4\％	4\％	${ }^{3 \%}$	3\％	2\％	${ }^{2 \%}$	0\％	0\％	0\％	\％	0\％	\％
${ }^{1149}$	${ }^{15,219,020}$	－Spemaceif	10	N2	9\％	\％	8%	8\％	6\％	6\％	${ }^{5 \%}$	${ }^{5 \%}$	${ }^{4 \%}$	4\％	${ }^{3 \%}$	3\％	2%	${ }^{2 \%}$	\％	0\％	\％\％	0\％	0\％	\％
1150	${ }^{15,220,010}$	－Degas	10	N2	9\％	9\％	8\％	8\％	6\％	6\％	5\％	5\％	$4{ }^{4 \%}$	4\％	3\％	3\％	2%	${ }^{2 \%}$	0\％	0\％	0\％	\％	\％	\％
${ }^{1151}$	${ }^{15,220,090}$	－Oner	10	N2	9\％	\％$\%$	${ }_{8 \%}$	${ }^{8 \%}$	6\％	6\％	5\％	${ }^{5 \%}$	4%	4%	3\％	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％	0\％	\％	\％
${ }^{1152}$	$1{ }^{16,00,0,010}$	－ naringit conlaners	${ }^{30}$	HLL	30\％	30\％	30\％	30\％	30\％	30\％	30\％	30\％	30\％	30\％	30\％	30\％	30\％	30\％	${ }^{30 \%}$	${ }^{30 \%}$	30\％	30\％	30\％	30\％
${ }^{1153}$	${ }^{16,010,090}$	－orner	${ }^{30}$	HL	${ }^{30 \%}$	30\％	30\％	30\％	${ }^{30 \%}$	30\％	30\％	${ }^{30 \%}$	30\％	30\％	${ }^{30 \%}$	${ }^{30 \%}$	${ }^{30 \%}$	${ }^{30 \%}$	${ }^{30 \%}$	${ }^{30 \%}$	${ }^{30 \%}$	30\％	30%	30\％
${ }^{1154}$	\＃\＃\＃\＃\＃	Conlaining pork，in anitight conlianers	${ }^{30}$	Ist	\％\％	\％	30\％	${ }^{30 \%}$	${ }^{30 \%}$	30\％	${ }^{30 \%}$	${ }^{30 \%}$	${ }^{30 \%}$	30\％	${ }^{30 \%}$	30\％	${ }^{30 \%}$	30\％	30\％	${ }^{30 \%}$	30\％	${ }^{30 \%}$	30\％	30\％
1155	18，021，090	－－omer	${ }^{30}$	ist	30\％	00\％	00\％	30\％	30\％	30\％	30\％	30\％	30\％	30\％	${ }^{30 \%}$	30\％	30\％	00\％	${ }^{30 \%}$	${ }^{30 \%}$	30\％	${ }^{30 \%}$	${ }^{30 \%}$	30\％
${ }^{1156}$	${ }^{16,02,000}$	Of livero tany animal	${ }^{30}$	EL	${ }^{\circ}$	${ }^{\text {u }}$	${ }^{\text {u }}$	${ }^{\text {u }}$	U	U	U	U	U	U	U	U	u	U	U	U	U	U	u	U
1157	16，02，110		30	EL	U	\bigcirc	0		U	\bigcirc	U	U	U	，	，	，	U	U	U	U	0	\bigcirc	U	\bigcirc
${ }^{1158}$	${ }^{17,023,191}$	Mereraicaly doboned or spearaied meat	30	EL	U	O	O	U	0	\bigcirc	0	U	0	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	0	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc

香港•ASEAN FTAにかかる調査報告書

別添2－4 原産地品の関税撤廃スケジュール
（ラオス）

1159	$1{ }^{16,023,199}$	Other	30	EL	\bigcirc	\bigcirc	0	U	\bigcirc	\bigcirc	0	ט	U	U	U	\bigcirc	U	0	U	0	U	\bigcirc	0	，
1160	${ }^{16,023,210}$	curr，in aritight onlaines	${ }^{30}$	EL	\bigcirc	\bigcirc	\bigcirc	U	\bigcirc	\bigcirc		\bigcirc	\bigcirc	\bigcirc	\bigcirc	U	\bigcirc	－	U	U	\checkmark	ט	U	0
1161	16，023，290	Other	${ }^{30}$	EL	\bigcirc	\bigcirc	0	\bigcirc	\bigcirc	\bigcirc	0	\bigcirc		\bigcirc	\bigcirc			\bigcirc		U	\bigcirc	\bigcirc	\bigcirc	\bigcirc
1162	16，02，9，00	Onter	${ }^{30}$	EL	ט	－	U	\bigcirc	0	ט	－	ט	－		ט	ט		U	O	U	U	U	U	0
1163	${ }^{16,024,10}$	－Inaright oonamers	${ }^{30}$	EL	\bigcirc	0	0	0	\bigcirc	0	0	ט	0	U	0	U	－	U	0	U	ט	U	－	U
1164	${ }^{16,024,90}$	－other	${ }^{30}$	EL	U	0	U	\bigcirc	\bigcirc	\bigcirc	－	\bigcirc	U	\bigcirc	U	0	U	0	U	\bigcirc	\bigcirc	\bigcirc	U	\bigcirc
1165	16，042，210	－nairigit conliners	${ }^{30}$	EL	0	\bigcirc	\bigcirc	0	\bigcirc	\bigcirc	\bigcirc	0	0	0	\bigcirc	\bigcirc	\bigcirc	0	0	\bigcirc	0	0	0	\bigcirc
${ }^{1166}$	${ }^{16,024,290}$	－Other	${ }^{30}$	EL	0	U	0	U	0	0	0	\bigcirc	0	0	\bigcirc	\bigcirc	\bigcirc	0	U	U	\bigcirc	U	U	\bigcirc
1167	16，024，911	Inaitight onlainers	${ }^{30}$	EL	ט	ט	ט	U	ט	ט	U	－	U	U	\bigcirc	\bigcirc	\bigcirc	U	ט	－	\bigcirc	U	ט	\bigcirc
${ }^{1168}$	$16,024,919$	Oner	${ }^{30}$	EL	\bigcirc	－	－	\bigcirc	ט	－	－	0	ט	－	\bigcirc	\bigcirc	ט	－	\bigcirc	ט	0	0	\bigcirc	\bigcirc
1169	16，024，991	－Inatight conaines	${ }^{30}$	EL	U	0	0	U	0	0	0	U	0	0	\bigcirc	U	0	0	U	U	0	O	0	\bigcirc
1170	16，024，999	Other	${ }^{30}$	EL	U	0	\bigcirc	\bigcirc	\bigcirc	u	0	\bigcirc	0	\bigcirc	U	ט	U	－	U	ט	\bigcirc	－	ט	U
1771	1 16，025，000	Of bovine animas	${ }^{30}$	${ }_{\text {EL }}$	U	U	U	\bigcirc	，	，	0	\bigcirc	U	，	U	ט	U	O	\bigcirc	ט	\bigcirc	－	\bigcirc	U
${ }^{1172}$	16，02，0，010	Mutoo cury，inairight onnainels	${ }^{30}$	EL	\bigcirc	ט	U	U	ט	\bigcirc	U	U	U	\bigcirc	0	\bigcirc	－	，	U	\cup	\bigcirc	\bigcirc		\bigcirc
${ }^{1773}$	16，02，0，90	Oner	30	${ }^{\text {EL }}$	U	U	\bigcirc	U	\bigcirc	0	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	0	\bigcirc	－	U	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
177	18，030，010	－or chicken，wilh heebs	10	т2	\％	9\％	8%	8%	6\％	6\％	5\％	5\％	4%	4\％	3\％	3\％	${ }^{2 \%}$	2\％	0\％	\％	\％\％	0\％	\％\％	\％\％
${ }^{1775}$	18，03，020		10	N2	9\％	9\％	8%	8%	6\％	6\％	5\％	5\％	4%	4%	${ }^{3 \%}$	3\％	${ }^{2 \%}$	${ }^{2 \%}$	0\％	\％	\％	0\％	\％\％	\％
${ }^{1176}$	${ }^{16,030,030}$	－Otere，witheets	10	N2	\％	9\％	${ }^{8 \%}$	${ }^{8 \%}$	6\％	6%	5\％	5\％	4%	4%	${ }^{3 \%}$	\％	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％	\％	\％	\％
1177	16，03，0，90	Oner	10	N2	${ }^{9}$	${ }^{\text {9\％}}$	${ }^{8 \%}$	${ }^{8} \%$	6\％	6\％	5\％	${ }^{5 \%}$	4\％	4%	${ }^{3 \%}$	3\％	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％	\％	\％	\％
${ }^{1778}$	\＃\＃\＃\＃\＃\＃\＃tat	－Inainight onlainers	${ }^{30}$	EL	ט	\bigcirc	－	ט	ט	ט	ט	U	ט	\bigcirc	ט	ט	ט	ט	0	ט	\bigcirc	ט	0	\bigcirc
1179	16，041，90	－Other	${ }^{30}$	EL	0	0	0	－	0	0	0	O	0	0	\bigcirc	U	0	U	O	\bigcirc	0	－	O	\bigcirc
${ }^{1180}$	\＃mmmmumat	－In airight conainers	${ }^{30}$	EL	0	0	U	U	\bigcirc	0	U	U	0	u	U	0	0	，	U	ט	\bigcirc	－	ט	U
${ }^{1181}$	${ }^{16,04,2,20}$	Other	30	EL	0	0	－	0	0	\bigcirc	0	\bigcirc	U	0	\bigcirc	\bigcirc	\bigcirc	U	\bigcirc	ט	\bigcirc	0	0	\bigcirc
${ }^{1182}$	16，04， 311	－Inaitight oondienes	${ }^{30}$	EL	\bigcirc	ט	U	U	U	U	U	U	U	U	U	\checkmark	U	U	U	－	\bigcirc	\bigcirc	0	U
${ }^{1183}$	$1{ }^{16,04,1,319}$	－other	${ }^{30}$	${ }^{\text {EL }}$	U	U	\bigcirc	0	U	U	U	U	U	U	\bigcirc									
1184	${ }^{16,041,391}$	－Inaright conamers	${ }^{30}$	${ }^{\text {EL }}$	\bigcirc	U	－	U	－	－	U	U	U	－	U	U	－	－	U	U	\bigcirc	\bigcirc	U	\bigcirc
${ }^{1185}$	${ }^{16,041,399}$	…Oner	${ }^{30}$	${ }^{\text {EL }}$	\bigcirc	0	0	0	0	0	U	0	0	0	U	\bigcirc	0	U	0	U	0	\bigcirc	0	\bigcirc
${ }^{1186}$	${ }^{16,04,411}$	Tunas	${ }^{30}$	EL	0	0	\bigcirc	U	\bigcirc	0	0	\bigcirc	－	0	0	ט	U	0	ט	\bigcirc	\bigcirc	\bigcirc	ט	\bigcirc
${ }^{1887}$	${ }^{16,041,419}$	Other	${ }^{30}$	EL	\bigcirc	－	\bigcirc	U	\bigcirc	\bigcirc	ט	U	U	U	ט	\bigcirc	U	U	ט	－	\bigcirc	U	ט	\bigcirc
${ }^{1188}$	$1{ }^{16,041,490}$	Other	${ }^{30}$	EL	U	\bigcirc	－	ט	\bigcirc	\bigcirc	－	－	－	\bigcirc	－	\bigcirc	－	－	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
1189	16，041，510	－Inaitight conliness	30	EL	0	\bigcirc	0	U	0	0	0	0	0	0	0	\bigcirc	0	0	U	ט	0	0	0	U
1190	16，041，590	－other	${ }^{30}$	EL	\bigcirc	U	\checkmark	0	\checkmark	0	U	\bigcirc	\checkmark	U	\checkmark	U	\bigcirc	－	U	\bigcirc	0	0	0	\bigcirc
1191	16，04， 610	－Inairight conamers	${ }^{30}$	${ }^{\text {EL }}$	0	ט	U	U	0	0	O	O	－	0	－	\bigcirc	－	0	U	U	\bigcirc	\bigcirc	ט	\bigcirc
${ }^{1192}$	16，041，990	Other	${ }^{30}$	${ }^{\text {EL }}$	U	\bigcirc	U	U	\bigcirc	U	U	\bigcirc	U	U	U	ט	U	U	ט		0	U	ט	U
${ }^{193}$	${ }^{16,04,7,710}$	－Inaritght oonlaners	${ }^{30}$	${ }^{\text {EL }}$	U	U	－	\bigcirc	\bigcirc	\bigcirc	－	\bigcirc	－	\bigcirc	－	\bigcirc	－	U	U	U	U	\bigcirc	U	U
1194	16，041，790	－Other	${ }^{30}$	${ }^{\text {EL }}$	ט	ט	U	U	U	ט	U	－	U	U	U	\checkmark	U	U	U	U	U	ט	U	\bigcirc
${ }^{1195}$	${ }^{16,041,920}$	\cdots Hosse mackerel，in inigiticomaniers	${ }^{30}$	${ }^{\text {EL }}$	\bigcirc	0	0	0	0	0	U	0	U	0	0	\bigcirc	0	U	0	U	0	\bigcirc	0	\bigcirc
${ }^{1196}$	${ }^{16,04,930}$	OOner，in inigit cominines	${ }^{30}$	EL	0	0	U	U	\bigcirc	0	－	\bigcirc	U	0	U	ט	U	－	ט	U	\bigcirc	\bigcirc	0	\bigcirc
1197	${ }^{16,041,990}$	－other	${ }^{30}$	EL	ט	\bigcirc	\bigcirc	ט	\bigcirc	\bigcirc	\bigcirc	\bigcirc	U	\bigcirc	\bigcirc	\bigcirc	U	\bigcirc	\bigcirc	U	\bigcirc	\bigcirc	U	\bigcirc
${ }^{1198}$	16，042，011	－Imaritghtomanames	${ }^{30}$	EL	0	0	－	0	0	0	0	0	0	0	0	－	0	0	0	U	0	0	0	0
1199	16，042，019	\cdots	${ }^{30}$	EL	0	0	U	U	\bigcirc	0	U	0	\bigcirc	0	0	U	0	0	0	－	0	0	0	U
1200	16，042，021	．－Ma aritght comanaes	${ }^{30}$	EL	\bigcirc	0	0	－	U	0	0	\bigcirc	\bigcirc	0	\bigcirc	\bigcirc	\checkmark	0	0	\bigcirc	U	\bigcirc	0	\bigcirc
1201	16，042，029	Oher	${ }^{30}$	EL	U	0	U	U	U	\bigcirc	U	\bigcirc	\bigcirc	U	U	U	\bigcirc	U	U	U	\bigcirc	\bigcirc	ט	\bigcirc
1202	${ }^{16,02,0,91}$	－Imaritigh onlainers	${ }^{30}$	${ }^{\text {EL }}$	\bigcirc	\bigcirc	U	U	\bigcirc	0	－	\bigcirc	U	0	U	\bigcirc	U	0	ט	U	\bigcirc	U		\bigcirc
$1{ }^{1203}$	$1{ }^{16,02,0,93}$	－Forzen minced fish，bolle	${ }^{30}$	EL	0	0	O	U	0	0	0	0	0	0	U	－	0	0	U	U	0	0	U	U
1204	$11.042,099$	－－omer	${ }^{30}$	EL	U	ט	U	U	\checkmark	ט	\checkmark	\bigcirc	U	ט	U	\bigcirc	\checkmark	U	U	U	\bigcirc	\bigcirc	\bigcirc	\bigcirc
1205	${ }^{16,04,1,100}$	Cavar	${ }^{30}$	${ }_{\text {EL }}$	0	0	0	0	0	0	O	\bigcirc	U	0	0	\bigcirc	U	0	0	0	0	\bigcirc	0	0
1206	11，03，2，00	Cavar s sustitues	${ }^{30}$	${ }^{\text {EL }}$	U	ט	U	ט	\checkmark	\checkmark	U	\checkmark	\checkmark	\checkmark	U	\checkmark	\checkmark	\checkmark	ט	U	\bigcirc	\bigcirc	ט	\bigcirc
1207	\＃\＃\＃\＃\＃\＃\＃\＃	－Inarigit conliners	${ }^{30}$	EL	ט	\bigcirc	U	U	U	\bigcirc	\bigcirc	\bigcirc	U	\bigcirc	\bigcirc	\bigcirc	U	\bigcirc	U	U	\bigcirc	U	U	\bigcirc
1208	$17.051,090$	－oter	${ }^{30}$	EL	0	0	O	0	0	0	O	0	U	O	O	－	U	O	U	－	0	ט	U	\bigcirc
1209	18，052，110	－Shrimp paste	${ }^{30}$	EL	0	0	0	U	U	0	U	\bigcirc	U	0	U	\bigcirc	U	0	0	，	U	0	0	\bigcirc
1210	16，052，190	－－other	${ }^{30}$	EL	0	0	U	ט	－	U	\bigcirc	U	－	U	U	U	－	U	U	U	\bigcirc	－	－	\bigcirc
$\stackrel{1211}{12}$	${ }^{16,052,910}$	Shrimp pasie	${ }^{30}$	${ }^{\text {EL }}$	U	ט	U	U	\bigcirc	\bigcirc	－	\bigcirc	\checkmark	\bigcirc	U	\checkmark	\checkmark	\checkmark	U	U	\bigcirc	\bigcirc	\bigcirc	\bigcirc
$1{ }^{1212}$	${ }^{16,052,990}$	－other	${ }^{30}$	${ }^{\text {EL }}$	U	\bigcirc	U	U	\bigcirc	0	－	U	－	\bigcirc	U	\bigcirc	－	0	U	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
$\underline{1213}$	16，05，${ }^{\text {a }}$ O	－－osser	${ }^{30}$	EL	0	0	U	U	U	U	U	－	0	ט	U	0	U	U	U	0	0	0	U	0
$1{ }^{1214}$	16，054，000	－other crusiceans	${ }^{30}$	EL	\bigcirc	\bigcirc	U	U	\bigcirc	\bigcirc	\bigcirc	\bigcirc	－	\bigcirc	\bigcirc	\bigcirc	\checkmark	U	U	\bigcirc	\bigcirc	U	U	\bigcirc
$\underline{1215}$	${ }^{18,055,100}$	－oysers	${ }^{30}$	${ }_{\text {EL }}$	0	0	0	0	0	0	0	0	0	0	0	\bigcirc	U	U	0	，	0	\bigcirc	0	\checkmark
$1{ }^{1216}$	${ }^{16,055,200}$	－Scallos，induluing uveen sealops	${ }^{30}$	${ }^{\text {EL }}$	U	ט	U	U	\checkmark	\checkmark	U	\bigcirc	U	\checkmark	U	\bigcirc	U	－	ט	ט	\bigcirc	\bigcirc	U	\checkmark
$1{ }^{1217}$	${ }^{16,05,3,300}$	－Mussels	${ }^{30}$	EL	\bigcirc	\bigcirc	U	U	－	\bigcirc	\bigcirc	－	U	\bigcirc	\bigcirc	\bigcirc	－	U	U	ט	\bigcirc	\bigcirc	U	\bigcirc
${ }^{1218}$	$1{ }^{1,05,5,400}$	－Cutule fish and squid	${ }^{30}$	EL	U	U	U	U	U	U	U	U	U	U	U	－	U	U	U	U	ט	ט	U	\bigcirc
1219	16，05，500	－ocopus	${ }^{30}$	EL	0	0	U	U	U	0	U	\bigcirc	U	0	0	\bigcirc	0	0	0	U	，	0	0	0
1220	${ }^{15,055,500}$	－Clams，cockes and a aksinels	${ }^{30}$	${ }^{\text {EL }}$	U	U	\bigcirc	${ }^{0}$	\bigcirc	U	\bigcirc	\bigcirc	\bigcirc	0	\bigcirc									
1221	${ }^{16,05,700}$	－Abalone	${ }^{30}$	EL	U	ט	U	ט	\bigcirc	\bigcirc	－	\bigcirc	－	\bigcirc	U	\bigcirc	U	\bigcirc	U	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
$1{ }^{122}$	${ }^{16,05,5800}$	－Snails，oher than sea salals	${ }^{30}$	${ }^{\text {EL }}$	U	\bigcirc	U	U	U	\bigcirc	U	\bigcirc	－	0	U	\bigcirc	－	0	U	－	\bigcirc	－	\bigcirc	\bigcirc
${ }^{1223}$	${ }^{16,05,5900}$	Other	${ }^{30}$	${ }^{\text {EL }}$	0	U	U	ט	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	U	\bigcirc	U	\bigcirc	U	\bigcirc	0	0	U	\bigcirc
1224	18，05，100	－Seacucumbers	${ }^{30}$	${ }^{\text {EL }}$	ט	U	U	U	\bigcirc	\bigcirc	U	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	－	\bigcirc	\bigcirc	\bigcirc	\checkmark	\bigcirc	\bigcirc	\bigcirc
1225	${ }^{18,065,200}$	－Seauchins	${ }^{30}$	${ }_{\text {EL }}$	0	0	0	0	0	0	U	0	U	0	0	0	U	U	0	0	0	\bigcirc	0	\bigcirc
${ }^{1226}$	16，05， 300	－Jelvish	${ }^{30}$	${ }^{\text {EL }}$	U	ט	U	U	\checkmark	\checkmark	ט	－	\checkmark	U	ט	－	\checkmark	U	U	U	U	ט	U	\bigcirc
$1{ }^{127}$	11，05，900	－Oner	${ }^{30}$	${ }^{\text {EL }}$	\bigcirc	－	\bigcirc	\bigcirc	\bigcirc	－	\bigcirc	\bigcirc	U	\bigcirc	\bigcirc	\bigcirc	U	\bigcirc						
${ }^{1228}$	${ }^{17,011,200}$	－Beel sugar	${ }^{10}$	Ist	10\％	0\％	10\％	${ }^{10 \%}$	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	${ }^{10 \%}$	${ }^{10 \%}$	10\％	10\％	\％\％
$1{ }^{1229}$	17，01，300		10	${ }_{\text {ISL }}$	10\％	${ }^{10 \%}$	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	0\％	10\％	10\％
1230	${ }^{17,011,400}$	－－Oner cane sisgar	10	Ist	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10%	10\％	10\％	10\％	10\％	10\％	10\％	10%	10\％	10%
${ }^{1231}$	${ }^{17,099,100}$	Conaining a aded divouring or colouring mater	10	${ }^{\text {ISL }}$	10\％	0\％	${ }^{10 \%}$	${ }^{10 \%}$	${ }^{10 \%}$	${ }^{10 \%}$	${ }^{10 \%}$	${ }^{10 \%}$	${ }^{10 \%}$	${ }^{10 \%}$	${ }^{10 \%}$	${ }^{10 \%}$	${ }^{10 \%}$	10\％	${ }^{10 \%}$	${ }^{10 \%}$	${ }^{10 \%}$	${ }^{10 \%}$	${ }^{10 \%}$	${ }^{10 \%}$
1232	${ }^{17,019,911}$	－Wine	10	Ist	10\％	\％\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10%
1233	17，019，919	Oner	10	HSL	10\％	\％\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10%
1234	17，019，990	－－Other	${ }^{10}$	HsL	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％
${ }^{1235}$	${ }^{17,021,100}$	－－Containing by weight 99% or more lactose， expressed as anhydrous lactose，calculated on the dry matter	10	N1	${ }^{9 \%}$	${ }^{8 \%}$	6\％	5\％	4%	${ }^{3 \%}$	${ }^{2 \%}$	\％	\％	\％	\％	\％	\％	0\％	\％	\％	\％	0\％	\％	\％
1236	17，02，900	－Oner	10	NT2	9\％	9\％	${ }_{8}^{8 \%}$	${ }^{8 \%}$	6\％	6\％	5\％	5\％	4%	4\％	3\％	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	0\％	0\％	\％	\％
${ }^{1237}$	${ }^{17,02,000}$	－Mape sugara nod mape syup	10	NT2	9\％	9\％	8%	8%	6\％	6\％	5\％	5\％	4\％	4%	3\％	3\％	${ }^{2 \%}$	2%	\％	0\％	0\％	\％	\％	0\％
1238	${ }^{17,023,010}$	－Giluose	10	NT2	9\％	9\％	8%	${ }^{8 \%}$	6\％	6\％	5\％	5\％	$4{ }^{4 \%}$	4%	3\％	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％	\％\％	\％\％	\％
1239	17，02，020	－Giloses ssup	10	NT2	${ }^{9 \%}$	9\％	${ }^{8}$	${ }^{8} \%$	6\％	6\％	5\％	5\％	4\％	$4{ }^{4 \%}$	${ }^{3}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	0\％	\％	\％	\％
1240	17，024，000	－Glucose and glucose syrup，containing in the dry state at least 20% but less than 50% by weight of fructose，excluding invert sugar	${ }^{10}$	NT2	${ }^{9 \%}$	9\％	${ }^{8 \%}$	${ }^{8 \%}$	6\％	6\％	5\％	${ }^{5 \%}$	4\％	4\％	3\％	${ }^{3 \%}$	2\％	2\％	\％	0\％	0\％	\％	\％	\％
$1{ }^{1241}$	17，02，000	－Chemicaly pue tuctose	10	NT2	9\％	${ }^{9 \%}$	${ }^{8 \%}$	${ }^{8 \%}$	6\％	6\％	5\％	5\％	4%	4\％	3\％	3\％	2\％	2\％	0\％	0\％	0\％	0\％	0\％	0\％
$1{ }^{1242}$	17，02，010	－Fucolose	10	NT2	\％	9\％	8%	8%	6\％	6\％	5\％	5\％	4%	4%	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％\％	\％	\％	0\％	\％\％	\％
$1{ }^{1243}$	${ }^{17,026,020}$	－Fucoios spup	10	NT2	9\％	9\％	8%	8%	6\％	6\％	${ }^{5 \%}$	5\％	4%	4%	3\％	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％	\％	\％	\％
1244	17，02，011	．．．Chemically ure malose	10	NT2	9\％	9\％	8%	8%	6\％	6\％	5\％	5\％	4\％	4%	3\％	3\％	${ }^{2 \%}$	${ }^{2 \%}$	0\％	\％	\％	0\％	0\％	\％
$1{ }^{1245}$	17，02，019	－－－oner	10	NT2	9\％	9\％	8%	${ }^{8}$	6\％	6\％	5\％	5\％	4%	4%	3\％	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％	0\％	\％	0\％
1246	17，02，020	－－Artificial honey，whether or not mixed with natural honey	10	N2	9\％	\％	\％	8\％	6\％	6\％	5\％	5\％	${ }^{4 \%}$	4\％	3\％	3\％	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	0\％	\％	\％	\％
	17，02，030		10	NT2	9\％	${ }_{9} 9$	${ }^{8}$	${ }^{8 \%}$	${ }^{6 \%}$	6\％	${ }^{5 \%}$	${ }^{5 \%}$	${ }^{4 \%}$	4%	3\％	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％	\％	\％	\％

香港•ASEAN FTAにかかる調査報告書

別添2－4 原産地品の関税撤廃スケジュール
（ラオス）

$1{ }^{1248}$	${ }^{17,029,040}$	－Caramel	10	${ }^{\text {NT2 }}$	${ }^{9 \%}$	9\％	${ }^{8 \%}$	${ }^{8 \%}$	${ }^{6 \%}$	${ }^{6 \%}$	5\％	${ }^{5 \%}$	$4{ }^{4 \%}$	${ }^{4 \%}$	${ }^{3 \%}$	3\％	${ }^{2 \%}$	${ }^{2 \%}$	\％	0\％	\％	\％\％	\％	\％
${ }^{1249}$	17，02，091	－syups	10	NT2	9\％	9\％	\％	${ }_{8 \%}$	6%	6%	${ }^{5 \%}$	5%	4%	4%	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％	\％	\％	0\％
1250	17，29，099	－other	10	N2	9\％	${ }^{9 \%}$	\％	${ }^{8 \%}$	6\％	6\％	5\％	${ }^{5 \%}$	4\％	4\％	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％	\％	\％	\％
${ }^{1251}$	mmmat	Conlainig adoded divouring or colouring mater	10	N2	\％	${ }^{\text {\％}}$	${ }^{8 \%}$	${ }^{8 \%}$	6\％	6\％	${ }^{5 \%}$	${ }^{5 \%}$	${ }_{4}{ }^{4}$	${ }^{4 \%}$	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	0\％	\％	0\％	\％	0\％	\％
$1{ }^{1252}$	17，03，090	Other	10	N2	9\％	${ }_{9} 9$	${ }^{8 \%}$	${ }^{8 \%}$	${ }^{6 \%}$	6\％	${ }^{5 \%}$	${ }^{5 \%}$	${ }^{4 \%}$	${ }^{4 \%}$	3\％	${ }^{3}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	0\％	0\％	0\％	0\％
1253	17，09，0010	Conaling a adeded livưing of colouring mater	10	N2	9\％	${ }^{9 \%}$	${ }^{8 \%}$	${ }^{8 \%}$	6\％	${ }^{6 \%}$	5\％	${ }^{5 \%}$	4\％	4%	${ }^{3 \%}$	${ }^{\text {उ\％}}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	0\％	\％	\％	\％
$1{ }^{1254}$	17，39，900	Onher	10	N2	${ }^{9 \%}$	9\％	\％	${ }^{8 \%}$	${ }^{6}$	6\％	5\％	5\％	${ }^{4 \%}$	4\％	${ }^{3 \%}$	\％	${ }^{2 \%}$	${ }^{2 \%}$	0\％	\％	\％	0\％	\％	\％
1255	17，041，000	Chewing gun，wehene or oro stuagr coated	${ }^{30}$	EL	U	U	U	U	U	U	U	U	U	U	U	U	U	U	\bigcirc	U	U	U	U	U
$1{ }^{1256}$	17，099，010	－Medicated pasalies and dops	${ }^{30}$	HSL	30\％	${ }^{30 \%}$	30\％	0\％	50\％	0\％	${ }^{30 \%}$	30\％	${ }^{30 \%}$	0\％	30\％	30\％	30\％	30\％	0\％	30\％	30\％	30\％	30\％	30\％
1257	17，099，020	－Whie choocale	${ }^{30}$	HSL	30\％	30\％	30\％	30\％	30\％	30\％	30\％	30\％	${ }^{30 \%}$	0\％	30\％	30\％	30%	30\％	\％	0\％	30\％	30\％	30\％	30\％
${ }^{1258}$	17，94，091	Sott，onlaining gealin	${ }^{30}$	HSL	30\％	30\％	30\％	30\％	30\％	30\％	30\％	30\％	30\％	0\％\％	30\％	30\％	30%	30\％	30\％	0\％	30\％	30\％	0\％	30\％
1239	17，04，099	Other	${ }^{30}$	HSL	30\％	30\％	30\％	30\％	30\％	30\％	30\％	30\％	30\％	0\％	30\％	30\％	30\％	0\％	00\％	00\％	30\％	30\％	0\％	0\％
1260	18，01，000	Cocoa beans，whole or broken，raw or rosased．	10	NT	9\％	9\％	8\％	8\％	6\％	6\％	5\％	5\％	4\％	4\％	3\％	3\％	${ }^{2 \%}$	${ }^{2 \%}$	0\％	\％	0\％	\％	0\％	0\％
${ }^{1261}$	18，02，000	Cocoa shells，husks，skins and other cocoa waste．	10	NT2	\％	${ }^{9 \%}$	8\％	8\％	6\％	6\％	${ }^{5 \%}$	${ }^{5 \%}$	${ }^{4 \%}$	${ }^{4 \%}$	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	0\％	0\％	\％	\％
1262	18，03， 1000	－Not deatated	10	N2	${ }^{9 \%}$	9\％	${ }^{8 \%}$	${ }^{8 \%}$	${ }^{6 \%}$	6\％	${ }^{5 \%}$	${ }^{5 \%}$	4%	$4{ }^{4 \%}$	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％	0\％	0\％	\％
1283	18，32，000	－Whaly or parly deatated	10	N2	9\％	9\％	${ }^{8 \%}$	${ }^{8 \%}$	6\％	${ }^{6 \%}$	5\％	${ }^{5 \%}$	${ }^{4 \%}$	4\％	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％	0\％	\％	\％
${ }^{1284}$	18，040，000	Cocoa butere，tata and oil．	10	N2	9\％	9\％	8%	${ }^{8 \%}$	6\％	6\％	5\％	5\％	4\％	4%	${ }^{3 \%}$	${ }^{3 \%}$	2\％	${ }^{2 \%}$	0\％	\％	0\％	0\％	\％	0\％
1285	18，55，000	Cocoa powder，not containing added sugar or other sweetening matter．	10	NT2	9\％	9\％	8\％	8\％	6\％	6\％	5\％	5\％	4\％	4\％	3\％	${ }^{3 \%}$	2\％	${ }^{2 \%}$	\％	0\％	0\％	\％	\％	\％
${ }^{1266}$	18，061，000	－Cocoa powder，containing added sugar or other sweetening matter	10	NT2	9\％	\％	${ }^{\text {\％}}$	${ }^{8 \%}$	${ }^{6 \%}$	${ }^{6 \%}$	${ }^{5 \%}$	5\％	${ }^{4 \%}$	4\％	${ }^{3 \%}$	3\％	${ }^{2 \%}$	${ }^{2 \%}$	0\％	\％	\％	0\％	\％	\％
${ }^{1227}$	${ }^{18,062,10}$		10	N2	9\％	\％	8%	${ }^{8 \%}$	6\％	${ }^{6 \%}$	5\％	5\％	4\％	4\％	3\％	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	0\％	\％	\％	\％	0\％	\％
$1{ }^{1268}$	18，062，900	－other	10	NT2	9\％	9\％	\％	8\％	6\％	6\％	5\％	5\％	4\％	4\％	3\％	${ }^{3 \%}$	2\％	2%	\％	\％	\％	\％	\％	\％
1289	18，63，10	－Chocolaie conemeioner	10	N2	\％	\％	\％	${ }^{8 \%}$	6\％	6\％	5\％	5\％	${ }^{4 \%}$	4\％	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	0\％	0\％	0\％	\％	0\％	\％
1270	18，06， 190	－omer	10	NT2	\％$\%$	\％$\%$	\％	${ }^{8} \%$	6\％	6\％	5\％	5\％	4\％	4\％	3\％	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	0\％	\％	\％	\％	\％
${ }^{1271}$	18，06，210	－－Chooclaia conterecionery	10	N2	9\％	9\％	\％	${ }_{8} 8$	6\％	6\％	5\％	5\％	${ }^{4 \%}$	4\％	3\％	3\％	${ }^{2 \%}$	${ }^{2 \%}$	0\％	\％	\％	\％	\％	\％\％
${ }^{1272}$	${ }^{18,063,290}$	－－omer	${ }^{10}$	N2	9\％	${ }^{9 \%}$	8\％	${ }^{8 \%}$	6%	${ }^{6 \%}$	5\％	${ }^{5 \%}$	${ }^{4 \%}$	4\％	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％	0\％	0\％	\％
${ }^{1273}$	$1{ }^{18,069,010}$	Iocolie confecionene in tab	10	NT2	9\％	${ }^{9 \%}$	${ }^{8 \%}$	${ }^{8 \%}$	6\％	6\％	${ }^{5 \%}$	${ }^{5 \%}$	${ }^{4 \%}$	4\％	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	0\％	\％	\％	0\％	\％	\％
$1{ }^{1274}$	18，069，30	$\begin{aligned} & \text { - - Food preparations of flour, meal, starch or malt } \\ & \text { extract, containing } 40 \% \text { or more but less than } 50 \% \\ & \text { by weight of cocoa } \end{aligned}$	10	NT2	\％$\%$	\％	8%	8\％	6\％	6\％	5\％	5\％	4\％	4\％	3\％	3\％	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	0\％	\％	\％	\％
${ }^{1275}$	18，09，040	- Food preparations of goods of headings 04.01 to04．04，containing 5% or more but less than 10% by weight of cocoa，specially prepared for infant use， weight of cocoa，specially prepared for infant use， not put up for retai sale	10	NT2	9\％	9\％	${ }^{8 \%}$	${ }^{8 \%}$	6\％	6\％	5\％	5\％	4\％	4\％	${ }^{3 \%}$	3\％	2\％	2\％	\％\％	\％	\％	\％	\％\％	\％
$1{ }^{1276}$	18，090，90	－Other	10	NT2	9\％	9\％	8%	8\％	6\％	6\％	5\％	5\％	4\％	4\％	3\％	3\％	2\％	2\％	\％	\％	\％	\％	\％	\％
$1{ }^{1277}$	1901.10 .10	－of man extact	10	N2	9\％	9\％	8\％	8\％	6\％	6\％	5\％	5\％	4\％	4\％	${ }^{3 \%}$	3\％	2\％	${ }^{2 \%}$	0\％	0\％	0\％	0\％	0\％	\％
${ }^{1278}$	1901．10．20	－of goos of theaings 04.011 104．04	10	N2	9\％	9\％	8%	8%	6\％	6\％	5\％	5\％	4\％	4%	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	2\％	0\％	0\％	0\％	\％	0\％	\％
1279	${ }^{1901 / 1.0 .30}$	－Of soyabagan power	10	N2	9\％	\％${ }^{\text {\％}}$	${ }^{8} \%$	${ }^{8 \%}$	6\％	6\％	5\％	5\％	4\％	4\％	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	2%	\％	\％	0\％	\％	\％	\％
1280	19，01，091	－Medicalioods	10	N2	9\％	9\％	${ }_{8 \%}$	${ }_{8 \%}$	6\％	6\％	5\％	5\％	4\％	4\％	3\％	${ }^{3 \%}$	2%	${ }^{2 \%}$	\％	\％	\％	\％	\％	0\％
${ }^{1281}$	${ }^{19,011,099}$	－oner	10	N2	9\％	9\％	8%	${ }^{8 \%}$	6\％	6\％	5\％	5\％	4\％	4\％	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	0\％	0\％	0\％	0\％	0\％	\％\％
${ }^{1282}$	19，012，010	- Of flur，groats，meal，starch or malt extract，not containing cocoa	10	N2	\％	\％	8\％	8\％	6\％	6\％	${ }^{5 \%}$	${ }^{5 \%}$	${ }^{4 \%}$	${ }^{4 \%}$	3\％	3\％	2\％	${ }^{2 \%}$	\％	\％	\％	\％	\％	\％
${ }^{1283}$	19，012，020	－－Of flour，groats，meal，starch or malt extract， containing cocoa	${ }^{10}$	N2	${ }^{9 \%}$	${ }_{9} \%$	${ }^{8 \%}$	${ }^{8 \%}$	${ }^{6 \%}$	6\％	${ }^{5 \%}$	${ }^{5 \%}$	${ }^{4 \%}$	${ }^{4 \%}$	3\％	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	${ }_{0}$	\％	\％	${ }^{0 \%}$
${ }^{1284}$	19，012，300	－Onter，not conaling cocosa	1	N2	\％	${ }^{9 \%}$	${ }_{8} 8$	${ }^{8 \%}$	6%	${ }^{6 \%}$	${ }^{\text {5\％}}$	${ }^{5 \%}$	$4{ }^{4 \%}$	4\％	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	0\％	0\％	\％\％	0\％	${ }^{\circ}$	0\％
1285	19，012，040	－Onter，containing cocoa	10	NT2	9\％	9\％	8\％	8\％	6\％	6\％	5\％	5\％	4\％	4\％	3\％	3\％	2\％	2\％	\％	\％	\％	\％	\％	\％
${ }^{1286}$	19，099，011	－Meicial Ioods	10	NT2	${ }^{9 \%}$	\％\％	8%	8%	6\％	6\％	5\％	5\％	4\％	4\％	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	0\％	0\％	0\％	0\％	0\％	\％
${ }^{1287}$	19，99，0，19	－other	10	N2	9\％	9\％	\％	8\％	6%	6\％	5\％	5\％	4\％	4\％	3\％	3\％	${ }^{2 \%}$	2\％	\％	0\％	\％	0\％	0\％	\％
${ }^{1288}$	19，99，020	－Matextact	10	N2	9\％	9\％	${ }_{8 \%}$	${ }^{8 \%}$	6\％	6\％	5\％	5\％	4\％	4\％	${ }^{3 \%}$	3\％	${ }^{2 \%}$	2\％	0\％	\％	\％	\％	0\％	\％
1289	19，99，031	－Filled mik	10	N2	${ }^{9}$	9\％	${ }^{8} \%$	${ }^{8 \%}$	6\％	6\％	5\％	5\％	4\％	4\％	${ }^{3 \%}$	3\％	${ }^{2 \%}$	2\％	\％	0\％	0\％	\％	\％	\％
1290	19，09，032	－Onter，conaminig cocoa powder	10	N2	9\％	9\％	${ }^{8 \%}$	${ }_{8 \%}$	6\％	6\％	5\％	5\％	4\％	4\％	3\％	3\％	2%	2%	\％	\％	\％	\％	0\％	0\％
${ }^{1291}$	19，09，039	－other	10	N2	9\％	9%	8%	8\％	6\％	6\％	5\％	5\％	4\％	4\％	3\％	3\％	2%	${ }^{2 \%}$	0\％	\％	\％	\％	0\％	0\％
1292	${ }^{19,019,041}$	－In mower form	10	N2	\％$\%$	\％	${ }^{8 \%}$	${ }_{8}^{8 \%}$	6\％	${ }^{6 \%}$	5\％	${ }^{5 \%}$	${ }^{4 \%}$	4\％	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	0\％	\％	0\％	\％	\％	\％
${ }^{1293}$	19，99，049	－Inothe foms	10	N2	9\％	9\％	${ }^{8 \%}$	${ }^{8 \%}$	6\％	${ }^{6 \%}$	5\％	${ }^{\text {5\％}}$	${ }^{4 \%}$	4\％	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％	\％	\％	\％
1294	19，019，091	Medical foods	10	NT2	9\％	\％	8%	${ }^{8 \%}$	6\％	6\％	5\％	5\％	4\％	4\％	3\％	3\％	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％	\％	\％	\％
${ }^{1295}$	19，99，099	Other	10	NT2	${ }^{9}$	9\％	${ }^{8 \%}$	${ }^{8 \%}$	6\％	6\％	5\％	${ }^{5 \%}$	4\％	4\％	${ }^{3 \%}$	3\％	${ }^{2 \%}$	2\％	\％	0\％	0\％	0\％	\％	0\％
${ }^{1296}$	19，021，100	－Conlainige egs	10	N2	9\％	9\％	8%	8%	6\％	6\％	5\％	5\％	4%	4\％	3\％	3\％	${ }^{2 \%}$	2\％	0\％	0\％	0\％	0\％	0\％	0\％
1297	19，02， 220	－－Rice vemiceilif（bee moon）	10	NT2	${ }^{9}$	9\％	${ }^{8} \%$	${ }^{8 \%}$	${ }^{6 \%}$	6\％	5\％	${ }^{5 \%}$	$4{ }^{4 \%}$	4\％	${ }^{3 \%}$	3\％	${ }^{2 \%}$	2\％	0\％	0\％	\％	\％	0\％	0\％
${ }^{1298}$	19，021，930	\cdots Transparent vemicelif	10	N2	9\％	9\％	8\％	${ }^{8 \%}$	6\％	6\％	5\％	5\％	$4{ }^{4 \%}$	$4{ }^{4 \%}$	3\％	3\％	2%	${ }^{2 \%}$	\％	0\％	\％	\％	\％	\％
$1{ }^{1299}$	19，02，940	\cdots Noodes	10	HsL	10\％	0\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	\％\％	10\％	10\％	10\％	10\％	10\％	10%	10\％	10\％	0\％	10\％
${ }^{1300}$	19，021，990	－Oner	10	${ }^{\text {HSL }}$	\％	0\％	0\％	0\％	0\％	0\％	10\％	10\％	${ }^{10 \%}$	\％	0\％	10\％	10\％	\％\％	0\％	\％\％	${ }^{10 \%}$	\％	0\％	0\％
${ }^{1301}$	19，02，010	Suuted wilt meat or meat ofal	10	N2	9\％	9\％	8\％	${ }^{8 \%}$	${ }^{6 \%}$	${ }^{6 \%}$	${ }^{5 \%}$	5\％	4\％	4\％	${ }^{3 \%}$	3\％	${ }^{2 \%}$	${ }^{2 \%}$	\％\％	\％	0\％	0\％	\％\％	\％\％
1302	19，02， 30	－Sutuded whth is，cussaceans or moluss	10	N2	9\％	9\％	8%	8%	6\％	6\％	5\％	5\％	4\％	4\％	3\％	${ }^{3 \%}$	${ }^{2 \%}$	2\％	\％	\％	\％	\％	\％	\％
${ }^{1303}$	19，02，090	－Oner	10	N2	${ }^{9 \%}$	${ }^{9}$	${ }^{8}$	${ }^{8 \%}$	${ }^{6 \%}$	6%	${ }^{5 \%}$	${ }^{5 \%}$	4\％	4\％	${ }^{3} \%$	3\％	${ }^{2 \%}$	2\％	\％	\％	\％	\％	\％	\％
1304	19，03，020	－Insantrice vemicelil	10	NT2	9\％	9\％	\％	${ }^{8 \%}$	6\％	6\％	5\％	5\％	4%	4\％	3\％	3\％	${ }^{2 \%}$	2\％	0\％	0\％	0\％	0\％	0\％	0\％
1305	19，023，303	－Tanssarant vemicelif	10	NT2	9\％	\％	8%	${ }^{8 \%}$	6\％	6\％	5\％	5\％	4%	4\％	${ }^{3 \%}$	3\％	${ }^{2 \%}$	2\％	0\％	0\％	0\％	\％	\％	\％
1306	19，023，040	\cdots Oner issant noodes	10	NT2	9\％	9\％	${ }^{8 \%}$	${ }^{8 \%}$	6\％	6\％	5\％	5\％	$4{ }^{4 \%}$	$4{ }^{4 \%}$	3\％	3\％	2%	${ }^{2 \%}$	\％	0\％	\％	\％	\％	\％
1307	19，02，090	－other	10	Hst	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	0\％	10\％	10\％	10\％	0\％	0\％	10\％	10\％	0\％	0\％	\％\％
${ }^{1308}$	19，024，000	Couscous	10	N2	9\％	9\％	\％	${ }^{8 \%}$	6\％	6%	5\％	5\％	4\％	4%	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	0\％	0\％	0\％	0\％
${ }^{1309}$	19，03，000	Tapioca and substitutes therefor prepared from starch，in the form of flakes，grains，pearls， siftings or in similar forms．	10	N2	${ }^{9 \%}$	${ }^{9 \%}$	${ }^{8 \%}$	${ }^{8 \%}$	6\％	${ }^{6 \%}$	5\％	${ }^{\text {5\％}}$	4\％	4\％	3\％	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％	\％	\％	\％\％
1310	1904．0：0．10	－－Conaining cocoa	10	NT1	${ }^{9 \%}$	8%	6\％	5\％	4\％	${ }^{3} \%$	${ }^{2 \%}$	\％	0\％	\％	\％	\％	\％\％	0\％	0\％	\％	\％\％	0\％	\％	\％
${ }^{1311}$	19，041，900	－other	${ }^{10}$	${ }^{\text {HSL }}$	10\％	10\％	10\％	10\％	${ }^{10 \%}$	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	0\％	10\％	10\％	${ }^{10 \%}$	${ }^{10 \%}$	${ }^{10 \%}$	0\％
1312	19，04，010	- Prepared foods obtained from unroasted cereal flakes	10	N2	9\％	9\％	${ }^{8 \%}$	${ }^{8 \%}$	6\％	6%	5\％	5\％	4%	4%	${ }^{3 \%}$	3\％	${ }^{2 \%}$	2\％	0\％	0\％	0\％	\％	0\％	\％
$1{ }^{1313}$	$19.902,090$	－－omer	10	N2	${ }^{9 \%}$	9\％	8\％	8%	6\％	6\％	5\％	5\％	4%	4\％	${ }^{3} \%$	${ }^{3 \%}$	${ }^{2 \%}$	2\％	0\％	0\％	\％	\％	0\％	0\％
${ }^{1314}$	19，043，000	－Bugur weat	10	NT2	${ }^{9 \%}$	${ }^{9 \%}$	${ }_{8 \%}$	${ }^{8 \%}$	6\％	6\％	5\％	5\％	4%	4%	3\％	3\％	2\％	2\％	\％	\％	\％	\％	\％	\％
$1{ }^{1315}$	19，49，0，10		${ }^{10}$	${ }^{\text {NT1 }}$	${ }^{9 \%}$	8\％	6\％	5\％	4\％	${ }^{3 \%}$	2\％	\％	0\％	0\％	0\％	0\％	0\％	0\％	\％	0\％	\％\％	\％	0\％	\％\％
${ }^{1316}$	19，94，900	－omer	10	NT1	${ }^{9 \%}$	${ }_{8 \%}$	6\％	5\％	${ }^{4 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	0\％	\％	0\％	\％	0\％	0\％	0\％	\％	\％	\％	\％	\％	\％
$1{ }^{1317}$	19，051，000	Crispread	${ }^{30}$	EL		－	0	ט	－	ט	－	，	－	－	U	U	U	\bigcirc	0	ט	0	－	ט	0
${ }^{1318}$	${ }^{19,552,000}$	－Gingefiriad and the Ine	${ }^{30}$	${ }^{\text {EL }}$	\bigcirc	\bigcirc	U	\bigcirc	\bigcirc	\bigcirc	－	－	\bigcirc	U	U	${ }^{0}$	U	U	\bigcirc	ט	0	\square_{0}	U	\bigcirc
${ }^{1319}$	${ }^{19,53,10}$	${ }^{\text {Notoonaming cocoa }}$	${ }^{30}$	${ }^{\text {EL }}$	ט	\bigcirc	－	ט	\bigcirc	\checkmark	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\checkmark	－	ט	\bigcirc	\bigcirc	－	－	\bigcirc
1320	19，53，120	－Conaining cocoa	30	EL	\bigcirc	\bigcirc	U	U	0	\bigcirc	\bigcirc	U	\bigcirc	\bigcirc	U	U	U	\bigcirc	\bigcirc	0	\bigcirc	U	U	
1321	19，55，200	－Walles and waiels	${ }^{30}$	${ }^{\text {EL }}$		\bigcirc	\bigcirc	，			\bigcirc	，	0	，	\bigcirc	U	，	\bigcirc	0	\bigcirc	U	U	－	\bigcirc
1322	19，054，010	Not containing added sugar，honey，eggs，fats， cheese or fruit	${ }^{30}$	EL	－	ט	－	0	\bigcirc	－	－	－	0	\bigcirc	－	＂	${ }^{\circ}$	0	0	${ }^{\circ}$	${ }^{\circ}$	${ }^{\circ}$	${ }^{\circ}$	\bigcirc
1323	19，54，090	－．other	${ }^{30}$	EL	，	\bigcirc	U	U	U	\bigcirc	0	U	\bigcirc	0	U	－	－	ט	U	U	U	U	，	\bigcirc
1324	19，59，010	－Unsweetered teeting biscuits	${ }^{30}$	EL	\bigcirc	\bigcirc	\bigcirc	0	\bigcirc	U	\bigcirc	\bigcirc	\bigcirc	\bigcirc	U	\bigcirc	\bigcirc	\bigcirc						
1325	19，59，020	Oner unseetened bsculis	${ }^{30}$	EL		－	－	－	－	\bigcirc	－	U	U	U	－	U	U	\bigcirc	U	U	\bigcirc	U	\bigcirc	U
1326	19，59，300	－Cakes	${ }^{30}$	EL	\bigcirc	－	U	\bigcirc	－	\bigcirc	U	ט	U	\checkmark	\bigcirc									
$1{ }^{1327}$	${ }^{19,595,40}$	Pastios	${ }^{30}$	${ }^{\text {EL }}$	U	\bigcirc	U	U	\bigcirc	－	\bigcirc	－	U	\bigcirc	－	0	U	U	U	－	ט	－	U	
1328	19，59，050	－－Fouress bakers wares	${ }^{30}$	EL	U	u	${ }^{\circ}$	U	\bigcirc	\checkmark	u	\checkmark	U	\checkmark	U	U	U	U	\checkmark	u	U	\checkmark	U	\bigcirc
1329	19，59，060	$\begin{array}{\|l\|} \hline- \text { Empty cachets and similar products of a kind } \\ \text { suitable for pharmaceutical use } \\ \hline \end{array}$	${ }^{30}$	${ }^{\text {EL }}$	\bigcirc	0	0	0	\bigcirc	${ }^{\circ}$	0	－	\bigcirc	${ }^{0}$	0	0	－	0	${ }^{0}$	${ }^{\circ}$	\bigcirc	U	\bigcirc	0
11330	19，59，070		${ }^{30}$	EL	\bigcirc	0	0	－	U	\bigcirc	0	0	\bigcirc	U	－	0	\bigcirc	0	U	U	0	0	U	\bigcirc

香港•ASEAN FTAにかかる調査報告書

別添2－4 原産地品の関税撤廃スケジュール
（ラオス）

$1{ }^{1331}$	${ }^{19,059,080}$	－－Other criss savury tood prouluts	${ }^{30}$	EL	U	U	U	U	\bigcirc	U	0	0	U	0	0	U	U	U	\bigcirc	0	U	U	U	0
$1{ }^{132}$	19，05，9090	－Other	${ }^{30}$	EL	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	U	U	\cup	U	ט	U	U	U	U	\checkmark	\bigcirc	\bigcirc	U	U	U
1333	20，01，000	－Ouumbers and grekins	${ }^{30}$	EL	\bigcirc	U	0	\bigcirc	U	U	U	0	ט	ט	\bigcirc	U	U	U	U	\bigcirc	\bigcirc	\bigcirc	ט	U
$1{ }^{1334}$	20，019，010	Onions	${ }^{30}$	EL	0	U	U	U	U	0	U	U	0	U	0	U	U	U	U	U	U	0	U	－
1335	20，019，090	Ohter	${ }^{30}$	EL	U	\bigcirc	\bigcirc	U	U	0	\bigcirc	U	U	U	0	，	\bigcirc	U	\bigcirc	\checkmark	0	ט	U	U
$1{ }^{136}$	200210.10	－－Cooked otherwise than by steaming or boiling in	${ }^{30}$	${ }^{\text {EL }}$	U	U	U	\bigcirc	\checkmark	U	0	U	U	U	U	U	U	U	\bigcirc	U	0	U	U	－
$1{ }^{1337}$	20，021，090	－other	${ }^{30}$	EL	\bigcirc	0	\bigcirc	\bigcirc	U	U	U	\bigcirc	U	\bigcirc	\bigcirc	\bigcirc	\bigcirc	U	U	\bigcirc	\bigcirc	U	U	ט
${ }^{1338}$	20，02，0010	－Tomato pasie	${ }^{30}$	EL	0	0	ט	O	0	\bigcirc	\bigcirc	\bigcirc	\bigcirc	0	\bigcirc	ט	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	ט	U
$1{ }^{1339}$	20，02，020	－Tomato powder	${ }^{30}$	EL	0	0	0	0	0	\bigcirc	0	0	0	\bigcirc	\bigcirc	0	0	0	\bigcirc	\bigcirc	0	0	U	0
$1{ }^{1340}$	20，02，9090	－other	${ }^{30}$	EL	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	U	\bigcirc	U	U	\bigcirc	U	\bigcirc	0	\bigcirc	U	\bigcirc	U	U	U
${ }^{1341}$	20，03，，000	－Mustroms of the genus Agaricus	${ }^{30}$	EL	\bigcirc	0	ט	ט	\bigcirc	0	0	\bigcirc	\bigcirc	\bigcirc	\bigcirc	0	0	\bigcirc	U	\bigcirc	U	ט	U	\bigcirc
${ }^{1342}$	20，03，9010	－Tutues	${ }^{30}$	st	30\％	0\％	30\％	30\％	30\％	30\％	30\％	30\％	30\％	30\％	30\％	30\％	0\％	30\％	30\％	30\％	30\％	\％\％	30\％	$\%$
${ }^{1343}$	20，03，9，90	－－other	${ }^{30}$	EL	\checkmark	\bigcirc	U	U	0	\checkmark	U	－	－	0	U	U	\checkmark	－	0	\checkmark	\bigcirc	\checkmark	U	\bigcirc
$1{ }^{1344}$	20，041，000	Poatios	${ }^{30}$	EL	\bigcirc	U	\bigcirc	U	U	\bigcirc	U	0	－	，	0	U	\bigcirc	ט	\bigcirc	\bigcirc	U	0	ט	U
${ }^{1345}$	20，04，0，010	Foriniatuse	${ }^{30}$	EL	0	0	\bigcirc	\bigcirc	\bigcirc	ט	0	0	U	\bigcirc	U	U	U	U	\bigcirc	\bigcirc	0	0	U	ט
${ }^{1346}$	20，04， 090	－other	${ }^{30}$	EL	U	U	U	U	\bigcirc	\checkmark	\bigcirc	U	U	\bigcirc	ט	ט	U	\cup	ט	U	\bigcirc	－	U	U
${ }^{1347}$	${ }^{2005.10 .10}$	－Inaright contaners	${ }^{30}$	EL	O	0	O	0	0	ט	0	O	O	0	\bigcirc	0	\bigcirc	0	0	0	0	ט	U	\bigcirc
${ }^{1348}$	20，05，090	－Other	${ }^{30}$	EL	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	0	\bigcirc	\bigcirc	\bigcirc	\bigcirc	0	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	－	－	U
${ }^{1349}$	20，052，011	－Inaitight conamers	${ }^{30}$	EL	\bigcirc	\bigcirc	\bigcirc	\bigcirc	U	\bigcirc	0	ט	－	\bigcirc	\bigcirc	0	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	U	U	U
$1{ }^{1350}$	20，052，019	Other	${ }^{30}$	EL	0	0	U	－	－	O	0	U	－	－	0	U	0	0	U	U	U	0	U	U
${ }^{1351}$	20，052，091		${ }^{30}$	EL	\bigcirc	U	\bigcirc	0	U	\bigcirc	U	\bigcirc	ט	\bigcirc	ט	U	ט	U	\checkmark	\checkmark	0	U	U	U
$1{ }^{1352}$	20，052，099	－．－other	${ }^{30}$	EL	0	U	\bigcirc	U	\bigcirc	0	U	0	－	，	\bigcirc	ט	0	ט	\bigcirc	\bigcirc	，	0	ט	U
${ }^{1353}$	20，054，000	－Pase（Pisum saitum）	${ }^{30}$	EL	\bigcirc	U	\bigcirc	U	\bigcirc	U	U	ט	\bigcirc	\bigcirc	0	U	U	\bigcirc	0	\bigcirc	\bigcirc	U	U	ט
${ }^{1354}$	${ }^{20,05,100}$	－Beans，shaled	${ }^{30}$	EL	\bigcirc	U	0	O	ט	0	\checkmark	U	\bigcirc											
${ }^{13355}$	${ }^{20,055,910}$	－－Inarigiticontaners	${ }^{30}$	EL	0	0	0	0	0	0	0	0	0	0	\bigcirc	0	\bigcirc	0	\bigcirc	0	\bigcirc	U		\bigcirc
${ }^{1356}$	20，05，990	－Other	${ }^{30}$	EL	0	\bigcirc	0	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\checkmark	U									
${ }^{1357}$	${ }^{20,05,000}$	－Aspagaus	${ }^{30}$	EL	\bigcirc	0	U	\bigcirc	U	\bigcirc	\bigcirc	－	－	\bigcirc	\bigcirc	ט	U	－	－	－	\bigcirc	U	U	U
${ }^{1358}$	20，05，700	－oives	${ }^{30}$	EL	U	U	U	ט	ט	U	U	U	U	ט	U	0	U	ט	ט	U	U	\bigcirc	U	\bigcirc
$1{ }^{1359}$	20，05，000	－Sweit com（Zea mays var sacochatal）	${ }^{30}$	EL	\bigcirc	\bigcirc	O	－	\bigcirc	0	\bigcirc	\bigcirc	ט	0	0	O	U	\bigcirc	0	0	\bigcirc	－	0	\bigcirc
$1{ }^{1360}$	${ }^{20,059,100}$	－Bamboos shools	${ }^{30}$	EL	\bigcirc	${ }^{\circ}$	\bigcirc	－	\bigcirc	，	${ }^{\circ}$	U												
${ }^{1361}$	20，05，9，90		${ }^{30}$	EL	\bigcirc	\bigcirc	U	ט	\bigcirc	0	U	U	U	0	\bigcirc	U	U	\bigcirc	U	U	\bigcirc	ט	0	ט
${ }^{1362}$	20，05，990	－－Other	${ }^{30}$	EL	0	U	U	－	0	O	U	U	U	－	0	0	U	U	U	U	U	U	U	U
${ }^{1363}$	22，06，000	Vegetables，fruit，nuts，fruit－peel and other parts of plants，preserved by sugar（drained，glace or crystallised）．	${ }^{30}$	HsL	0\％	30\％	0\％	30\％	30\％	\％	30\％	\％	\％	30\％	0\％	\％\％	\％	\％	30\％	30\％	\％	0\％	\％ 0	80\％
$1{ }^{1364}$	20，07，000	－Homogenised preparaions	${ }^{30}$	EL	\bigcirc	0	0	\bigcirc	U															
${ }^{1365}$	20，09， 00	－－Citus tut	${ }^{30}$	Ist	30\％	0\％	30\％	30\％	30\％	30\％	30\％	30%	30\％	30\％	\％\％	30\％	30\％	${ }^{30 \%}$	30\％	30\％	30\％	\％\％	30\％	30\％
${ }^{1366}$	${ }^{20,079,910}$	－－Fruit pastes other than of mangoes，pineapples or strawberries	${ }^{30}$	EL	\bigcirc	\checkmark	0	\bigcirc	\bigcirc	U	\bigcirc	\bigcirc	－	\checkmark										
$1{ }^{1377}$	20，079，990	‥－oner	${ }^{30}$	EL	U	U	U	\bigcirc	\bigcirc	U	0	U	U	\bigcirc	0	0	U	U	\bigcirc	U	\bigcirc	U	U	U
${ }^{1368}$	2008.11 .10	\cdots－ Rosied	${ }^{30}$	EL	\bigcirc	\bigcirc	ט	U	\bigcirc	0	\bigcirc	O	U	\bigcirc	\bigcirc	U	U	U	\bigcirc	\bigcirc	\checkmark	U	U	U
$1{ }^{1369}$	${ }^{2008.1120}$	－－Peanut buter	${ }^{30}$	EL	\bigcirc	U	U	\bigcirc	\bigcirc	\bigcirc	U	－	U	\bigcirc	\bigcirc	ט	－	U	U	\bigcirc	\bigcirc	U	U	U
${ }^{1370}$	${ }^{20,081,190}$	－－Other	${ }^{30}$	EL	\bigcirc	\bigcirc	\bigcirc	U	\bigcirc	0	－	－	\bigcirc	\bigcirc	\bigcirc	－	\bigcirc	－	\bigcirc	－	\bigcirc	\bigcirc	¢	\bigcirc
${ }^{1371}$	20，08，9，90	Cosatew uls	${ }^{30}$	EL	\bigcirc	\bigcirc	ט	U	\bigcirc	ט	\bigcirc	U	\bigcirc	\bigcirc	\bigcirc	ט	ט	ט	\bigcirc	\bigcirc	\bigcirc	ט	ט	\bigcirc
1372	20，08，990	－other	${ }^{30}$	EL	\bigcirc	－	－	－	\bigcirc	－	\bigcirc	－	－	\bigcirc	\bigcirc	\bigcirc	\bigcirc	${ }^{0}$	O	U	\bigcirc	\bigcirc	U	U
${ }^{1373}$	20，082，000	－Pineaples	${ }^{30}$	EL	0	0	0	U	\bigcirc	0	0	U	U	\bigcirc	0	0	\bigcirc	0	\bigcirc	\bigcirc	\bigcirc	U	\bigcirc	\bigcirc
$1{ }^{1374}$	20，08，${ }^{\text {a }} 10$	－－Containing added sugar or other sweetening matter or spirit	${ }^{30}$	EL	\checkmark	\checkmark	\bigcirc	\bigcirc	U	\checkmark	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	0	U	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	－	
1375	20，08，${ }^{\text {aso }}$	－－Other	${ }^{30}$	EL	U	\checkmark	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	ט	U	\bigcirc	\bigcirc	U	ט	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	U	U
${ }^{1376}$	20，084，010	$\begin{aligned} & - \text { Conlaining added sugar or other sweetening } \\ & \text { matter or spirit } \end{aligned}$	${ }^{30}$	EL	U	ט	ט	\bigcirc	0	U	\bigcirc	－	0	－	－	U	\bigcirc	\bigcirc	－	\bigcirc	\bigcirc	O	O	
137	20，04，090	\cdots	${ }^{30}$	EL	0	U	U	${ }^{\circ}$	\bigcirc	0	\bigcirc	\bigcirc	U	\bigcirc	\bigcirc	U	U	U	\bigcirc	\bigcirc	ט	U	U	ט
${ }^{1378}$	${ }^{20,085,010}$	－Containing added sugar or other sweetening	${ }^{30}$	${ }^{\text {EL }}$	\bigcirc	\bigcirc	0	U	U	\bigcirc	U	0	0	0	\bigcirc	＂	＂	0	0	0	0	\bigcirc	0	${ }_{0}$
$1{ }^{1379}$	${ }^{20,085,090}$	${ }^{- \text {Other }}$	${ }^{30}$	${ }^{\text {EL }}$	\bigcirc	\bigcirc	U	0	U	U	U	U	${ }^{0}$	\bigcirc	U	U	U	\square°	\bigcirc	\bigcirc	\bigcirc	U	ט	U
${ }^{1380}$	20，08，010	- Containing added sugar or other sweetening matter or spirit	${ }^{30}$	EL	\checkmark	\checkmark	\bigcirc	U	\bigcirc	\checkmark	\checkmark	\checkmark	－	\bigcirc	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\bigcirc	0	\checkmark	
$1{ }^{1381}$	20，08，090	－－Other	${ }^{30}$	EL	U	U	U	U	\bigcirc	\bigcirc	U	U	U	\bigcirc	0	U	U	U	U	－	U	U	U	U
${ }^{1382}$	20，08，0，010	$\begin{aligned} & \text { - - Containing added sugar or other sweetening } \\ & \text { matter or spirit } \end{aligned}$	${ }^{30}$	${ }^{\text {s，}}$	0\％	\％	30\％	\％	\％\％	50\％	0\％	\％	\％	\％\％	${ }^{30 \%}$	\％	\％	0\％	\％	\％	\％	0\％	\％	\％
${ }^{1383}$	20，08，090	－－Oher	${ }^{30}$	EL	\checkmark	ט	\bigcirc	U	\bigcirc	\bigcirc	\bigcirc	\bigcirc	－	\bigcirc	U	U	－	－	\bigcirc	\bigcirc	\bigcirc	\bigcirc	U	\bigcirc
$1{ }^{1384}$	20，08，010	- Containing added sugar or o other sweetening matter or spirit	${ }^{30}$	EL	\bigcirc	\bigcirc	\bigcirc	ט	ט	\bigcirc	ט	\bigcirc	\bigcirc	－	\bigcirc	U	U	\bigcirc	${ }^{\circ}$	\bigcirc	ט	U	0	
$1{ }^{1335}$	20，088，090	－－Omer	${ }^{30}$	EL	U	0	ט	U	\bigcirc	U	U	0	ט	\bigcirc	U	U	U	U	\bigcirc	0	\bigcirc	U	U	0
${ }^{1386}$	20，08， 100	－Palm nears	${ }^{30}$	EL	U	\bigcirc	－	U	\bigcirc	－	\bigcirc	U												
${ }^{1387}$	20，08，300	Cranberries（Vaccinium macrocarpon， Vaccinium oxycoccos，Vaccinium vitis－idaea）	${ }^{30}$	EL	U	0	0	0	0	\bigcirc	0	0	0	0	0	－	－	0	\bigcirc	\bigcirc	－	0	0	
${ }^{1388}$	20，08，710	\cdots Of stems，roots and other edible parts of plants，	${ }^{30}$	${ }^{\text {EL }}$	U	0	ט	0	0	0	0	\bigcirc	U	ט	0	U	${ }^{0}$	U	0	\bigcirc	\bigcirc	0	0	
$1{ }^{1389}$	20，08，720	－－Other，contanining added sugar or other	${ }^{30}$	${ }^{\text {EL }}$	${ }^{\circ}$	${ }^{0}$	${ }^{\circ}$	${ }^{0}$	${ }^{\circ}$															
1330	${ }^{20,089,790}$	\cdots	${ }^{30}$	${ }^{\text {EL }}$	，	\bigcirc	\bigcirc	U	0	U	\bigcirc	${ }^{0}$	U	\checkmark	U	U	－	0	\bigcirc	\bigcirc	\bigcirc	U	U	${ }^{\circ}$
$1{ }^{1391}$	${ }^{20,089,990}$	－Lecrees	${ }^{30}$	${ }^{\text {EL }}$	U	\bigcirc	U	U	\bigcirc	U	\bigcirc	U	－	\bigcirc	\bigcirc	U	U	\checkmark	\bigcirc	\bigcirc	U	U	U	\bigcirc
${ }^{1392}$	${ }^{20,089,920}$	－Longans	${ }^{30}$	EL	\bigcirc	\bigcirc	\checkmark	－	${ }^{\circ}$	\bigcirc	\checkmark	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	U	\bigcirc						
${ }^{1393}$	20，08，9，30	\cdots Of stems，roots and other edible parts of plants， not including truits or nuts	${ }^{30}$	EL	\bigcirc	\bigcirc	${ }^{\circ}$	U	\bigcirc	\bigcirc	${ }^{\circ}$	${ }^{\circ}$	${ }^{\circ}$	${ }^{\circ}$	－	0	ט	－	\bigcirc	\bigcirc	\checkmark	\bigcirc	\checkmark	\bigcirc
1334	20，09，940	\cdots Other，containing added sugar or other sweetening mater or or spirt	${ }^{30}$	EL	${ }^{\circ}$	${ }^{\circ}$	\bigcirc	${ }^{\circ}$	U	${ }^{\circ}$	${ }^{\circ}$	\bigcirc	${ }^{\circ}$	${ }^{\circ}$	${ }^{\circ}$	${ }^{\circ}$	U	${ }^{\circ}$	U					
${ }^{1335}$	${ }^{20,089,990}$	…oner	${ }^{30}$	EL	\bigcirc	\bigcirc	\bigcirc	\checkmark	\bigcirc	U	\bigcirc	U	\checkmark	\bigcirc	\bigcirc	U	\bigcirc	\checkmark	\bigcirc	\checkmark	\bigcirc	\checkmark	\checkmark	\bigcirc
${ }^{1336}$	20，091，00	－Foroen	${ }^{30}$	Ist	${ }^{30 \%}$	${ }^{30 \%}$	${ }^{30 \%}$	30\％	${ }^{30 \%}$	${ }^{30 \%}$	${ }^{30 \%}$	${ }^{30 \%}$	30\％	${ }^{30 \%}$	30\％	30\％	${ }^{30 \%}$	${ }^{30 \%}$	30\％	30\％	${ }^{30 \%}$	${ }^{30 \%}$	30\％	30\％
${ }^{1337}$	${ }^{20,09,200}$	－Nof tiozen，of a Bix value notexceesing 20	${ }^{30}$	${ }_{\text {ISL }}$	${ }^{30 \%}$	30\％	30\％	30\％	30\％	30\％	30\％	${ }^{30 \%}$	30\％	30\％	30\％	30\％	${ }^{30 \%}$	${ }^{30 \%}$	30\％	30\％	${ }^{30 \%}$	30\％	30\％	30\％
${ }^{1338}$	20，09，900	－Other	${ }^{30}$	HSL	${ }^{30 \%}$	30\％	30\％	${ }^{30 \%}$	30\％	30\％	30\％	30\％	30\％	30\％	30\％	${ }^{30 \%}$	30\％	30\％	30\％	30\％	${ }^{30 \%}$	30\％	30\％	30\％
$1{ }^{1399}$	20，02，100	－Of a Bix value note excesing 20	${ }^{30}$	EL	ט	\bigcirc	ט	ט	ט	U	ט	\bigcirc	ט	\bigcirc	ט	－	ט	\bigcirc	ט	\bigcirc	ט	ט	ט	\bigcirc
1740	20，02，200	－Other	${ }^{30}$	EL	\bigcirc	U	0	0	\bigcirc	0	\bigcirc	\bigcirc	\bigcirc	\bigcirc	U	－	ט	\bigcirc	0	\bigcirc	\bigcirc	U	0	0
${ }^{1401}$	${ }^{20,093,100}$	－Of A Birvalue note excesing 20	${ }^{30}$	Ist	30\％	0\％	30\％	${ }^{30 \%}$	30\％	30\％	30\％	${ }^{30 \%}$	${ }^{30 \%}$	30\％	${ }^{30 \%}$	${ }^{30 \%}$	${ }^{30 \%}$	${ }^{30 \%}$	30\％	${ }^{30 \%}$	${ }^{30 \%}$	${ }^{30 \%}$	${ }^{30 \%}$	30\％
1402	20，03，900	－oner	${ }^{30}$	IsL	30\％	30\％	30\％	30\％	30\％	30\％	30\％	30\％	30\％	30\％	30\％	30\％	30\％	30\％	30\％	30\％	30\％	30\％	30%	30\％
${ }^{1203}$	20，094，100	－Of a Bix value note excesing 20	${ }^{30}$	HSL	30\％	30\％	30\％	30\％	30\％	30\％	30\％	30\％	30\％	30\％	30\％	30\％	30\％	30\％	30\％	30\％	30\％	30\％	30\％	30\％
${ }^{1204}$	20，04，900	－Other	${ }^{30}$	HSL	30\％	30\％	30\％	30\％	30\％	30\％	30\％	30\％	30\％	30\％	30\％	${ }^{30 \%}$	30\％	30\％	30\％	30\％	30\％	30\％	30\％	30\％
${ }^{1205}$	20，05，000	－Tomato ivice	${ }^{30}$	EL	\bigcirc	U	\bigcirc	U	ט	ט	ט	\bigcirc	ט	\bigcirc	ט	\bigcirc	ט	\bigcirc	U	U	\bigcirc	ט	ט	\bigcirc
${ }^{1406}$	${ }^{20,096,100}$	－Of a Bixvalue notexceeding 30	${ }^{30}$	${ }_{\text {ISL }}$	${ }^{30 \%}$	30\％	${ }^{30 \%}$	${ }^{30 \%}$	30\％	30\％	${ }^{30 \%}$	30\％	30\％	${ }^{30 \%}$	30\％	30\％	${ }^{30 \%}$	${ }^{30 \%}$	30\％	30\％	${ }^{30 \%}$	${ }^{30 \%}$	30\％	30\％
1407	20，09，900	－Oner	${ }^{30}$	HsL	${ }^{30 \%}$	30\％	30\％	30\％	30\％	30\％	30\％	30\％	${ }^{30 \%}$	30\％	30\％	${ }^{30 \%}$	${ }^{30 \%}$	30\％	${ }^{30 \%}$	30\％	${ }^{30 \%}$	30\％	30\％	30\％
${ }^{12088}$	20，09， 100	－Of A Bitivalue note exeeding 20	${ }^{30}$	Et	－	，			0	0	ט	－	U	－	－	ט	－	U	U	U	－	U	U	U
$1{ }^{1409}$	20，09，900	－Other	${ }^{30}$	EL	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	ט	\bigcirc	\bigcirc	\bigcirc	\bigcirc	ט	\checkmark	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	U	U	U
$1{ }^{1410}$	${ }^{20,08,110}$	\cdots For intantuse	${ }^{30}$	EL	\bigcirc	\checkmark	－	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\checkmark	\checkmark	U	\bigcirc	\bigcirc	U	\checkmark	\bigcirc	U	\checkmark	\bigcirc	U	\checkmark
${ }^{1411}$	20，08，190	－－Other	${ }^{30}$	EL	\bigcirc	\bigcirc	\bigcirc	U	\bigcirc	\bigcirc	\bigcirc	\bigcirc	－	－	\bigcirc	\bigcirc	－	\bigcirc	－	\bigcirc	－	\bigcirc	U	\bigcirc
${ }^{1412}$	${ }^{20,098,910}$	－Backuuran juice	${ }^{30}$	EL	\bigcirc	U	ט	U	\bigcirc	U	\bigcirc	\bigcirc	U	－	－	\bigcirc		\bigcirc	\bigcirc	\bigcirc	U	U	U	\bigcirc
$1{ }^{1413}$	20，08，991	－For inatat se	${ }^{30}$	EL	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	0	\bigcirc	U	\bigcirc	\bigcirc	\bigcirc									
${ }^{1714}$	20，08，999	… Oner	${ }^{30}$	EL	0	－	－	0	0	0	\bigcirc	U	\bigcirc	0	0	\bigcirc	\bigcirc	0	0	0	\bigcirc	0	U	0
$1{ }^{1415}$	20，09，010	－Foriniantuse	${ }^{30}$	EL	\bigcirc	，	－	，	\bigcirc	0	\bigcirc	－	\bigcirc	\bigcirc	0	\bigcirc	U	\bigcirc						
${ }^{1416}$	20，09，900	－－omer	${ }^{30}$	EL	\bigcirc		0	－	\bigcirc	\bigcirc	\bigcirc	\bigcirc		－	\bigcirc	\bigcirc	－	U	U	U	\bigcirc	U	U	U
${ }^{1417}$	$2{ }^{210 \cdot 1 \cdot 11 / 10}$	－ Insant corlee	${ }^{20}$	EL	\bigcirc	U	U	U	0	\bigcirc	U	－	\bigcirc	U	\bigcirc	－	U	U	ט	\bigcirc	\bigcirc	U	U	U

	${ }^{2,0071,190}$		${ }^{20}$	E				U					U		U		U	U						
			${ }^{20}$	${ }^{\text {E }}$			，	－	，				－	－	，	－		－						ט
1420	2，101，200	－oner	${ }^{20}$	EL	U	U	U	0	0	U	\bigcirc	U	0	－	ט	ט	－	O	ט	U	，	ט	，	ט
${ }^{1421}$	21.1020010		${ }^{20}$	${ }^{\text {Et }}$			＂	－	－				－	，	，	＂	，	＂						
142	2，120，000	－－omer	${ }^{20}$	${ }_{\text {E }}$	，	，	0	\checkmark	\checkmark	\bigcirc	\checkmark	\checkmark	\checkmark	\checkmark	U	\bigcirc	，	，	\bigcirc	\bigcirc	\bigcirc	，	\bigcirc	U
${ }^{142}$	，ors，000		${ }^{20}$	${ }^{\text {EL }}$																				
$\sqrt{124}$	${ }^{2,021,000}$	－Aenere yests	${ }^{5}$	T1	${ }^{46}$	${ }^{48}$	$4{ }^{48}$	${ }^{3}$	${ }^{3 \%}$	2\％	2%	0	0	0%	0	\％	0	\％	${ }_{0}$	${ }_{0}$	\％	${ }^{\circ}$	\％	\％
$1{ }^{122}$	${ }^{\text {2，0，2，2000 }}$			N1	${ }_{4}$	${ }^{4 \%}$	${ }_{4}^{4 \%}$	${ }^{\text {3\％}}$	${ }^{3}$	${ }^{2 \%}$	${ }^{2 \%}$	${ }^{\%}$	${ }^{\circ}$	0	\％	${ }^{\%}$	\％	\％	\％	\％	\％	\％	\％	\％
${ }^{1226}$	${ }^{2,1,03,300}$	－Pepere baxas pomes	${ }^{5}$	N	${ }^{48}$	${ }^{4 \%}$	${ }_{48}$	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	0	\％	\cdots	\％	\％	\％	\％	${ }_{0}$	${ }_{0}$	0	\％	\％
${ }^{1427}$	${ }^{2,1,3,1,000}$	－Sopesame	10	N2	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{8 \%}$	${ }^{8 \%}$	${ }^{6 \%}$	6\％	${ }^{5 \%}$	${ }^{5 \%}$	${ }^{4 \%}$	${ }_{4}^{4 \%}$	${ }^{3}$	${ }_{38}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	0%	\％	\％	\％
1928	${ }^{\text {2，1，32000 }}$		10	N2	${ }_{9 \%}$	${ }^{9 \%}$	${ }_{8}^{8 \%}$	88	6%	68	5\％	${ }^{5 \%}$	${ }^{46}$	${ }^{46}$	${ }_{3}{ }^{6}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{26}$	\％	0	\％	0	${ }^{0}$	\％
1729	2，103，${ }^{\text {a }}$		10	N2	\％	\％	${ }_{8} 8$	${ }^{8 \%}$	${ }^{6 \%}$	\％\％	5\％	5\％	${ }^{4 \%}$	${ }^{4 \%}$	3\％	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	－	\％	\％	\％	\％
1780	${ }^{\text {2，} 1,39890}$	－Chinsave	10	N2	${ }_{9}$	${ }_{9}$	${ }_{8}$	${ }^{8 \%}$	6\％	6\％	5	5\％	48	4%	3\％	${ }^{3 \%}$	${ }^{2 \%}$	2%	\％	\％	\％	\％	${ }^{6}$	\％
${ }^{1931}$	${ }^{2,1,393980}$	－Frasame	10	N2	\％	${ }^{3}$	8\％	${ }^{8 \%}$	68	${ }^{6 \%}$	${ }^{5 \%}$	5\％	4\％	48	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2}$	\％	\％	\％	\％	\％	\％
$1{ }^{1932}$	${ }^{2,108989000}$		${ }^{10}$	N2	${ }_{9}$	${ }^{9 \%}$	8%	8	6	6%	5\％	${ }^{5 \%}$	${ }_{4}$	${ }^{48}$	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	${ }_{6}$	\％	0	0	$\%$	\％
1483	21．039900	\％omer	${ }^{10}$	N2	\％	${ }^{3 \%}$	${ }^{\circ}$	8%	${ }^{6}$	${ }^{6}$	${ }_{5 \%}$	${ }^{5 \%}$	${ }^{48}$	${ }_{48}^{46}$	\％	${ }_{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	${ }^{6}$	\％	${ }_{0}^{6}$	\％	\％	\％
$1{ }^{1284}$	${ }^{20940.0 .11}$	\cdots Forinamue	10	N2	\％	${ }^{9 \%}$	8\％	${ }^{8 \%}$	6%	${ }^{6 \%}$	5\％	5\％	${ }^{48}$	${ }^{4 \%}$	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	0%	\％	\％	\％$\%$
$1{ }^{1985}$	${ }^{20940.0 .19}$	－ oner	10	N2	\％	9\％	8\％	${ }^{8 \%}$	${ }^{6 \%}$	\％	5\％	5\％	＊\％	4%	3\％	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％	\％	\％	\％
${ }^{1486}$	${ }^{2,0,4,1,09}$	\cdots	10	N2	\％	${ }^{9 \%}$	8%	${ }_{8}^{8 \%}$	6%	6\％	${ }^{5 \%}$	5\％	${ }^{4 \%}$	4%	${ }^{3 \%}$	${ }^{3}$	${ }^{2 \%}$	2%	\％	\％	0%	0%	0%	\％
${ }^{1437}$	${ }^{2,04,1,988}$	－．oner	10	N2	\％	${ }^{3 \%}$	8\％	8%	6\％	6\％	5\％	5\％	48	48	3\％	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％	\％	\％	\％
${ }^{12988}$	${ }^{2,1,022011}$	$\stackrel{.}{\text { Formantue }}$	10	N2	\％	${ }^{3}$	8%	8\％	6	\％	${ }^{5 \%}$	5	${ }^{4 \%}$	48	3\％	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	0	\％	\％	\％
1483	${ }^{2,1,022019}$	－Oner	10	N2	\％	\％	8%	8	6%	6%	${ }^{5 \%}$	${ }^{5 \%}$	4%	4%	${ }^{3}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2} \%$	$\%$	$\%$	0	${ }^{\circ} \mathrm{F}$	\％	\％
${ }^{140}$	${ }^{21,0202981}$	\cdots	10	N2	\％\％	${ }_{9 \%}$	8%	${ }^{8 \%}$	\％\％	6%	5\％	5\％	${ }_{4}$	4\％	${ }^{3} 8$	${ }^{3} 8$	${ }^{2 \%}$	${ }^{2 \%}$	\％\％	\％	\％	\％\％	${ }_{0}$	\％
${ }^{1441}$	${ }^{21,0,2,2098}$	\cdots	10	N2	\％	\％	${ }_{8}^{8 \%}$	${ }^{8 \%}$	6%	\％	5\％	5\％	$4{ }^{4 \%}$	$4{ }^{4 \%}$	${ }^{3 \%}$	${ }^{3 \%}$	${ }_{2}^{2 \%}$	${ }^{2 \%}$	$\%$	\％	0%	0%	0%	${ }_{0}$
	${ }^{2,1,50,000}$		${ }^{20}$	＋st		\％		\％	\％	\％	\％	\％	\％		\％		\％	\％	\％	\％	\％			
${ }^{143}$	2，0，6，000		${ }^{10}$	NT	\％	8	6\％	${ }^{5 \%}$	${ }^{4 / 8}$	${ }^{3 \%}$	${ }^{2 \%}$	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％
1744	21，909，${ }^{\text {a }}$		10	NT	${ }^{9}$	8%	6\％	5\％	4%	${ }^{38}$	${ }^{26}$	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％
	${ }^{\text {2，}, 1,898020}$		10	NT	${ }^{9}$	88	\％	5\％	${ }_{4}^{48}$	${ }^{3 \%}$	${ }^{26}$	\％	\％	\％	0	\％	\％	\％	\％\％	\％	\％	\％	\％	\％
${ }^{1446}$	${ }^{2,1,090900}$	－Norosala coemer	10	NT	${ }_{96}$	8	6\％	5\％	4\％	${ }^{3}$	${ }^{2 \%}$	\％	\％	\％	\％	，	\％	\％	\％	\％	\％	${ }^{6}$	${ }^{6}$	\％
${ }^{1447}$	${ }^{2,1,0989041}$		10	NT	${ }_{9}$	88	6%	${ }^{5 \%}$	${ }^{48}$	${ }^{3 \%}$	${ }^{26}$	\％	\％	\％	\％	\％	\％	\％	O\％	\％${ }^{\text {\％}}$	\％\％	\％	\％	\％
${ }^{1448}$	2，1089，999	－－oner	10	NT	\％	${ }_{8}^{8}$	6%	5\％	${ }_{4}^{4 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	\％	\％	\％	0	\％	\％	\％	\％	\％	0%	0%	0%	\％$\%$
$1{ }^{1449}$	${ }^{2,1,089851}$		10	${ }^{\text {N11 }}$	\％	${ }^{8 \%}$	\％\％	5%	${ }^{4 \%}$	${ }_{3}$	${ }^{2 \%}$	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	${ }_{6}$	\％
1.140	${ }^{2,1,0,0982}$	Wemenesie onemeneses ors	10	NT	${ }^{\text {\％\％}}$	${ }^{8 \%}$	${ }^{6 \%}$	${ }^{5 \%}$	${ }^{4 \%}$	${ }^{3}$	${ }^{2 / 8}$	\％	0	\％	\％	\％	\％	\％	\％	\％	\％	\％	${ }^{\text {\％}}$	\％
${ }^{1451}$	${ }^{21,1,98985}$	\cdots	${ }^{10}$	N1	\％	8%	${ }^{6 \%}$	5\％	4%	${ }^{36}$	${ }^{2 \%}$	0	0	\％\％	0	0%	0	0%	\％\％	\％	\％	\％\％	${ }_{0}$	\％
${ }^{1452}$	${ }^{2,1,0898989}$	－．．oter	10	NT	${ }_{96}$	8\％	${ }^{6 \%}$	${ }^{5 \%}$	${ }^{4 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	\％	0	\％	\％	0.8	0%	\％	\％	\％	0%	\％	${ }^{0}$	\％
	2，．0990．06		10	${ }^{\text {N11 }}$	${ }_{\text {\％／}}$	${ }^{8 \%}$	${ }_{6}$	5\％	48	3\％	${ }^{2 \%}$	\％	\％	\％	\％	\％	${ }^{0}$	\％	\％	\％	${ }_{0}$	\％	${ }_{6}$	\％
${ }^{1454}$	${ }^{2,1,089062}$	Weone	${ }^{10}$	NT	${ }^{9 \%}$	${ }_{8}^{8}$	\％	${ }^{5 \%}$	${ }^{4 \%}$	\％	${ }^{2 \%}$	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％
$1{ }^{1455}$	${ }^{2,1,098964}$		${ }^{10}$	NT	\％	${ }_{8}$	${ }^{6}$	${ }^{5 \%}$	${ }_{4}^{4 \%}$	${ }^{3}$	${ }^{2 \%}$	\％	\％	\％	\％	\％	\％	\％	${ }^{6 \%}$	\％	${ }^{\text {\％}}$	\％	\％	\％$\%$
	${ }^{\text {2，I，G90．065 }}$		10	NT	${ }_{\%}$	${ }_{8}^{8 \%}$	${ }^{6 \%}$	${ }^{5 \%}$	$4{ }^{4}$	${ }^{3}$	${ }^{2 \%}$	\％	\％	\％	\％\％	\％	\％	\％	${ }^{6}$	\％	\％	\％	\％	\％
	${ }^{21,0,090,066}$		10	NT	\％	${ }_{8}^{8}$	\％	${ }^{5 \%}$	48	\％	${ }^{2 \%}$	\％	\％	\％	0	\％	\％	\％	\％	\％	${ }_{0}$	\％	\％	0
$1{ }^{1458}$	2，1，909067		${ }^{10}$	V1	${ }^{9 \%}$	8	${ }^{6 \%}$	5\％	${ }^{48}$	${ }^{3 \%}$	${ }^{2 \%}$	\％	\％	\％	\％	\％	0	${ }^{0}$	\％	$\%$	${ }^{\infty}$	\％	\％	\％\％
${ }^{1459}$	${ }^{21,1,990968}$	Ointer	10	NT	\％	${ }_{80}$	\％	5\％	4%	${ }^{3 \%}$	${ }^{26}$	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％\％	\％	\％
1480	21，09090	－－Fosesppenens	10	${ }^{\text {NT1 }}$	${ }_{9}$	${ }^{8 \%}$	6%	5\％	48	${ }^{3} 8$	${ }^{26}$	\％	0	\％	\％	\％	\％	\％	\％	\％	0	0%	${ }_{0} \%$	\％
${ }^{1461}$	2，．099000	－FForimandememes	10	NT	\％	${ }^{8 \%}$	\％\％	5\％	${ }_{48}$	${ }^{36}$	${ }^{26}$	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％\％	\％\％	\％	\％
1748	${ }^{2,1,089091}$	－－Other mixtures of chemicals with foodstuffs or other substances with nutritive value，of a kind used	10	NT	${ }^{9 \%}$	${ }^{8 \%}$	\％	${ }^{5 \%}$	4\％	${ }^{36}$	${ }^{2 \%}$	\％	\％	0%	\％	${ }^{\%}$	\％	\％	\％	\％	\％	\％	${ }_{0}$	\％
	${ }^{21,1,98909}$	Cinemombesad peparaios	10	N1	${ }_{9}$	8	${ }^{6 \%}$	5\％	${ }^{4 \%}$	3\％	${ }^{26}$	\％	0%	0	\％	\％	0	${ }_{0}$	0	0	${ }_{0}^{0}$	0	0	0%
1964	${ }^{2,1,098983}$	amper	10	NT	${ }^{96}$	88	6%	5	4%	${ }^{3 \%}$	${ }^{2 \%}$	\％	\％	\％	\％	\％	\％	\％	\％	\％	${ }^{\text {\％}}$	\％	${ }^{\text {\％}}$	\％
	2，1，98994		10	Nr	${ }^{9 \%}$	${ }^{8 \%}$	${ }^{6 \%}$	${ }^{5 \%}$	${ }^{48}$	${ }^{3 \%}$	${ }^{26}$	0%	\％	\％	\％	\％	\％	\％	\％	\％	0%	\％	0	\％
${ }^{1466}$	${ }^{2,1,68989}$	－Serlaga	10	NT	${ }^{9}$	${ }^{8 \%}$	6%	${ }^{5 \%}$	${ }_{4}{ }^{4}$	${ }^{3 \%}$	${ }^{2 \%}$	\％	\％	${ }^{6}$	\％	\％	\％	$\%$	\％	\％	\％	0%	${ }^{6}$	\％
${ }^{1467}$	${ }^{2,1,0909096}$	．．otremenotal loos	10	NT	${ }_{9}$	8	6%	${ }^{5 \%}$	${ }^{48}$	${ }^{3 \%}$	${ }^{2 \%}$	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％
1488	21，090908	\cdots Oneratuoumpereasames	10	Nr	${ }^{6}$	${ }_{8 \%}$	68	${ }^{5 \%}$	48	${ }^{3 \%}$	${ }^{2 \%}$	\％	\％	\％	0%	\％	0	\％	\％\％	\％	0%	\％\％	\％	\％
146	${ }^{2,1,069098}$	ner	10	N1	${ }_{9}$	${ }_{8}$	${ }^{6 \%}$	${ }_{5 \%}$	4%	${ }^{3 \%}$	${ }^{2 \%}$	\％	$\%$	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	－
${ }^{1470}$	${ }^{22010,100}$	－Mmealmesesana	40	${ }^{\text {Et }}$	\bigcirc	\bigcirc	\bigcirc	ט	\bigcirc	0	ט	\bigcirc	\bigcirc	0	\bigcirc	\bigcirc	\bigcirc	\bigcirc	0	0	\bigcirc	ט	0	0
${ }^{1471}$	${ }^{220,99000}$	－ －comens sav	10	N2	\％	9	${ }^{8 \%}$	${ }^{8 \%}$	${ }^{6 \%}$	${ }^{6 \%}$	${ }^{5 \%}$	${ }^{5 \%}$	4%	${ }^{48}$	${ }^{3 \%}$	${ }^{3 \%}$	2%	${ }^{2 \%}$	0%	\％	0	0%	${ }_{0}$	\％
${ }^{1472}$	${ }^{22010,90000}$	－－oner	10	N2	${ }^{5 \%}$	\％	${ }_{8 \%}$	${ }^{8 \%}$	6%	${ }^{6 \%}$	${ }^{5 \%}$	${ }^{5 \%}$	4\％	${ }^{48}$	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％	\％\％	\％	\％
${ }^{1473}$	20202010		${ }^{30}$	${ }^{\text {EL }}$	0	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	0	\bigcirc	ט	0	－		\bigcirc		0		0	0	
1484	22021，000	－other	${ }^{30}$	Et	\bigcirc	\checkmark	0	0	\bigcirc	0	－	，	\bigcirc	0	\bigcirc	，	，	－	0	，	U	，	0	0
${ }^{1475}$	${ }^{220292900}$	－Fanuesurf mikmins	${ }^{30}$	Et	\bigcirc	$\stackrel{\square}{\square}$	\bigcirc		\bigcirc	\bigcirc	\bigcirc													
${ }^{1476}$	${ }^{2202090200}$	－Svomink imin	${ }^{30}$	${ }^{\text {EL }}$	\bigcirc	－	\bigcirc	－	\checkmark	\bigcirc	－	\checkmark	\bigcirc	\bigcirc	－	\bigcirc	\checkmark	\bigcirc	－	－	\bigcirc	－	\bigcirc	\bigcirc
	2020，00		${ }^{30}$	E	－		\bigcirc	－	\bigcirc		＂		\bigcirc	－		＂		\bigcirc		－		ט	U	－
${ }^{1478}$	22093900	－－oner	${ }^{30}$	${ }^{\text {E }}$	\bigcirc	，	\bigcirc	\bigcirc	\checkmark	\bigcirc	\bigcirc	\bigcirc	\checkmark	\bigcirc	\checkmark	\bigcirc	\bigcirc	\bigcirc	U	－	\bigcirc	，	\checkmark	\bigcirc
1479	${ }^{22 \times 300000}$	－Souropoter	${ }^{40}$	El	\bigcirc	\bigcirc	\bigcirc	0	\bigcirc	－	\bigcirc	－	\bigcirc	\bigcirc	\bigcirc									
1780	${ }^{22,3000000}$	－one：inuming ale	${ }_{40}$	${ }^{\text {E }}$	\bigcirc	\bigcirc	\bigcirc	0	0	0	\bigcirc	\bigcirc	\bigcirc	0	\bigcirc	0	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\checkmark	\bigcirc	\bigcirc	\bigcirc
${ }_{1481}^{148}$	${ }^{22041000}$	－Spaxtray we	${ }^{30}$	－st	${ }^{\text {are }}$	－0\％0	$3{ }^{30 \%}$	30\％	30	20\％	30\％\％	${ }^{30 \%}$	30\％	30\％	30\％	30\％	30\％	\％	${ }^{30 \%}$	30%	30\％	30\％	${ }^{30 \%}$	－
	${ }^{20,0221111}$		${ }^{30}$	st	${ }^{30 \%}$	80\％	${ }^{30 \%}$	30\％	${ }^{308}$		50\％	${ }^{30 \%}$	${ }^{30 \%}$	\％	2ea	2e	2	2	2e	3ex	20en	20e	30\％	30\％
	$1{ }^{2,113}$		${ }^{30}$	${ }^{\text {st }}$	\％	1	${ }^{30 \%}$	\ldots	20\％	\％	${ }^{30 \%}$	20\％	20\％	20	${ }^{20 \%}$	\％os	${ }^{\text {axom }}$	\％0\％	\％	20\％	\％	${ }^{30 \%}$	10\％	${ }^{30 \%}$
${ }^{148}$	${ }^{2,02,2,14}$		${ }^{30}$		${ }^{20 \%}$	\％	${ }^{2008}$	，	\％	\％	．	\％or	\cdots	\ldots	\％	\％	80\％	\cdots	wo	0	，	，	－	${ }^{0}$
	$2{ }^{2,02121}$		${ }^{30}$	s	20\％	2008	${ }^{306}$	\％	${ }^{\text {20\％}}$	20\％	${ }^{30 \%}$	30\％	30\％	30\％	\％\％	30\％	00\％	${ }^{20 \%}$	00\％	${ }^{30 \%}$	0\％	30\％	20\％	${ }^{30 \%}$
			${ }^{30}$		\％	\％	\％orsor	\cdots	Som	，	\％	．	\％	0	\％	\％	\％	\％or	\％	80\％	\％	${ }^{\circ}$	\％	${ }^{3008}$
			${ }^{30}$	st	2060	300\％	80\％	\％	30\％	0	${ }^{20 \%}$	30\％	20\％	\％or	20\％	20\％	20\％	\％	30\％	\％\％	${ }_{0}$	${ }^{30 \%}$	\％om	${ }^{300 \%}$
${ }^{1488}$	2293	\％	${ }^{30}$	${ }^{\text {sta }}$	\％os	${ }^{2058}$	80\％	\％\％	80\％	20\％	${ }^{30 \%}$	30\％	20\％	30\％	${ }^{308}$	${ }^{308}$	20\％	20\％	20\％	${ }^{30 \%}$	20\％	30\％	80\％	${ }^{30 \%}$
${ }^{1488}$	2012914	䢒	${ }^{30}$	rst	20\％	30\％8	${ }^{2008}$	${ }^{008}$	\％ow	，	\％${ }^{068}$	\％	\％ow	\％om	\％os	\％ow	We\％	20\％	\％\％	20\％	\％	20\％	\％	20\％
149	429291		${ }^{30}$		8	\％om	\％	\％	50\％	\％	\％	30\％	30\％	\％om	\％or	80\％	\％os	\％os	\％	20\％	\ldots	\％o\％	\％	${ }^{30 \%}$
${ }^{198}$	$2{ }^{2,029292}$	İs\％ 0 ana	${ }^{30}$	，	80\％	\％or	0	\％os	3008	\％	\％or	O－O	30\％	\ldots	\％	wor	80\％	\cdots	30\％	\％0\％	\ldots	80\％	\cdots	30\％
${ }^{1492}$			${ }^{30}$	${ }^{\text {Hst }}$	8	30\％	${ }^{3008}$	200\％	${ }^{308}$	00\％	${ }^{2008}$	，00\％	${ }^{30 \%}$	${ }^{008}$	20\％	30\％	30\％	00\％	\％or	${ }^{30 \%}$	\％	30\％8	${ }^{30 \%}$	30\％
${ }^{1989}$	203， 0^{200}		${ }^{30}$	＋st	\％os	300	30\％	30\％	${ }^{300 \%}$	\％os	30\％	20\％	30%	\％	\％os	20\％	\％o	\％os	200	20\％	\％	30\％	00\％	${ }^{30 \%}$
	2050．0．0	itremal	${ }^{30}$	st	\％ers	30\％	30\％	20\％	300	50\％	300	${ }^{3008}$	30\％	\％or	\％	20\％	30\％8	50\％	20\％	\％0\％	80\％	80\％	${ }^{10 \%}$	${ }^{30 \%}$
	250．020			Hs	${ }^{30 \%}$	30\％	30\％	On\％	308	30\％	30	${ }^{30 \%}$	30\％	30\％	\％\％\％	30\％	80\％	\％06	30\％	30%	\％o\％	${ }^{30 \%}$	0\％	${ }^{30 \%}$
				，	${ }^{30 \%}$	aro	aro	\％	80	\％	\％	\％	20\％	\％	\％	\％	ar	\％	\％	30\％	\％	\％	\％	30\％
		Tissol alm			200\％	3008	30\％	\％	\％	3008	20\％8	00\％	30\％	20\％	30\％	\％os	2008	30\％	\％	$3{ }^{30 \%}$	\％	2008	\％os\％	30\％

香港•ASEAN FTAにかかる調査報告書

別添2－4 原産地品の関税撤廃スケジュール
（ラオス）

1998	22，060，010	－Cidero opery	${ }^{30}$	${ }^{\text {ISL }}$	${ }^{30 \%}$	${ }^{30 \%}$	10\％	30\％	${ }^{30 \%}$	80\％	30\％	130\％	${ }^{30 \%}$	${ }^{30 \%}$	${ }^{30 \%}$	130\％	130%	${ }^{30 \%}$	$1{ }^{30 \%}$	${ }^{30 \%}$	130%	${ }^{\text {30\％}}$	${ }^{30 \%}$	${ }^{30 \%}$
1999	22，06，020	－Sake	${ }^{30}$	${ }^{\text {HSL }}$	30\％	30\％	30\％	30\％	30\％	30\％	30\％	30\％	${ }^{30 \%}$	30\％	30\％	30\％	30\％	${ }^{30 \%}$	30\％	30\％	30\％	30\％	30\％	30\％
1500	22，86，030	－Tody	${ }^{30}$	HSL	30\％	30\％	30\％	30\％	30\％	30\％	30\％	30\％	${ }^{30 \%}$	30\％	30\％	30\％	30\％	${ }^{30 \%}$	30\％	30\％	30\％	${ }^{30 \%}$	30\％	30\％
${ }^{1501}$	22，06，040	Slandy	${ }^{30}$	Hst	30\％	30\％	30\％	30\％	30\％	30\％	\％	30\％	30\％	30\％	30\％	30\％	30\％	30\％	30\％	30\％	30\％	30\％	30\％	30\％
1502	22，06，091	Other ice wine（inculding medicialed ice wine）	${ }^{30}$	${ }_{\text {IsL }}$	30\％	30\％	30\％	30\％	30\％	30\％	30\％	30\％	30\％	30\％	30\％	30\％	30\％	30\％	30\％	30\％	30\％	30\％	30\％	\％\％
${ }^{1503}$	22，06，099	－other	${ }^{30}$	HSL	30\％	30\％	30\％	30\％	30\％	30\％	30\％	30\％	30\％	30\％	30\％	30\％	30\％	30\％	30\％	30\％	30\％	30\％	30\％	30\％
1504	22，07，000	－Undenatured ethyl alcohol of an alcoholic strength by volume of 80% vol or higher	${ }^{30}$	HsL	30\％	30\％	30\％	30\％	30\％	30\％	30\％	\％\％	30\％	30\％	30\％	30\％	30\％	30\％	30\％	30\％	30\％	30\％	30\％	30\％
1505	22．072．011	－－Ethyl alcohol of an alcoholic strength by volume exceeding 99% vol	${ }^{40}$	HSL	${ }^{40 \%}$	${ }^{40 \%}$	${ }^{40 \%}$	${ }^{40 \%}$	${ }^{40 \%}$	${ }^{40 \%}$	${ }^{40 \%}$	40%	40%	${ }^{40 \%}$	40\％	20\％	40\％	${ }^{40 \%}$	40%	40\％	40\％	40\％	${ }^{40 \%}$	40\％
1506	$22.272,019$	－．－other	${ }^{40}$	HSL	40\％	40\％	40\％	40\％	40\％	40\％	40\％	40\％	40\％	40\％	40\％	40\％	40\％	10\％	40\％	40\％	40\％	40\％	40\％	40\％
1507	22，072，090	Ol	40	Ist	40\％	40\％	40\％	40\％	40\％	40\％	40\％	40\％	40%	40\％	40\％	40\％	40\％	40\％	20\％	40\％	${ }^{40 \%}$	40\％	${ }^{40 \%}$	40\％
${ }^{1508}$	22，082，050	－Baray	${ }^{30}$	HSL	30\％	30\％	30\％	30\％	30\％	30\％	30\％	30\％	${ }^{30 \%}$	30\％	${ }^{30 \%}$	30\％	${ }^{30 \%}$	${ }^{30 \%}$	${ }^{30 \%}$	30\％	${ }^{30 \%}$	${ }^{30 \%}$	${ }^{30 \%}$	30\％
1509	22，082090	－other	${ }^{30}$	HSL	30\％	30\％	30\％	30\％	30\％	30\％	30\％	30\％	30\％	30\％	30\％	30\％	30\％	30\％	30\％	30\％	30\％	30\％	30\％	30\％
${ }^{1510}$	22，03，000	－Whiskies	${ }^{40}$	Ist	20\％	40\％	20\％	40\％	40\％	40\％	40\％	40\％	${ }^{40 \%}$	40\％	40\％	40\％	${ }^{40 \%}$	40\％	40\％	40\％	${ }^{40 \%}$	40\％	40\％	40\％
${ }^{1511}$	22，04，000	Rum and other spirits obtained by distilling fermented sugar－cane products	${ }^{40}$	HsL	40\％	40\％	20\％	40\％	40\％	40\％	10\％	40\％	${ }^{40 \%}$	40\％	40\％	20\％	${ }^{40 \%}$	40\％	40\％	20\％	${ }^{40 \%}$	40\％	40\％	20\％
${ }^{1512}$	22，85，000	－Gin and Geneva	${ }^{40}$	IsL	40\％	20\％	40\％	40\％	40\％	20\％	20\％	40\％	${ }^{40 \%}$	20\％	40\％	40\％	${ }^{40 \%}$	20\％	40\％	40\％\％	${ }^{40 \%}$	${ }^{40 \%}$	40\％	\％
${ }^{1513}$	22，08，000	－Vooka	${ }^{40}$	${ }^{\text {HSL }}$	40\％	40\％	40\％	40\％	40\％	40\％	40\％	40\％	${ }^{40 \%}$	40\％	40\％	40\％	${ }^{40 \%}$	40\％	40\％	40\％	40\％	40\％	${ }^{40 \%}$	40\％
1514	22，08，000	－Liuwurs and cordias	${ }^{40}$	Ist	20\％	40\％	40\％	40\％	40\％	20\％	40\％	40\％	40\％	20\％	40\％	40\％	${ }^{40 \%}$	20\％	20\％	400	${ }^{40 \%}$	${ }^{40 \%}$	${ }^{40 \%}$	40%
${ }^{1515}$	22，09，010	－Medicated samsu of an alcoholic strength by volume not exceeding 40% vol	40	HSL	20\％	40\％	40\％	40\％	40\％	${ }^{40 \%}$	40\％	40\％	${ }^{40 \%}$	${ }^{40 \%}$	${ }^{40 \%}$	40\％	${ }^{40 \%}$	${ }^{40 \%}$	${ }^{40 \%}$	40\％	${ }^{40 \%}$	20\％	${ }^{40 \%}$	40\％
${ }^{1516}$	22，09，020	－Medicated samsu of an alcoholic strength by volume exceeding 40% vol	${ }^{40}$	＋sL	0\％	\％\％	40\％	40\％	20\％	20\％	\％\％	${ }^{40 \%}$	\％\％	${ }^{40 \%}$	40\％	\％\％	0\％	40\％	40%	40\％	\％	40%	40\％	20\％
1517	030	$\begin{array}{\|l\|} \hline- \text { Other samsu of an alcoholic strength by volume } \\ \text { not exceeding } 40 \% \text { vol } \\ \hline \end{array}$	${ }^{40}$	${ }^{\text {ISLL }}$	10\％	40\％	${ }^{40 \%}$	${ }^{40 \%}$	10\％	20\％	${ }^{40 \%}$	${ }^{40 \%}$	${ }^{40 \%}$	20\％	40\％	0\％	0\％	40\％	40\％	40\％	0\％	40\％\％	40\％	20\％
1518	22，09，040	- Other sammu of a a alcoholic strength by volume exceeding 40% vol	${ }^{40}$	＋sL	0\％	20\％	${ }^{40 \%}$	40\％	20\％	20\％	0\％	0\％	40\％	40\％	40\％	0\％	${ }^{40 \%}$	40\％	40\％	0\％	0\％	${ }^{40 \%}$	40%	20\％
1519	${ }^{22,089,50}$	$\begin{aligned} & \text {-- Arrack or pineapple spirit of an alcoholic strength } \\ & \text { by volume not exceeding } 40 \% \mathrm{vol} \end{aligned}$	${ }^{40}$	IsL	20\％	40\％	20\％	40%	20\％	40\％	20\％	10\％	40\％	40\％	40\％	10\％	${ }^{40 \%}$	40\％	40\％	${ }^{40 \%}$	40\％	40%	40%	20\％
1520	9，060	$\begin{array}{\|l\|} \hline \text { A Arack.c or pineapple spirit of a a alcoholic strength } \\ \text { by volume exceeding 40\% vol } \\ \hline \end{array}$	${ }^{40}$	Ist	0\％	40\％	0\％	${ }^{40 \%}$	20\％	20\％	0\％	0\％	${ }^{40 \%}$	20\％	40\％	0\％	${ }^{40 \%}$	40\％	${ }^{40 \%}$	${ }^{40 \%}$	\％	${ }^{40 \%}$	40%	10\％
1521	22，089，070	－Bititrs and similar beverages of an alcoholic strengt not exceeding 57% vol	${ }^{40}$	HsL	0\％	20\％	40\％	40\％	20\％	0\％	0\％	40%	40\％	20\％	40\％	40%	40\％	00\％	40%	40%	40%	40\％	40%	0\％
1522	22，09，080	－－Bitters and similar beverages of an alcoholic strength exceeding 57% vol	${ }^{40}$	${ }^{\text {HSL }}$	0\％	${ }^{40 \%}$	${ }^{40 \%}$	40%	10\％	${ }^{40 \%}$	${ }^{40 \%}$	40\％	40\％	10\％	40%	40\％	40\％	${ }^{40 \%}$	40%	40\％	40\％	40%	40%	00\％
1523	22，89，909	－Omer	${ }^{40}$	HSL	0\％	40\％	20\％	40\％	20\％	20\％	00\％	20\％	${ }^{40 \%}$	20\％	20\％	20\％	${ }^{40 \%}$	20\％	20\％	20\％	\％0\％	20\％	20\％	10\％
1524	22，09，000	Vinegar and substitutes for vinegar obtained from acetic acid．	${ }^{10}$	NT1	\％$\%$	${ }_{8 \%}$	6\％	5\％	4\％	${ }^{3 \%}$	${ }^{2 \%}$	\％	\％\％	\％	0\％	${ }^{0 \%}$	0\％	\％	\％	\％	\％	\％	\％	\％
1525	23，01，000	－Flours，meals and pellets，of meat or meat offal； greaves	${ }^{5}$	T1	${ }^{4 \%}$	${ }^{4 \%}$	${ }^{4 \%}$	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％	0\％	0\％	0\％	\％	\％	0\％	\％	\％	\％	\％\％
1526	23，012，010	$\begin{array}{\|l} \hline- \text { Of fish, with a protein content of less than } 60 \% \text { by } \\ \text { weight } \end{array}$	${ }^{5}$	NT1	${ }^{4 \%}$	${ }^{4 \%}$	${ }^{4 \%}$	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％\％	${ }^{0 \%}$	0\％	\％	\％	\％\％	\％	\％	\％	\％	\％
1527	23，012，020	$\begin{aligned} & \text { - Of fish, with a protetein content of } 60 \% \text { or more by } \\ & \text { weight } \end{aligned}$	${ }^{5}$	NT1	${ }^{4 \%}$	${ }^{4 \%}$	${ }^{4 \%}$	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％	0\％	\％	\％	\％	0\％	\％\％	\％	\％	\％\％	\％
${ }^{1528}$	23，012，090	－－omer	5	T1	4\％	4\％	4\％	${ }^{3 \%}$	3\％	${ }^{2 \%}$	${ }^{2 \%}$	\％	0\％	\％	0\％	0\％	0\％	0\％	0\％	\％	\％	\％	\％	\％\％
1529	23，02，000	Ot maze（com）	5	T1	${ }^{4 \%}$	4%	4\％	${ }^{3 \%}$	${ }^{\text {3\％}}$	${ }^{2 \%}$	${ }^{2 \%}$	0\％	0\％	\％	0\％	\％	0\％	0\％	\％	\％\％	\％	\％	\％	\％
1530	23，03，000	－Ot wheat	5	T1	${ }^{4 \%}$	${ }^{4 \%}$	4\％	3\％	${ }^{3} \%$	${ }^{2 \%}$	${ }^{2 \%}$	\％	0\％	\％	0\％	\％	0\％	\％	\％	0\％	0\％	\％	\％	\％
${ }_{1531}$	23，04，010	－orine	5	HSL	${ }^{5 \%}$	5\％	5\％	5\％	${ }^{5 \%}$	5\％	5\％	5\％	5\％	5\％	${ }^{5 \%}$	5\％	5\％	5\％	5\％	${ }^{5 \%}$	${ }^{5 \%}$	${ }^{5 \%}$	5\％	${ }^{5 \%}$
1532	23，24，090	－Oner	5	NT1	4%	4\％	4\％	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％	\％	\％	\％	0\％	\％	\％	\％	\％	\％	\％
${ }^{1533}$	23，25，000	－orteguminusplants	5	NT1	4%	4%	4%	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％\％	0\％	0\％	0\％	0\％	0\％	\％	\％	\％	\％	\％	\％\％
153	2303．10．10	－Of manioc（casseva） 0 s sago	5	NT1	4%	4\％	4\％	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	0\％	0\％	\％	\％	0\％	\％	\％\％	\％	\％	\％	\％
1535	23，03，090	－－oner	5	HSL	${ }^{5 \%}$	${ }^{5 \%}$	${ }^{5 \%}$	${ }_{5 \%}^{5 \%}$	${ }^{5 \%}$	${ }^{5 \%}$	${ }^{5 \%}$	${ }_{5 \%}^{5 \%}$	5\％	${ }_{5 \%}$	${ }^{5 \%}$	${ }^{5 \%}$	${ }^{5 \%}$	${ }^{5 \%}$	${ }^{5 \%}$	${ }^{5 \%}$	${ }^{5 \%}$	${ }^{5 \%}$	${ }^{5 \%}$	${ }^{5 \%}$
${ }^{1536}$	23，02，200	－Beet－pulp，bagasse and other waste of sugar manutacture	${ }^{5}$	NT1	4\％	4\％	${ }^{4 \%}$	3\％	उ\％	2\％	${ }^{2 \%}$	\％	\％	\％	0\％	\％	\％	\％\％	\％	\％	\％	\％	\％	\％\％
1537	23，03，000	－Beeving or cisiling dregs and wasie	5	NT1	4\％	4\％	4\％	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	0\％	\％	\％	\％	0\％	\％	\％	\％	0\％	\％	\％
${ }^{1538}$	23，04，010	－Defatted soya bean flour，fit for human consumption	${ }^{5}$	NT1	4\％	4\％	4\％	3\％	3\％	${ }^{2 \%}$	${ }^{2 \%}$	\％	0\％	0\％	0\％	0\％	\％	0\％	\％	\％	\％	\％	\％	${ }^{0 \%}$
1539	23，04，090	－Oner	5	NT1	4\％	4\％	4\％	3\％	3\％	2\％	2\％	0\％	\％	0\％	0\％	0\％	\％	0\％	0\％	\％	0\％	0\％	\％	\％
1540	23，55，000	Oil－cake and other solid residues，whether or not ground or in the form of pellets，resulting from the extraction of ground－nut oil．	${ }_{5}$	HSL	5\％	5\％	5\％	5\％	5\％	5\％	5\％	${ }^{5 \%}$	5\％	5\％	5\％	5\％	5\％	5\％	5\％	${ }^{5 \%}$	5\％	${ }^{5 \%}$	5\％	${ }^{5 \%}$
$1{ }^{1541}$	23，06，000	－O coton seeds	5	Ist	5\％	5\％	5\％	${ }^{5 \%}$	5\％	5\％	5\％	${ }^{5 \%}$	5\％	5\％	${ }^{5 \%}$	5\％	5\％	5\％	5\％	${ }^{5 \%}$	${ }^{5 \%}$	${ }^{5 \%}$	${ }^{5 \%}$	${ }^{5 \%}$
1542	23，02，200	Offinsed	5	Ist	${ }^{5 \%}$	5\％	5\％	${ }^{\text {5\％}}$	${ }^{5 \%}$	5\％	5\％	${ }^{5 \%}$	5%	5\％	${ }^{5 \%}$	${ }^{5 \%}$	${ }^{5 \%}$	5\％	5\％	${ }^{5 \%}$	${ }^{5 \%}$	${ }^{5 \%}$	5\％	${ }^{5 \%}$
1543	23，03，000	－otsmilowe seads	5	${ }^{\text {HSL }}$	${ }^{5 \%}$	5\％	5\％	${ }^{5 \%}$	${ }^{5 \%}$	${ }^{5 \%}$	5\％	${ }^{5 \%}$	${ }^{5 \%}$	${ }^{5 \%}$	${ }^{5 \%}$	${ }^{5 \%}$	${ }^{5 \%}$	5\％	${ }^{5 \%}$	${ }^{5 \%}$	${ }^{5 \%}$	${ }^{5 \%}$	${ }^{5 \%}$	${ }^{5 \%}$
1544	23，04， 110	Of low encicicadidrap seds	5	NT1	4%	4\％	4\％	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％
1545	${ }^{23,04,4,120}$	－Of owe encica adid ocra seeds	5	NT1	4%	4\％	4\％	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	0\％	\％	\％	\％	0\％	\％	\％	\％	\％	\％	\％\％
1546	23，04，9，90	－－Ofother ape seeds	5	NT1	4%	4\％	4\％	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	0\％	\％	\％	0\％	0\％	\％	\％\％	0\％	0\％	0\％	\％\％
1547	${ }^{23,04,920}$	\cdots Ofother colza seeds	5	NT1	${ }^{4 \%}$	${ }^{4 \%}$	4\％	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％	\％	0\％	0\％	0\％	\％	\％	\％	\％	\％	${ }^{0 \%}$
${ }^{1548}$	23，65，000	－Ot coconut or copa		NT1	4%	${ }^{4 \%}$	4\％	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％	\％	0\％	\％	0\％	\％	\％	\％	\％	\％	\％
1549	23，66，000	－Of palm nuts or remels	5	NT1	4%	4\％	4\％	3\％	3\％	2\％	${ }^{2 \%}$	\％	\％	\％	0\％	\％	\％	\％	\％	\％	\％	\％	\％	\％
1550	23，09，010	－－ot maze（com）gem	5	NT1	4\％	4\％	4\％	3\％	3\％	${ }^{2 \%}$	${ }^{2 \%}$	\％	0\％	\％	0\％	\％	\％	\％	\％	\％	\％	\％\％	\％	\％
${ }^{1551}$	23，06，090	－oner	5	NT1	4%	4%	${ }^{4 \%}$	3\％	3\％	${ }^{2 \%}$	${ }^{2 \%}$	\％	0\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％\％
${ }^{1552}$	23，70，000	Wine less argol．	5	NT1	4\％	4\％	4\％	3\％	3\％	2\％	2\％	\％	\％	\％\％	0\％	0\％	0\％	\％	\％	\％	0\％	\％	\％	${ }^{0 \%}$
${ }^{1553}$	23，08，000	Vegetable materials and vegetable waste， vegetable residues and by－products，whether or not in the form of pellets，of a kind used in animal feeding，not elsewhere specified or included．	5	NT1	4\％	4\％	4\％	3\％	3\％	2\％	2\％	\％\％	\％	0\％	\％	\％\％	\％\％	0\％	\％	\％	\％	\％	\％	\％
$1{ }^{1554}$	2309：0．10	Containg meat	5	NT1	4%	4\％	4\％	${ }^{3 \%}$	3\％	2\％	${ }^{2 \%}$	0\％	\％	0\％	0\％	0\％	0\％	0\％	\％	\％	\％	\％	\％	\％\％
${ }^{15555}$	23，01，909	Oher	5	NT1	4%	4\％	4\％	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	0\％	\％	\％	\％	0\％	\％	\％	\％	\％	\％	\％\％
${ }^{1556}$	23，99，011	\cdots Of k kind silubul tor outily	5	NT1	$4{ }^{4}$	4\％	4\％	${ }^{3 \%}$	3\％	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％\％	0\％	0\％	0\％	0\％	0\％	0\％	\％\％	0\％	0\％	0\％	0\％
${ }^{1557}$	23，99，012	－Of a kind suliebele forswine	5	NT1	4%	4\％	4\％	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	0\％	0\％	\％	\％	\％	\％	\％\％	\％	\％	\％	\％\％
${ }^{1558}$	23，09，013		5	NT1	$4{ }^{4 \%}$	${ }^{4 \%}$	4%	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	0\％	0\％	0\％	0\％	0\％	\％	\％	\％	\％	\％	\％
1559	23，09，014	Of a kind suluabe orp pimales	5	NT1	4%	4\％	4\％	3\％	3\％	2\％	2%	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％
1550	23，09，019	－Onter	5	NT1	4%	4\％	4%	3\％	3\％	2\％	2%	0\％	0\％	\％	0\％	\％	0\％	\％	\％	\％	\％	\％	\％	\％
${ }^{1561}$	23，99，020	－Premixes，feed suppemenens of feed a aditives	5	NT1	${ }^{4 \%}$	4\％	4%	3\％	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％
1562	23，99，030	－Other，conlaining meat	5	T1	4\％	4\％	4\％	3\％	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％\％	0\％	\％	\％	\％\％	\％	\％	\％	\％	\％	0\％
${ }^{1563}$	23，99，090	－other		T1	${ }^{4 \%}$	${ }_{4}^{4 \%}$	${ }_{4}^{4 \%}$	${ }^{\text {3\％}}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％
${ }_{1564}$	$2401.10 \cdot 10$	－Vigigia tye，tueecured	5	EL	ט	U	U	ט	\bigcirc	U	ט	\bigcirc	－	ט	\bigcirc	\bigcirc	ט	－	－	\bigcirc	\bigcirc	－	－	\bigcirc
${ }^{1565}$	${ }^{2401.1020}$	－Virginia tpe，other than tue crued	5	${ }^{\text {EL }}$	\bigcirc	0	U	U	\bigcirc	0	U	\bigcirc	U	0	0	0	\bigcirc	0	\bigcirc	\bigcirc	0	U	\bigcirc	0
${ }^{1566}$	24，011，040	－burey tpe	5	EL	U	0	0	U	0	0	0	－	U	0	U	－	\bigcirc	0	\bigcirc	U	U	U	\bigcirc	U
${ }_{1} 157$	24，01， 0 ，50	Onter，flue crued	5	${ }^{\text {EL }}$	\bigcirc	0	U	ט	\bigcirc	0	U	ט	U	0	0	ט	ט	0	U	U	0	U	0	U
${ }^{1568}$	24，01，090	－Oner		${ }^{\text {EL }}$	\bigcirc	0	0	\bigcirc	\bigcirc	0	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	0	0	0	－	0	\bigcirc
1569	24，012，010	－Vigigia tye，tueecured		EL	U	U	U	－	\bigcirc	U	U	\bigcirc	－	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	－	\bigcirc	U	\bigcirc	\bigcirc
1570	24，012，020	－Visigina ype，oferer than flue cured	${ }^{5}$	EL	U	\bigcirc	U	－	\bigcirc	U	ט	\bigcirc	U	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	－	\bigcirc	U	\bigcirc	\bigcirc
1571	24，012，030	Orienal type	5	EL	－	U	0	，	－	－	\bigcirc	\bigcirc	－	U	\bigcirc	U	U	U	\bigcirc	－	0	U	\bigcirc	\bigcirc
${ }^{1572}$	$24.12,040$	－Burey ype		${ }^{\text {EL }}$	\bigcirc	U	U	\bigcirc	U	U	U	\bigcirc	U	U	\bigcirc	\bigcirc	U	U	\checkmark	\bigcirc	\bigcirc	U	U	\bigcirc
${ }^{1573}$	24，012，050	Oharef flue cured		EL	\bigcirc	U	－	\bigcirc	\bigcirc	\bigcirc	\bigcirc	O	－	U	\bigcirc	\bigcirc	U	U	\bigcirc	U	\bigcirc	\bigcirc	0	－
1574	24，012，090	－other		${ }^{\text {EL }}$		ט	0	\bigcirc	U	\checkmark	\checkmark	\bigcirc	\checkmark	\bigcirc	ט	\checkmark	\checkmark	\checkmark	\checkmark	ט	\bigcirc	U	\checkmark	\bigcirc
1575	24，013，010	－Tooacos stems	10	${ }^{\text {EL }}$	U	0	U	\bigcirc	U	0	U	0	0	0	U	\bigcirc	U	U	U	U	0	ט	U	\bigcirc
1576	24，013，990	－other	10	EL	U	U	0	0	\bigcirc	U	\bigcirc	－	－	U	U	U	\bigcirc	\bigcirc	0	O	¢	U	\bigcirc	\bigcirc
${ }^{1577}$	24，021，000	Cigas，cheroots and digails，containing tobacco	${ }^{40}$	${ }^{\text {EL }}$	U	\checkmark	U	U	U	\bigcirc	U	U	U	0	U	U	U	U	\bigcirc	U	\checkmark	U	U	\bigcirc
${ }^{1578}$	24，02，${ }^{\text {a }}$	－Beadies	${ }^{40}$	EL	U	ט	U	ט	U	ט	U	ט	U	ט	－	ט	ט	U	U	U	U	U	U	U
1579	24，020，020	－Cove cigaretes	${ }^{40}$	EL	0	0	0	\bigcirc	0	0	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	0	－	－	－	0	\bigcirc
$\underline{1580}$	24，020，090	Other	40	EL	U	U	0	0	U	U	0	0	U	U	U	0	U	\bigcirc	U	U	U	\bigcirc	U	\bigcirc

1581	${ }^{24,029,010}$	－－Cigars，cheroots and cigarillos of tobacco substitutes	40	EL	U	U	ט	ט	0	0	U	0	U	U	U	U	U	U		U	U			
1582	2，0，29，020	－－Cigaeteses of fobacco substulues	40	HSL	0\％	．	${ }^{40 \%}$	20\％	20\％	20\％	20\％	20\％	20\％	40\％	\％	\％	40\％	0\％	20\％	0\％	20\％	40%	40%	20\％
1583	2，0，3，100	－－Water pipe tobacco specified in Subheading Note 1 to this Chapter	40	EL	U	U	U	U	U	U	U	U	U	\bigcirc	－	U	U	O	－	U	U	U	U	U
1584	24，03，911	$\cdots{ }^{-\cdots \text { Ang Hoon }}$	40	EL	U	\bigcirc	0	U	U	\bigcirc	\bigcirc	\bigcirc	U	\bigcirc	\bigcirc	U	U	0	0	U	\bigcirc	U	U	0
1565	24，03，9，919	\cdots Other	${ }^{40}$	${ }^{\text {EL }}$	U	\bigcirc	U	\bigcirc	\bigcirc	0	\bigcirc	U	0	U	\bigcirc	U	U	U	0	U	\bigcirc	U	U	U
${ }^{1586}$	2，0，3，920	$\begin{array}{\|l\|l\|} \hline \text { O- Other manufactured tobacco for the } \\ \text { manufacture of cigaretes } \end{array}$	40	EL	\bigcirc	\bigcirc	\bigcirc	\bigcirc	U	\bigcirc	\bigcirc	U	U	U	U	U	U	U	－	U	U	ט	U	U
1587	24，03，9，90	－－－other	${ }^{40}$	EL	U	U	U	0	U	U	U	U	U	U	\bigcirc	U	U	U	－	U	U	U	\bigcirc	U
${ }^{1588}$	24，03，110	－Packed tor realal sale	${ }^{40}$	EL	\bigcirc	\bigcirc	\bigcirc	0	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	－	0	U	\bigcirc	\bigcirc	\bigcirc	U
1589	24，03，190	－－Other	${ }^{40}$	EL	\bigcirc	－	\bigcirc	\bigcirc	U	\bigcirc	ט	U	U	U	U	U	U	U	ט	U	\bigcirc	U	0	U
1590	24，03，9，90	－Toacco extacts and essences	${ }^{40}$	EL	U	\bigcirc	\bigcirc	\bigcirc	－	\bigcirc	\bigcirc	U	U	\bigcirc	\bigcirc	U	U	U	U	U	U	ט	ט	U
159	24，039，930	\cdots－Manuacurued Iobaco s susistues	40	EL	U	\bigcirc	\bigcirc	¢	U	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	U	\bigcirc	\bigcirc	\bigcirc	\bigcirc	0	0	\bigcirc	ט
1592	24，039，940	．．－Snut，wenere or orotay	40	EL	\checkmark	\bigcirc	ט	ט	ט	ט	ט	ט	ט	－	－	ט	U	U	－	U	U	U	ט	\bigcirc
1593	24，03，9，50	．．．Chewing and sucking Iopacco	40	EL	\bigcirc	0	0	¢	\bigcirc	0	0	－	\bigcirc	0	0	¢	\bigcirc	\bigcirc	U	U	0	ט	U	\bigcirc
1594	24，03，990	\cdots Oner	${ }^{40}$	EL	U	U	U	\bigcirc	U	ט	ט	\bigcirc	U	U	U	U	U	U	U	U	U	U	U	U
1595	25，01，0010	－Tale sat	5	IsL	${ }^{5 \%}$	5\％	5\％	5\％	5\％	5\％	5\％	5\％	5\％	5\％	5\％	5\％	5\％	5\％	5\％	5\％\％	5\％	5\％	5\％	${ }^{5 \%}$
1596	25，01，020	－Rock sat	5	st	5\％	${ }^{5 \%}$	5\％	${ }^{5 \%}$	${ }^{5 \%}$	${ }^{5 \%}$	5\％	${ }^{5 \%}$	5\％	${ }^{5 \%}$	5\％	${ }^{5 \%}$	5\％	5\％	5\％	5\％	${ }^{5 \%}$	${ }^{5 \%}$	5\％	${ }^{5 \%}$
1597	25，00，0，50	－Seawater	5	IsL	5\％	5\％	5\％	${ }^{5 \%}$	5\％	5\％	5\％	5\％	5\％	5\％	5\％	5\％	5\％	5\％	${ }^{5 \%}$	5\％	${ }^{5 \%}$	${ }^{5 \%}$	5\％	${ }^{5 \%}$
${ }^{1598}$	25，010，090	－Oner	5	HL	${ }^{5 \%}$	5\％	5\％	${ }^{5 \%}$	5\％	5\％	${ }^{5 \%}$	5\％	${ }^{5 \%}$	5\％	5\％	${ }^{5 \%}$	5\％	5\％	${ }^{5 \%}$	5\％	5\％	5\％	5\％	${ }^{5 \%}$
1599	25，02，000	Unrosasted ion pyyties．	5	NT1	4\％	4\％	4%	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	2\％	\％	\％\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％
1600	25，03，000	Sulphur of all kinds，other than sublimed sulphur，precipitated sulphur and colloida sulphur．	5	${ }^{\text {NT1 }}$	${ }^{4 \%}$	4\％	4\％	${ }^{3 \%}$	3\％	2%	${ }^{2 \%}$	0\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％
1601	25，04，，000	－In powder orinlakes	5	NT	4\％	4\％	4\％	${ }^{3 \%}$	3\％	2\％	2%	0\％	\％	0\％	\％	\％	0\％	0\％	\％	\％\％	\％	\％	\％	\％
1602	25，04，900	－other	5	T1	${ }^{4 \%}$	4\％	4%	3\％	3\％	2\％	${ }^{2 \%}$	0\％	\％	0\％	\％	\％	\％	0\％	\％	\％	\％	\％	\％	\％$\%$
1603	25，05，000	Sila a sand and qualt sands	5	V1	4\％	4\％	4\％	${ }^{3 \%}$	${ }^{3}$	2\％	${ }^{2 \%}$	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	0\％	\％	\％
1604	25，55，000	Oner	5	V1	${ }^{4 \%}$	$4{ }^{4 \%}$	${ }^{4 \%}$	${ }^{3 \%}$	${ }^{3}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％\％	\％	\％	\％	\％\％	0\％	\％	0\％	\％	0\％	\％	\％\％
1705	25，06，000	－Oara	5	v1	${ }^{4 \%}$	4\％	${ }^{4 \%}$	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	0\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％
1506	25，62，200	－Ouatzie	5	NT1	4%	4%	4%	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	2\％	\％	\％	\％	\％	\％	0\％	\％	\％	0\％	\％	\％	\％	0\％
1807	25，00，000	$\begin{aligned} & \begin{array}{l} \text { Kaolin and other kaolinic clays, whether or not } \\ \text { calcined. } \end{array} \\ & \hline \end{aligned}$	${ }^{5}$	NT1	4\％	4\％	4\％	3\％	3\％	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％	\％	\％	0\％	\％	\％	\％	\％	\％	\％	\％
1608	25，081，000	－Benoonie	5	T1	4\％	4\％	4\％	3\％	3\％	${ }^{2 \%}$	2\％	\％	\％	0\％	\％	\％	\％\％	\％	\％	\％	\％	\％	\％	\％
1609	25，03，000	－Fie Colay	5	NT1	4%	4%	4%	${ }^{3 \%}$	3\％	${ }^{2 \%}$	2%	0\％	0\％	0\％	0\％	0\％	0\％	0\％	0\％	0\％	0\％	0\％	0\％	0\％
160	25，04，0，010	－－Fulues earth	5	NT1	4%	4%	4%	3\％	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％\％
$1{ }^{1611}$	${ }^{25,04,0,90}$	－－omer	5	${ }^{\text {N11 }}$	${ }^{4 \%}$	4%	4%	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％\％	\％\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％
1812	25，05，000	－Andalisise，kganite and silimanie	5	${ }^{\text {NT1 }}$	4\％	4\％	4\％	${ }^{3 \%}$	${ }^{3} \%$	${ }^{2 \%}$	2%	\％	0\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％
$1{ }^{1613}$	25，08，000	－Mulie	5	NT1	4\％	4\％	4%	${ }^{3 \%}$	3\％	${ }^{2 \%}$	2%	0\％	0\％	\％	\％	0\％	\％	\％	\％	\％	\％	\％	\％	\％
1614	25，087，000	－Chamote or dinas eaths	5	NT1	4\％	4\％	4\％	3\％	3\％	2\％	2\％	0\％	0\％	0\％	0\％	0\％	0\％	0\％	\％	\％	\％	\％	\％	\％\％
1615	25，09，000	crakk．	5	NT1	4\％	4\％	4%	3\％	3\％	2\％	2\％	\％	\％	\％	\％	0\％	\％	0\％	\％	\％	\％	\％	\％	0\％
$1{ }^{1616}$	250．010：10	－Apante	5	NT1	4\％	4%	4%	${ }^{3 \%}$	${ }^{3 \%}$	2\％	${ }^{2 \%}$	\％	\％\％	\％	\％	\％	\％	\％	\％	\％	\％	\％\％	\％	\％\％
$1{ }^{1617}$	${ }^{25,10,0,090}$	－Oner	5	V1	${ }^{4 \%}$	4%	4%	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％\％	\％	\％	\％	\％	0\％	\％	\％	\％	\％	\％	\％	\％
1718	25，102，010	－Apatie	5	NT1	4\％	4\％	4\％	${ }^{3 \%}$	3\％	${ }^{2 \%}$	2\％	0\％	0\％	0\％	\％	0\％	0\％	0\％	\％	0\％	\％	\％	\％	\％
1819	25，102，090	－Other	5	NT1	4\％	4\％	4\％	${ }^{3 \%}$	3\％	${ }^{2 \%}$	2\％	\％\％	0\％	0\％	\％\％	0\％	0\％	\％\％	\％	0\％	0\％	\％	0\％	\％
1620	25，11，000	－Natura barium suphate（bayyes）	5	NT1	4%	4%	4%	${ }^{3 \%}$	3\％	${ }^{2 \%}$	2%	0\％	0\％	0\％	\％	\％	0\％	0\％	\％	0\％	0\％	\％	\％	\％\％
1621	25，112，000	－Natura baium catoonate（witeniele）	5	NT1	4%	4\％	4%	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	2\％	\％	\％	0\％	\％	\％	0\％	\％	0\％	0\％	\％	\％	0\％	\％
1622	25，120，000	Siliceous fossil meals（for example，kieselguhr， tripolite and diatomite）and similar siliceous earths，whether or not calcined，of an apparent specific gravity of 1 or less．	5	NT1	4\％	4\％	4\％	3\％	3\％	2\％	2\％	0\％	\％	0\％	0\％	\％	0\％	0\％	\％\％	\％	0\％	\％	\％	\％
1623	25，13，000	－Pumice stone	5	${ }^{\text {N11 }}$	4\％	4\％	4\％	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％\％	\％	\％	\％\％	\％\％	\％\％	\％	0\％	\％\％	0\％	\％	\％	\％
1624	25，132，000	Emery，natural corundum，natural garnet and other natural abrasives	${ }^{5}$	NT1	4\％	4\％	4\％	${ }^{3 \%}$	3\％	2%	${ }^{2 \%}$	0\％	0\％	\％	0\％	0\％	\％	0\％	\％	\％	\％	\％	\％	\％
1625	25，14，000	Slate，whether or not roughly trimmed or merely cut，by sawing or otherwise，into blocks or slabs of a rectangular（including square）shape．	${ }^{5}$	T1	4\％	4\％	4%	3\％	3\％	2\％	2\％	\％	\％\％	\％\％	0\％	\％\％	0\％	\％	0\％	0\％	0\％	\％	\％\％	\％
$1{ }^{1626}$	25，15，100	－－Cude or roughy timmed	5	HsL	5\％	5\％	5\％	${ }^{5 \%}$	5\％	5\％	${ }^{5 \%}$	5\％	5\％	${ }^{5 \%}$	${ }^{5 \%}$	5\％	${ }^{5 \%}$	5\％	5\％	${ }^{5 \%}$	${ }^{5 \%}$	${ }^{5 \%}$	${ }^{5 \%}$	${ }^{5 \%}$
168	2515.12 .10	－Boock	5	Hst	5\％	5\％	5\％	5\％	5\％	5\％	5\％	5\％	5\％	5\％	5\％	5\％	5\％	5\％	5\％	5\％	5\％	5\％	5\％	5\％
1628	2515.1220	－Stabs	5	HSL	5\％	5\％	5\％	5\％	5\％	5\％	5\％	5\％	${ }^{5 \%}$	5\％	5\％	5\％	5\％	5\％	${ }^{5 \%}$	5\％	${ }^{5 \%}$	${ }^{5 \%}$	${ }^{5 \%}$	5\％
1629	25，15，2000	－Ecaussine and other calcareous monumental or building stone；alabaster	${ }^{5}$	T1	4\％	4\％	${ }^{4 \%}$	3\％	${ }^{\text {3\％}}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	0\％	\％	\％	\％	0\％	0\％	\％	\％	\％	\％	\％	0\％
1630	25，66，100	－Cude or oughy timmed	5	T1	${ }^{4 \%}$	${ }^{4 \%}$	4%	3\％	\％	${ }^{2 \%}$	${ }^{2 \%}$	0\％	0\％	\％\％	\％\％	\％	0\％	0\％	\％	\％	\％	\％	\％	\％
1631	2516.12 .10	－Block	5	NT1	4\％	4\％	4%	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％	\％	\％	\％	\％	\％	0\％	\％	\％	\％	\％
1632	2516.1220	Slabs	5	${ }^{\text {N11 }}$	4\％	4\％	4%	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％
1633	25，16，0，10	Crude or roughy timmed	5	NT1	4%	4\％	4%	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％
$1{ }^{1634}$	25，16，2020	Merely cut，by sawing or otherwise，into blocks or slabs of a rectangular（including square）shape	5	${ }^{\text {NT1 }}$	4%	4\％	4%	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	0\％	0\％	\％	\％	\％	\％	\％	\％	\％	0\％	\％	\％	\％
1635	25，69，000	－Oner monumenala or bululin stone	5	NT1	4\％	4\％	4\％	3\％	3\％	${ }^{2 \%}$	2\％	0\％	0\％	0\％	\％\％	0\％	0\％	0\％	0\％	0\％	0\％	0\％	0\％	\％\％
${ }^{1636}$	25，77，000		5	$\mathrm{NTT}_{\text {NT1 }}^{\text {NT }}$	${ }_{4 \%}^{4 \%}$	4\％	4\％	3\％	${ }^{3 \%}$	2\％	${ }^{2 \%}$	0\％	0\％	0\％	0\％	0\％	0\％	0\％	0\％	0\％	0\％	0\％	0\％	0\％
${ }^{1637}$	5，172，000	Macadam of slag，dross or similar industrial waste， whether or not incorporating the materials cited in	${ }^{5}$	NT1	${ }^{4 \%}$	4\％	${ }^{4 \%}$	${ }^{3 \%}$	3\％	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％	0\％	\％	\％	\％	\％	\％	0\％	\％	\％	\％\％
1638	25，73，000	－Tared macadam	5	NT1	4%	4\％	4%	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％\％	\％	\％	\％	0\％	\％	0\％	0\％	\％	\％	\％	\％
1639	25，174，100	－Of matbe	5	${ }^{\text {N11 }}$	${ }^{4 \%}$	4%	4%	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％\％	\％	\％	\％	\％	\％	0\％	\％	\％	\％	0\％	\％
1840	25，17，900	－other	5	NT1	4\％	4\％	4\％	${ }^{3 \%}$	${ }^{3} \%$	${ }^{2 \%}$	${ }^{2 \%}$	\％	0\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％
$1{ }^{1641}$	25，18，000	－Oolomile，note alcined or siniered	5	NT1	4\％	4\％	4\％	3\％	3\％	2\％	2\％	0\％	0\％	0\％	\％	0\％	0\％	0\％	\％	0\％	\％	\％	\％	\％
1642	25，18，2000	－Calcred or sinereded doomite	5	NT1	4\％	4\％	4\％	3\％	3\％	2\％	2\％	\％	0\％	0\％	\％	0\％	0\％	0\％	\％	0\％	\％	\％	\％	\％
1643	25，183，000	－Doommie ramming mix	5	NT1	4%	4%	4%	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％	\％	\％\％	\％	\％	\％	\％$\%$	\％	\％	\％	\％
$1{ }^{164}$	25，19，000	－Natural magnesium caronatel（magnessite）	5	NT1	4%	4\％	4%	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％	\％	\％	\％	\％	\％	\％ 0	\％	\％	\％	\％
1645	25，199，010	$\underset{\substack{- \\ \text { magned magia }}}{- \text { Funesia；dead－burned（sinitered）}}$	${ }^{5}$	NT1	4%	4%	4\％	${ }^{3 \%}$	3\％	${ }^{2 \%}$	${ }^{2 \%}$	\％	0\％	\％	0\％	0\％	\％	\％	0\％	\％	\％	${ }^{0 \%}$	${ }^{0 \%}$	${ }^{0 \%}$
$1{ }^{1846}$	25，19，020	－－other	5	${ }^{\text {N11 }}$	4\％	4\％	4\％	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	0\％	\％\％	\％	\％	\％	\％	\％	\％	\％	0\％	\％	\％	\％
$1{ }^{1647}$	25，20，000	－Gysum；anymadie	5	NT1	4%	4\％	4%	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％	\％	\％	\％	\％	0\％	\％	\％	\％	\％	\％
$1{ }^{1648}$	${ }^{25,2020,10}$			NT1	4\％	4\％	4%	${ }^{3 \%}$	3\％	${ }^{2 \%}$	${ }^{2 \%}$	0\％	0\％	\％	\％	0\％	\％	\％	\％	\％	\％	\％	\％	\％\％
1649	25，202，900	－－other	5	NT1	4%	4%	4%	3\％	3\％	2%	2\％	0\％	0\％	0\％	0\％	0\％	0\％	0\％	\％	0\％	\％	\％	\％	\％\％
1750	55，210，000	Limestone flux；limestone and other calcareous stone，of a kind used for the manufacture of lime or cement．	${ }_{5}$	NT1	4\％	4\％	4\％	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％\％	0\％	\％	0\％	0\％	\％	\％	\％	\％	\％	\％	\％\％
$1{ }^{1651}$	25，22，000	－ouickime	5	NT1	4%	4\％	4\％	${ }^{3 \%}$	3\％	${ }^{2 \%}$	${ }^{2 \%}$	\％\％	0\％	0\％	\％	0\％	0\％	0\％	\％	0\％	\％	0\％	\％	\％
1652	25，22，200	－Slakedime	5	NT1	4%	4\％	4%	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％
1653	25，23，000	－Hydauicilime	5	NT1	4%	4%	$4{ }^{4 \%}$	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	2\％	\％	\％	\％	\％	\％\％	0\％	\％\％	0\％	\％	0\％	\％	\％	\％\％
$1{ }^{1654}$	523．10．10	－－Of a kind used in the manufacture of white cement	5	HSL	${ }^{5 \%}$	5\％	5\％	5\％	5\％	5\％	5\％	5\％	5\％	5\％	5\％	5\％	5\％	5\％	5\％	${ }^{5 \%}$	5\％	5\％	5\％	${ }^{5 \%}$
1655	25，23，0，90	－other	5	${ }^{\text {HSL }}$	5\％	5\％	5\％	5\％	5\％	5\％	5\％	5\％	5\％	5\％	5\％	${ }^{5 \%}$	5\％	5\％	${ }^{5 \%}$	${ }^{5 \%}$	${ }^{5 \%}$	${ }^{5 \%}$	${ }^{5 \%}$	${ }^{5 \%}$
${ }^{1566}$	${ }^{25,23,100}$	－Whie cement，wenene or or otatificilily colured	5	＋st	5\％	5\％	5\％	5\％	${ }^{5 \%}$	5\％	5\％	${ }^{5 \%}$	5\％	5\％	${ }^{5 \%}$	5\％	5\％	${ }^{5 \%}$	${ }^{5 \%}$	5\％	${ }^{5 \%}$	${ }^{5 \%}$	5\％	${ }^{5 \%}$
1657	${ }^{25,23,9,90}$	Coluered cement	10	${ }^{\text {HSL }}$	10\％	${ }^{10 \%}$	10%	10\％	10\％	10\％	10\％	10\％	10\％	0\％	10\％	${ }^{10 \%}$	10\％	10\％	${ }^{10 \%}$	10\％	10\％	${ }^{10 \%}$	10\％	${ }^{10 \%}$
1658	25，232，990	Other	10	HSL	10\％	0\％	10\％	${ }^{10 \%}$	10\％	10\％	10\％	10\％	10\％	0\％	10\％	10\％	10\％	10\％	10\％	${ }^{10 \%}$	10\％	${ }^{10 \%}$	10\％	10\％
1659	25，23，000	－Aluminus cement	5	NT1	4%	4%	4%	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	0\％	\％	\％	\％	\％	\％	0\％	\％	0\％	\％	\％	0\％
1680	25，23，000	－orere hydaulic cements	5	NT1	4%	4\％	4%	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％
${ }^{1661}$	${ }^{25,24,1000}$	－Cocosolie	5	${ }^{\text {NT1 }}$	${ }^{4 \%}$	${ }_{4 \%}$	4\％	3\％	3\％	${ }^{2 \%}$	2%	\％\％	\％	0\％	\％\％	0\％	\％	\％\％	\％	0\％	\％	\％	\％	\％

香港•ASEAN FTAにかかる調査報告書

別添2－4 原産地品の関税撤廃スケジュール
（ラオス）

1662	25，24，000	－Ohner	5	NT1	${ }^{4 \%}$	4%	4%	${ }^{3 \%}$	${ }^{3 \%}$	2\％	${ }^{2 \%}$	0\％	0\％	0\％	0\％	0\％	0\％	\％	0\％	0\％	\％	\％	0\％	0\％
1663	25，55，000	Cude mica and mica ited in io sheess orsplitioss	5	V1	$4{ }^{4}$	$4{ }^{4 \%}$	4%	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	0\％	\％	\％	\％	0\％	\％	\％	\％	\％	\％	\％	0\％
1664	25，52，000	－Mcapower	5	NT1	${ }^{4 \%}$	4%	4%	${ }^{3} \%$	3\％	${ }^{2 \%}$	${ }^{2 \%}$	\％	0\％	\％	\％	0\％	\％	\％	\％	0\％	\％	\％	\％	0\％
1665	25，25，000	－Mca wase	5	NT1	4\％	4%	4\％	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％	\％	\％	\％	0\％	\％	\％	\％	\％	\％	\％
${ }^{1666}$	25，86，000	－Not cossede，not poweseed	${ }^{5}$	NT1	4\％	4%	4%	${ }^{3 \%}$	${ }^{3} \%$	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％
1167	25，28，0，10	Talc powder	5	NT1	4\％	4%	4\％	3\％	3\％	2\％	${ }^{2 \%}$	\％	\％	\％	\％	\％	0\％	0\％	\％	\％	\％	\％	\％	\％
1668	25，62，090	－oner	5	NT1	4\％	4%	4\％	\％	3\％	2%	2%	0\％	\％	\％	\％	\％	0\％	\％	\％	\％	\％	\％	\％	0\％
669	25，88，000	Natural borates and concentrates thereof （whether or not calcined），but not including borates separated from natural brine；natural boric acid containing not more than 85% of H 3 BO 3 calculated on the dry weight．	${ }^{5}$	${ }^{\text {NT1 }}$	4\％	4\％	4\％	3\％	3\％	${ }^{2 \%}$	${ }^{2 \%}$	0\％	0\％	0\％	0\％	\％	\％	0\％	\％	\％	\％	\％	\％	\％\％
1670	25，29，000	－Felssar	5	NT1	${ }^{4 \%}$	4%	4%	3\％	3\％	${ }^{2 \%}$	${ }^{2 \%}$	0\％	\％	0\％	0\％	0\％	\％	0\％	0\％	\％	0\％	\％	0\％	0\％
11871	25，22，100	－Containing by weight 97% or less of calcium	5	NT1	4\％	4\％	4\％	3\％	3\％	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％	\％	0\％	0\％	\％	\％	\％	0\％	\％	0\％	\％
1672	，2922，20	$\begin{aligned} & - \text { Containing by weight more than } 97 \% \text { of calcium } \\ & \text { filuoride } \\ & \hline \end{aligned}$	5	NT1	${ }^{4 \%}$	${ }^{4 \%}$	${ }^{4 \%}$	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	0\％	\％	\％	\％	\％	0\％	\％	0\％	\％\％	0\％	\％	0\％	\％\％
167	25，23，000		5	T1	${ }^{4 \%}$	4%	4\％	3\％	3\％	${ }^{2 \%}$	${ }^{2 \%}$	0\％	0\％	0\％	\％	0\％	0\％	\％	\％	\％	0\％	\％	0\％	\％\％
${ }^{1674}$	25，50，000	－Vemiculite，perlite and chorios，unexpanded	5	NT	4%	4\％	4\％	3\％	3\％	2\％	${ }^{2 \%}$	0\％	0\％	0\％	0\％	\％	\％	0\％	\％	\％	\％	\％	\％	\％
1875	25，32，010	－Keseste	5	NT1	4%	4%	4\％	${ }^{3 \%}$	3\％	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％	\％	0\％	\％	\％	\％	0\％	\％	0\％	\％	\％
$1{ }^{1676}$	25，302，020	－Essonte	5	NT1	4%	4%	4%	3\％	3\％	2\％	${ }^{2 \%}$	0\％	0\％	0\％	0\％	0\％	0\％	\％	0\％	0\％	0\％	0\％	\％\％	\％\％
${ }^{1677}$	25，300，010		5	NT1	4%	4\％	4%	3\％	3\％	${ }^{2 \%}$	${ }^{2 \%}$	0\％	\％	\％	0\％	\％	0\％	\％	\％	\％	\％	\％	\％	\％
$1{ }^{1678}$	25，09，090	－other	5	NT1	4\％	4\％	4\％	3\％	3\％	2\％	2\％	\％	\％	0\％	\％\％	\％	\％	\％	\％	\％	\％	\％	\％	\％
1679	26，011，100	－Noragagomeated	5	NT1	4%	4\％	4\％	3\％	3\％	2%	2%	0\％	0\％	0\％	0\％	\％	0\％	\％\％	\％\％	\％\％	\％	\％	\％\％	0\％
1768	26，01，200	－Aggomeated	5	NT1	4%	4%	4%	3\％	${ }^{3} \%$	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％
1781	26，012，000	－Roased ion pypres	5	NT1	4%	4%	4\％	${ }^{3 \%}$	${ }^{3} \%$	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％
1782	26，02，000	Manganese ores and concentrates，including ferruginous manganese ores and concentrates with a manganese content of 20% or more， calculated on the dry weight．	5	NT1	4\％	4\％	4\％	3\％	3\％	2\％	${ }^{2 \%}$	\％	\％	0\％	0\％	\％	\％	\％	\％	0\％	\％	\％	\％	\％\％
11883	28，03，000	Copper ores and concentrates．	5	NT1	4\％	4\％	4\％	${ }^{3 \%}$	3\％	2\％	2\％	0\％	0\％	0\％	\％	\％	\％	\％	\％	0\％	\％	\％	\％	0\％
1784	26，00，000	Nickel ores and conenentrates．	5	NT1	4%	4\％	4\％	${ }^{3 \%}$	3\％	${ }^{2 \%}$	${ }^{2 \%}$	0\％	\％	0\％	\％\％	\％	\％	\％	\％	\％	\％	\％	\％	\％
1685	26，05，000	Cobatt ores and concentrates．	5	NT1	4\％	4\％	4\％	3\％	3\％	2\％	2\％	\％	\％	\％	\％\％	0\％	\％	\％\％	\％	\％	\％	\％	\％	\％
1686	22，06，000	Aluminium rees and concentrates．	5	V1	4%	4%	4\％	3\％	3\％	2\％	${ }^{2 \%}$	\％	0\％	0\％	\％\％	\％	\％	\％	\％	\％	\％	\％	0\％	\％
1787	22，00，000	Lead ores and concentrates．	5	T1	${ }^{4 \%}$	${ }^{4 \%}$	${ }^{4 \%}$	${ }^{3 \%}$	${ }^{3}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	0\％	\％	\％	\％	\％	\％	\％	\％	0\％	\％	\％\％	\％\％
${ }^{1688}$	28，00，000	Zinco ores and concentrass．	5	T1	4%	4%	4\％	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％	\％	\％	\％	0\％	\％	\％	\％	0\％	\％	0\％
11889	28，00，000	Tin ores and concentrates．	5	NT1	4%	4\％	4\％	3\％	3\％	2\％	${ }^{2 \%}$	0\％	0\％	0\％	0\％	\％	\％	\％	\％	\％	\％	\％	\％	\％
1690	26，00，000	Criomium ores and concentrates．	5	NT1	4%	4\％	4\％	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％	\％	\％	\％	\％	\％	\％\％	\％	\％	\％	0\％
1169	22，110，000	Tungsten ores and concentrates．	5	NT1	4%	4\％	4\％	3\％	3\％	2\％	2\％	0\％	\％\％	0\％	\％	0\％	0\％	\％\％	\％\％	\％\％	\％	0\％	\％	0\％
1692	26，121，000	－Uarium orese and concentraes	5	NT1	4%	4\％	4%	3\％	3\％	${ }^{2 \%}$	${ }^{2 \%}$	0\％	\％	\％	\％	0\％	0\％	\％	\％	\％	0\％	\％	0\％	0\％
${ }^{1693}$	${ }^{26,122,000}$	－Torium ores and conerentaes	5	NT1	4%	4%	4\％	${ }^{3 \%}$	${ }^{3} \%$	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％
1189	22，13，000	－Roased	5	NT1	$4{ }^{4 \%}$	4%	${ }_{4}^{4 \%}$	3\％	${ }^{3} \%$	${ }^{2 \%}$	${ }^{2 \%}$	\％\％	\％	\％	\％	\％	\％	\％	\％	\％	0\％	\％	\％	\％
${ }^{1695}$	26，13，900	－other	5	NT1	4%	4\％	4\％	3\％	3\％	2\％	2%	0\％	\％	\％	\％	\％	\％	\％	\％	0\％	\％	\％	\％	\％
$1{ }^{1696}$	26，44，010	－Imentie ores and concentraes	5	NT1	4\％	4\％	4\％	3\％	3\％	2\％	${ }^{2 \%}$	0\％	\％	0\％	\％	\％	\％	\％	\％	0\％	\％	\％	\％	\％
1697	${ }^{26,14,0,900}$	－Oner	5	NT1	4%	4%	4\％	3\％	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％\％	\％\％	\％\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％
1698	22，51，000	Zircoium ores and oncentrates	5	T1	4%	$4{ }^{4 \%}$	4%	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％
1699	22，15，900	Oher	5	T1	4%	4%	4\％	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	0\％
1700	22，616，000	Silue oros ant	5	NT	4%	4\％	4%	3\％	3\％	2\％	2\％	0\％	0\％	0\％	0\％	\％	\％\％	\％	\％	0\％	\％	\％	\％\％	\％\％
1701	22，169，000	－Oner	5	NT1	4%	4%	4%	3\％	${ }^{3} \%$	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％
1702	26，71，000	－Animony ores and concentrates	5	NT1	4%	4%	4%	3\％	3\％	${ }^{2 \%}$	${ }^{2 \%}$	0\％	\％	0\％	0\％	0\％	0\％	\％	\％	0\％	0\％	0\％	0\％	0\％
1703	22，179，000	－other	5	NT1	$4{ }^{4 \%}$	4%	4%	3\％	3\％	${ }^{2 \%}$	${ }^{2 \%}$	0\％	\％\％	0\％	0\％	0\％	0\％	\％	\％	0\％	\％	\％	0\％	0\％
1704	26，18，000	Granulated slag（slag sand）from the manufacture of iron or steel．	5	HSL	5\％	5\％	5\％	5\％	5\％	5\％	5\％	5\％	5\％	5\％	5\％	5\％	5\％	5\％	5\％	5\％	5\％	5\％	5\％	${ }^{5 \%}$
${ }^{1705}$	5，190，	Slag，dross（other than granulated slag）， scalings and other waste from the manufacture of iron or steel．	${ }^{5}$	${ }^{\text {HSL }}$	${ }^{5 \%}$	${ }^{5 \%}$	${ }^{5 \%}$	${ }^{5 \%}$	${ }^{5 \%}$	5\％	5\％	${ }^{5 \%}$	${ }^{5 \%}$	${ }^{5 \%}$	${ }^{5 \%}$	${ }^{5 \%}$	${ }^{5 \%}$	${ }^{5 \%}$	${ }^{5 \%}$	${ }^{5 \%}$	${ }^{5 \%}$	${ }^{5 \%}$	${ }^{5 \%}$	${ }^{5 / 8}$
${ }^{1706}$	26，20，1，00	－Hadz zin spelter	5	Ist	5\％	5\％	5\％	5\％	5\％	5\％	5\％	5\％	5\％	5\％	5\％	${ }^{5 \%}$	5\％	5\％	5\％	5\％	5\％	5\％	5\％	5\％
1707	22，20，900	\cdots Oner	5	HsL	${ }^{5 \%}$	5\％	5\％	5\％	5\％	5\％	${ }_{5 \%}$	5\％	5\％	5\％	${ }^{5 \%}$	${ }^{5 \%}$	5\％	5\％	5\％	5\％	5\％	5\％	5\％	${ }^{5 \%}$
1708	26，202，100	－Leaded gasoline suduse and leaded antiknock	5	HSL	5\％	5\％	5\％	5\％	5\％	5\％	5%	5\％	5\％	5\％	5\％	${ }^{5 \%}$	5\％	5\％	5\％	5	5\％	5\％	5\％	5\％
1709	28，202，900	－oner	5	HsL	5\％	5\％	5\％	5\％	5\％	5\％	5\％	5\％	5\％	5\％	5\％	5\％	5\％	5\％	5\％	5\％	5\％	5\％	5\％	5\％
1710	28，203，000	－Conaining many coper	5	st	5\％	5\％	5\％	5\％	5\％	5\％	5\％	${ }^{5 \%}$	5\％	5\％	5\％	${ }^{5 \%}$	${ }^{5 \%}$	5\％	5\％	5\％	5\％	5\％	${ }^{5 \%}$	${ }^{5 \%}$
${ }^{1711}$	26，204，000	－Containing manty auminium	5	IsL	5\％	5\％	5\％	5\％	5\％	5\％	5\％	5\％	5\％	5\％	5\％	${ }^{5 \%}$	5\％	5\％	5\％	5\％	${ }^{5 \%}$	${ }^{5 \%}$	5\％	5\％
${ }^{1712}$	22，20，000	－Containing arsenic，mercury，thallium or their mixtures，of a kind used for the extraction of arsenic or those metals or for the manufacture of their chemical compounds	5	${ }_{\text {HSL }}$	5\％	5\％	5\％	5\％	5\％	5\％	5\％	5\％	5\％	5\％	5\％	5\％	5\％	5\％	5\％	5\％	5\％	5\％	5\％	5\％
${ }^{1713}$	6，209，100	$\begin{array}{\|l} \hline- \text { Contanining antimony, berylium, cadmium, } \\ \hline \text { chromium or their mixtures } \\ \hline \end{array}$	5	st	${ }^{\text {5\％}}$	${ }^{5 \%}$	${ }^{5 \%}$	${ }^{\text {5\％}}$	${ }^{\text {5\％}}$	${ }^{5 \%}$	${ }^{5 \%}$	${ }^{5 \%}$	${ }^{5 \%}$	${ }^{5 \%}$	${ }^{5 \%}$	${ }^{5 \%}$	${ }^{5 \%}$	${ }^{5 \%}$	${ }^{5 \%}$	${ }^{5 \%}$	${ }^{5 \%}$	${ }^{5 \%}$	${ }^{5 \%}$	${ }^{5 \%}$
1714	26，209，910	－Slag and harchead of tin	5	fst	${ }^{\text {5\％／}}$	5\％	5\％	5\％	${ }^{5 \%}$	5\％	5\％	${ }^{5 \%}$	5\％	5\％	5\％	${ }^{5 \%}$	${ }^{5 \%}$	5\％	${ }^{5 \%}$	${ }^{\text {5\％}}$	${ }^{\text {5\％}}$	${ }^{5 \%}$	${ }^{5 \%}$	${ }^{5 \%}$
1715	26，209，990	Other	5	Ist	5\％	5\％	5\％	5\％	5\％	5\％	5\％	${ }^{5 \%}$	${ }^{5 \%}$	5\％	5\％	${ }^{5 \%}$	${ }^{5 \%}$	5\％	${ }^{5 \%}$	5\％	${ }^{5 \%}$	5\％	5\％	5%
${ }^{1716}$	22，21，000	－Ash and residues from the incineration of municipal waste	${ }^{5}$	${ }^{\text {HSL }}$	${ }^{5 \%}$	5\％	5\％	5\％	5\％	5\％	5\％	5\％	${ }^{5 \%}$	5\％	5\％	${ }^{5 \%}$	5\％	5\％	5\％	5\％	5\％	5\％	5\％	${ }^{5 \%}$
1717	22，219，000	－other	5	HSL	5\％	5\％	5\％	5\％	5\％	5\％	5\％	5\％	5\％	5\％	5\％	5\％	5\％	5\％	5\％	5\％	5%	5\％	5\％	5\％
${ }^{1718}$	22，01，100	Antracte	5	NT1	$4{ }^{4 \%}$	4%	4\％	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％
1719	${ }^{2701.12 .10}$	Cocking coal	5	NT1	$4{ }^{4 \%}$	4%	4\％	${ }^{3 \%}$	3\％	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％	\％	\％	\％	\％	\％	\％	0\％	\％	\％	\％
1720	${ }^{27,011,290}$	－－Other	5	NT1	$4{ }^{4 \%}$	4\％	$4{ }^{4 \%}$	3\％	3\％	${ }^{2 \%}$	${ }^{2 \%}$	0\％	\％\％	\％	0\％	\％	0\％	\％	\％	0\％	0\％	\％	0\％	0\％
1721	22，01，900	－Ohere cal	5	NT1	4%	4%	4%	3\％	3\％	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％
${ }^{1722}$	27，012，000	Briquettes，ovoids and similar solid fuels manufactured from coal	${ }^{5}$	NT1	4\％	4\％	4\％	3\％	3\％	2\％	2\％	0\％	0\％	0\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％\％
${ }^{1723}$	2，021，000	Lignite，whether or not pulverised，but not agglomerated	5	V1	4\％	${ }^{4 \%}$	4\％	3\％	3\％	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％	\％	0\％	\％	0\％	0\％	\％	0\％	\％	\％	0\％
1724	27，022，000	－Aggomerated igigie	5	NT1	$4{ }^{4 \%}$	4%	4%	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	0\％	\％	\％	0\％	\％	\％	\％	0\％	\％	\％	0\％
${ }^{1725}$	27，030，010	－Peat，whether or not compressed into bales，but not agglomerated	${ }^{5}$	NT1	$4{ }^{4 \%}$	4%	4\％	3\％	3\％	2\％	2\％	0\％	0\％	0\％	0\％	\％	0\％	\％	\％\％	\％	\％	\％	\％	\％
${ }^{1726}$	${ }^{27,030,020}$	${ }^{\text {Aggomerated peat }}$	${ }^{5}$	N1	${ }^{4 \%}$	4%	4%	3\％	3\％	2%	2%	\％	\％\％	\％\％	0\％	\％	\％	\％	\％	0\％	0\％	\％	\％\％	\％\％
${ }^{1727}$	27，040，010	－Coke and semicocke of coal	5	V1	$4{ }^{4 \%}$	4\％	4\％	3\％	3\％	2%	2%	0\％	\％\％	0\％	0\％	\％	\％	\％	\％	0\％	0\％	0\％	\％\％	0\％
${ }^{1728}$	${ }^{27,040,020}$	－Coke end semicioke of İginte or of peat	5	NT1	$4{ }^{4 \%}$	4%	4%	3\％	3\％	2\％	${ }^{2 \%}$	0\％	0\％	\％	0\％	\％	0\％	\％	\％\％	\％	0\％	\％	\％\％	0\％
1729	27，04，030	－Reolot catoon	5	NT1	${ }^{4 \%}$	4\％	4%	3\％	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	0\％	\％
${ }^{1730}$	27，55，000	Coal gas，water gas，producer gas and similar gases，other than petroleum gases and other gaseous hydrocarbons．	${ }_{5}$	T	4\％	4\％	4\％	3\％	3\％	${ }^{2 \%}$	${ }^{2 \%}$	0\％	0\％	0\％	\％	\％	0\％	\％	\％	\％	\％	\％	\％	\％
${ }^{1731}$	27，06，000	$\begin{aligned} & \text { Tar distilled from coal, from lignite or from peat, } \\ & \text { and other mineral tars whether or not } \\ & \text { dehydrataed or partilly distiled, including } \\ & \text { reconstituted tars. } \end{aligned}$	${ }^{5}$	NT1	4\％	4\％	4\％	3\％	3\％	2\％	2\％	0\％	0\％	\％\％	\％\％	0\％	\％\％	\％	\％	\％	0\％	\％	\％\％	\％\％
${ }^{1732}$	22，071，000	－Berzol（berzene）	5	${ }^{\text {NT1 }}$	$4{ }^{4 \%}$	4%	4%	3\％	3\％	2%	2%	0\％	\％\％	0\％	0\％	\％	\％\％	\％	\％	\％\％	\％	\％	\％\％	\％\％
${ }^{1733}$	27，02，2000	－Toul（fouene）	5	NT1	$4{ }^{4}$	4\％	4\％	3\％	${ }^{3} \%$	${ }^{2 \%}$	${ }^{2 \%}$	0\％	0\％	\％	\％	0\％	0\％	\％	\％	0\％	\％	0\％	\％	\％
${ }^{1734}$	${ }^{27,073,000}$	－XyOO（x）enes）	5	${ }^{\text {NT1 }}$	${ }^{4 \%}$	4\％	${ }^{4 \%}$	3\％	3\％	${ }^{2 \%}$	${ }^{2 \%}$	0\％	\％	\％	\％\％	\％	\％	\％	\％	\％	0\％	\％	\％	\％\％
${ }^{1735}$	22，074，000	－Naphtalaene	5	NT1	4%	4%	4%	3\％	3\％	2\％	${ }^{2 \%}$	0\％	0\％	0\％	0\％	0\％	\％\％	\％\％	\％	0\％	\％	\％	0\％	0\％
${ }^{1736}$	27，05，000	－Other aromatic hydrocarbon mixtures of which 65% or more by volume（including losses）distils at $250^{\circ} \mathrm{C}$ by the ASTM D 86 method	5	${ }^{\text {NT1 }}$	${ }^{4 \%}$	4\％	4\％	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	2%	0\％	0\％	0\％	\％	\％	\％	\％	\％	0\％	\％	\％	\％	\％
${ }^{1737}$	22，079，100	\cdots Cresole olis	5	NT1	4%	4%	4%	3\％	3\％	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％\％	0\％	0\％	\％	0\％	\％	\％	0\％	0\％	0\％	0\％	0\％
${ }^{1738}$	27，079，910	－Catbon lack feesisock	5	NT1	${ }^{4 \%}$	4\％	4\％	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％
1739	27，079，990	－Other	5	${ }^{\text {NT1 }}$	${ }^{4 \%}$	4\％	4\％	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％
${ }^{1740}$	${ }^{27,081,000}$	${ }^{\text {Prich }}$	5	${ }^{N+1}$	4\％	4\％	4\％	3\％	3\％	2%	${ }^{2 \%}$	\％\％	0\％	0\％	\％	0\％	\％	\％	\％	0\％	\％	\％	\％	0\％

香港•ASEAN FTAにかかる調査報告書

別添2－4 原産地品の関税撤廃スケジュール
（ラオス）

$\sqrt{1741}$	27，02，000	Pith coke	5	NT1	${ }^{4 \%}$	4\％	${ }^{4 \%}$	3\％	3\％	2\％	2\％	\％	0\％	0\％	0\％	0\％	0\％	\％	0\％	0\％	0\％	\％	0\％	0\％
1742	27，09，010	－Cnde perotoum ois	5	VT1	4\％	4\％	$4{ }^{4 \%}$	3\％	3\％	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	0\％
1773	27，09，020	－Condensales	5	VT	${ }^{4 \%}$	4\％	${ }^{4 \%}$	${ }^{\text {3\％}}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	0\％	\％	\％	\％	\％	0\％	\％	0\％	\％	\％	\％	0\％
1744	27，90，090	－Oner	5	NT1	$4{ }^{4 \%}$	4%	4%	${ }^{3 \%}$	3\％	${ }^{2 \%}$	2%	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％
1745	2710：12．11	－－Of Ron 97 and above，leaded	${ }^{20}$	HsL	20\％	20\％	20\％	20\％	20\％	20\％	20\％	20\％	20\％	20\％	0\％	20\％	20\％	20\％	20\％	20\％	20\％	0\％	20\％	20\％
1746	2710．12．12	Of RoN 97 and above，unleaded	${ }^{20}$	HSL	20\％	20\％	20\％	0\％	20\％	20\％	20\％	20\％	${ }^{20 \%}$	20\％	0\％	20\％	20\％	20\％	20\％	20\％	20\％	0\％	0\％	\％\％
1747	2710．12．13	leaded RON 90 and above，but below RON 97 ，	${ }^{15}$	${ }^{\text {ISL }}$	15\％	${ }^{15 \%}$	${ }^{15 \%}$	${ }^{15 \%}$	${ }^{15 \%}$	${ }^{15 \%}$	${ }^{15 \%}$	${ }^{15 \%}$	${ }^{5 \%}$	${ }^{15 \%}$	${ }^{15 \%}$	${ }^{15 \%}$	15\％	15\％	15\％	15\％	15\％	${ }^{5 \%}$	${ }^{5 \%}$	${ }^{15 \%}$
${ }^{1748}$	2710．12．14	$-\cdots$ Of RON 90 and above，but below RON 97 ， unleaded	15	HSL	${ }^{15 \%}$	${ }^{15 \%}$	15\％	${ }^{15 \%}$	${ }^{15 \%}$	${ }^{15 \%}$	${ }^{15 \%}$	${ }^{15 \%}$	${ }^{5 \%}$	${ }^{15 \%}$	${ }^{15 \%}$	${ }^{15 \%}$	${ }^{15 \%}$	${ }^{5 \%}$	${ }^{15 \%}$	${ }^{15 \%}$	${ }^{15 \%}$	${ }^{5 \%}$	${ }^{15 \%}$	${ }^{15 \%}$
1749	2710．12．15	－- Onerer leaded	${ }^{20}$	HsL	20\％	20\％	20\％	20\％	20\％	20\％	20\％	${ }^{20 \%}$	20\％	20\％	20\％	20\％	20\％	20\％	20\％	${ }^{20 \%}$	20\％	20\％	20\％	${ }^{20 \%}$
1750	2710.1216	－－Onter，unleaded	${ }^{20}$	HsL	20\％	20\％	20\％	20\％	20\％	20\％	20\％	${ }^{20 \%}$	20\％	20\％	20\％	20\％	20\％	20\％	20\％	20\％	20\％	20\％	20\％	20\％
${ }^{1751}$	2710.1220	－Avaion spitit，noto ta kind used as jet tuel	5	HsL	5\％	5\％	5\％	5\％	5\％	5\％	5\％	5\％	5\％	5\％	5\％	5\％	5\％	5\％	5\％	5\％	5\％	5\％	5\％	5\％
${ }^{1752}$	270．12．30	－Teraporoyene	${ }^{20}$	Hst	20\％	20\％	20\％	20\％	20\％	20\％	20\％	${ }^{20 \%}$	20\％	20\％	0\％	${ }^{20 \%}$	20\％	20\％	20\％	20\％	20\％	${ }^{20 \%}$	20\％	20\％
1753	27，10，240	\cdots－Whiespinit	${ }^{20}$	HsL	20\％	20\％	20\％	20\％	20\％	20\％	20\％	20\％	20\％	20\％	20\％	20\％	20\％	20\％	20\％	20\％	20\％	${ }^{20 \%}$	20\％	20\％
1754	27，01，250	Low aromatic solvents containing by weight less than 1% aromatic content	${ }^{20}$	HSL	20\％	20\％	20\％	${ }^{20 \%}$	20\％	20\％	20\％	20\％	20\％	20\％	20\％	20\％	20\％	20\％	20\％	0\％	0\％	20\％	20\％	20\％
1755	27，10，2，20	\cdots Onee soven spinis	${ }^{20}$	HLI	20\％	20\％	20\％	20\％	20\％	0\％	20\％	20\％	20\％	20\％	0\％	20\％	20\％	20\％	20\％	20\％	20\％	20\％	20\％	20\％
${ }^{1756}$	27，01，270	\cdots Naphtha，reformates and other preperations of a kind	${ }^{20}$	${ }^{\text {HSL }}$	20\％	20\％	20\％	${ }^{20 \%}$	20\％	20\％	20\％	20\％	20\％	20\％	20\％	0\％	${ }^{20 \%}$	20\％	20\％	20\％	20\％	${ }^{20 \%}$	20\％	20\％
${ }^{1757}$	27，10，，280	\cdots	${ }^{20}$	${ }^{\text {stL }}$	20%	20\％	0\％	20\％	${ }^{20 \%}$	20\％	20\％	${ }^{20 \%}$	20\％	20\％	0\％	20\％	${ }^{20 \%}$	\％	${ }^{20 \%}$	${ }^{20 \%}$	20\％	20\％	\％	${ }^{20 \%}$
${ }^{1758}$	27，10，230	Other	20	IsL	20\％	20\％	20\％	20\％	20\％	20\％	20\％	${ }^{20 \%}$	20\％	20\％	20\％	20\％	${ }^{20 \%}$	20\％	${ }^{20 \%}$	${ }^{20 \%}$	20\％	${ }^{20 \%}$	${ }^{20 \%}$	20\％
1759	27，01，920	－Topped curues	5	${ }^{151}$	5\％	5\％	5\％	5\％	5\％	5\％	5\％	5\％	5\％	5\％	5\％	${ }^{5 \%}$	5\％	5\％	5\％	5\％	5\％	5\％	${ }_{5}{ }^{\circ}$	${ }^{5 \%}$
1780	27，10，930	Catoon back teedsiok	${ }^{20}$	HsL	\％\％	20\％	20\％	20\％	20\％	20\％	20\％	20\％	20\％	20\％	20\％	20\％	20\％	20\％	20\％	20\％	20\％	${ }^{20 \%}$	20\％	20\％
${ }^{1761}$	27，01，941	－Lubicaiting il feedstock	10	Hst	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％
1762	27，10，9，92	\cdots Lubicaing olis ora icratit engines	10	HSL	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10%	10\％	10\％	10\％	10\％	10\％
178	27，10，943	\cdots Onerer ubicaing ois	10	HsL	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	${ }^{10 \%}$	${ }^{10 \%}$	${ }^{10 \%}$	${ }^{10 \%}$	${ }^{10 \%}$	${ }^{10 \%}$	${ }^{10 \%}$	10\％
1784	27，10，944	－Lubicating greases	10	HsL	10\％	10\％	10\％	${ }^{10 \%}$	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10%	10\％	10\％	10\％	10\％	10%
1765	27，01，950	－Hydraulic bake flud	10	HsL	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％
1766	27，01，960	Transomere and dicruitreaekes olis	10	Hst	10\％	10\％	10\％	0\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％
${ }^{1767}$	27，10，971	－Aumomotiv disest tuel	5	HsL	${ }^{5 \%}$	5\％	5\％	5\％	5\％	${ }^{5 \%}$	5\％	${ }^{\text {5\％}}$	${ }^{\text {5\％}}$	${ }^{5 \%}$	5\％	5\％	${ }^{5 \%}$	${ }^{5 \%}$	${ }^{5 \%}$	${ }^{5 \%}$	${ }^{5 \%}$	${ }^{5 \%}$	5\％	5\％
${ }^{1788}$	27，10，972	Onine disest fuels	${ }^{20}$	${ }_{\text {EL }}$	U	U	\bigcirc	\bigcirc	U	\bigcirc	ט	U	U	U	\checkmark	\bigcirc	U	ט	U	\checkmark	\bigcirc	\checkmark	\bigcirc	U
${ }^{1769}$	27，10，979	Fueol ITS	${ }^{20}$	ISL	20\％	20\％	20\％	20\％	20\％	${ }^{20 \%}$	20\％	${ }^{20 \%}$	20\％	20\％	20\％	20\％	20\％	20\％	20\％	0\％	0\％	0\％	0\％	0\％
1770	27，01，981	－Aviaion tubbine fuel（jee t fuel）having a tlash point of 230 C or more	5	HLL	5\％	5\％	5\％	5\％	5\％	5\％	5\％	5\％	5\％	5\％	5\％	5\％	5\％	5\％	5\％	5\％	${ }^{5 \%}$	5\％	5\％	5\％
$\frac{171}{}$	27，10，982	\cdots Aviation turbine fuel（jet fuel）having a flash point of less than 230 C	5	1st	${ }^{5 \%}$	5\％	${ }^{5 \%}$	5\％	5\％	${ }^{5 \%}$	5\％	${ }^{5 \%}$	${ }^{5 \%}$	5\％	${ }^{5 \%}$	5\％	${ }^{5 \%}$	${ }^{5 \%}$	5\％	${ }^{5 \%}$	${ }^{5 \%}$	${ }^{5 \%}$	${ }^{5 \%}$	${ }^{5 \%}$
${ }^{1772}$	27，10，9，93	－Onerererosene	5	1st	${ }^{5 \%}$	5\％	5\％	5\％	5\％	5\％	5\％	5%	${ }^{5 \%}$	5\％	5\％	5\％	${ }^{5 \%}$	${ }^{5 \%}$	5\％	5\％	${ }^{5 \%}$	${ }^{5 \%}$	${ }^{5 \%}$	${ }^{5 \%}$
1773	27，101，989	Other medium olis and prearations	5	Hst	${ }^{5 \%}$	5\％	5\％	5\％	5\％	5%	5\％	5\％	${ }^{5 \%}$	5\％	5\％	5\％	5\％	5\％	5\％	5\％	5\％	5\％	${ }_{5 \%}$	${ }^{5 \%}$
1774	27，10，990	－Oner	5	HsL	5\％	5\％	5\％	5\％	5\％	5\％	5\％	${ }^{5 \%}$	5\％	5\％	5\％	5\％	5\％	5\％	${ }^{5 \%}$	5\％	${ }^{5 \%}$	5\％	${ }^{5 \%}$	${ }^{5 \%}$
1775	27，102，000		5	HSL	5\％	5\％	5\％	5\％	5\％	5\％	5\％	5\％	5\％	5\％	5\％	5\％	5\％	5\％	5\％	5\％	5\％	5\％	5\％	5\％
1776	27，109，100		${ }^{20}$	HLI	20\％	0\％	0\％	0\％	0\％	20\％	20\％	20\％	\％	20\％	20\％	20\％	20\％	\％0\％	20\％	0\％	20\％			0\％
1777	27，109，900	－－other	${ }^{20}$	ISL	0\％	\％\％	0\％	0\％	20\％	00\％	\％\％	20\％	20\％	20\％	20\％	0\％	00\％	\％\％	20\％	\％	0\％	0\％	0\％	\％
1778	22，11，100	Natural gas	5	V1	${ }^{4 \%}$	4%	4%	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％	\％	\％	\％	\％	0\％	\％	\％	\％	\％	\％
1779	22，11，200	－Propane	5	V1	${ }^{4 \%}$	4%	4%	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％	0\％	\％\％	\％	\％	\％	\％	0\％	\％\％	\％	\％
1780	22，11，300	Buanes	5	V1	4%	$4{ }^{4 \%}$	$4{ }^{4 \%}$	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％\％	\％	\％	\％	\％	\％	0\％	\％	\％	\％	\％	\％
${ }^{1781}$	22，11，410	－－Etryene	5	V1	4%	4%	4%	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％
${ }^{1782}$	22，11，490	－－Other	5	V1	$4{ }^{4 \%}$	4%	4%	${ }^{3 \%}$	${ }^{3 \%}$	2\％	${ }^{2 \%}$	\％\％	0\％	0\％	\％	\％	\％	0\％	0\％	\％	0\％	\％	\％	\％
1783	22，11，900	－Other	5	V1	4%	${ }^{4 \%}$	4%	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	0\％	\％\％	\％\％	\％	\％	0\％	\％	\％	\％	0\％	0\％	\％
1784	22，12，110	\cdots	5	V1	4\％	4\％	$4{ }^{4 \%}$	${ }^{3 \%}$	3\％	2\％	2%	0\％	\％	\％	0\％	\％	\％	\％	0\％	\％	\％	\％	\％	\％
1785	27，12，190	－other	5	v1	${ }^{4 \%}$	4\％	4\％	${ }^{3 \%}$	3\％	2\％	2\％	\％	\％	0\％	\％	\％	\％	\％	\％	\％	\％	\％	0\％	0\％
1786	22，12，900	－onter	5	V1	4%	4\％	4%	3\％	3\％	2%	2\％	\％	\％	\％\％	\％	\％	\％	0\％	\％	0\％	\％	\％	\％	0\％
${ }^{1787}$	27，121，000	－Petroum jelly	5	V1	4%	4%	4%	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％
${ }^{1788}$	27，12，000	－Paratifin wax containing by weight less than 0.75% of oil	${ }^{5}$	NT	${ }^{4 \%}$	4\％	4\％	${ }^{3 \%}$	3\％	${ }^{2 \%}$	${ }^{2 \%}$	0\％	0\％	\％	\％	\％	\％	\％	\％	\％	\％	\％\％	\％	0\％
1789	27，129，010	－－Paratin wax	5	V1	$4{ }^{4 \%}$	${ }^{4 \%}$	$4{ }^{4}$	${ }^{3 \%}$	3\％	${ }^{2 \%}$	${ }^{2 \%}$	\％	0\％	0\％	\％	\％	\％	\％	0\％	\％	\％	0\％	\％	0\％
${ }^{1790}$	27，129，900	－other	5	N1	${ }^{4 \%}$	4\％	4\％	${ }^{3 \%}$	3\％	${ }^{2 \%}$	${ }^{2 \%}$	\％	0\％	\％	\％\％	\％	\％	\％	\％	0\％	\％	0\％	0\％	\％\％
${ }^{1791}$	27，13，100	－Not calained	5	N1	${ }^{4 \%}$	4\％	4\％	3\％	3\％	2\％	2\％	\％\％	0\％	0\％	\％	0\％	\％	0\％	0\％	0\％	\％	\％	0\％	\％
${ }^{1792}$	27，13，200	－Calcined	5	V1	4%	4%	4%	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	0\％	\％	\％\％	\％	\％	\％	0\％	\％\％	\％	\％	\％	\％	\％
${ }^{1793}$	27，132，000	－Peroloumbiumen	5	V1	4%	${ }^{4 \%}$	4\％	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％	\％	0\％	\％	\％	\％	\％	\％	0\％	0\％	\％
${ }^{1794}$	27，139，000	Other residues of petroleum oils or of oils obtained from bituminous minerals	5	N1	4%	4\％	4\％	${ }^{3 \%}$	3\％	2\％	2\％	\％	0\％	0\％	\％	\％	\％	\％	\％	0\％	\％	\％	\％	0\％
${ }^{1795}$	22，44，000	－Biuminus oro olishale and la sands	5	N1	4\％	4\％	4\％	${ }^{3 \%}$	3\％	2\％	${ }^{2 \%}$	0\％	\％	0\％	\％	\％	\％	\％	0\％	\％	0\％	\％	\％	0\％
${ }^{1796}$	27，49，000	－Oher	5	vT1	4\％	4\％	$4{ }^{4 \%}$	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	0\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％
${ }^{1797}$	27，15，000		5	NT1	4\％	4\％	4\％	3\％	3\％	2\％	2\％	\％	0\％	0\％	\％	0\％	\％	\％	\％\％	\％	\％	\％	\％	\％\％
${ }^{1798}$	27，160，000	Eectrical energy．	5	HsL	${ }^{5 \%}$	5\％	5\％	5\％	5\％	${ }^{5 \%}$	5\％	5\％	${ }^{5 \%}$	5\％	5\％	5\％	${ }^{5 \%}$	${ }^{5 \%}$	5%	5\％	${ }^{5 \%}$	${ }^{5 \%}$	5\％	5\％
1799	28，01，000	－Choine	5	NT1	$4{ }^{4 \%}$	4\％	4%	${ }^{3 \%}$	3\％	2%	2\％	\％	\％	0\％	\％	\％\％	\％	0\％	0\％	\％\％	\％	\％	\％	0\％
1800	28，012，000	－－odine	5	V1	4%	4%	$4{ }^{4 \%}$	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％
1801	28，013，000	－Fluoine bromine	5	V1	$4{ }^{4 \%}$	4\％	4\％	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％	\％	\％	\％	0\％	\％	\％	\％	\％	\％	\％
1802	28，02，000	Sulphur，sublimed or precipitated；colloidal sulphur．	${ }^{5}$	N1	${ }^{4 \%}$	4\％	${ }^{4 \%}$	${ }^{3} \%$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	0\％	0\％	\％	\％	\％	\％	\％	\％\％	\％\％	\％	\％	\％\％
${ }^{1803}$	28，30，020	－Acelyene black	5	V1	4\％	4\％	4%	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	0\％	\％	\％	\％	\％	\％	\％\％	\％	\％	\％	\％	\％
1804	28，30，040	－otere cataon bads	5	NT1	$4{ }^{4 \%}$	4\％	4\％	3\％	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	0\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％
1805	28，30，090	－other	5	V1	4\％	4\％	4\％	3\％	3\％	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％	\％	\％	\％	\％	0\％	\％	0\％	\％	\％	\％
${ }^{1806}$	28，04，000	－Hydrogen	5	V1	${ }^{4 \%}$	4\％	4\％	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％\％
1807	28，02，100	${ }^{\text {Afgon }}$	5	V1	${ }^{4 \%}$	4%	4%	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	2%	\％	\％	\％	\％	\％	\％	\％	\％\％	\％	\％	\％	\％	\％
${ }^{1808}$	28，02，200	－Oner	5	V1	${ }^{4 \%}$	4%	${ }^{49 \%}$	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％
${ }^{1809}$	28，04，000	－Nitogen		V1	${ }^{4 \%}$	4\％	4\％	${ }^{3 \%}$	${ }^{3 \%}$	2\％	2\％	0\％	\％\％	0\％	\％	\％	0\％	0\％	0\％	0\％	\％	\％	\％	\％
1810	28，044，000	－oxgen	5	N1	${ }^{4 / 6}$	4\％	4\％	${ }^{3 \%}$	3\％	${ }^{2 \%}$	${ }^{2 \%}$	\％	0\％	\％	\％	0\％	\％	\％	\％	\％	\％	0\％	0\％	\％\％
${ }^{1811}$	28，45，000	－Bronifielurium	5	V1	${ }^{4 \%}$	$4{ }^{4 \%}$	$4{ }^{4 \%}$	${ }^{3 \%}$	3\％	2\％	${ }^{2 \%}$	0\％	0\％	0\％	\％\％	0\％	0\％	0\％	\％	0\％	0\％	\％	0\％	0\％
1812	28，06， 100		5	NT	4\％	4\％	4\％	3\％	3\％	${ }^{2 \%}$	${ }^{2 \%}$	0\％	\％	\％	\％	\％	0\％	\％	\％	\％	0\％	\％	\％	\％
1813	28，06，900	－Oner	5	V1	4%	4%	4%	3\％	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％\％	0\％	0\％	0\％	\％	\％	\％	0\％	\％	0\％	0\％	0\％	\％
1814	28，07，000	－Phosphous	5	V1	$4{ }^{4 \%}$	4%	4%	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％	\％	0\％	\％	\％	\％	\％	\％	\％	\％	\％
1815	28，08，000	${ }^{\text {Afsenic }}$	5	HsL	5\％	5\％	5\％	${ }^{5 \%}$	5\％	${ }^{5 \%}$	${ }^{5 \%}$	5\％	${ }^{5 \%}$	5\％	5\％	5\％	${ }^{5 \%}$	${ }^{5 \%}$	5\％	5\％	${ }^{5 \%}$	${ }^{5 \%}$	${ }^{5 \%}$	${ }^{5 \%}$
${ }^{1816}$	28，49，000	Sederium	5	NT1	${ }^{4 \%}$	4\％	4%	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％\％	0\％	0\％	\％	\％	0\％	\％	\％\％	\％\％	\％\％	0\％	0\％	0\％
1817	28，05，100	－Sodium	5	NT1	${ }^{4 \%}$	4\％	$4{ }^{4 \%}$	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	0\％	0\％	\％	${ }^{0 \%}$	0\％	\％	\％	\％	\％	\％	0\％	\％	\％\％
1818	28，05，200	－Calium	5	NT1	$4{ }^{4 \%}$	4\％	4%	${ }^{3 \%}$	3\％	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	0\％	\％	\％	\％	\％	\％	\％	\％	0\％	\％	0\％
1819	28，05，900	－Other	5	V1	${ }^{4 \%}$	4%	$4{ }^{46}$	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％\％	\％	0\％	\％\％	\％	\％	\％	0\％	\％	\％	\％	\％	\％\％
182	28，55，000	－Rare－earth metals，scandium and y ytrium whether or not intermixed or interalloyed	${ }^{5}$	V1	$4{ }^{4 \%}$	4\％	4%	3\％	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％	\％	0\％	\％	\％	\％	\％	0\％	\％	\％	\％
1821	28，54，000	－Mercury	5	V1	${ }^{4 \%}$	${ }^{4 \%}$	$4{ }^{4 \%}$	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	0\％	\％	\％	\％	\％	0\％	\％	\％	\％	\％	\％	\％\％
1822	$28.060,000$	－Hydrogen enloride（hydroconolicie aid）	5	NT1	4%	4\％	4\％	3\％	${ }^{3} \%$	2\％	2\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％

香港•ASEAN FTAにかかる調査報告書

$1{ }^{1823}$	${ }^{28,062,000}$	－Chorosuphuric acid	5	NT1	4\％	4\％	4\％	${ }^{3 \%}$	${ }^{3}$	${ }^{2 \%}$	${ }^{2 \%}$	0\％	0\％	0\％	0\％	0\％	\％\％	0\％	\％\％	\％	\％\％	\％	\％\％	O\％
1824	28，00，000	Suphurica acici olum．	5	NT1	${ }^{4 \%}$	4%	4%	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	0\％	\％	\％	\％	0\％	\％	\％	\％	\％	\％	\％
1825	22，00，000	Niticic asids sulphoniticic aciss．	5	N1	${ }^{4 \%}$	4%	4%	3\％	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％\％
1826	28，09，000	－Diphosphous senmaxide	5	N1	4%	4%	4\％	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	0\％	\％	\％	0\％	\％	\％	\％	\％	\％	\％	\％	\％	\％\％
${ }^{1827}$	${ }^{28,02,031}$	－Hyooposporoicieacid	5	V1	${ }^{4 \%}$	${ }^{4 \%}$	${ }^{4 \%}$	${ }^{3 \%}$	${ }^{3}$	${ }^{2 \%}$	${ }^{2 \%}$	0\％	\％	0\％	0\％	\％	0\％	\％	\％	0\％	0\％	\％	\％\％	\％
1828	28，02，${ }^{\text {239 }}$	－olner	5	N1	${ }^{4 \%}$	4%	${ }^{4 \%}$	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％\％	\％	\％	\％	\％\％	\％	\％	\％	\％	\％	\％\％	0\％	${ }^{0}$
1829	28，02，（091	－Hypophosporicicacid	5	NT1	4%	4%	$4{ }^{4 \%}$	3\％	3\％	2\％	2%	0\％	0\％	\％\％	0\％	0\％	0\％	0\％	\％	\％	0\％	\％	\％\％	\％
1830	28，02，（，99	－omer	5	NT1	4%	${ }^{4 \%}$	${ }^{4 \%}$	3\％	${ }^{3} \%$	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％\％
1183	22，00，000	xides of boror；boric a aids．	5	NT1	4%	4%	4%	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％	\％	\％	\％	\％	\％	0\％	\％	\％	\％	0\％
1832	${ }^{28,111,100}$		5	NT1	4%	4%	4%	3\％	${ }^{3 \%}$	2%	2%	0\％	0\％	0\％	\％\％	\％\％	\％\％	\％	\％\％	0\％	\％	\％	\％	0\％
${ }^{1833}$	${ }^{28,11,910}$	－Aisenicacad	5	NT1	4%	4%	4%	3\％	${ }^{3} \%$	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	0\％
1183	22，11，990	－Other	5	NT1	4\％	4\％	4%	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	0\％	\％	0\％	0\％	0\％	\％	0\％	\％	0\％	0\％	\％
1835	28，12，100	Cabon dioxde	5	NT1	4\％	4\％	4\％	3\％	3\％	${ }^{2 \%}$	2%	\％	\％	0\％	0\％	\％	0\％	0\％	\％	\％	0\％	\％	${ }_{0}^{0 \%}$	\％
$1{ }^{1836}$	28，12，210	－Slica poowder	5	NT1	4\％	4\％	4\％	3\％	3\％	2\％	2\％	\％	\％	0\％	\％	\％	\％	0\％	\％	\％	\％	\％	\％	\％
11837	28，12，290	－Other	5	VT	4\％	4\％	4\％	3\％	3\％	2\％	2\％	\％	\％	0\％	0\％	\％	\％\％	0\％	\％	\％	\％	\％	\％	\％
${ }^{1888}$	28，112，910	\cdots Dalsenic enmaxaxde	5	NT1	4%	4\％	4\％	${ }^{3 \%}$	3\％	2\％	2%	0\％	\％	0\％	0\％	\％	\％\％	0%	\％\％	\％	\％	\％\％	\％\％	0\％
1839	28，12，920	－Suphur dioxde	5	NT	${ }^{4 \%}$	$4{ }^{4 \%}$	4%	${ }^{3 \%}$	3\％	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％	\％	\％	0\％	0\％	\％	0\％	\％	\％	\％	\％
1890	28，12，990	－OMmer	5	NT1	4\％	4\％	4%	3\％	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	0\％	\％	0\％	\％	\％	\％	\％	\％	\％	0\％	\％	\％	\％
1841	${ }^{28,12,1,000}$	－Chorides and chloride oxdes	5	NT1	4%	4%	4%	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	0\％	\％	\％	\％\％	0\％	\％	\％	0\％	0\％	\％\％	\％
1842	${ }^{28,12,000}$	－other	5	NT1	4%	4\％	4\％	3\％	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％	\％	\％\％	\％\％	\％	\％	\％	\％	\％	\％	\％\％
${ }^{1843}$	${ }^{28,13,000}$	－Catoon disuphide	5	NT1	4%	4%	$4{ }^{4 \%}$	3\％	3\％	2%	2%	0\％	\％	0\％	\％\％	\％	0\％	0\％	0\％	0\％	\％\％	\％	0\％	0\％
1844	28，13，900	－other	5	NT1	4\％	4\％	4\％	${ }^{3 \%}$	3\％	${ }^{2 \%}$	${ }^{2 \%}$	0\％	0\％	0\％	0\％	0\％	0\％	0\％	0\％	\％	0\％	0\％	0\％	0\％
${ }^{1845}$	${ }^{28,41,000}$	－Annydous ammonia	5	${ }^{\text {NT1 }}$	$4{ }^{4 \%}$	4\％	4\％	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％	\％\％	\％	\％	\％	\％	\％	\％	\％	\％	\％
${ }^{1846}$	28，42， 000	－Ammonia raqueus soluion	5	NT1	4\％	4\％	4\％	3\％	3\％	${ }^{2 \%}$	2%	\％	\％	0\％	\％	\％	0\％	0\％	\％	\％	\％	\％	\％	\％
1847	28，55，100	Solid	5	v1	4\％	4\％	4\％	3\％	3\％	2\％	2%	\％	\％	0\％	\％	\％\％	\％\％	0\％	\％	\％	0\％	\％	\％	\％
${ }^{1848}$	${ }^{28,51,200}$	Inaulueus solutio（sodal ye of Iquid sodal	5	V1	4%	4%	${ }^{4 \%}$	${ }^{3 \%}$	3\％	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％\％	\％	\％	\％	0\％	\％	0\％	\％	\％	0\％	\％
1849	${ }^{28,15,2,000}$	－Polassulu hydoroxde（causicio potash）	${ }^{5}$	V1	4%	4\％	4%	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	0\％	\％	${ }^{0 \%}$	${ }^{0 \%}$	\％	0\％	0\％	\％\％	\％	\％	\％
1850	28，15，000	Peroxdes st sodium or polassum	5	v1	4%	4%	4%	3\％	${ }^{3 \%}$	2\％	2%	\％	\％	\％\％	\％	\％	\％	\％	\％	0\％	\％	\％	\％	\％\％
${ }^{1851}$	28，66，000	－Hydroxide and peroxide of magnesium	5	NT1	4\％	4%	4%	3\％	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％	\％	\％	\％	0\％	\％	\％	\％	\％	\％	\％\％
1852	28，64，000	－OXdes，hydroxdes and peroxdess，of stontium or	5	NT1	4\％	4\％	4\％	3\％	3\％	${ }^{2 \%}$	2\％	0\％	\％	0\％	0\％	0\％	0\％	0\％	\％	\％	0\％	0\％	0\％	\％
${ }^{1853}$	${ }^{28,170,010}$	－Zno oxde	5	NT1	4%	$4{ }^{4 \%}$	$4{ }^{4 \%}$	3\％	${ }^{3 \%}$	2%	2%	\％\％	0\％	0\％	0\％	0\％	0\％	0\％	0\％	\％\％	\％\％	0\％	0\％	\％
${ }^{1854}$	${ }^{28,170,020}$	－Zncoperoxde	5	NT1	4%	4\％	4\％	3\％	3\％	2\％	${ }^{2 \%}$	0\％	\％	0\％	0\％	\％\％	0\％	0\％	\％	\％\％	\％\％	0\％	\％	\％
1855	28，88，000	－Artificial corundum，whether or not chemically defined	${ }^{5}$	NT1	4\％	4\％	4\％	3\％	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	0\％	0\％	0\％	0\％	\％	\％	0\％	\％	\％	\％	\％
${ }^{1856}$	28，182，000	－Aluminium oxde，other tran antificia coundum	5	NT1	$4{ }^{4 \%}$	4%	${ }^{4 \%}$	3\％	3\％	2\％	${ }^{2 \%}$	\％\％	\％	0\％	\％\％	\％	\％\％	0\％	0\％	\％	\％\％	\％	\％	0\％
1857	28，18，000	－Aluninium hydoxde	5	NT1	$4{ }^{4 \%}$	4\％	4\％	${ }^{3}$	3\％	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	0\％	\％\％	\％	0\％	\％	\％	\％	\％	\％	\％	\％
${ }^{18588}$	${ }^{28,191,000}$	－Chomium trioxde	5	NT1	4%	4%	$4{ }^{4 \%}$	3\％	3\％	2%	2%	\％	0\％	0\％	0\％	\％\％	0\％	0\％	0\％	0\％	0\％	\％\％	0\％	0\％
1859	28，19，000	－Onter	5	NT1	4%	4%	4%	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％
1880	28，20，，000	－Mangansese ioxide	5	NT1	$4{ }^{4 \%}$	4\％	4\％	${ }^{3} \%$	3\％	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	0\％	\％	\％	0\％	0\％	\％	\％	\％	\％	\％	\％
${ }^{1861}$	28，20，000	－omer	5	NT1	$4{ }^{4 \%}$	4\％	4%	3\％	3\％	${ }^{2 \%}$	2\％	0\％	\％	0\％	0\％	\％	0\％	0\％	\％	\％	0\％	\％	\％	\％
1862	28，21，000	－Ion oxdes and hydroxdes	5	NT1	4%	4\％	4\％	3\％	3\％	2\％	2\％	\％\％	\％	0\％	0\％	\％	0\％	0\％	\％	\％	\％	\％	\％	\％
${ }^{1863}$	28，212，000	－Eath colous	5	V1	$4{ }^{4 \%}$	$4{ }^{4 \%}$	4%	\％	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	0\％	\％\％	\％\％	\％\％	\％	\％	\％	\％\％	\％	\％	\％
1864	28，22，000	Cobalt oxides and hydroxides；commercial cobalt oxides．	${ }^{5}$	V1	4%	$4{ }^{4 \%}$	$4{ }^{4 \%}$	3\％	3\％	${ }^{2 \%}$	2\％	0\％	0\％	\％	\％	\％	\％	0\％	\％	\％	\％	\％	\％	
1865	28，23，000	Triaium oxides．	5	NT1	4	4%	4\％	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	0\％	\％	\％	\％	0\％	\％\％	\％	\％	\％	\％	\％	\％	\％\％
1886	28，24，000	－Lead monoxide（litage，massicol）	5	NT1	4%	4\％	4\％	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	0\％	\％	\％	0\％	0\％	\％	\％	\％	\％	\％	0\％
1867	${ }^{28,24,000}$	－other	5	NT1	4%	4%	4%	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	2\％	\％	\％	0\％	\％	\％\％	\％	0\％	\％\％	\％	\％\％	\％	\％	\％$\%$
${ }^{1868}$	28，25，000	－Hydrazine and hydroxylamine and their inorganic salts	${ }^{5}$	NT	4%	4\％	4%	3\％	3\％	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	0\％	0\％	\％	0\％	0\％	\％	\％	\％	\％	\％	\％
1869	${ }^{28,252,000}$	－Lhinum oxde and hydroxde	5	N1	$4{ }^{4 \%}$	4\％	4%	3\％	3\％	2%	2%	\％	\％	0\％	\％\％	\％	\％\％	0\％	\％	\％\％	\％\％	0\％	\％\％	\％
1870	${ }^{28,25,000}$	－Vandium oxdes and hydoroxdes	5	NT1	4%	4%	4%	3\％	${ }^{3 \%}$	2%	2%	0\％	0\％	\％	\％	\％	\％	\％	0\％	0\％	0\％	0\％	0\％	0\％
1871	28，25，000	－Neckelo oxdes and hydoroxdes	5	NT1	4%	4%	4%	3\％	${ }^{3} \%$	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％	0\％	\％	0\％	\％	\％	\％	\％	\％	\％	0\％
1872	${ }^{28,25,000}$	－copeer oxdes and hydioxdes	5	${ }^{\text {NT1 }}$	$4{ }^{4 \%}$	4\％	4\％	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％	\％\％	\％	\％	0\％	\％\％	0\％	\％\％	0\％	\％	0\％
1873	28，25，000	－Gemanium oxides and ziconium dioxde	5	NT1	4\％	4\％	4\％	3\％	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	0\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％
1874	28，25，000	－Moybenum oxdes and hydoroxdes	5	NT1	4%	4\％	4\％	3\％	3\％	${ }^{2 \%}$	${ }^{2 \%}$	0\％	\％	0\％	0\％	\％	0\％	0\％	\％	\％	\％	\％	\％	\％
1875	28，25，000	－Antimony xides	5	NT1	4%	4\％	4\％	3\％	3\％	2\％	2\％	\％\％	\％	0\％	0\％	\％	\％\％	0\％	\％	\％\％	\％\％	\％	\％	\％
${ }^{1876}$	${ }^{28,25,000}$	－Oner	5	NT1	$4{ }^{4 \%}$	${ }^{4 \%}$	4%	3\％	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％\％	\％	\％	\％\％	\％	\％	\％	\％	\％	\％	\％
1877	${ }^{28,26,200}$	Of aluninim	5	NT1	${ }^{4 \%}$	$4{ }^{4}$	4%	${ }^{3 \%}$	3\％	${ }^{2 \%}$	${ }^{2 \%}$	0\％	0\％	\％	0\％	0\％	0\％	\％	\％	\％	\％	\％	0\％	\％
${ }^{1878}$	28，26，900	Other	5	NT1	4%	4%	4%	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％	\％	\％	\％	0\％	\％	\％	\％	\％	\％	\％
${ }^{1879}$	${ }^{28,283,000}$	Sodium hexatuluorauminate（syntheicic cyolie）	5	NT1	${ }^{4 \%}$	4\％	4\％	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％\％	\％	\％\％	\％\％	\％\％	\％\％	\％	\％\％	\％	\％\％	\％\％
1880	28，26，000	－omer	5	NT1	4%	4\％	4\％	3\％	3\％	2%	2%	0\％	0\％	0\％	0\％	\％	0\％	0\％	\％	0\％	0\％	\％	\％	\％
${ }^{1881}$	${ }^{28,27,000}$	${ }^{\text {－Ammonium choride }}$	5	${ }^{\text {NT1 }}$	$4{ }^{4 \%}$	4\％	4\％	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％	\％\％	\％	\％	\％	\％	\％	\％	\％	\％	\％
1882	${ }^{28,22,010}$	－Commerial frade	5	NT1	4%	4\％	4%	3\％	${ }^{3 \%}$	2\％	2\％	0\％	\％	0\％	0\％	0\％	0\％	0\％	0\％	0\％	0\％	0\％	0\％	0\％
1883	${ }^{28,22,2090}$	－－omer	5	NT1	$4{ }^{4 \%}$	4%	4%	3\％	3\％	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％	\％	\％	\％\％	0\％	\％	0\％	\％	0\％	\％	\％
1884	${ }^{28,23,100}$	－－Of magnesium	${ }^{5}$	NT1	${ }^{4 \%}$	4\％	4\％	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	0\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％
1885	${ }^{28,23,200}$	－－Ofauminum	5	NT1	$4{ }^{4 \%}$	4\％	4\％	3\％	3\％	2\％	2\％	\％	\％	\％	0\％	\％	0\％	0\％	\％	0\％	\％	\％	\％	\％
1886	${ }^{28,27,500}$	－－ot onckel	5	NT	4%	4\％	4\％	3\％	3\％	${ }^{2 \%}$	${ }^{2 \%}$	0\％	\％	0\％	\％\％	\％	0\％	0\％	\％	\％	\％	\％	\％	0\％
1887	28，27，910	\cdots Of baium or of coant	5	V1	4%	4\％	4\％	3\％	3\％	2\％	2\％	\％	\％	0\％	0\％	\％	0\％	0\％	\％	\％	\％	\％	\％	\％
${ }^{1888}$	${ }^{28,273,920}$	－Otion	5	V1	$4{ }^{4 \%}$	4%	4%	\％	3\％	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％\％	\％	\％\％	\％\％	\％\％	\％	\％	\％\％	\％	\％	\％
1889	28，23，990	－Other	5	NT1	4%	4\％	4\％	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	0\％	\％	\％	\％	0\％	\％	\％	\％	\％	\％	\％	0\％	0\％
1890	${ }^{28,274,100}$	－Of copper	5	NT1	$4{ }^{4 \%}$	4\％	4\％	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	0\％	\％	0\％	0\％	0\％	\％	\％	\％	\％	\％	\％
1891	${ }^{28,24,400}$	Other	5	NT1	4%	4\％	4%	3\％	${ }^{3 \%}$	${ }^{2 \%}$	2\％	0\％	\％	0\％	\％	\％	0\％	0\％	\％	0\％	\％	0\％	\％	0\％
${ }^{1892}$	${ }^{28,25,100}$	Biomides of sodium or fopolassim	5	NT1	${ }^{4 \%}$	4\％	4\％	3\％	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％
${ }^{1893}$	28，25，900	－Other	5	NT1	$4{ }^{4 \%}$	4%	4\％	3\％	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	0\％	\％	0\％	0\％	\％\％	\％	0\％	\％\％	\％	0\％	0\％	0\％	0\％
1894	28，27，000	－Iodides andididide oxdes	5	NT1	${ }^{4 \%}$	4%	4%	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	0\％	\％	\％	\％	\％	\％	\％	\％\％	\％	0\％	\％	0\％	0\％
1895	28，88，000	$\begin{aligned} & \text { - Commercial calcium hypochlorite and other } \\ & \text { calcium hypochlorites } \end{aligned}$	${ }^{5}$	NT1	4%	4\％	4\％	3\％	3\％	${ }^{2 \%}$	2\％	${ }^{0 \%}$	\％	\％	\％	${ }^{0 \%}$	\％\％	\％	\％	\％	\％	\％	\％	\％
${ }^{1896}$	28，28，010	－－sodium hyporlorie	5	NT1	${ }^{4 \%}$	4\％	4\％	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％	\％\％	\％\％	\％	\％	\％	0\％	0\％	\％\％	\％	0\％
1897	28，28，090	－other	5	NT1	4%	4\％	4\％	3\％	3\％	2\％	2\％	0\％	0\％	0\％	0\％	0\％	0\％	0\％	\％	0\％	\％	\％\％	\％	\％
${ }^{1898}$	${ }^{28,29,100}$	Of sodium	5	NT1	${ }^{4 \%}$	${ }^{4 \%}$	4%	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	0\％	\％	\％	\％	\％	\％	\％	\％	\％\％	\％	0\％	0\％	\％\％
11899	28，29，900	－other	5	NT1	4%	4\％	4\％	3\％	3\％	2\％	2\％	0\％	\％	0\％	0\％	0\％	0\％	0\％	\％	0\％	\％\％	\％	\％	\％
1900	28，29，010	Sodium perchorate	5	NT1	$4{ }^{4 \%}$	4%	4%	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％
1901	28，29，9090	－other	5	NT1	${ }^{4 \%}$	4%	4%	3\％	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	0\％	\％	0\％	\％	\％	\％	\％	\％	\％	\％	\％	\％
1902	28，30，000	Sodium suppides	5	NT1	4%	4%	4\％	3\％	3\％	${ }^{2 \%}$	${ }^{2 \%}$	0\％	\％	0\％	0\％	\％\％	0\％	0\％	\％\％	\％	0\％	\％	0\％	\％$\%$
1903	28，30，010	Cadmium suphide or rinc suppide	5	NT1	4%	4%	4%	3\％	${ }^{3 \%}$	2\％	2\％	0\％	\％	0\％	0\％	\％	0\％	0\％	\％	\％	0\％	0\％	0\％	\％
1904	${ }^{28,309,900}$	－Oner	5	NT1	4%	4\％	4\％	3\％	${ }^{3 \%}$	2\％	2\％	0\％	\％	\％	\％	\％\％	\％	\％	\％	\％\％	0\％	\％	\％	0\％
${ }^{1905}$	${ }^{28,31,000}$	－O sodium	5	NT1	4%	4\％	4%	3\％	${ }^{3 \%}$	2\％	${ }^{2 \%}$	0\％	0\％	0\％	0\％	\％\％	0\％	0\％	0\％	0\％	0\％	0\％	0\％	0\％
1906	${ }^{28,39,000}$	－Oner	5	NT1	$4{ }^{4}$	4\％	4%	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	0\％
1907	${ }^{2,3,32,000}$	－Sodium supplies	5	NT1	4%	4\％	4\％	3\％	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％	\％	\％	0\％	\％	\％	\％	\％	\％	\％	\％
1908	28，32，．000	－Oner supphies	5	${ }^{\text {NT1 }}$	4\％	4\％	4\％	3\％	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％\％	\％	\％	0\％	0\％	\％	\％\％	\％\％	\％	\％	\％
1909	${ }^{28,32,000}$	－Tiosulupaes	5	NT1	$4{ }^{4 \%}$	4\％	4\％	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％
${ }^{1910}$	${ }^{28,33,100}$	－Disodium sulphate	${ }^{5}$	NT1	$4{ }^{4 \%}$	4\％	${ }_{4 \%}$	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	2\％	\％	\％	\％	\％\％	\％	\％\％	\％	\％	\％	\％	\％	\％	\％\％
1911	${ }^{28,33,900}$	Oher	5	NT1	$4{ }^{4 \%}$	$4{ }^{4 \%}$	4%	3\％	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％\％
1912	${ }^{28,322,100}$	Of magnesim	5	NT1	4\％	4\％	${ }^{4 \%}$	${ }^{\text {\％}}$	${ }^{3}$	${ }^{2 \%}$	${ }^{2 \%}$	0\％	\％	0\％	\％	\％	0\％	0\％	\％	\％	\％	\％	\％	\％

香港•ASEAN FTAにかかる調査報告書

${ }^{1913}$	${ }^{28,382,210}$	Commercal grae	5	NT1	4\％	4%	4\％	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	0\％	0\％	\％	\％	\％	0\％	\％\％	\％\％	0\％	0%	0%	\％\％
1914	${ }^{28,382,290}$	Onter	5	NT1	4%	4\％	4%	${ }^{3 \%}$	3\％	${ }^{2 \%}$	${ }^{2 \%}$	\％	0\％	0\％	0\％	\％\％	0\％	\％\％	0\％	0\％	\％	\％	0\％	${ }^{\text {0\％}}$
1915	${ }^{28,32,400}$	Of nikel	5	NT1	4\％	4%	4%	${ }^{3 \%}$	${ }^{3 \%}$	2\％	${ }^{2 \%}$	\％	\％	\％	\％	0\％	\％	\％	\％	\％	\％	\％	\％	\％
916	${ }^{28,32,500}$	Of copper	5	NT1	4\％	${ }^{4 \%}$	4%	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％
917	${ }^{28,32,700}$	Of faxium	5	N1	4\％	4%	$4{ }^{4 \%}$	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％
1918	${ }^{28,323,290}$	－Triosasi leas suphale	5	NT1	4\％	${ }^{4 \%}$	4\％	${ }^{\text {3\％}}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	0\％	0\％	\％	\％	0\％	0\％	0\％	0\％	0\％	0\％	\％	\％
1919	${ }^{28,32,930}$	－－Ot chomium	5	N1	4\％	${ }^{4 \%}$	${ }^{4 \%}$	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％	\％	0\％	\％	\％	\％	\％	\％	\％	0\％	\％
1920	${ }^{28,382,990}$	…other	5	NT1	4\％	${ }^{4 \%}$	$4{ }^{4 \%}$	${ }^{3 \%}$	3\％	${ }^{2 \%}$	2\％	\％	\％	\％	0\％	\％	\％	\％	\％	\％	\％	\％	\％	\％
1921	${ }^{28,33,000}$	－Alums	5	NT1	4\％	$4{ }^{4 \%}$	${ }^{4 \%}$	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％	\％	\％	\％	\％	\％	\％	0\％	0\％	0\％	\％
1922	${ }^{28,34,000}$	－Peroxosulpalas（pessuphates）	5	NT1	4\％	4\％	4\％	${ }^{3 \%}$	3\％	2\％	2\％	0\％	\％	0\％	0\％	\％	\％\％	0\％	\％	\％\％	\％\％	\％	0\％	\％
1923	${ }^{28,34,000}$	－Nities	5	NT1	4\％	4%	4%	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	2\％	\％	\％\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％
1924	28，32， 100	－－Ofotassium	5	NT1	4\％	4\％	4\％	${ }^{3} \%$	${ }^{3} \%$	2\％	2\％	\％	\％	\％	\％	0\％	\％	\％	\％	\％	\％\％	\％	\％	\％
1925	${ }^{28,342,910}$	Of bsmut	5	NT1	4\％	4\％	4\％	3\％	3\％	${ }^{2 \%}$	${ }^{2 \%}$	\％	0\％	\％	\％	\％	0\％	0\％	\％	\％\％	0\％	0\％	\％\％	\％
1926	${ }^{28,3,32,990}$	Other	5	V1	4\％	4\％	4\％	3\％	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	0\％	\％	\％\％	\％	\％	\％	0\％	\％\％	\％\％	0\％	0\％	\％
1927	${ }^{28,351,000}$	－Phosphinates（hypophosphites）and phosphonates （phosphites）	5	NT1	4\％	$4{ }^{4 \%}$	4\％	${ }^{3 \%}$	3\％	2\％	${ }^{2 \%}$	\％	0\％	\％	\％	\％	\％	\％	\％	\％\％	\％	0\％	\％	\％
1928	${ }^{28,352,200}$	－－Of mono－or disodium	5	NT1	${ }^{4 \%}$	${ }^{4 \%}$	$4{ }^{4}$	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	0\％	0\％	0\％	0\％	\％	\％	0\％	0\％	0\％	0\％	\％	\％	\％
1929	${ }^{28,35,400}$	－of poassum	5	T1	4\％	4\％	4\％	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％	\％	0\％	\％	\％	\％	\％	\％	0\％	0\％	\％
1930	${ }^{28,35,510}$	$\stackrel{- \text { Feed grade }}{ }$	5	NT1	4\％	4\％	4\％	${ }^{3} \%$	3\％	${ }^{2 \%}$	2\％	0\％	\％	\％	\％	0\％	\％	\％	\％	0\％	\％	\％	\％	\％
${ }^{1931}$	${ }^{28,352,590}$	－Other	5	NT1	4\％	4\％	4\％	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	0\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％
1932	${ }^{28,35,500}$	－Ohere phosplales of caticim	5	NT1	4\％	4\％	4%	3\％	3\％	${ }^{2 \%}$	2\％	0\％	\％	0\％	\％	\％\％	\％	\％	\％	\％	\％	0\％	0\％	\％
1933	${ }^{28,3,32,910}$	Oft isodium	5	NT1	4%	4\％	${ }^{4 \%}$	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％	\％	\％	\％\％	\％	0\％	0\％	0\％	\％	0\％	\％
1934	${ }^{28,352,990}$	－other	5	NT1	4\％	4\％	4\％	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	0\％	0\％	\％	\％	0\％	\％	\％	\％	\％	0\％	0\％	\％	\％
1935	${ }^{28,35,110}$	Food grade	5	NT1	4\％	4\％	4\％	3\％	3\％	2\％	2\％	0\％	0\％	\％	0\％	\％	\％	0\％	\％	0\％	0\％	\％	\％	\％
1936	${ }^{28,35,190}$	－other	5	NT1	4\％	4\％	4\％	3\％	3\％	${ }^{2 \%}$	2\％	\％	0\％	\％	\％	\％	0\％	\％	\％	0\％	0\％	\％	\％	\％
${ }^{1937}$	${ }^{28,353,910}$	Terasosoliumpyophosphate	5	T1	4\％	${ }_{4}^{4 \%}$	$4{ }^{4 \%}$	${ }^{3 \%}$	3\％	${ }^{2 \%}$	${ }^{2 \%}$	0\％	\％	\％	\％	\％	\％	\％	0\％	\％	0\％	0\％	\％	\％\％
${ }^{1938}$	${ }^{28,353,990}$	－OMer	5	V1	4\％	${ }^{4 \%}$	${ }^{4 \%}$	${ }^{3 \%}$	3\％	2\％	${ }^{2 \%}$	\％	\％	\％	\％	\％	\％	0\％	0\％	\％	\％	0\％	0\％	\％
1939	${ }^{28,362,000}$	－isodium cabonale	5	NT1	4\％	4\％	4%	${ }^{3} \%$	3\％	2\％	2\％	0\％	\％	\％	\％	0\％	0\％	\％	\％	0\％	0\％	\％	\％	\％
1940	${ }^{28,383,000}$	－Sodium hydrogenarabonat（sodium bic	5	NT1	4\％	4\％	4\％	${ }^{3 \%}$	3\％	${ }^{2 \%}$	${ }^{2 \%}$	\％\％	0\％	0\％	\％	\％	0\％	0\％	0\％	0\％	0\％	0\％	\％	0\％
1941	28，364，000	－Poassum catoonates	5	NT1	4\％	4\％	4\％	3\％	3\％	${ }^{2 \%}$	${ }^{2 \%}$	\％	0\％	0\％	\％	0\％	0\％	\％	0\％	0\％	0\％	\％	\％	\％\％
1942	${ }^{28,365,000}$	Calcuiu catonale	5	NT1	4\％	4\％	4\％	3\％	3\％	2\％	2\％	0\％	0\％	0\％	0\％	0\％	0\％	0\％	0\％	0\％	0\％	0\％	0\％	0\％
${ }^{1943}$	${ }^{28,36,000}$	－Barium catomate	5	NT1	4%	4%	4%	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	0\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％
194	28，36，100	Lithium catoonates	5	NT1	4\％	4\％	4\％	${ }^{3} \%$	${ }^{3 \%}$	${ }^{2 \%}$	2\％	\％	\％	\％	\％	0\％	\％	\％	\％	0\％	\％	\％	\％	\％
1945	${ }^{28,36,200}$	Stronium arabonate	5	NT1	4\％	4\％	4\％	3\％	3\％	${ }^{2 \%}$	2\％	\％	\％\％	\％	\％	0\％	0\％	\％	\％	0\％	0\％	0\％	\％	\％
${ }^{1946}$	${ }^{28,36,9,910}$	Commercial ammonium	5	V1	4\％	$4{ }^{4 \%}$	$4{ }^{4 \%}$	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	2%	\％\％	\％	\％	\％\％	\％	\％\％	\％	\％	\％\％	\％\％	0\％	\％	\％$\%$
1947	${ }^{28,36,9,20}$	${ }^{-L \text { Lead catoonates }}$	5	T1	4\％	${ }^{4 \%}$	4%	${ }^{3 \%}$	3\％	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	0\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％
${ }^{1948}$	${ }^{28,36,990}$	－Oner	5	T1	4\％	$4{ }^{4 \%}$	$4{ }^{4 \%}$	${ }^{3 \%}$	3\％	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	0\％	\％
1949	28，37，100	Of sodium	5	NT1	4\％	4\％	4\％	${ }^{3} \%$	${ }^{3 \%}$	2\％	2\％	\％	\％	\％	\％	0\％	\％	\％	\％	0\％	\％	\％	\％	\％
${ }^{1950}$	${ }^{28,37,1900}$	－Oner	5	NT1	4%	4%	4\％	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％
1195	${ }^{28,3,32,000}$	Complex cranides	5	NT1	4\％	4\％	4\％	3\％	3\％	${ }^{2 \%}$	2\％	0\％	0\％	0\％	\％	0\％	0\％	0\％	0\％	0\％	0\％	0\％	0\％	0\％
1952	${ }^{28,39,100}$	Sodium measisicates	5	NT1	4%	4\％	${ }^{4 \%}$	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％
${ }^{1953}$	28，39，910	Sodium silicaes	5	NT1	4\％	4\％	4\％	${ }^{3} \%$	${ }^{3} \%$	${ }^{2 \%}$	2%	\％	\％	\％	\％	\％	\％	\％	\％	\％	0\％	\％	\％	\％
1954	28，39，9，90	－other	5	NT1	4\％	4\％	4\％	3\％	3\％	2\％	2\％	\％	\％	\％	\％	0\％	\％	0\％	0\％	0\％	0\％	\％	\％	\％
1955	28，39，000	－omer	5	NT1	4\％	4\％	4\％	3\％	3\％	${ }^{2 \%}$	${ }^{2 \%}$	0\％	0\％	\％	\％	0\％	0\％	\％	\％	0\％	\％\％	\％	\％	\％
${ }^{1956}$	${ }^{28,401,100}$	${ }^{\text {Anlysious }}$	5	V1	4%	4\％	$4{ }^{4}$	${ }^{3 \%}$	3\％	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％	\％	\％	\％	\％	\％	\％\％	\％	\％	\％	\％
1957	${ }^{28,40,9,900}$	Oner	5	T1	4\％	4\％	4%	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	0\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％
${ }^{1958}$	28，42，2000	－otereboras	5	NT1	4\％	4\％	4\％	${ }^{3} \%$	3\％	${ }^{2 \%}$	2\％	\％	\％	\％	\％	0\％	0\％	\％	\％	\％	\％	\％	\％	\％
1959	${ }^{28,40,0,000}$	Peroxomatas（perororas）	5	NT1	4\％	${ }^{4 \%}$	4\％	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％
1950	${ }^{28,413,000}$	－sodium dichromate	5	NT1	4\％	4\％	4\％	3\％	3\％	2\％	2\％	\％\％	0\％	\％\％	\％\％	0\％	0\％	0\％	0\％	0\％	0\％	0\％	\％	0\％
1961	28，41，000	－Onher chromases and dichromases；	5	NT1	4\％	4\％	4\％	3\％	${ }^{3 \%}$	2\％	${ }^{2 \%}$	0\％	0\％	\％	\％	0\％	0\％	0\％	\％	0\％	0\％	0\％	0\％	\％
1962	${ }^{28,46,100}$	－Poassum pemanganate	5	NT1	4%	${ }^{4 \%}$	$4{ }^{4 \%}$	${ }^{3 \%}$	3\％	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％\％	0\％	0\％	\％	\％	\％	\％	0\％	0\％	\％	\％	\％
${ }^{1983}$	${ }^{28,41,9,900}$	－other	5	NT1	4\％	4\％	4\％	3\％	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	0\％	0\％	\％	\％	\％\％	\％	\％	\％	\％	\％	\％	\％	\％
1964	${ }^{28,417,000}$	－Moybdales	5	NT1	4\％	4%	4\％	3\％	3\％	${ }^{2 \%}$	${ }^{2 \%}$	\％	0\％	\％	\％	0\％	\％	0\％	\％	\％	0\％	\％	\％	\％
${ }^{1965}$	${ }^{28,418,000}$	－Tussatas（woftrames）	5	NT1	4%	4%	4\％	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％\％	\％	\％	0\％	\％\％	0\％	0\％	\％\％	\％\％	\％\％	\％	0\％
${ }^{1966}$	${ }^{28,419,000}$	－Oner	5	NT1	4\％	4\％	4\％	${ }^{3 \%}$	${ }^{3} \%$	2\％	${ }^{2 \%}$	\％	\％	\％	0\％	\％	\％\％	\％	\％	0\％	0\％	\％	\％	\％
1987	${ }^{28,42,000}$	－Double or complex silicates，including aluminosilicates whether or or tot chemically defined	5	NT1	4\％	4%	4%	3\％	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	0\％	\％	\％\％
1988	${ }^{28,42,0,010}$	－Sodium asente	5	NT1	4\％	4\％	4\％	${ }^{3 \%}$	3\％	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％	\％	0\％	\％	\％	\％	\％	\％\％	\％	\％	\％
1999	28，42，0，20	－－copear or chomium sals	5	NT1	4\％	4\％	4\％	3\％	3\％	2\％	2\％	\％	\％	\％	\％	0\％	\％	\％	\％	0\％	0\％	\％	\％	\％
1970	${ }^{28,29,9,30}$	－Oneref tuminies，cyanales and thioganates	5	${ }^{\text {NT1 }}$	4\％	4\％	4\％	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	0\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％
1971	${ }^{28,42,9,90}$	－Oner	5	NT1	4\％	4%	4%	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	2\％	0\％	\％	\％	\％	\％	0\％	\％	0\％	0\％	0\％	0\％	\％	\％
1972	${ }^{28,43,000}$	－Collodal pecous meals	5	NT1	4\％	4\％	4\％	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％	\％	\％	\％	0\％	\％	\％	\％	\％	\％	\％
1973	${ }^{28,432,100}$	－Siver intale	5	NT1	4\％	4\％	4\％	${ }^{3} \%$	${ }^{3 \%}$	${ }^{2 \%}$	2%	0\％	\％	\％	\％	0\％	\％\％	\％	\％	\％	\％	\％	\％	\％
1974	28，432，900	－orner	5	NT1	4\％	4\％	4\％	3\％	3\％	${ }^{2 \%}$	${ }^{2 \%}$	0\％	\％\％	\％	0\％	0\％	0\％	0\％	\％\％	0\％	\％	\％\％	\％	\％
${ }^{1975}$	${ }^{28,43,000}$	－God compounds	5	N1	4%	$4{ }^{4 \%}$	$4{ }^{4 \%}$	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	2%	\％	\％	\％	\％\％	\％	\％\％	\％	\％\％	\％\％	\％\％	\％\％	\％	\％$\%$
1976	${ }^{28,43,9000}$	Othe compounds；amalams	5	V1	4%	${ }^{4 \%}$	$4{ }^{4}$	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％
1977	2844.10 .10	－Naural uraium andis sis compunds	5	NT1	4\％	4\％	4\％	3\％	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％	\％	0\％	\％	\％	\％	0\％	\％	\％	\％	\％
1978	${ }^{28,41,090}$	－Oner	5	NT1	4\％	4\％	4%	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	2\％	0\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％
979	28，42，010	- Uranium and its compounds；plutonium and its compounds	${ }^{5}$	NT1	4\％	4\％	4\％	3\％	3\％	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％	\％	\％	\％	\％	\％	\％	0\％	\％	\％	\％
1980	${ }^{28,42,090}$	－－Other	5	NT1	4\％	4\％	4\％	${ }^{3 \%}$	3\％	2\％	2\％	\％\％	0\％	0\％	0\％	0\％	0\％	0\％	0\％	0\％	0\％	0\％	0\％	0\％
1981	${ }^{28,43,010}$	－Uranium and is compounss，thoium and its	5	NT1	4\％	${ }^{4 \%}$	4%	3\％	3\％	${ }^{2 \%}$	2\％	\％	\％	\％	\％	0\％	\％	\％	\％	0\％	0\％	\％	0\％	\％
1982	${ }^{28,43,9,90}$	－－Other	5	NT1	4%	4\％	4\％	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	0\％	\％	\％	\％	\％\％	0\％	\％	\％	0\％	0\％	0\％	0\％	\％
${ }^{1983}$	${ }^{28,44,011}$	\cdots－Radium andit sals	5	${ }^{\text {NT1 }}$	4\％	4\％	4\％	${ }^{3 \%}$	${ }^{3}$	${ }^{2 \%}$	${ }^{2 \%}$	0\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％
1984	${ }^{28,44,019}$	\cdots Oner		NT1	4\％	4\％	4\％	3\％	3\％	2\％	2\％	0\％	0\％	0\％	\％	0\％	\％	0\％	0\％	\％	0\％	\％	\％	\％
1985	${ }^{28,44,900}$	－other	5	N1	4\％	4\％	${ }_{4}^{4 \%}$	3\％	3\％	${ }^{2 \%}$	2\％	\％	0\％	\％	\％	\％	\％	0\％	\％\％	\％	\％	\％	\％	\％
${ }^{1986}$	${ }^{28,45,500}$	－Spent（iradialede）fuel elements（cartridges）of nuclear reactors	${ }^{5}$	V1	4\％	$4{ }^{4 \%}$	4\％	3\％	3\％	${ }^{2 \%}$	2%	\％	\％	\％	0\％	\％	\％	\％	\％	0\％	\％	\％	\％	\％
1987	${ }^{28,45,000}$	－Heavy wier（deutereium oxde）	5	NT1	4\％	${ }^{4 \%}$	${ }_{4}^{4 \%}$	3\％	3\％	${ }^{2 \%}$	${ }^{2 \%}$	0\％	0\％	\％	0\％	\％	0\％	\％	0\％	\％	0\％	0\％	0\％	\％
1988	28，45，000	－Oner	5	NT1	4\％	4\％	4\％	3\％	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	0\％	\％	\％	\％	0\％	\％	\％	\％	\％	\％	\％	\％	\％
1189	${ }^{28,46,000}$	－Cerium compounds		NT1	4%	4%	4%	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％	\％	\％\％	0\％	\％	\％	\％	0\％	\％	0\％	\％
1990	${ }^{28,469,000}$	－Oner	5	NT1	4\％	4\％	4\％	${ }^{3 \%}$	3\％	2\％	2\％	\％	\％	\％	\％	\％	\％	0\％	\％	\％	0\％	\％	\％	\％
1991	${ }^{28,40,010}$	－niluaidom	5	NT1	4%	4\％	4\％	${ }^{3 \%}$	3\％	2\％	2\％	0\％	0\％	\％\％	0\％	\％	0\％	0\％	0\％	0\％	0\％	0\％	0\％	\％
1992	${ }^{28,40,090}$	－Oner	5	NT1	4\％	4%	4%	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	2\％	0\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	0\％	0\％	\％
${ }^{1993}$	28，80，000		5	NT1	4\％	4%	4%	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％\％	0\％	\％	\％	0\％	\％\％	\％\％	0\％	0\％	\％	\％	\％
1994	${ }^{28,99,000}$	－0tastum	5	${ }^{\text {NT1 }}$	${ }^{4 \%}$	4\％	4\％	3\％	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	0\％	\％	\％	\％\％	\％	\％	\％	\％	\％	\％	\％
1995	${ }^{28,42,000}$	－of silion	5	NT1	4%	4\％	${ }^{4 \%}$	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％	\％	\％\％	\％	\％	\％	\％	\％\％	\％	\％	\％
${ }^{1996}$	${ }^{28,49,9000}$	－oner	5	N1	4\％	4\％	4\％	3\％	3\％	2\％	2\％	0\％	\％\％	0\％	\％	0\％	0\％	0\％	0\％	\％\％	0\％	\％\％	0\％	\％
${ }^{1997}$	2，500，00	Hydrides，nitrides，azides，silicides and borides， whether or not chemically defined，other than compounds which are also carbides of heading 28.49.	5	NT1	4\％	4\％	4\％	3\％	3\％	2\％	2\％	0\％	0\％	0\％	0\％	0\％	0\％	0\％	0\％	0\％	0\％	0\％	0\％	0\％
1998	2882.10 .10	－Mercur suphales	5	NT1	4\％	4\％	4%	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	2%	0\％	0\％	\％	\％	\％	\％	0\％	0\％	\％	\％\％	\％	0\％	\％
1999	210.20	$\begin{aligned} & \text { - Mercury compounds of a kind used as } \\ & \text { umminophores } \\ & \hline \end{aligned}$	5	NT1	4\％	${ }^{4 \%}$	4%	${ }^{3 \%}$	${ }^{3}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％

香港•ASEAN FTAにかかる調査報告書

2000	${ }^{2,582,090}$	Other	5	NT1	${ }^{4 \%}$	4\％	4\％	${ }^{3 \%}$	3\％	${ }^{2 \%}$	${ }^{2 \%}$	\％\％	\％	\％	0\％	0\％	0\％	0\％	0\％	0\％	0\％	\％	\％	\％
2001	${ }^{2,5,59,010}$	Mecruy lamanes，not chemically defined	5	NT1	4%	4%	4%	${ }^{3 \%}$	${ }^{3} \%$	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％	\％	\％\％	\％	\％	\％	\％	\％	\％	\％	\％\％
202	22，52，990	Other	5	N1	4\％	4%	4%	${ }^{3 \%}$	${ }^{3} \%$	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％\％
203	22，53，000	Other inorganic compounds sincluding distilled or conductivity water and water of similar purity）；liquid air（whether or not rare gases have been removed）；compressed air）amalagams， other than amalgams of precious metals．	5	N1	4%	4%	4\％	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	0\％	\％	\％	\％	\％	\％	\％	\％	\％	\％\％	\％
204	20，01，000	Saturaed	5	N1	4\％	${ }^{4 \%}$	$4{ }^{4 \%}$	${ }^{3 \%}$	3\％	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	0\％	0\％	\％	0\％	0\％	\％\％	0\％	\％	\％	0\％	\％\％
205	20，012，100	－Ethyene	5	N1	4%	4%	4%	${ }^{3 \%}$	3\％	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％
2006	29.012 .200	Propene（forpluene）	5	NT1	4\％	4\％	4\％	3\％	3\％	2\％	2\％	\％\％	0\％	\％	\％	\％	\％	0\％	0\％	\％	\％	\％	\％\％	\％\％
2007	${ }^{29,012,300}$	－Buene（butyene）and siomest hereof	5	NT1	4%	4\％	4\％	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％\％	\％	\％	\％	\％\％	\％	\％	\％\％	\％	\％	\％	\％	\％
2008	${ }^{29,012,400}$	－Bula $1,1.3$ diene and	5	NT1	4%	4%	4\％	${ }^{3 \%}$	3\％	2\％	${ }^{2 \%}$	\％	\％	\％	0\％	0\％	\％\％	\％	0\％	0\％	0\％	0\％	0\％	\％
209	2，012，910	Acelyene	5	NT1	4%	4%	4\％	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％
2010	${ }^{20,012,990}$	Oner	5	NT1	4\％	4\％	4%	${ }^{3} \%$	3\％	2\％	${ }^{2 \%}$	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％
2011	2，021，100	Cycobexane	5	NT1	4%	4\％	4\％	3\％	3\％	${ }^{2 \%}$	2\％	0\％	0\％	\％\％	\％	\％	\％	0\％	\％\％	\％\％	\％	\％	\％	0\％
2012	2，021，900	－oner	5	NT1	4\％	4%	4%	3\％	3\％	${ }^{2 \%}$	2\％	0\％	\％\％	\％\％	\％	0\％	0\％	\％	\％	\％\％	\％	\％	\％	\％
2013	${ }^{2,022,000}$	Berzene	5	v11	4%	4%	4%	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％	\％	\％	\％	0\％	\％	\％	\％	\％	0\％	\％\％
2014	2，02，000	Touluene	5	N1	4%	4%	4%	${ }^{3 \%}$	3\％	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％	0\％	\％	\％	0\％	0\％	0\％	\％	0\％	\％	\％
2015	2，024，100	－－xyenes	5	NT1	4\％	4%	4\％	${ }^{3 \%}$	${ }^{3} \%$	2\％	${ }^{2 \%}$	\％	\％	\％	\％	0\％	\％	\％	\％	\％\％	\％	\％	\％	\％
2016	${ }^{29,024,200}$	－m－Xyenes	5	NT1	4%	4\％	4\％	3\％	3\％	${ }^{2 \%}$	2\％	0\％	\％	\％	0\％	0\％	0\％	0\％	\％	\％	\％	\％	0\％	\％
2017	${ }^{20,024,300}$	－p－Xyenes	5	NT1	4%	4\％	4\％	3\％	3\％	2\％	2\％	0\％	\％	\％\％	\％	0\％	\％\％	0\％	\％	0\％	\％	0\％	0\％	0\％
2018	${ }^{2,024,400}$	Mxed X Xjene isomets	5	NT1	4%	4%	4%	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％
2019	20，02，000	Styene	5	NT1	4%	4\％	4\％	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％	\％	\％	\％	\％	\％	\％	0\％	\％	0\％	\％
220	20，02，000	Etyluenzene	5	NT1	4\％	4%	4%	3\％	3\％	${ }^{2 \%}$	2\％	\％	0\％	\％\％	\％	0\％	0\％	0\％	\％	0\％	\％	0\％	\％	\％
2202	2，02，000	Cumene	5	v1	4%	4%	4%	${ }^{3 \%}$	${ }^{3} \%$	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％
2202	20，02，010	－Dodeoviberene	5	N1	4\％	$4{ }^{4 \%}$	4%	3\％	3\％	${ }^{2 \%}$	2\％	\％	\％	\％	\％	\％	\％	0\％	\％	\％	\％	0\％	\％	\％\％
2203	20，02，020	Otheralyblerzenes	5	VT1	4%	$4{ }^{4 \%}$	${ }^{4 \%}$	${ }^{3 \%}$	3\％	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％	0\％	0\％	0\％	\％	0\％	0\％	\％	0\％	0\％	0\％
2204	20，02，990	－other	5	V1	4\％	4%	4%	${ }^{3 \%}$	${ }^{3} \%$	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％	\％	\％	\％	0\％	\％	\％	0\％	\％	0\％	\％
2205	200．11．10	－Metyy Choride	5	N1	4\％	4\％	4%	3\％	3\％	2\％	2\％	\％	0\％	0\％	\％	0\％	0\％	\％	\％	\％	\％	\％	0\％	\％\％
2202	${ }^{20,031,190}$	－other	5	V1	4%	4\％	4\％	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％\％	\％	\％	\％\％	\％	\％	\％	\％\％	\％	0\％	\％	0\％	\％
2207	${ }^{29,03,200}$	Dichloromentane（mentuene e choride）	5	V1	4%	4%	$4{ }^{4 \%}$	${ }^{3 \%}$	3\％	${ }^{2 \%}$	2\％	\％	\％	\％	0\％	0\％	\％\％	\％	\％	0\％	0\％	0\％	0\％	\％
2202	${ }^{20,03,300}$	Chioroiom（trichloromenane）	5	NT1	4%	4%	4%	${ }^{3 \%}$	${ }^{3 \%}$	2\％	${ }^{2 \%}$	\％	\％	\％	\％	\％	\％	\％	\％	\％	0\％	\％	0\％	\％
2202	$2{ }^{2,03,4,40}$	Cataon terachloride	5	NT1	4\％	4%	4\％	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	2\％	\％	\％	\％	0\％	0\％	0\％	\％	\％	\％	\％	\％	\％	\％
230	20，03，500		5	NT1	4%	4%	4%	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％
${ }^{2031}$	${ }^{20,031,910}$	－1，2－Dichloropropane（propylene dichloride）and	5	NT1	4%	${ }^{4 \%}$	${ }^{4 \%}$	3\％	${ }^{3 \%}$	${ }^{2 \%}$	2\％	\％	0\％	0\％	\％	0\％	\％	0\％	\％	0\％	\％	0\％	0\％	\％\％
$2{ }^{2032}$	20，03，, 220		5	V1	4%	4%	$4{ }^{4 \%}$	3\％	3\％	${ }^{2 \%}$	2\％	\％	0\％	\％	\％	\％	\％	0\％	0\％	\％	\％	0\％	\％	\％\％
$2{ }^{2033}$	${ }^{29,031,990}$	\cdots	5	V1	4%	$4{ }^{4 \%}$	${ }^{4 \%}$	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	0\％	\％	\％	\％	\％	\％	\％	\％	\％	0\％	\％	\％
$2{ }^{2034}$	20，032，100	Viny choride（chloroentyene）	5	V1	4%	${ }_{4 \%}$	$4{ }^{4 \%}$	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	0\％	0\％	0\％	\％	\％	0\％	\％	\％	\％	\％	0\％	\％
2035	20，032，200	Trichloroenylyene	5	V1	4\％	4%	4%	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％
22^{2036}	2，032，300	Terachloroentyene（perchloroentyene）	5	NT1	4\％	4\％	4\％	3\％	3\％	2\％	2\％	0\％	0\％	0\％	\％	0\％	\％	0\％	0\％	\％	\％	\％	0\％	0\％
2237	20，032，900	Oner	5	NT1	4%	4\％	4\％	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	2\％	0\％	\％	\％	\％\％	\％	\％	\％	\％	\％	0\％	\％	0\％	\％
${ }^{2038}$	20，03，100		5	NT1	4\％	4\％	4%	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％	\％	\％\％	\％	\％	\％	\％	\％	\％	\％	\％
2039	20，03，${ }^{\text {a }} 10$	neaty bromie	5	NT1	4\％	4\％	4\％	3\％	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	0\％	\％\％	0\％	\％	0\％	0\％	\％	\％	\％	\％	\％	0\％	\％
2090	20，03，990	Other	5	NT1	4%	4%	4%	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％	\％	\％	\％	\％	\％	\％	0\％	\％	\％	\％
2041	${ }^{2,03,7,100}$	Chlorodiluormemane	5	NT1	4\％	4\％	4\％	${ }^{3 \%}$	${ }^{3} \%$	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％	\％\％	\％\％	\％\％	\％	\％	\％	\％	\％	\％	\％
2042	2，037，200	－ichlororifiluorenamas	5	NT1	4%	4\％	4\％	3\％	3\％	2\％	2\％	0\％	\％\％	\％	\％	0\％	0\％	\％	0\％	\％	\％	0\％	0\％	0\％
2043	2，037，300	－Dichlorflucoeenhenes	5	NT1	4%	4%	4%	3\％	3\％	2\％	2%	0\％	0\％	0\％	0\％	0\％	0\％	\％	0\％	\％	\％	\％	\％	\％
204	${ }^{2,037,400}$	Chiorofiluorethanes	5	V1	4%	4%	4%	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	0\％	\％	\％\％
2045	2，037，500	－Dichioropenaliuluoporopanes	5	NT1	4\％	4\％	4\％	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	2\％	\％	\％	\％	0\％	\％	\％	\％	\％	\％	\％	\％	\％	\％
$2{ }^{2046}$	${ }^{20,037,000}$	- Bromochlorodifluoromethane， bromotrifluoromethane and dibromotetrafluoroethanes	${ }^{5}$	HSL	5\％	5\％	5\％	5\％	5\％	5\％	5\％	5\％	${ }^{5 \%}$	5\％	5\％	5\％	5\％	5\％	5\％	5\％	5\％	5\％	5\％	${ }^{5 \%}$
2047	20，037，700	- Other，perhalogenated only with fluorine and chlorine	5	V1	4\％	4\％	4\％	${ }^{3 \%}$	3\％	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％
$2{ }^{2048}$	22，037，800	－Other peemalogenaled derivatives	5	NT1	4%	4\％	4\％	3\％	3\％	2\％	2%	0\％	\％	0\％	\％	\％	\％	\％\％	\％	\％\％	\％	\％	\％\％	\％
2049	${ }^{29,037,900}$	－－oter	5	NT1	4%	4\％	4\％	3\％	3\％	2\％	2\％	0\％	\％\％	\％\％	0\％	0\％	0\％	0\％	\％\％	\％	\％	0\％	\％	\％\％
2050	20，08，100	$-1,2,3,4,5$, －Hexachlorocycylohexane（HCH（ISO））， including Iindane（ISO，INY）	5	NT1	4%	4\％	4\％	${ }^{3 \%}$	3\％	${ }^{2 \%}$	${ }^{2 \%}$	0\％	0\％	\％	\％	\％	0\％	0\％	0\％	\％	\％	\％	0\％	\％
2051	20，38，200		5	NT1	${ }^{4 \%}$	4\％	4\％	${ }^{\text {3\％\％}}$	${ }^{\text {3\％／}}$	${ }^{2 \%}$	${ }^{2 \%}$	0\％	0%	0\％	0\％	0\％	0\％	${ }^{0 \%}$	0\％	\％	\％	0\％	0\％	
$2{ }^{2052}$	20，08，900	－other	5	NT1	4\％	4\％	4\％	${ }^{3 \%}$	3\％	2\％	${ }^{2 \%}$	\％	0\％	0\％	\％	0\％	\％\％	\％\％	\％	\％	\％	\％	0\％	\％\％
$2{ }^{2053}$	2，039，100	－Chlorobenzene，o－dichlorobbenzene and p－	5	NT1	4\％	4\％	4\％	3\％	3\％	2\％	2\％	\％	\％	0\％	0\％	\％	0\％	\％	\％	\％	\％	\％	\％	\％
$2{ }^{2054}$	20，03，200		${ }^{5}$	V1	4\％	${ }^{4 \%}$	${ }^{4 \%}$	${ }^{3} \%$	${ }^{3 \%}$	2\％	${ }^{2 \%}$	\％	\％	0\％	\％	0\％	\％	\％\％	\％	0\％	\％	\％	${ }^{0 \%}$	\％
2055	220，39，900	－－	${ }^{5}$	VT1	4\％	4\％	4\％	3\％	3\％	2\％	${ }^{2 \%}$	\％	\％\％	\％\％	\％	\％	\％\％	\％\％	\％\％	\％\％	\％	\％\％	0\％	\％
$2{ }^{2056}$	2，041，000	Derivatives containing only sulpho groups，their	${ }^{5}$	V1	4%	4\％	4\％	3\％	3\％	${ }^{2 \%}$	2\％	0\％	\％	\％	\％	\％	\％	0\％	\％	\％\％	\％	\％	${ }^{0}$	${ }^{0 \%}$
$2{ }^{2057}$	${ }^{22,024,010}$	－－Trintorouvene	${ }^{5}$	NT1	4%	$4{ }^{4 \%}$	4%	${ }^{3 \%}$	3\％	${ }^{2 \%}$	2\％	0\％	0\％	0\％	\％	0\％	0\％	0\％	0\％	0\％	\％	${ }^{0 \%}$	\％\％	\％
258	${ }^{2,0202,900}$	－Onter	5	V1	4%	4%	4%	${ }^{3 \%}$	3\％	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％	\％	\％	0\％	\％	\％	\％	\％	\％	\％	\％
2059	2，099，000	Oner	5	N1	4%	4%	4%	${ }^{3 \%}$	3\％	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％
2060	${ }^{29,051,100}$	Methano（ menty a acolol）	5	NT1	4%	4\％	4\％	3\％	3\％	${ }^{2 \%}$	${ }^{2 \%}$	\％\％	\％	\％	0\％	0\％	\％\％	\％	\％\％	\％	0\％	\％	\％	\％
2061	${ }^{20,05,200}$	- Propan－1－01（propyl alcohol）and propan - －ol （isopropy	${ }^{5}$	NT1	4\％	4\％	4\％	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％
2062	${ }^{22,051,300}$		5	NT1	4%	4\％	4\％	3\％	${ }^{3 \%}$	2\％	2%	\％	\％\％	\％\％	\％\％	0\％	\％	\％\％	\％	\％	\％	\％	\％	\％
2063	${ }^{20,051,400}$	－Otere buanols	5	NT1	4%	4\％	4\％	3\％	3\％	2\％	2\％	\％\％	0\％	0\％	\％	\％	\％\％	\％	0\％	\％	\％	0\％	0\％	\％
2264	${ }^{2,051,000}$		5	NT1	4%	4%	4\％	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	2\％	0\％	\％	\％	\％	\％	\％	\％	\％	\％	0\％	\％	\％	\％
2205	$2{ }^{2,051,700}$		5	NT1	4\％	4\％	4\％	3\％	3\％	${ }^{2 \%}$	${ }^{2 \%}$	0\％	0\％	\％	0\％	\％	\％	\％	\％	\％	\％	\％	\％	\％
2206	20，05，900	－Oner		NT1	4\％	4\％	4\％	3\％	3\％	${ }^{2 \%}$	2\％	\％	0\％	0\％	\％	\％	\％	\％	\％\％	\％	0\％	\％	0\％	\％
$2{ }^{2067}$	2，052，200	－Aecricierepene alconols	5	NT1	4\％	4\％	4\％	3\％	3\％	${ }^{2 \%}$	2\％	0\％	\％	\％\％	0\％	\％	0\％	\％\％	0\％	\％	\％	\％\％	0\％	\％\％
2068	${ }^{20,052,900}$	－Other	5	v1	4%	4\％	4%	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	2%	0\％	0\％	\％\％	\％\％	\％\％	\％\％	\％	\％\％	\％	\％	\％\％	0\％	\％\％
2069	${ }^{29,053,100}$	Ethyene givcol（efmanedio）	${ }^{5}$	v1	4%	$4{ }^{4 \%}$	4%	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	2%	0\％	\％\％	\％	\％\％	\％\％	\％	\％	\％\％	\％	\％	\％	0\％	\％
2070	20，05，200	－Propyene gyool（porpane 1.2 －2iol	5	NT1	4%	4\％	4\％	3\％	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	0\％	0\％	\％	\％	\％	\％	\％	\％	\％	0\％	\％	\％	\％
2071	${ }^{29,053,900}$	－Other	5	NT1	4%	4%	4%	3\％	3\％	2\％	${ }^{2 \%}$	\％	\％	\％	\％\％	\％\％	\％\％	\％	\％\％	\％	\％	\％	\％	\％
${ }^{2072}$	20，054，100	－－2－Ethyl－2－（hydroxymethyl）propane－1，3－diol （trimethylolpropane）	${ }^{5}$	N1	4%	4%	4\％	3\％	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	0\％	\％	\％	\％	0\％	\％	\％	\％	\％	\％	\％	\％	${ }^{\circ \%}$
2073	${ }^{22,054,200}$	Penlaesthmiol	5	NT1	4%	4\％	4\％	${ }^{3 \%}$	3\％	2\％	2\％	0\％	\％\％	\％\％	0\％	\％	0\％	\％\％	\％\％	\％	\％	\％	\％	\％
$2{ }^{2074}$	${ }^{29,054,300}$	－Mamiol	5	NT1	4%	4\％	4%	${ }^{3 \%}$	${ }^{3 \%}$	2\％	${ }^{2 \%}$	\％	\％	\％	\％\％	\％\％	\％\％	\％	\％	\％\％	\％	0\％	\％	\％
2075	${ }^{20,054,400}$	－－．fluciol（sabitio）	5	NT1	4%	4\％	4\％	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	0\％	\％
22^{2076}	${ }^{20,054,500}$	－ Glyeal $^{\text {a }}$	5	NT1	4%	4%	4%	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％
2077	${ }^{20,054,900}$	Other	5	NT1	4%	4\％	4%	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	2\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％
$2{ }^{2078}$	${ }^{22,055,100}$	Elpholornno（NW）	5	V1	4%	4\％	4\％	${ }^{3 \%}$	3\％	${ }^{2 \%}$	2\％	0\％	0\％	\％\％	\％\％	\％	\％\％	\％\％	\％\％	\％	\％	\％\％	0\％	\％\％
2079	${ }^{29,05,590}$	Other		NT1	4\％	4\％	4\％	3\％	3\％	${ }^{2 \%}$	2\％	\％	0\％	\％\％	\％\％	0\％	\％	\％\％	\％	0\％	\％	\％\％	0\％	\％\％
2280	20，061，100	－Mentrol	5	N1	4\％	4\％	4\％	${ }^{3 \%}$	3\％	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％	\％	\％	\％	\％	\％	0\％	\％	\％	\％	0\％
2081	29，061，200	－Cyclohexanol，methylycylohexanols and	5	${ }^{\text {NT1 }}$	4\％	${ }^{4 \%}$	${ }^{4 \%}$	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％\％	0\％	\％	\％	\％	\％	\％	\％	\％	\％	\％\％
2082	${ }^{29,061,300}$	\cdots Steols and inositos	5	NT1	4%	${ }^{4 \%}$	$4{ }^{4 \%}$	3\％	3\％	${ }^{2 \%}$	${ }^{2 \%}$	0\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％\％	\％	0\％

香港•ASEAN FTAにかかる調査報告書

別添2－4 原産地品の関税撤廃スケジュール
（ラオス）

${ }^{2083}$	${ }^{22,061,900}$	ther	5	I	，	4\％	$4{ }^{46}$	3\％	3\％	2\％	${ }^{2 \%}$	\％	0\％	\％	\％	0\％	\％\％	\％	\％	\％	\％	\％	0\％	\％\％
2084	22，02，100	Benza alacolol	5	V1	${ }_{4}^{4 \%}$	4\％	${ }^{4 \%}$	${ }^{3} \%$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％	\％	\％	\％	0\％	0\％	\％	\％	\％	0\％	0\％
2085	22，02，200	Oner	5	T1	4%	4\％	4\％	3\％	3\％	${ }^{2 \%}$	2\％	\％	\％	\％	\％	0\％	\％	\％	\％	\％	\％	\％	\％	0\％
2086	22，07，100	Phenol（hydroxpoenzene）and it salis	5	T1	${ }^{4 \%}$	4%	4%	3\％	3\％	2\％	2\％	\％	0\％	\％	\％	0\％	0\％	\％	\％	\％	0\％	\％	\％\％	0%
2087	22，07，200	Cresoslsand thers sals	5	T1	4\％	4%	4%	3\％	3\％	${ }^{2 \%}$	2%	0\％	\％	\％	0\％	0\％	0\％	\％	\％\％	\％	0\％	\％	\％	\％\％
2088	22，07，300	－OCryphenol，onovyphenol and theri somests salts	5	N1	${ }^{4 \%}$	$4{ }^{4}$	$4{ }^{4 \%}$	${ }^{3 \%}$	3\％	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％	0\％	\％	\％	0\％	\％	\％	\％	\％	\％	\％
2089	22，07，500	\cdots Naphthos and ther sals	5	T1	${ }_{4}{ }^{4}$	${ }_{4}{ }^{4}$	4\％	${ }^{3} \%$	${ }^{3} \%$	${ }^{2 \%}$	${ }^{2 \%}$	\％	0\％	0\％	0\％	0\％	0\％	0\％	0\％	\％	0\％	\％	\％	0\％
2090	22，07， 000	Other	5	${ }^{\text {NT1 }}$	${ }^{4 \%}$	4%	4%	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％
2091	22，02，100	Sociolo and it salts	5	1	4%	4\％	4\％	${ }^{3} \%$	${ }^{3 \%}$	2\％	${ }^{2 \%}$	\％	\％	\％	\％	0\％	\％	\％\％	\％	\％	\％	\％\％	\％	\％
2092	29，072．200	Hydioquinone（Guino）and it salls	5	N1	4\％	$4{ }^{4 \%}$	4\％	3\％	3\％	2\％	2\％	0\％	0\％	0\％	\％	\％	\％	\％	0\％	\％	\％	\％	0\％	\％\％
2093	22，072，300	$\begin{aligned} & --4,4 \text { '-Isopropylidenediphenol (bisphenol A, } \\ & \text { diphenylolpropane) and its salts } \end{aligned}$	5	T1	${ }^{4 \%}$	${ }^{4 \%}$	${ }^{4 \%}$	3\％	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％	\％	\％\％	\％	\％	\％	\％	0\％	0\％	\％	\％
2094	22，02，910	\cdots	5	V1	4\％	${ }^{4 \%}$	4\％	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	2\％	\％	\％	0\％	0\％	0\％	\％	\％	0\％	\％	0\％	0\％	0\％	\％\％
2095	22，02，990	Other	5	V1	${ }^{4 \%}$	4%	4%	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％	\％	\％	\％	0\％	\％	\％	\％	0\％	\％	\％
2096	22，08，100	Penlachloropeneno（（SO）	5	NT1	4\％	4\％	4\％	${ }^{3} \%$	${ }^{3} \%$	2%	${ }^{2 \%}$	\％	\％	\％	\％	\％	\％	\％\％	\％	\％	\％	\％\％	\％	\％
2097	22，01，900	－other	5	V1	4\％	4%	4\％	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	2\％	0\％	\％	\％	\％	\％	\％	\％	\％	\％	\％\％	\％	\％	\％
2098	22，09，100	－Dinoseo（ISO）andit salis	5	V1	4%	4\％	4\％	3\％	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	0\％	\％	\％	\％\％	\％	\％	\％	\％	\％	\％	\％	\％	\％
2099	22，09，200		5	NT1	4%	4\％	4\％	${ }^{3 \%}$	3\％	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％
2100	22，08，900	－other	5	${ }^{\text {T1 }}$	4\％	4\％	4%	${ }^{3 \%}$	3\％	${ }^{2 \%}$	${ }^{2 \%}$	0\％	0\％	0\％	0\％	\％\％	0\％	0\％	0\％	\％	\％	0\％	\％	0\％
2101	22，09，100	Dieity eliner	5	${ }^{\text {NT1 }}$	4%	4\％	4\％	${ }^{3 \%}$	${ }^{3 \%}$	2\％	2\％	\％	\％	\％	\％\％	\％	\％	\％	\％	\％	\％	\％	\％	\％
2102	22，09，，000	Onher	5	NT1	4%	4%	4\％	${ }^{3} \%$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％	\％	\％	\％\％	\％	\％	\％	\％	\％	\％	\％
${ }^{2103}$	22，02，000	－Cyclanic，cyclenic or cycloterpenic ethers and their halogenated，sulphonated，nitrated or nitrosated derivatives	${ }_{5}$	${ }^{\text {NT1 }}$	${ }^{4 \%}$	4\％	4\％	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	2\％	\％	0\％	\％	0\％	\％	\％	\％	\％	\％	0\％	\％	\％	\％
2104	29，03，000	－Aromatic ethers and their halogenated， sulphonated，nitrated or nitrosated derivatives	${ }^{5}$	NT	${ }^{4 \%}$	${ }^{4 \%}$	${ }^{4 \%}$	${ }^{3 \%}$	3\％	2\％	2\％	\％	\％	0\％	0\％	0\％	\％\％	0\％	\％	0\％	0\％	\％	\％	\％
${ }^{2105}$	22，04，100	$--2,2^{\prime}-$ Oxydiethanol（diethylene glycol， digol） digol）	${ }^{5}$	NT1	${ }^{4 \%}$	${ }^{4 \%}$	4%	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	0\％	\％	0\％	0\％	0\％	0\％	\％	\％	\％	\％	0\％	\％	\％
2106	22，04， 300	$\begin{aligned} & \text {-- Monobutyl ethers of ethylene glycol or of } \\ & \text { diethylene glycol } \end{aligned}$	${ }^{5}$	NT1	${ }^{4 \%}$	${ }^{4 \%}$	${ }^{4 \%}$	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	0\％	0\％	\％\％	\％	\％	\％	\％	0\％	0\％	\％	\％
${ }^{2107}$	22，04，400	$\begin{aligned} & \text {-- Other monoalkylethers of ethylene glycol or of } \\ & \text { diethylene glycol } \end{aligned}$	${ }^{5}$	NT1	${ }^{4 \%}$	${ }^{4 \%}$	${ }^{4 \%}$	${ }^{3 \%}$	3\％	${ }^{2 \%}$	${ }^{2 \%}$	0\％	\％	0\％	\％	\％\％	\％	\％	\％	\％	\％	0\％	0\％	0\％
${ }^{2108}$	22，04，900	－Other	5	V1	${ }^{4 \%}$	${ }^{4 \%}$	${ }^{4 \%}$	${ }^{3 \%}$	3\％	${ }^{2 \%}$	${ }^{2 \%}$	0\％	0\％	0\％	0\％	0\％	\％	0\％	0\％	\％	\％	0\％	0\％	\％\％
2109	22，95，000	－Ether－phenols，ether－alcohol－phenols and their halogenated，sulphonated，nitrated or nitrosated derivatives	5	NT1	4%	4%	4\％	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％
210	22，99，000	－Alcohol peroxides，ether peroxides，ketone peroxides and their halogenated，sulphonated， nitrated or nitrosated derivatives	5	NT1	4\％	4\％	4\％	3\％	3\％	${ }^{2 \%}$	${ }^{2 \%}$	\％	0\％	\％	\％	\％	\％\％	\％	\％	\％	\％	\％	\％	\％
211	29，10，000	－oxiane eatyrene oxde）	5	NT1	4\％	4\％	4\％	3\％	${ }^{3 \%}$	2\％	2\％	\％	\％	\％	0\％	\％	\％	\％	\％	\％	0\％	\％	\％	\％
${ }^{2112}$	29，102，000	－Methyoxiane（ropeplene oxde）	5	NT	4%	4\％	4\％	${ }^{3 \%}$	3\％	${ }^{2 \%}$	2\％	0\％	\％\％	\％	\％	\％	\％\％	\％\％	\％\％	\％	\％	\％\％	0\％	\％\％
${ }^{2113}$	22，103，000		5	NT	4%	4\％	4\％	3\％	3\％	${ }^{2 \%}$	${ }^{2 \%}$	0\％	\％	\％	0\％	0\％	\％\％	0\％	\％\％	\％	0\％	0\％	\％	\％\％
2114	22，104，000	－iidadin（ISO，MN）	5	NT	4%	4\％	4%	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	2\％	0\％	\％	\％	\％	\％	\％	\％	\％	\％	0\％	\％	\％	0\％
2115	29，109，000	－Oner	5	${ }^{\text {NT1 }}$	4%	4\％	4\％	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	0\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	0\％	\％
2116	22，110，000	Acetals and hemiacetals，whether or not with other oxygen function，and their halogenated， sulphonated，nitrated or nitrosated derivatives sulphonated，	5	NT1	4\％	4\％	4\％	3\％	3\％	${ }^{2 \%}$	2\％	\％	\％	\％	\％\％	\％	\％	\％	\％	0\％	\％	\％	\％	\％
217	221211.10	Fomain	5	N1	4\％	${ }^{4 \%}$	4%	3\％	${ }^{3 \%}$	2%	2\％	\％	\％	\％	\％	0\％	\％	\％\％	\％	\％	\％	\％\％	\％	\％
2118	29，12，190	Onher	5	NT1	4%	4%	4\％	3\％	3\％	2\％	2\％	0\％	0\％	\％	0\％	0\％	0\％	\％	\％	\％	0\％	\％	0\％	\％\％
219	29，12，200	－Ethana（acelaldenyde）	5	N1	4\％	4\％	4\％	3\％	${ }^{3 \%}$	2\％	2%	\％	\％	\％	\％	\％	\％\％	\％	\％	\％	0\％	\％	\％	\％
2120	29，12，910	－Buanal	5	N1	4%	4%	4\％	3\％	3\％	2\％	${ }^{2 \%}$	0\％	0\％	0\％	0\％	0\％	\％	\％	\％	\％	0\％	0\％	\％	0\％
221	29，12，1990	－Other	5	NT1	4\％	4\％	4\％	${ }^{3 \%}$	${ }^{3 \%}$	2\％	2\％	\％	\％	\％	\％\％	\％	\％	\％	\％	\％	0\％	\％	\％	\％
${ }^{2122}$	29，122，100	Berzalofurde	5	V1	4%	4\％	4%	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	2\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％
${ }^{2123}$	22，122，900	－Other	5	N1	4%	4\％	4\％	3\％	3\％	2\％	2\％	0\％	\％	\％	0\％	0\％	0\％	0\％	\％\％	\％	0\％	\％	0\％	0\％
${ }^{2124}$	29，124，100		5	V1	4%	4%	4%	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	0\％	\％	\％	\％\％	\％	\％	\％	0\％	\％\％	\％	0\％
${ }^{2125}$	29，124，200		5	V1	4%	4\％	4\％	${ }^{3 \%}$	${ }^{3 \%}$	2\％	${ }^{2 \%}$	\％	\％	\％	\％	\％	\％	\％	\％	\％	0\％	\％	\％	\％
${ }^{2126}$	29，12，900	Other	5	V1	4\％	4\％	4\％	3\％	3\％	${ }^{2 \%}$	${ }^{2 \%}$	0\％	\％\％	\％	\％	\％	0\％	0\％	\％	0\％	0\％	\％	\％	0\％
${ }^{2127}$	29，125，000	Cycicicolymest of adehydes	5	v1	4%	4\％	4\％	${ }^{3 \%}$	3\％	2\％	2\％	\％	0\％	\％	\％\％	0\％	0\％	0\％	0\％	\％	0\％	\％	\％	\％\％
${ }^{2128}$	29，126，000	－Paraiomadenyde	5	N1	4%	4\％	4\％	3\％	3\％	${ }^{2 \%}$	2\％	0\％	\％\％	\％	0\％	\％	0\％	\％	0\％	\％	0\％	\％	0\％	\％\％
${ }^{2129}$	22，130，000	aiogenated，sulphonated，nitrated or nitrosated	5	N1	${ }^{4 \%}$	4\％	4\％	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％	\％	0\％	\％\％	\％	\％	\％	\％	0\％	\％	\％
${ }^{2130}$	22，141，100	${ }^{\text {Actolone }}$	5	vi	4\％	4%	4%	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	2\％	\％	0\％	0\％	0\％	\％\％	\％	0\％	\％	\％	0\％	\％	\％	\％
${ }^{2131}$	22，44，200	Buanone（meny eny k keione）	5	V1	$4{ }^{4 \%}$	4%	4%	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％	\％	\％	\％	\％	\％	\％	0\％	\％	\％	\％
2132	22，14， 300		5	N1	4\％	4%	4\％	${ }^{3 \%}$	3\％	${ }^{2 \%}$	${ }^{2 \%}$	0\％	\％	\％	\％	\％\％	\％\％	\％	0\％	\％	\％	\％	\％	\％\％
${ }^{2133}$	22，14，, 00	－Other	5	N1	4%	4\％	4\％	${ }^{3} \%$	${ }^{3} \%$	2\％	${ }^{2 \%}$	\％	\％	\％	\％	\％	\％\％	\％\％	\％	\％	\％	\％\％	\％	\％
${ }^{2134}$	20，142，200		5	V1	4\％	4\％	4%	${ }^{3 \%}$	3\％	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％	\％	0\％	\％	\％	\％	\％	\％	\％	\％	0\％
${ }^{2135}$	22，142，300	－Ionones and methliomones	5	V1	4%	4\％	4\％	${ }^{3 \%}$	3\％	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％	\％\％	0\％	\％\％	\％	\％	\％	0\％	\％	0\％	0\％
${ }^{2136}$	29，142，910	Camphor	5	V1	4%	4\％	4\％	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	0\％	\％	0\％	\％	\％	\％	\％	\％	\％	\％	\％	0\％	\％
${ }^{2137}$	${ }^{29,142,990}$	－Omer	5	V1	4%	4%	4\％	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％
${ }^{2138}$	22，14，100		5	V1	4%	4\％	4\％	3\％	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％	0\％	\％	\％\％	\％	\％	\％	\％	\％	\％	\％\％
2139	29，14，900	－oner	5	V1	4\％	4%	4\％	3\％	3\％	2\％	2\％	0\％	\％	\％	\％	0\％	\％	0\％	\％	\％	0\％	\％	\％	\％
${ }^{2140}$	22，14，000	－Ketone alconols and kelone aldendides	5	V1	4\％	4%	$4{ }^{4 \%}$	3\％	${ }^{3 \%}$	${ }^{2 \%}$	2%	\％	\％	\％	\％	\％\％	\％	\％	\％	\％	\％	\％	\％	\％
2141	22，145，000	－Ketone－phenols and ketones with other oxygen function	${ }^{5}$	V1	4\％	4%	4\％	3\％	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	0\％	\％	0\％	\％	\％	\％	\％	\％	0\％	\％	\％
${ }^{2142}$	20，146，100	－Antraquinone	5	V1	4\％	4\％	4\％	3\％	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	0\％	\％	\％	\％	0\％	0\％	\％	\％	\％	\％	\％	\％	\％
${ }^{2143}$	22，146，900	－Other	5	NT1	4%	4%	4%	${ }^{3 \%}$	3\％	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％$\%$	0\％	0\％	\％\％	\％	\％\％	\％	0\％	\％	\％	\％
${ }^{2144}$	22，47，000	－Halogenated，sulphonated，nitrated or nitrosated derivatives	${ }^{5}$	VT1	4%	4\％	4\％	3\％	3\％	${ }^{2 \%}$	${ }^{2 \%}$	0\％	\％	\％	\％	\％	\％	\％	0\％	\％	\％	\％	\％	\％
${ }^{2145}$	29，15，100	\cdots Fomic acd	5	V1	${ }^{4 \%}$	4%	4\％	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	0\％	\％	\％	\％\％	\％	\％	\％	\％	0\％	\％	\％	0\％	0\％
${ }^{2146}$	22，15，200	Salso ofomic a cid	${ }^{5}$	N1	${ }^{4 \%}$	4\％	4\％	${ }^{3 \%}$	3\％	${ }^{2 \%}$	${ }^{2 \%}$	0\％	\％\％	\％	\％	0\％	\％\％	0\％	\％\％	\％	0\％	\％\％	0\％	0\％
${ }^{2147}$	29，15，3，300	Eserssoftomic acd	5	V1	4%	4\％	4\％	${ }^{3 \%}$	3\％	${ }^{2 \%}$	2\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％
${ }^{2148}$	29，15，100	Aceilicadd	5	NT1	4%	4\％	4\％	3\％	3\％	${ }^{2 \%}$	${ }^{2 \%}$	0\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％
2149	29，152，400	Aceica anyidide		NT1	4%	4\％	4\％	3\％	${ }^{3 \%}$	2\％	${ }^{2 \%}$	\％	\％	\％	0\％	\％	\％\％	\％	\％	\％	\％	\％	\％	\％
2150	22，152，910	Sodium acealeie：coantatatalas	5	V1	4\％	4\％	4\％	${ }^{3 \%}$	3\％	${ }^{2 \%}$	2\％	0\％	\％\％	\％	\％\％	0\％	\％\％	\％\％	\％\％	0\％	0\％	\％\％	0\％	0\％
2151	29，152，990	－－Oner	${ }^{5}$	V1	${ }^{4 \%}$	$4{ }^{4 \%}$	4%	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	0\％	\％	\％\％	\％	\％\％	\％	\％\％	0\％	\％	\％	\％	\％\％
2152	29，15，100	－Etry a cealie	5	NT1	4\％	4\％	$4{ }^{4 \%}$	3\％	3\％	2\％	2\％	0\％	0\％	\％	0\％	0\％	\％	\％	\％	\％	\％	0\％	0\％	\％
2153	29，153，200	－Viny acealae	5	NT1	4%	4\％	4\％	${ }^{3 \%}$	${ }^{3 \%}$	2\％	2\％	\％	\％	\％	\％\％	\％	\％	\％	\％	\％	0\％	\％	\％	\％
$2{ }^{2154}$	29，153，300	${ }^{n}$－Buty acelate	5	NT1	4%	4%	4\％	3\％	3\％	${ }^{2 \%}$	2\％	\％	\％	\％	\％	\％	\％	\％	\％	0\％	\％	\％	\％	\％
2155	29，15，600	－Dinose（SO）acelate		NT1	$4{ }^{4 \%}$	4%	4%	${ }^{3}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	0\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％
2156	22，15，9，90	－Isouty a ceale	5	NT1	4%	4%	4\％	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	0\％	\％	0\％	\％	\％	\％\％	\％	\％	\％	0\％	\％\％	\％\％	0\％
$2{ }^{2157}$	29，15，920	－2－Emoxesely a ceatae	5	V1	${ }^{4 \%}$	4\％	4\％	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	0\％	\％	\％	\％\％	\％	\％\％	\％	\％	\％	\％	\％	0\％	\％
2158	29，15，990	\cdots	5	VT1	4%	4\％	4\％	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％	\％\％	\％	\％	\％	\％	\％	0\％	\％	\％	\％
2159	29，15，000	－Meno，dio ortrichloovaceicicacisis，their salts and	${ }^{5}$	V1	4\％	4%	${ }^{4 \%}$	${ }^{3 \%}$	3\％	${ }^{2 \%}$	${ }^{2 \%}$	\％	0\％	0\％	0\％	\％	0\％	0\％	0\％	\％	\％	0\％	\％	\％
2180	22，155，000	－Propoinicasod，it salat and eseles	5	V1	4\％	4\％	4\％	3\％	3\％	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％\％	0\％	\％	0\％	\％\％	0\％	\％	\％	\％	\％\％	0\％	\％\％
${ }^{2161}$	29，15，000	－Butanoic acids，pentanoic acids，their salts and esters	${ }^{5}$	N1	${ }^{4 \%}$	${ }^{4 \%}$	${ }^{4 \%}$	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	0\％	0\％	\％	0\％	${ }^{0 \%}$	\％	\％	${ }^{0 \%}$	0\％	0\％	\％
2162	22，15，010	－－Paminice ado，it salts and esests	5	V1	4\％	4\％	4%	3\％	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	0\％	0\％	0\％	0\％	0\％	\％\％	\％	0\％	\％	0\％	\％	\％	\％\％
${ }^{2163}$	29，15，020	Slearicacid	5	NT1	4\％	4%	4\％	${ }^{3 \%}$	${ }^{3 \%}$	2\％	2\％	\％	\％	\％	\％\％	0\％	\％	\％	\％	\％	\％\％	\％	\％	\％
2164	22，157，030	Sals and esters of tseaic acid	5	NT1	4\％	4%	4\％	3\％	3\％	${ }^{2 \%}$	2%	\％	\％\％	\％	\％\％	0\％	\％\％	\％	\％	\％	0\％	\％\％	\％	0\％
${ }^{2165}$	29，15，010	ceal Choride	5	${ }^{\text {NT1 }}$	$4{ }^{4 \%}$	4\％	4%	3\％	3\％	2\％	2\％	\％	\％	\％	\％	0\％	\％	0\％	\％	\％	0\％	0\％	\％	0\％

香港•ASEAN FTAにかかる調査報告書

						${ }^{48}$	${ }^{4 \%}$	${ }^{48}$	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	${ }^{6}$	\％	\％	\％	\％	\％	\％	\％	\％	${ }^{*}$			
2167	20，15，900	－oner	${ }^{5}$	NT	－1	${ }_{46}^{46}$	${ }_{4}^{46}$	${ }_{46}$	${ }_{3 \%}$	${ }_{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	0%	\％	\％	${ }^{0} 8$	${ }_{0}^{0 \%}$	0%	${ }^{06}$	${ }_{0}^{0 \%}$	\％	${ }_{0}^{0 \%}$	\％	${ }^{6}$	
${ }^{2188}$	20，6，1，00		5	${ }^{N 1}$	＂	${ }_{4}^{4 \%}$	${ }^{48}$	${ }_{48}$	${ }^{3}$	3\％	2%	${ }^{2 \%}$	\％	\％\％	\％	\％	\％\％	\％	${ }^{0} 8$	\％	\％	\％	\％	0\％	0
286	20，6，1200	－Esesoracerimead	${ }^{5}$		T	${ }^{4 \%}$	${ }^{4 \%}$	${ }_{4 \%}$	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	$2{ }^{2 \%}$	0%	\％	\％	\％	\％\％	\％	\％	\％	\％	${ }^{\circ}$	$\%$	0	0
270	20，6，1，300	Wenerveceademit sals	5	NT	T	48	${ }_{48}$	${ }^{4 \%}$	${ }^{3 \%}$	3\％	${ }^{2 \%}$	${ }^{2 \%}$	0	\％	\％	\％	\％	\％	\％	\％	\％	\％	${ }^{0 \%}$	${ }^{\text {\％}}$	${ }_{0}$
2271	20，6，4，40	－Meny menearyie	5	${ }^{\text {NT}}$	$\stackrel{ }{71}$	${ }_{48}^{48}$	${ }^{4 \%}$	${ }_{48}^{4 \%}$	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{28}$	\％	\％	0%	\％	\％	\％\％	\％	\％	\％	${ }_{0}$	\％	\％	\％
27172	20，6，1，400	－－omer	${ }^{5}$	NT	＂	${ }^{48}$	${ }^{46}$	${ }^{4 \%}$	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	0%	\％	\％	\％	\％\％	\％	0%	\％${ }^{2}$	\％	\％	\％	${ }_{0}$	\％
273	${ }^{\text {20，¢6，15，} 500}$		${ }^{5}$	NT		${ }^{4 \%}$	${ }_{4}^{46}$	${ }^{4 \%}$	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{26}$	${ }^{2 \%}$	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％
2774	20，6，1，000	－Binamem（so）	5	Nr	－	${ }_{48}$	${ }^{4 \%}$	${ }^{4 \%}$	${ }^{3}$	${ }^{3} 8$	${ }^{2 \%}$	${ }^{2 / 6}$	\％	\％\％	${ }^{*}$	\％	\％	\％	\％\％	\％	\％	0	\％	\％	${ }^{+8}$
${ }^{275}$	${ }^{20,16,1,900}$	－－oner	5	${ }^{\text {NT }}$	T	${ }^{4 \%}$	4%	48	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	0%	0%	\％	\％	0\％	\％\％	${ }_{0}$	\％	0	\％	\％	$\%$
${ }^{27176}$		－Cyclanic，cyclenic or cycloterpenic monocarb acids，their anhydrides，halides，peroxides，		NT	T	${ }^{48}$	48	${ }_{40}$	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	${ }^{8}$	\％	0%	0%	\％	\％	\％	\％	\％	\％	\％	\％	\％
$2{ }^{217}$	20，18， 000		${ }^{5}$	N1	${ }^{\text {T1 }}$	4\％	48	\％	\％	3\％	${ }^{26}$	2%	\％	\％	0	\％	\％	0\％	\％	\％	\％	0	\％	\％	\％
${ }^{278}$	20，18，200		5	，	\cdots	${ }_{4}$	4\％	4\％	${ }^{36}$	${ }^{3 \%}$	${ }^{26}$	${ }^{26}$	\％	\％	\％	\％	\％	0%	0\％	0%	0%	0	\％	\％	\％8
278	20，16，300	－．Pheymeicicede and ismis	5	T1	＂	${ }^{48}$	4\％	${ }^{48}$	${ }^{\text {3\％}}$	${ }_{36}$	${ }^{26}$	${ }^{28 \%}$	0%	0%	\％	\％	\％	\％	0_{0}	\％	\％	\％	\％	\％	\％
${ }^{2180}$	20，16，${ }^{\text {a }}$ ，	\cdots	${ }^{5}$	NT	T	48	48	${ }^{4 \%}$	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	0%	\％	\％	\％	\％	\％	\％	\％	\％	\％	$\%$
2181	20，16，300	\cdots	${ }^{5}$	N1	$\stackrel{ }{71}$	${ }_{4}{ }^{4}$	${ }^{48}$	${ }^{48}$	3\％	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{26}$	\％	0%	0%	\％	\％	\％	0%	\％	\％	0	${ }^{0}$	\％	\％
2182	20，16，590	－other	${ }^{5}$	NT	T	${ }_{4}^{48}$	48	${ }^{48}$	${ }^{3}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	0%	0%	\％	\％	\％	－	\％	${ }_{6}$	\％	\％	\％	\％
${ }^{2183}$	29，77，100	－Oiliceadinsisisam	${ }^{5}$	N	＂	${ }_{4}$	4\％	${ }_{4 \%}$	${ }^{\text {3\％}}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{20}$	0%	\％	\％	\％	\％	\％	\％	\％	0	0	${ }_{0} 0$	\％	\％
28	2977．1：10		5	NT	T1	${ }_{48}$	4\％	${ }^{48}$	3\％	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％	\％	\％	\％	\％	\％	\％	0	\％	\％	\％
${ }^{2185}$	29，7，1，200	－．oner	${ }^{5}$	NT	＂	${ }^{4 \%}$	4%	${ }_{4}^{4 \%}$	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	0%	0%	\％	\％	\％	\％	0%	\％	0	0	\％	\％	\％
${ }^{2186}$	${ }^{29,717,100}$	－Areasacas，emacac	${ }^{5}$		＂	48	48	${ }^{4 \%}$	${ }^{3}$	${ }^{3}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％
${ }^{2887}$	20，77，400	Name	5	NT	T	${ }_{4}{ }^{\circ}$	${ }^{48}$	${ }^{48}$	${ }^{3} 6$	${ }^{3 \%}$	${ }^{28}$	${ }^{26}$	\％	\％	0%	\％	\％	\％	0	\％	0%	0%	${ }_{0}$	\％	\％
${ }^{2188}$	${ }^{29,71,1900}$	Oner	5	NT	T	48	${ }^{48}$	$4{ }^{48}$	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	0%	\％	\％	\％	\％	\％	${ }^{\text {\％}}$	\％	\％	\％	\％
2188	29，12，200	－Cyclanic，cyclenic or cycloterpenic polycarboxylic acids，their anhydrides，halides，peroxides， peroxyacids and their derivatives	${ }^{5}$			${ }^{488}$	48	${ }_{48}$	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	0	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\cdots
2190	20，13，200	－Doay omomenmases			T1	${ }_{4} 8$	48	4%	${ }^{3} /$	${ }^{3 \%}$	${ }^{26}$	${ }^{26}$	\％	\％	\％	\％	\％	\％	\％	，	\％	\％	\％	\％	\％
${ }^{2198}$	${ }^{20,7,3,300}$		${ }^{5}$	T	T	${ }_{48}$	4\％	${ }^{4 \%}$	3\％	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％	\％	\％	\％	\％ 0	\％	\％	0	\％	\％	\％
2192	${ }^{29,173,40}$	．．．obuy Ompommase		T1	T	${ }^{4 \%}$	4\％	4%	3\％	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	0%	0%	\％	\％	\％	\％	\％	\％\％	\％	${ }_{0}$	\％	－	\％
${ }^{2193}$	${ }^{22,17,3,400}$	－－oner	${ }_{5}$	T1	T	${ }^{48}$	＊\％	${ }^{48}$	3\％	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％	\％	\％	\％	\％	\％	\％	0	\％	\％	\％
2194	${ }^{29,173,500}$	－Ppmate anymide	${ }^{\circ}$		T	${ }_{48}$	4\％	${ }_{40}$	3\％	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	0%	\％\％	\％\％	\％	\％	\％	${ }^{08}$	\％	0	\％	\％	\％
${ }^{2195}$	${ }^{23,173,600}$		${ }^{5}$		T	$4{ }^{4 \%}$	${ }^{48}$	${ }_{48}$	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	$2{ }^{2 \%}$	\％	0%	0%	\％	0	\％	0	0	\％	0	\％	\％	\％
	${ }^{23,173,700}$	－Dmentryeememane	${ }^{5}$		T	48	4\％	${ }^{4 \%}$	${ }^{\text {3\％}}$	${ }^{36}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％\％	\％\％	\％\％	\％	\％	\％\％	\％		O\％	\％		
${ }^{2197}$	20，73，${ }^{\text {a }}$	－Troomyinemae	${ }^{5}$	${ }^{\text {NT }}$	T	48	4\％	${ }^{4 \%}$	3\％	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	0%	\％	0%	\％	\％	\％$\%$	\％	\％	\％	\％	\％	\％	\％
2188	${ }^{20,173,300}$		${ }^{5}$			${ }^{46}$	${ }_{4} 8$	\％60	${ }^{3 \%}$	\％	${ }^{26}$	${ }^{26}$	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％		
298	20，73，${ }^{\text {aso }}$	－－oner	${ }_{5}$		，	${ }_{48}$	48	${ }_{48}$	${ }^{3}$	3\％	${ }^{2 \%}$	2%	0%	\％	\％	\％	\％	\％	0	\％	\％		0	\％	0
2200	20，88，100		5	T1	T	48	4\％	48	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	0%	\％\％	\％	\％	0%	\％	\％	\％	0%	\％	\％	\％$\%$
2201	${ }^{20,18,1,200}$	－Tranticesd	${ }_{5}$	T1	T	48	${ }^{48}$	48	${ }^{\text {3\％}}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％\％	\％	\％	\％	\％	\％	\％	O6	\％	\％	\cdots
2202	20，8，1，300	－Sansamesess	${ }^{5}$	π	T	${ }^{48}$	${ }^{4 \%}$	${ }^{4 \%}$	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{20}$	\％	\％	\％	\％	\％	\％	\％	\％	\％	${ }_{0}$	\％	\％	\％
2203	20，8，1，000	－ Hincosd	${ }^{5}$	N1	T	${ }_{48}$	${ }_{48}$	${ }_{48}$	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	0%	0%	0%	\％	\％	\％	\％	0°	0	0	\％	\％	0
	20，8，5，50	－Casammatae	${ }^{5}$	T1	\cdots	${ }_{48}$	${ }^{4 \%}$	${ }^{4 \%}$	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	0%	0%	0	0	0%	\％	\％	0	0	0	\％	${ }^{\infty}$	－
2205	20，8，1，50	\cdots	${ }^{5}$	T1	T	48	4%	${ }_{4}^{4 \%}$	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	0%	\％	\％	\％	\％	\％	\％ 08	0%	\％	0%	\％	0	\％
2206	20，8，1，000		${ }^{5}$		＂	${ }^{40}$	4\％	$4{ }^{48}$	3\％	${ }^{36}$	${ }^{2 \%}$	${ }^{2 \%}$	0%	0%	\％\％	\％\％	\％	\％	${ }^{\circ}$	\％	${ }^{\circ}$	0	\％	\％	\％
207	20，8，1，000	－Chroomeriae（so）	${ }^{5}$	T1	T	48	48	\％	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	0%	0%	0\％	0%	0%	\％	\％	\％	\％	0	\％	\％	\％
${ }^{2028}$	${ }^{20,18,1,000}$	－－oner	${ }^{5}$		T	${ }_{48}$	4＊	48	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％\％	\％\％	\％	${ }^{\circ}$	\％	\％	0%	0	\％	\％	\％
2208	${ }^{20,182,100}$		5	\cdots	T	－	＊\％	48	3	，	\％	－	${ }^{6}$	，	\％	\％	\％	\％	\％ 0	，		\％	\％	0	\％
2270	${ }^{29,1822000}$	\cdots	${ }^{5}$		T	${ }^{48}$	4\％	$4{ }^{48}$	${ }^{\text {3\％}}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	O\％	O\％	\％	O\％	\％	O\％	\％	\％	\％	O6	\％	\％	\％
221	${ }^{20,18,2000}$		${ }^{5}$	NT	T	${ }_{4}^{48}$	4%	${ }_{4}^{4 \%}$	${ }^{3} 6$	${ }^{3 \%}$	${ }^{2 \%}$	$2{ }^{2 \%}$	0	\％	\％	\％	\％	0%	\％	0%	\％	0	\％	\％	\％
2272	${ }^{20,182930}$	\cdots	${ }^{5}$	NT	T	${ }_{4}^{48}$	${ }_{4} 8$	${ }_{4} 8$	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	${ }_{0}$	\％	\％
2213	${ }^{20,18,290}$	Oner	5	N1	T	48	48	${ }^{48}$	3\％	${ }^{3 \%}$	$2{ }^{2 \%}$	$2{ }^{2 \%}$	\％	\％	\％	\％	\％	\％	\％	\％	0	0	\％	\％	$\%$
			5	＊1	T1	4\％	4%	4\％	${ }^{3 \%}$	${ }^{3 \%}$	2%	${ }^{2 \%}$	\％	\％	\％	\％\％	\％	\％	\％	\％	\％	\％\％	\％	\％\％	\％
	20，18， 100																								
		－	5			${ }_{4} 8$	4%	${ }^{48}$	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％	\％	\％	\％	\％\％	\％	\％	${ }_{0}$	\％	\％	\％
$2{ }^{212}$	20，18，900	－oner	5		T1	${ }^{4}$	48	${ }_{48}$	${ }^{3} 6$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{26}$	\％	\％	\％	\％	\％	\％\％	\％	\％\％	\％	0	\％	\％	\％
${ }^{2217}$	2，9，9，000		${ }^{5}$	T1	T	${ }_{48}$	4\％	${ }_{4}^{48}$	${ }^{\text {3\％}}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％	\％	\％	\％	\％	\％	\％	0	\％	\％	\％
2218	2，19，9000	－oner	${ }^{5}$		T	${ }_{48}$	4\％	48	3\％	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％\％	\％\％	\％	\％	\％	\％	\％	0	\％	\％	\％
	${ }^{2920,100}$		${ }^{5}$	NT	＂	${ }^{4 \%}$	${ }^{48}$	${ }^{4 \%}$	${ }^{3 \%}$	${ }_{36}$	${ }_{2 \%}$	${ }^{26}$	\％	${ }^{\circ}$	0%	\％	\％	\％	\％	\％	\％	${ }_{0}$	\％	\％	\％
220	22021，900	－omer	${ }^{5}$	N1	T1	${ }_{4 \%}$	4\％	4\％	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{26}$	\％	\％	\％	\％	\％	\％\％	0%	\％	\％	0%	0%	\％	\％
	${ }^{222030,010}$	－Omemm suphas	${ }^{5}$	\cdots	\cdots	${ }^{48}$	4\％	4\％	3\％	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	0%	0%	\％	\％	\％	\％	m	\％	\％	\％	\％	\％
2202	${ }^{2920,9000}$	－oner	${ }^{5}$	NT	T	4%	4\％	4\％	${ }^{\text {3\％}}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	0%	0%	\％	\％	\％	0%	\％	${ }_{0} \%$	0%	\％	$\%$	\％	${ }_{0}^{0 \%}$
	${ }^{20271,000}$	－Memmenme est or crimen	${ }^{5}$	TT	T	${ }^{48}$	${ }^{4 \%}$	${ }^{46}$	3\％	${ }^{36}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％	\％	－	\％	\％	\％	0	0^{6}	${ }^{\circ}$	0	\％
223	${ }^{29211,900}$	－－oner	${ }^{5}$	NT	T	${ }_{4}{ }^{4}$	${ }^{48}$	${ }^{4 \%}$	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{26}$	0%	\％	\％	\％	\％	0%	\％\％	\％	0%	\％	0%	\％	\％$\%$
2235	${ }^{292221200}$		${ }^{5}$	\cdots	T	${ }^{48}$	48	48	3\％	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	0%	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％
2206	${ }^{29212200}$	－Heamemmenemammene ant ssals	\％	N1	＂	48	4\％	4\％	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{26}$	${ }^{26}$	0\％	\％	\％	\％	\％	\％	\％\％	\％\％	0\％	\％	0%	\％	\％
227	${ }^{292212,900}$	－－oner	${ }^{5}$	${ }^{T 1}$	T	48	4\％	4\％	3\％	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	0%	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％
	${ }^{29273,000}$		${ }^{5}$		T	＊	${ }^{4 \%}$	${ }^{4 \%}$	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	2%	\％	\％	\％	\％	\％		\％	\％	\％	\％	\％	\％	\％
2229	${ }^{29224,4,00}$	－Amimendis sams	${ }^{5}$	NT	T1	${ }^{48}$	${ }^{48}$	${ }^{48}$	3\％	3\％	${ }^{2 \%}$	${ }^{2 \%}$	\％	O\％	\％	\％	\％	\％	－	\％	\％	O\％	\％	\％	\％
2230	${ }^{292142,200}$		${ }^{5}$	${ }^{T 1}$	T	${ }^{48}$	${ }^{48}$	${ }^{48}$	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％
	$2{ }^{2924}$		5		T	${ }^{4 \%}$	${ }^{4 \%}$	${ }^{4 \%}$	\％	3\％	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％
2233	22^{214400}		5	NT	T1	4	${ }^{4 \%}$	${ }_{4}^{4 \%}$	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	0%	\％\％	\％\％	\％	0	\％	\％	\％	\％	\％	${ }_{0}$	${ }_{0}$	\％
	${ }^{29214,500}$	－－1－Naphthylamine（alpha－naphthylamine），2－ naphthylamine（beta－naphthylamine）and their derivatives；salts theref	5			${ }_{4}^{4 \%}$	${ }^{48}$	${ }^{48}$	${ }^{3 \%}$	${ }^{\text {3\％}}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	${ }_{0}$	\％	\％	\％	\％	0	\％	\％	\％	\％	\％	\％
		dexamfetamine（INN），etilamfetamine（INN）， fencamfamin（INN），lefetamine（INN）， levamfetamine（INN），mefenorex（INN）and			${ }^{\text {E }}$		\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	u	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
2235	202714，000	\cdots	5		－	${ }^{4}$	48	$4{ }^{46}$	\％	${ }^{3}$	${ }^{2}$	${ }^{2 \%}$	08	\％	0%	0\％	\％	0	0	0	\％	${ }^{6}$	0	\％	0
	${ }^{29295,500}$		5			${ }^{4 \%}$	${ }^{4 \%}$	${ }^{4 \%}$	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{26}$	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％
${ }^{237}$	29215，500	－oner	5	T1	T	${ }^{4}$	48	${ }^{48}$	${ }^{3 \%}$	${ }^{36}$	${ }^{2}$	${ }^{2 \%}$	\％	\％	\％	0\％	\％\％	0	\％	\％	\％	0	\％	\％	\％
${ }^{2288}$	29221：00	－Monomenemanimemidis sulis	5	NT	T1	${ }_{4} 8$	${ }^{4 \%}$	${ }_{4} 8$	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	0%	0%	0%	\％	\％	0%	\％	\％	\％	\％	\％	\％	\％
2288	${ }^{292121200}$	－Domanemaminematis suls	${ }^{5}$	NT	T	${ }_{4} 8$	${ }^{4 \%}$	${ }_{4}{ }^{4}$	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	$2{ }^{2 \%}$	\％	\％	\％	\％	\％	0%	0%	0%	0%	\％	\％	\％	\％
2240	${ }^{29221: 300}$	－Tienenemamine and is suls	${ }^{5}$	T1	T	${ }_{48}$	${ }_{48}$	48	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	0%	0%	\％	0%	0%	\％	\％	\％	\％	0	－	\％	\％
$2{ }^{224}$	$2{ }^{20221,000}$		5	T1	T	${ }^{48}$	48	48	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％\％	\％	\％	\％	\％\％	\％\％	\％\％	\％	\％	\％	
	${ }^{29221,1010}$					${ }_{6}^{4 \%}$	${ }_{4}^{46}$										\％	\％			\％	\％	\％		
${ }^{224}$	${ }^{2922121200}$		${ }^{5}$		T	$4{ }^{46}$	$4{ }^{48}$	${ }_{4}$	\％	${ }^{3}$	\％	${ }^{26}$	\％	08	$\mathrm{O}_{2} 8$	\％	0%	\％	\％	0	0	\％	0	\％	\％

香港•ASEAN FTAにかかる調査報告書

$\underline{224}$	29，22，990	Other	5	NT1	${ }^{4 \%}$	${ }^{4 \%}$	4\％	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	0\％	0\％	0\％	0\％	0\％	0\％	0\％	0\％	0\％	0\％	0\％	0\％	0\％
2245	29，222，100	－－Aminohydroxynaphthalenesulphonic acids and	5	NT1	${ }^{4 \%}$	4\％	${ }^{4 \%}$	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	0\％	\％	\％	0\％	0\％	0\％	0\％	\％	0\％	0\％	\％
$2{ }^{246}$	29，22，900	－Oner	5	NT1	4\％	4%	$4{ }^{4 \%}$	3\％	3\％	${ }^{2 \%}$	${ }^{2 \%}$	\％	0\％	\％\％	\％\％	\％	0\％	0\％	0\％	\％	\％	\％\％	0\％	0\％
2247	${ }^{29,223,100}$	－Amfepramone（INN），methadone（INN）and normethadone（INN）；salts thereof	5	NT1	4\％	4%	4\％	3\％	${ }^{3 \%}$	2\％	2\％	\％	\％	\％	\％	\％	\％	0\％	\％	\％	\％	\％	0\％	0\％
2248	29，22，900	－－Other	5	NT1	4\％	4\％	4\％	${ }^{3 \%}$	3\％	2\％	2\％	\％	0\％	\％	0\％	\％	\％	\％	0\％	\％	\％	0\％	0\％	\％
249	29，24， 100	Lssine and is esters，salst theeof	5	NT1	4\％	${ }^{4 \%}$	4%	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	0\％	0\％	\％	\％	0\％	0\％	0\％	0\％	0\％	0\％	0\％	0\％	0\％
2250	29，24， 210	－Gulamic acid	5	NT1	4\％	4%	4\％	3\％	3\％	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％	\％	\％	\％	0\％	\％	\％	\％	\％	\％	\％
2251	29，24，220	－－Monosodium gutamate（MSG）	5	NT1	4\％	4\％	4\％	${ }^{3 \%}$	3\％	2\％	2\％	\％	0\％	\％	\％	\％	\％	0\％	0\％	0\％	\％	\％	\％	\％
2252	29，24，4290	Other salls	5	NT1	4\％	4\％	4\％	3\％	3\％	2\％	2\％	0\％	\％	0\％	0\％	0\％	0\％	0\％	0\％	0\％	0\％	0\％	0\％	0\％
2253	29，24，300	Antranaica aid and it salts	5	NT1	4\％	4\％	4\％	${ }^{3}$	${ }^{3 \%}$	2\％	2\％	0\％	\％	\％	\％	\％	\％	\％	\％	0\％	\％	\％	0\％	0\％
2254	29，24，400	－Tilidine（INN）and it salls	5	NT1	4\％	4\％	4\％	3\％	3\％	${ }^{2 \%}$	2\％	0\％	0\％	0\％	0\％	0\％	0\％	0\％	0\％	0\％	0\％	0\％	\％	0\％
2255	29，24，9，90	－Meienamica acid and it sants	5	NT1	4\％	4\％	4%	3\％	3\％	2\％	2\％	\％	\％	0\％	\％	\％	\％	0\％	0\％	0\％	0\％	\％	\％	\％
2256	29，24，990	Onter	5	NT1	4\％	$4{ }^{4 \%}$	4%	${ }^{3 \%}$	3\％	${ }^{2 \%}$	${ }^{2 \%}$	0\％	0\％	0\％	\％	\％	\％	0\％	0\％	\％	0\％	0\％	0\％	0\％
2257	29，225，010	$\begin{array}{\|l} -p-\text { Aminosaicylic acid and its salts, esters and } \\ \hline \\ \hline \end{array}$	5	NT1	4\％	4\％	4\％	3\％	3\％	2\％	2\％	\％	\％	\％	\％	\％	\％	\％\％	0\％	0\％	0\％	\％	0\％	0\％
$2{ }^{258}$	29，25，090	－－other	5	NT1	4\％	4%	$4{ }^{4 \%}$	3\％	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％	0\％	\％	\％	0\％	0\％	\％	\％	0\％	0\％	\％
2259	29，23，000	Choine and it salts	5	NT1	4\％	4%	4%	3\％	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％
2260	29，23，010	－Leocthins，weinero or oro themically defined	5	NT1	4\％	4\％	4\％	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％	0\％	\％	0\％	\％\％	\％	0\％	\％	\％	0\％	0\％
2261	29，23，090	－Other	5	NT1	4\％	4%	4\％	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％	\％	\％	\％	\％	0\％	0\％	\％	\％	\％	\％
2262	29，23，000	Other	5	NT1	4\％	4\％	4\％	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％\％	\％	\％	\％	\％	0\％	\％\％	\％	\％	\％	\％	\％\％	0\％
2283	29，24，100	－Meprobamate（NNT）	5	NT1	4\％	4\％	4\％	${ }^{3}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	0\％	\％
2264	${ }^{29,24,200}$	$-\quad$ Fluoroacetamide（ISO），monocrotophos（ISO） and phosphamidon（ISO）	${ }^{5}$	${ }^{\text {NT1 }}$	4\％	4\％	4\％	3\％	3\％	${ }^{2 \%}$	2\％	\％	\％	\％	\％	\％	\％	\％	\％	0\％	\％	\％	0\％	0\％
2265	29，24，900	－Other	${ }^{5}$	NT1	4\％	4\％	4\％	3\％	${ }^{3 \%}$	2\％	2\％	\％	\％\％	\％\％	0\％	\％	0\％	\％\％	0\％	\％	\％	\％	\％	0\％
2266	29，24，，10	4－Eltoxpphenylurea（ulucin）	5	NT1	4\％	4%	4\％	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％	\％	\％	0\％	\％	\％	\％	\％	\％	0\％	\％
2267	${ }^{29,24,120}$	－Diuro and monuon	5	NT1	4\％	4\％	4\％	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％	\％	\％	0\％	\％	0\％	0\％	\％	\％	\％	\％
2268	29，24，190	－Oner	5	NT1	4\％	4%	4\％	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％\％	\％	0\％	0\％	\％	0\％	\％	\％\％	\％\％	\％\％	\％	\％	\％
2269	29，24，300	$\begin{aligned} & \text {-- 2-Acetamidobenzoic acid (N- acetylanthranilic } \\ & \text { acid) and its salts } \end{aligned}$	5	NT1	4\％	4\％	4\％	3\％	3\％	2\％	2\％	0\％	\％	0\％	0\％	0\％	0\％	\％\％	\％\％	0\％	0\％	\％	\％	\％
2270	29，24，400	－Ethinamate（NN）	5	NT1	4\％	4%	4\％	3\％	${ }^{3 \%}$	${ }^{2 \%}$	2\％	0\％	0\％	0\％	0\％	0\％	0\％	0\％	0\％	0\％	0\％	0\％	0\％	0\％
2271	29，24，9，90	\cdots Asparame	5	NT1	4\％	4%	4\％	3\％	3\％	${ }^{2 \%}$	2\％	0\％	0\％	0\％	0\％	0\％	0\％	0\％	0\％	0\％	0\％	0\％	0\％	0\％
2272	${ }^{29,24,2920}$	$\underset{\text { phenyly carnamatiethy carbamate；methyl isopropyl }}{ }$	5	NT1	4\％	4\％	4\％	3\％	3\％	2\％	2\％	\％	\％	\％	\％	0\％	0\％	\％	\％	\％	\％	\％	0\％	\％
2273	29，24，990	－－Onher	5	NT1	4\％	$4{ }^{4 \%}$	${ }^{4 \%}$	3\％	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	0\％	0\％	0\％	0\％	0\％	0\％	\％	0\％	0\％	0\％	0\％	0\％	0\％
2274	29，25，100	－Sacchain and its salts	5	NT1	4%	4\％	4\％	3\％	3\％	${ }^{2 \%}$	2\％	0\％	0\％	0\％	0\％	0\％	0\％	0\％	0\％	0\％	0\％	0\％	0\％	0\％
2275	29，25，200	－Gluentimide（INT）	5	${ }^{\text {NT1 }}$	4\％	4\％	4\％	${ }^{3 \%}$	3\％	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％	\％	\％	0\％	0\％	0\％	0\％	\％	\％	\％	\％
2276	${ }^{29,25,900}$	－Other	5	NT1	4\％	4%	4\％	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％\％	\％	\％	\％	\％	\％	\％	0\％	\％	\％	\％	\％	\％
2277	${ }^{29,25,100}$	－Chordimelom（SO）	5	NT1	4\％	4%	4\％	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％	\％	\％	0\％	0\％	0\％	0\％	\％	\％	\％	0\％
2278	29，25，900	－Oher	5	NT1	4\％	4\％	4\％	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％	\％	\％	0\％	\％	0\％	0\％	\％	\％	\％	\％
2279	29，26，000	Acrlontitile	5	NT1	4\％	$4{ }^{4 \%}$	4\％	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％\％	0\％	0\％	\％	\％	0\％	\％	0\％	\％	0\％	\％	0\％	0\％
2280	29，26，000	1－Cyanoguanidine（dicrandidamide）	5	NT1	4\％	4%	$4{ }^{4 \%}$	3\％	${ }^{3} \%$	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	0\％	0\％	\％	0\％	\％	0\％	0\％	\％	\％	\％	\％
${ }^{2281}$	29，26，000		${ }^{5}$	${ }^{\text {NT1 }}$	4\％	4\％	4\％	3\％	3\％	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％	\％	\％	0\％	\％	\％	\％	\％	0\％	\％	\％
2282	29，26，000	－－oher	5	NT1	4\％	4\％	4\％	3\％	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	0\％	\％	\％	0\％	\％	0\％	0\％	0\％	0\％	\％\％	0\％	0\％	\％
2283	29，27，010	Azodicaronamide	5	NT1	4\％	4\％	4\％	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	2\％	0\％	0\％	0\％	0\％	0\％	0\％	0\％	0\％	0\％	0\％	0\％	0\％	0\％
2284	29，27，090	Onter	5	NT1	4\％	4\％	4\％	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	2\％	0\％	0\％	0\％	0\％	0\％	0\％	0\％	0\％	0\％	0\％	0\％	0\％	0\％
2285	29，28，010	Linuon	5	NT1	4\％	4\％	4\％	3\％	${ }^{3 \%}$	2\％	2\％	0\％	\％	\％	\％	\％	0\％	\％	\％	0\％	\％	\％	\％	\％
2286	29，280，990	Onher	5	NT1	4\％	$4{ }^{4}$	4\％	3\％	${ }^{\text {3\％}}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％	\％	\％	0\％	\％	\％	\％	\％	\％	\％\％	\％
287	${ }^{22929.0 .10}$	－Diphenyimelhane disocyanate（MDI）	5	NT1	4\％	4\％	4\％	${ }^{3 \%}$	3\％	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％	\％	\％	0\％	\％	0\％	0\％	\％	\％	\％	\％
2288	${ }^{22929.10 .20}$	－Toluene dilisocyanate	5	NT1	4\％	4\％	4\％	${ }^{3 \%}$	3\％	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％	\％	\％	0\％	\％	\％	\％	\％	\％	\％	\％
288	29，29，090	－Other	5	NT1	4\％	4%	4\％	3\％	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％\％	\％\％	\％	0\％	\％	0\％	\％	0\％	0\％	0\％	0\％	\％	0\％
2290	29，29，010	－Sodium cyclamale	5	NT1	4\％	4\％	4\％	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	2\％	\％\％	0\％	0\％	0\％	0\％	0\％	0\％	0\％	0\％	0\％	0\％	0\％	0\％
229	29，29，020	－other cyclamales	5	NT1	4\％	4\％	4\％	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	2\％	0\％	0\％	\％	0\％	0\％	0\％	0\％	0\％	0\％	0\％	0\％	0\％	0\％
2292	29，29，090	－Other	5	NT1	4\％	4\％	4\％	${ }^{3 \%}$	3\％	${ }^{2 \%}$	${ }^{2 \%}$	\％\％	\％	0\％	\％\％	\％	0\％	0\％	0\％	\％	\％	0\％	\％\％	\％
2293	29，30，000	Thiocaramames and ditiocaramamas	${ }^{5}$	NT1	4\％	4%	4\％	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％	\％	\％	0\％	\％	\％	\％	\％	\％	\％	\％
2294	29，30，000	Thiuram mono，di．or fereasulpinides	5	NT1	4\％	4%	4\％	3\％	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％\％	\％\％	\％	0\％	\％	0\％	\％\％	0\％	0\％	0\％	0\％	0\％	0\％
2295	29，30，000	Metionine	5	NT1	4\％	4\％	4\％	3\％	3\％	${ }^{2 \%}$	2\％	0\％	\％	\％	\％	\％	0\％	\％	0\％	\％	\％	\％	\％	\％
2296	29，35，000	${ }^{\text {Capatato（（SO）and methamidophos（ }}$（SO）	5	NT1	${ }^{4 \%}$	$4{ }^{4}$	${ }^{4 \%}$	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％
2297	29，30，010	－Ditiocarabonates	5	NT1	4\％	4%	4\％	${ }^{3 \%}$	3\％	${ }^{2 \%}$	${ }^{2 \%}$	0\％	\％	\％	\％	\％	0\％	\％	0\％	0\％	\％	\％	\％	\％
2298	29，30，090	－Oner	5	NT1	4\％	4\％	4\％	${ }^{3 \%}$	3\％	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％	\％	\％	0\％	\％	0\％	0\％	\％	\％	\％	\％
229	${ }^{23331.10 .10}$	－Tetamenty lead	5	NT1	4\％	4%	4\％	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	2\％	\％\％	\％\％	\％	0\％	\％	0\％	\％	\％	0\％	\％\％	\％	\％	\％
2300	${ }^{2931.10 .20}$	－Terraetyl lead	5	${ }^{\text {NT1 }}$	4\％	4\％	4\％	${ }^{3 \%}$	3\％	${ }^{2 \%}$	2\％	0\％	0\％	0\％	0\％	0\％	0\％	0\％	0\％	0\％	0\％	0\％	0\％	0\％
2301	29，31，000	Tributyin compounds	5	NT1	4\％	4\％	4\％	3\％	3\％	${ }^{2 \%}$	2\％	0\％	0\％	0\％	0\％	0\％	0\％	0\％	0\％	0\％	0\％	0\％	0\％	0\％
2302	20，319，020	N－（phosphonomembly）Sycine and salts hereof	${ }^{5}$	${ }^{\text {NT1 }}$	4\％	4\％	4\％	${ }^{3 \%}$	3\％	${ }^{2 \%}$	${ }^{2 \%}$	0\％	0\％	\％	\％	\％	0\％	\％\％	0\％	\％\％	0\％	0\％	\％	\％
2303	29，31，030	－Etrephone	5	NT1	${ }^{4 \%}$	${ }^{4 \%}$	${ }^{4 \%}$	3\％	${ }^{3 \%}$	${ }^{2 \%}$	2\％	0\％	0\％	0\％	0\％	0\％	0\％	0\％	0\％	\％\％	\％\％	0\％	0\％	\％\％
2304	${ }^{29,319,041}$	\cdots－Inliquid form	5	${ }^{\text {NT1 }}$	4\％	4\％	4\％	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	2\％	0\％	0\％	\％\％	0\％	\％	0\％	0\％	0\％	\％	0\％	0\％	0\％	0\％
2305	22，39，049	\cdots	5	${ }^{\text {NT1 }}$	4\％	4\％	4\％	${ }^{3 \%}$	${ }^{3} \%$	${ }^{2 \%}$	${ }^{2 \%}$	\％$\%$	0\％	\％	\％	\％	0\％	0\％	0\％	0\％	\％	\％	\％	\％
2306	20，31，090	－Other	5	${ }^{\text {NT1 }}$	4\％	$4{ }^{4}$	4\％	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	0\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％
2307	29，32，100	－Teranydotivan	5	NT1	4\％	4\％	4\％	3\％	3\％	${ }^{2 \%}$	2\％	0\％	0\％	\％	0\％	0\％	0\％	0\％	0\％	0\％	0\％	0\％	0\％	0\％
2308	29，32，200	－2Furaldehyde（tururadoende）	${ }^{5}$	NT1	4\％	4%	4\％	${ }^{3 \%}$	3\％	2\％	${ }^{2 \%}$	\％	\％	\％	\％	\％	\％	\％	0\％	0\％	\％	\％	\％	\％
2309	29，32，300	－Furtulul a conol and detahydrofurfury alconol	5	${ }^{\text {NT1 }}$	4\％	4\％	4\％	3\％	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	0\％	0\％	0\％	0\％	\％	0\％	\％	0\％	\％	0\％	0\％	0\％	0\％
2310	29，32，900	－Other	5	NT1	4\％	4\％	4\％	3\％	3\％	2\％	2\％	0\％	0\％	\％\％	\％	\％	\％	0\％	0\％	0\％	\％	0\％	\％	\％
2311	29，32，000	Lactones	5	NT1	4%	4\％	4\％	3\％	3\％	2\％	2\％	0\％	0\％	\％\％	0\％	\％	0\％	0\％	0\％	\％	0\％	0\％	0\％	0\％
2312	29，32，100	Isosatrole	5	NT1	4\％	4\％	4\％	3\％	3\％	2\％	2\％	\％$\%$	\％	\％	\％	\％	\％	\％	0\％	\％	\％	\％	\％	\％
2313	29，32，200		5	${ }^{\text {NT1 }}$	$4{ }^{4 \%}$	4%	4\％	3\％	3\％	${ }^{2 \%}$	${ }^{2 \%}$	0\％	0\％	\％	\％	\％	\％	0\％	0\％	0\％	\％	\％	\％	\％
2314	29，32，300	Piperonal	${ }^{5}$	${ }^{\text {NT1 }}$	4\％	4\％	4\％	${ }^{3} \%$	3\％	${ }^{2 \%}$	2\％	\％\％	\％	\％\％	0\％	\％	\％	\％	0\％	0\％	0\％	0\％	0\％	0\％
2315	29，32，400	－Sarole	5	NT1	4\％	4\％	4\％	${ }^{3} \%$	${ }^{3} \%$	2\％	${ }^{2 \%}$	\％	0\％	\％	\％	\％	\％	0\％	0\％	0\％	\％	\％	\％	\％
2316	29，32，500	－Tetranydiocamabainos（all somers）	${ }^{5}$	${ }^{\text {NT1 }}$	${ }^{4 \%}$	4%	4\％	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	0\％	0\％	\％\％	0\％	\％	\％	0\％	0\％	\％	0\％	0\％	0\％	0\％
2317	29，32，9，90	Caboturan	5	NT1	$4{ }^{4 \%}$	4\％	4\％	3\％	3\％	${ }^{2 \%}$	2\％	0\％	0\％	0\％	0\％	0\％	\％	0\％	0\％	0\％	0\％	0\％	0\％	0\％
2318	29，32，990	－Other	5	NT1	4\％	4\％	4\％	3\％	3\％	2\％	2\％	0\％	0\％	0\％	0\％	\％	0\％	0\％	0\％	0\％	0\％	0\％	0\％	0\％
2319	${ }^{2933.11 .10}$	Diprone（analgin）	${ }^{5}$	NT1	4\％	4\％	4\％	${ }^{3 \%}$	3\％	${ }^{2 \%}$	2\％	0\％	\％	\％	0\％	\％	\％	0\％	0\％	\％	\％	0\％	0\％	0\％
2320	29，33，190	－Other	5	NT1	4\％	4\％	4\％	3\％	3\％	2\％	2\％	0\％	0\％	0\％	\％	\％	0\％	0\％	0\％	0\％	0\％	\％	\％	\％
2321	29，33，，000	Other	5	NT1	4\％	4\％	4\％	${ }^{3} \%$	3\％	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％	\％	\％	\％	0\％	0\％	0\％	0\％	0\％	0\％	0\％
232	29，32，100	Hydanloin and if sofervatives	5	NT1	4\％	4\％	4\％	3\％	3\％	${ }^{2 \%}$	2\％	0\％	0\％	\％	0\％	0\％	\％	0\％	0\％	0\％	0\％	0\％	0\％	0\％
2323	${ }^{29,32,9,90}$	－Cimelidine	5	NT1	4\％	4%	4%	${ }^{3 \%}$	3\％	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％	\％	\％	\％	0%	\％	\％	\％	\％	0\％	\％
2324	${ }^{29,323,990}$	Onher	5	NT1	4\％	4\％	4\％	3\％	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％\％	\％	0\％	0\％	\％	\％	\％	0\％	\％	\％	0\％	0\％	0\％
2325	29，33，100	－Pyridine anditis sals	5	NT1	4\％	4\％	4\％	3\％	${ }^{3} \%$	2\％	${ }^{2 \%}$	\％	\％	\％	\％	\％	\％	\％	0\％	0\％	\％	\％	\％	\％
2326	29，33，200	Piperidine andit salts		${ }^{\text {NT1 }}$	4\％	4\％	4\％	${ }^{3}$	3\％	2\％	${ }^{2 \%}$	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	0\％	\％

${ }^{337}$	29，33，300		5	NT1	4\％	4\％	4%	3\％	3\％	2\％	2\％	0\％	\％\％	0\％	\％	0\％	\％\％	0\％	\％	\％\％	0\％	\％	\％\％	\％\％
${ }^{2328}$	2，33，910	－－Chiopheneriamine and sioniazd	5	NT1	${ }^{4 \%}$	$4{ }^{4 \%}$	4%	3\％	3\％	2\％	2\％	\％	\％\％	\％	\％	\％	\％	0\％	\％	\％	\％	\％	\％	0\％
2329	2，33，${ }^{\text {a } 30}$	－－Paraquat sals	5	NT1	4%	4%	$4{ }^{4} \%$	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％	0\％	\％	0\％	\％	\％	\％	\％	\％	\％	\％
2330	2，33，990	－－omer	5	${ }^{\text {NT1 }}$	${ }^{4 \%}$	4\％	4%	3\％	${ }^{3 \%}$	2\％	${ }^{2 \%}$	\％	0\％	\％	\％	\％\％	0\％	\％	\％	\％\％	\％	\％	\％	\％\％
$2{ }^{231}$	2，334，100	－Levorpano（（INN）and if sals	5	NT1	${ }^{4 \%}$	4\％	${ }^{46}$	3\％	3\％	${ }^{2 \%}$	${ }^{2 \%}$	\％	0\％	0\％	\％	0\％	\％	\％	\％	\％	\％\％	\％	\％	\％
2332	2，3，34，900	－Oher	5	NT1	$4{ }^{4 \%}$	4\％	4%	3\％	3\％	2\％	${ }^{2 \%}$	0\％	0\％	0\％	\％	\％	0\％	0\％	\％	\％\％	\％	0\％	\％	\％\％
${ }^{233}$	2，33，200	Maionyluea（larativicic aciol and it salis	5	NT1	4%	4%	${ }^{4 \%}$	3\％	3\％	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％	\％	\％	\％	0\％	\％	\％	\％	\％	\％	0\％
$2{ }^{234}$	20，35，300		5	NT1	4\％	4\％	4\％	${ }^{3 \%}$	3\％	2\％	2\％	\％\％	\％\％	0\％	\％	\％	\％	0\％	\％	\％	\％	\％\％	\％\％	\％
2235	2，3，35，400	$\begin{array}{\|l\|} \hline \text { Other derivatives of malonylurea (barbituric aciid); } \\ \hline \text { salts thereot } \end{array}$	${ }^{5}$	NT1	${ }^{46}$	4\％	${ }^{4 \%}$	3\％	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	0\％	\％	\％	\％	0\％	\％	\％	\％	\％	\％\％	0\％	\％	\％
2336	2，33，500	－Loprazam（NNT），medocoualone（NWN）／	5	NT1	${ }^{4 \%}$	4\％	4%	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	0\％	0\％	0\％	0\％	0\％	0\％	0\％	\％	\％	\％	\％	\％	\％
238	2，33，9，90	－Dazion	5	NT1	4\％	4\％	4\％	3\％	3\％	2\％	2\％	\％	0\％	\％	\％	0\％	0\％	\％	\％	\％	\％	\％	\％	\％
${ }^{2388}$	${ }^{2,3,35,990}$	－other	5	${ }^{\text {NT1 }}$	4\％	$4{ }^{4 \%}$	$4{ }^{4 \%}$	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	0\％	\％	\％	\％	0\％	\％	\％	\％	\％	\％	\％\％
2339	29，366，100	－Meamine	5	${ }^{\text {HSL }}$	5\％	5\％	5\％	${ }^{5 \%}$	5\％	${ }^{5 \%}$	5\％	5\％	5\％	5\％	5\％	5\％	5\％	5\％	5\％	5\％	5\％	5\％	${ }^{5 \%}$	5\％
2340	2，38，9，90	－Other	5	NT1	4%	4%	4%	${ }^{3 \%}$	3\％	${ }^{2 \%}$	${ }^{2 \%}$	0\％	\％	0\％	\％$\%$	\％\％	\％	0\％	\％$\%$	\％	\％	\％	\％	\％
2341	2，337，100	\cdots－${ }^{\text {Hexanelacamam（epsion－Capolacamam）}}$	5	${ }^{\text {NT1 }}$	${ }^{4 \%}$	4%	4%	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	0\％	\％	\％	0\％	\％	\％	\％	\％	\％	\％	\％
${ }^{2342}$	2，337，200	\cdots Clobzam（INN）and mentypyon（INT）	5	${ }^{\text {NT1 }}$	4\％	4\％	4%	3\％	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	0\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％
${ }^{2343}$	2，337，900	－Oner lacams	5	${ }^{\text {NT1 }}$	4\％	4\％	4\％	3\％	3\％	2\％	${ }^{2 \%}$	\％	0\％	\％	0\％	\％	0\％	\％	\％	\％	\％	\％	\％	\％
234	2，39， 100		5	NT1	4\％	4\％	4\％	3\％	3\％	2\％	2\％	0\％	\％\％	0\％	\％	\％	\％\％	\％	\％	\％\％	0\％	\％	\％	\％
${ }^{2345}$	2，3，39，910	\cdots－Mebendazole or parbendazole	5	${ }^{\text {NT1 }}$	4\％	4%	${ }^{1 \%}$	3\％	3\％	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	0\％	0\％	\％	\％	\％	\％	\％	\％	\％	\％	\％\％
$2{ }^{2346}$	${ }^{29,393990}$	－－omer	5	NT1	$4{ }^{4 \%}$	4\％	4%	3\％	3\％	${ }^{2 \%}$	${ }^{2 \%}$	\％	0\％	0\％	\％	\％	0\％	\％	0\％	\％	0\％	\％	\％\％	0\％
${ }^{2347}$	2，3，34，000		5	${ }^{\text {NT1 }}$	$4{ }^{4 \%}$	4\％	4\％	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	0\％	0\％	\％	\％	\％	0\％	\％	0\％	\％	\％	\％	\％\％
${ }^{2348}$	29，42，000	－Compounds containing in the structure a benzothiazole ring－system（whether or not hydrogenated），not further fused	${ }^{5}$	${ }^{\text {NT1 }}$	4\％	4\％	4\％	3\％	3\％	2\％	2\％	\％	0\％	0\％	\％	\％	0\％	0\％	\％	\％\％	\％	\％	\％\％	0\％
2349	20，34，000	－Compounds containing in the structure a phenothiazine ring－system（whether or not hydrogenated），not further fused	5	NT1	${ }^{4 \%}$	4%	4%	${ }^{3 \%}$	${ }^{3 \%}$	2\％	${ }^{2 \%}$	\％	\％	0\％	0\％	\％	0\％	\％	\％	\％	\％	\％	\％	\％\％
2350	20，39， 100		5	NT1	4%	4\％	4\％	3\％	3\％	2\％	2\％	0\％	0\％	0\％	\％	0\％	0\％	0\％	\％	\％\％	0\％	\％\％	\％\％	\％\％
$2{ }^{2351}$	20，39，910	－Nuceicic acd and in salls	${ }^{5}$	${ }^{\text {NT1 }}$	$4{ }^{4 \%}$	$4{ }^{4 \%}$	4%	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％\％	\％	\％	\％\％	\％\％	\％	\％	0\％	\％	\％\％	\％\％	\％\％
2352	20，39，920	－Suluross stumams；filiazem	5	NT1	4\％	$4{ }^{4 \%}$	$4{ }^{4} \%$	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	0\％	0\％	\％	0\％	0\％	0\％	\％	\％	\％	\％	\％\％	\％
${ }^{2353}$	2，2，39，930	${ }^{-6}$ Aminopeneiclunica caid	5	${ }^{\text {NT1 }}$	4\％	$4{ }^{4 \%}$	$4{ }^{4 \%}$	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	0\％	\％	\％	\％	0\％	\％	\％	\％	\％	\％	\％
235	2，3，39，940		5	NT1	$4{ }^{4 \%}$	${ }^{4 \%}$	$4{ }^{4 \%}$	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	0\％	\％	\％	\％	0\％	\％	\％	\％	\％	\％	\％
2355	${ }^{2,3,349,50}$		5	NT1	4%	4%	4%	${ }^{3 \%}$	3\％	2\％	2%	0\％	0\％	0\％	0\％	0\％	0\％	0\％	0\％	0\％	0\％	\％	0\％	0\％
2356	2，3，39，990	\cdots	5	NT1	4%	4%	${ }^{4 \%}$	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％	\％	\％	0\％	\％	\％	\％	\％	\％	\％	\％
2357	20，350，00	Supponamides．	5	${ }^{\text {NT1 }}$	4\％	4%	4%	3\％	3\％	${ }^{2 \%}$	2%	\％	0\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％
${ }^{2358}$	2，932，100	－Vitamin A and theidedivivives	5	${ }^{\text {NT1 }}$	4%	4%	4%	3\％	3\％	2\％	2\％	\％	0\％	0\％	\％	0\％	\％	0\％	\％	0\％	\％	\％	\％	0\％
2359	2，9，32200	－Viamin B a and it diseivaives	5	NT1	4%	4\％	4%	3\％	3\％	2\％	2\％	\％	0\％	0\％	\％	\％	0\％	0\％	\％	0\％	\％	\％	\％	\％
2360	${ }^{2,3,36,300}$	－－Viamin 82 and it dedivaives	5	NT1	$4{ }^{4 \%}$	${ }^{4 \%}$	${ }_{4}^{4 \%}$	3\％	3\％	2\％	${ }^{2 \%}$	\％	\％\％	\％	\％	\％	\％	0\％	\％	\％	\％	\％	\％	\％
2361	2，9，36400	$\begin{array}{\|l\|} \hline-D \text { or DL-Pantothenic acid (Viamin B3 or Vitamin } \\ \hline \text { B5) and its derivatives } \end{array}$	${ }^{5}$	NT1	4\％	4\％	${ }^{4 \%}$	3\％	3\％	${ }^{2 \%}$	${ }^{2 \%}$	0\％	0\％	0\％	0\％	\％	\％	\％	0\％	\％	\％	\％	\％	\％
2362	${ }^{2,3,322.500}$	－－Viamin Be and ifs dervaives	5^{5}	${ }^{\text {NT1 }}$	4%	4%	4%	${ }^{3}$	3\％	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	0\％	${ }_{0} \%$
2363	20，36，500	－Vitamin Brianditis deivalives	5	NT1	$4{ }^{4 \%}$	4%	$4{ }^{4} \%$	3\％	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％\％	\％	\％	0\％	\％	\％	\％	\％	\％	\％	\％	\％
2364	2，9，367，700	－Vitamin C and it sdevivitives	5	NT1	$4{ }^{4 \%}$	$4{ }^{4}$	$4{ }^{4}$	${ }^{\text {3\％}}$	3\％	2\％	2\％	\％	\％	\％	\％	0\％	\％	\％	\％	\％	\％	\％	\％	\％
236	20，32，800	－Viamin Eand is seivaives	5	${ }^{\text {NT1 }}$	${ }^{4 \%}$	$4{ }^{4 \%}$	4%	3\％	${ }^{3}$	${ }^{2 \%}$	${ }^{2 \%}$	0\％	\％	0\％	\％	\％	\％	0\％	\％	\％	\％	0\％	\％	\％
2366	2，9，36，900	－Other vimamis and theid devivitives		NT1	${ }^{4 \%}$	4\％	$4{ }^{4 \%}$	${ }^{3 \%}$	3\％	2\％	2\％	0\％	0\％	0\％	\％	0\％	0\％	0\％	\％	0\％	0\％	\％	0\％	\％\％
2387	2，36，000	－Onere，incluiding niumal concentrales	5	${ }^{\text {NT1 }}$	4%	4\％	4%	${ }^{3 \%}$	${ }^{3 \%}$	2\％	${ }^{2 \%}$	0\％	\％	0\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％
2368	2，3，37，100	$\stackrel{-}{-\quad \text { Somatatropin，its derivatives and structural }}$		${ }^{\text {NT1 }}$	$4{ }^{4 \%}$	4\％	4\％	3\％	3\％	2\％	${ }^{2 \%}$	\％	0\％	0\％	\％	\％	\％	\％	\％	0\％	0\％	\％	\％	0\％
2369	20，37，200	－-1 nsuinanand is sals	5	${ }^{\text {NT1 }}$	$4{ }^{4 \%}$	4%	4%	${ }^{3 \%}$	${ }^{3 \%}$	2\％	${ }^{2 \%}$	0\％	\％	0\％	\％	\％	\％	\％	\％	\％\％	\％	\％	\％	\％
2370	2，3，37，900	－Oner	5	${ }^{\text {NT1 }}$	4%	4%	4\％	3\％	3\％	2\％	2\％	\％	0\％	0\％	\％	0\％	0\％	\％	\％	0\％	\％	\％	\％	0\％
2371	20，32，100	- Corisone，hydrocortisone，prednisone（dehyyrocortsone and prednosolone （dehydrohyyrococrtisone）	${ }^{5}$	NT1	${ }^{4 \%}$	4\％	4\％	${ }^{3 \%}$	3\％	2\％	${ }^{2 \%}$	\％	0\％	\％	\％	\％	0\％	\％	\％	0\％	\％	\％	\％	\％
2372	2，9，72，200	$\begin{aligned} & \text {-- Halogenated derivatives of corticosteroidal } \\ & \text { hormones } \end{aligned}$	${ }^{5}$	NT1	${ }^{4 \%}$	${ }^{4 \%}$	${ }^{4 \%}$	3\％	3\％	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％	\％	\％	\％	\％	\％	0\％	\％	\％	\％	0\％
$2{ }^{273}$	20，32，300	－Oestrogens and progestogens	5	NT1	4\％	4\％	4\％	${ }^{3 \%}$	3\％	2\％	${ }^{2 \%}$	0\％	0\％	0\％	\％	0\％	0\％	0\％	\％	0\％	0\％	\％\％	0\％	0\％
$2{ }^{2374}$	${ }^{29,3,32,900}$	－Oner	5	${ }^{\text {NT1 }}$	${ }^{4 \%}$	4\％	4\％	3\％	3\％	2\％	2\％	\％	\％\％	\％	\％	\％	\％	0\％	\％	\％\％	\％	\％	\％	\％\％
2375	20，35，000	－Prostaglandins，thromboxanes and leukotrienes， their derivatives and structural analogues	5	NT1	4\％	4%	4\％	${ }^{3 \%}$	${ }^{3 \%}$	2\％	${ }^{2 \%}$	0\％	\％	0\％	\％	\％	\％	0\％	\％	\％	\％	\％	\％	\％
${ }^{2376}$	20，37，010	－Ot orygentuncioio amino compounds	5	${ }^{\text {NT1 }}$	$4{ }^{4 \%}$	${ }^{4 \%}$	${ }^{4 \%}$	3\％	${ }^{3 \%}$	2\％	${ }^{2 \%}$	\％	\％\％	0\％	\％	\％	\％	\％	\％	\％\％	\％	0\％	\％	\％\％
2377	${ }^{29,379,990}$	－other	5	NT1	4%	4\％	4%	3\％	3\％	2\％	2\％	0\％	0\％	0\％	\％	0\％	0\％	0\％	\％	0\％	0\％	\％	\％	\％\％
${ }^{2378}$	2，381，000		5	${ }^{\text {NT1 }}$	4%	4\％	4%	3\％	${ }^{3 \%}$	2\％	${ }^{2 \%}$	0\％	\％	0\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％
2379	20，39，000	－other	5	NT1	$4{ }^{4 \%}$	$4{ }^{4 \%}$	$4{ }^{4 \%}$	3\％	3\％	2\％	2\％	\％	\％\％	0\％	\％	\％	0\％	0\％	\％	\％\％	\％	\％	\％${ }^{\circ}$	\％
2380	$2{ }^{233,11.10}$	Concentrates of poppy staw and salats hereof	Onbled dems	EL	${ }_{\text {Pronitied }}^{\text {Pinms }}$	U	0	\bigcirc	U	U	－	0	U	U	－	U	U	U	U	U	U	U	U	－
2381	2，391，190	－other	onbied dems	EL	${ }_{\text {Premb }}^{\text {Pronbied }}$	0	U	\bigcirc	U	\bigcirc	U	\bigcirc	\bigcirc	\checkmark	\bigcirc	\bigcirc	\bigcirc	\bigcirc	U	U	U	－	0	0
2382	2，39，900	Oner	5	HsL	5\％	5\％	5\％	5\％	5\％	5\％	5\％	5\％	5\％	5\％	5\％	5\％	5\％	5\％	5\％	5\％	5\％	5\％	5\％	5\％
${ }^{2383}$	2，32，010	－Ouinin and its sals	5	NT1	4%	$4{ }^{4}$	4%	${ }^{3 \%}$	${ }^{3 \%}$	2\％	${ }^{2 \%}$	0\％	\％	0\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％
2384	2，392，090	－Oher	5	${ }^{\text {NT1 }}$	$4{ }^{4 \%}$	4\％	4%	3\％	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	0\％	\％	\％	\％	0\％	\％	\％	0\％	\％	\％	\％	\％
2285	2，393，000	－Catene and is salls	5	Hst	5\％	5\％	5\％	5\％	5\％	5\％	5\％	5\％	5\％	5\％	5\％	5\％	5\％	5\％	5\％	5\％	${ }^{5 \%}$	5\％	5\％	5\％
2236	${ }^{29,344,100}$	－Ephedine end in sals	${ }^{5}$	HsL	${ }^{5 \%}$	${ }^{5 \%}$	5\％	${ }^{5 \%}$	${ }^{5 \%}$	${ }^{5 \%}$	5\％	${ }^{5 \%}$	5\％	${ }^{5 \%}$	${ }^{5 \%}$	${ }^{5 \%}$	5\％	${ }^{5 \%}$	5\％	5\％	5\％	5%	${ }^{5 \%}$	5\％
${ }^{2387}$	2，394，200	－Pseucooephedinin（INN）and it salls	5	${ }^{\text {HSL }}$	${ }^{5 \%}$	5\％	5\％	5\％	${ }_{5 \%}$	5\％	${ }^{5 \%}$	${ }^{5 \%}$	${ }^{5 \%}$	${ }^{5 \%}$	${ }^{5 \%}$	${ }^{5 \%}$	5\％	${ }^{5 \%}$	${ }^{5 \%}$	${ }^{5 \%}$	5\％	5\％	${ }^{5 \%}$	5\％
${ }^{2388}$	20，34，300	－Catine（INN）and its salts	5	${ }^{\text {HSL }}$	${ }_{5 \%}$	5\％	${ }^{5 \%}$	${ }^{5 \%}$	5\％	${ }^{5 \%}$	5%	${ }^{5 \%}$	${ }^{5 \%}$	${ }^{5 \%}$	5\％	${ }^{5 \%}$	${ }_{5 \%}$	${ }^{5 \%}$	${ }^{5 \%}$	${ }^{5 \%}$	${ }^{5 \%}$	${ }^{5 \%}$	5\％	${ }^{5 \%}$
2389	2，934，400	－Nooepledidine and it salts	5	NT1	${ }^{4 \%}$	$4{ }^{4}$	$4{ }^{4} \%$	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％\％	\％	\％	0\％	0\％	\％	\％	\％	\％	\％	\％\％	\％
2330	20，34，900	－Other	5	NT1	4%	4%	4%	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％\％	\％	\％	\％	\％	\％	\％	0\％	\％	\％	\％	\％\％
2231	29，35， 100	－Feneyline（INN）and it salts	5	${ }^{N+1}$	4\％	4\％	4%	3\％	3\％	2\％	${ }^{2 \%}$	\％	0\％	\％	\％	\％	0\％	\％	\％	\％	0\％	\％	\％	\％

香港•ASEAN FTAにかかる調査報告書
 別添2－4 原産地品の関税撤廃スケジュール

（ラオス）

$2{ }^{232}$	20，35，900	Other	5	NT1	4\％	4\％	4\％	${ }^{3 \%}$	3\％	2\％	2\％	\％	0\％	0\％	0\％	0\％	\％	0\％	0\％	\％\％	\％	\％\％	\％	
2293	20，36，100	EFgometine（INN）and it salis	5	NT1	4\％	4%	$4{ }^{4 \%}$	3\％	${ }^{3 \%}$	${ }^{2 \%}$	2\％	\％	\％	\％	\％	\％	\％	\％	\％\％	\％	\％	\％	\％	\％
2334	20，36，200	－Egolamine（MN）and it salls	5	HsL	${ }^{5 \%}$	5\％	5\％	${ }^{5 \%}$	${ }^{5 \%}$	5\％	${ }_{5 \%}^{5 \%}$	${ }^{5 \%}$	${ }^{5 \%}$	${ }^{5 \%}$	${ }_{5 \%}^{5 \%}$	${ }^{5 \%}$	${ }^{5 \%}$	${ }^{5 \%}$	5	${ }^{5 \%}$	${ }^{5 \%}$	${ }^{5 \%}$	${ }^{5 \%}$	${ }^{5 \%}$
2235	20，36，300	－Lsesegic acd and it salis	5	HSL	${ }^{5 \%}$	${ }^{5 \%}$	5\％	${ }^{5 \%}$	${ }^{5 \%}$	5\％	${ }^{5 \%}$	5\％	${ }^{5 \%}$	${ }^{5 \%}$	5\％	${ }^{5 \%}$	${ }^{5 \%}$	${ }^{5 \%}$	5\％	5\％	${ }^{5 \%}$	5\％	${ }^{5 \%}$	5\％
2396	20，36，900	－orner	5	NT1	4%	$4{ }^{4 \%}$	4\％	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	0\％	\％	\％	\％	\％	\％	\％	\％\％	\％	\％\％	\％	\％
${ }^{2397}$	20，39，10	ne and is dedivivives	ems	EL	Prohibited items	U	－	－	\bigcirc	\bigcirc	－	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\checkmark	－	－	ט	U	ט	ט	ט	0
2238	20，39，190	Oner	fibied iems	EL		U	\checkmark	0	U	U	U	0	U	0	U	\bigcirc	U	U	ט	U	\bigcirc	\bigcirc	\checkmark	U
2239	2，399，910	－Nootine suphate	5	NT1	4\％	4%	${ }^{4 \%}$	${ }^{3}$	3\％	2\％	${ }^{2 \%}$	\％	0\％	\％\％	\％	\％	\％	\％	\％	\％	0\％	\％\％	\％	\％\％
2400	20，39，990	Onter	5	V1	\％	\％	4\％	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	0\％	0\％	\％	0\％	0\％	\％	0\％	0\％	\％	\％\％	0\％	\％	0\％
201	20，00，000	Sugars，chemically pure，other than sucrose， actose，maltose，glucose and fructose；suga ethers，sugar acetals and sugar esters，and their salts，other than products of heading 29．37， 29.38 or 29.39.	${ }^{5}$	vT1	4\％	${ }^{4 \%}$	4%	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％	\％	\％	\％	\％	\％	0\％	0\％	\％	\％	\％\％
2202	2941．0．11	－Nonsteiele	5	HsL	${ }^{5 \%}$	${ }^{5 \%}$	${ }^{5 \%}$	${ }^{5 \%}$	5\％	5\％	5\％	5\％	${ }^{5 \%}$	5\％	5\％	5%	5\％	5\％	5\％	${ }^{5 \%}$	${ }^{5 \%}$	${ }^{5 \%}$	5\％	5\％
${ }^{243}$	2241.10 .19	－Other	5	N1	4%	4\％	4\％	3\％	3\％	2\％	2\％	\％	\％	\％	\％	\％	0\％	\％	0\％	0\％	\％	\％\％	0\％	\％\％
$2{ }^{204}$	2241.1020	－Ampililin and it sals	5	NT	$4{ }^{4 \%}$	${ }^{4 \%}$	4%	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％\％	0\％	0\％	\％	\％	\％	\％	\％\％	\％	\％\％	\％	\％	0\％
2205	29，41，090	－Oner	5	VT1	${ }_{4}^{4 \%}$	${ }^{4 \%}$	4%	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	0\％	0\％	\％	\％	\％	\％	\％	\％	0\％	0\％	\％	\％	\％
$2{ }^{206}$	29，412，000		5	NT1	$4{ }^{4 \%}$	${ }^{4 / 8}$	4%	${ }^{3 \%}$	3\％	2%	${ }^{2 \%}$	0\％	0\％	\％	\％	\％	\％	\％	\％	0\％	0\％	\％	\％	\％
2407	29，413，000	－Teracylines and deir derivatives；sals hereoof	5	NT1	${ }^{4 \%}$	${ }^{4 \%}$	${ }^{4 \%}$	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	0\％	\％	\％	\％	0\％	0\％	0\％	\％	\％	0\％	\％\％	\％	0\％
2408	29，414，000	\％sals teret	5	N1	${ }^{4 \%}$	${ }^{4 \%}$	${ }^{4 \%}$	${ }^{3 \%}$	3\％	${ }^{2 \%}$	${ }^{2 \%}$	0\％	0\％	0\％	\％	0\％	\％	0\％	\％	0\％	0\％	\％	\％	\％
2409	29，415，000		5	HSL	${ }^{5 \%}$	${ }^{5 \%}$	${ }^{5 \%}$	${ }^{\text {5\％}}$	${ }^{5 \%}$	${ }^{5 \%}$	${ }^{5 \%}$	${ }^{5 \%}$	${ }^{5 \%}$	${ }^{5 \%}$	${ }^{5 \%}$	${ }^{5 \%}$	${ }^{5 \%}$	${ }^{5 \%}$	${ }^{5 \%}$	${ }^{5 \%}$	${ }^{\text {5\％}}$	${ }^{\text {5\％}}$	${ }^{5 \%}$	${ }^{5 \%}$
2410	29，419，00	－omer	5	NT	${ }^{4 \%}$	${ }^{4 \%}$	4\％	${ }^{3 \%}$	${ }^{3 \%}$	2\％	2\％	\％	\％	0\％	\％	\％	\％	\％	\％	\％	\％	\％\％	\％	\％\％
${ }^{2411}$	20，420，000	Other organic compounds．	5	HsL	${ }^{5 \%}$	${ }^{5 \%}$	5\％	5\％	${ }^{5 \%}$	5\％	5\％	5\％	${ }^{5 \%}$	${ }^{5 \%}$	5\％	5\％	5\％	5\％	5\％	5\％	5\％	5\％	5\％	5\％
$2{ }^{2412}$	30，012，00	${ }^{- \text {Extracts of flands or other organs or of their }}$	5	N1	$4{ }^{4 \%}$	$4{ }^{4 \%}$	4%	3\％	${ }^{3 \%}$	2\％	${ }^{2 \%}$	\％	\％	\％	\％	\％	\％	\％	0\％	\％	0\％	\％	\％	\％
24	30，99，000	－other	5	VT1	$4{ }^{4 \%}$	$4{ }^{4 \%}$	4\％	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	2\％	\％	\％	\％	0\％	\％	0\％	0\％	\％	\％	0\％	\％	0\％	0\％
$2{ }^{2414}$	$3002.10 \cdot 10$	－Pasasa protien solutions	5	V1	$4{ }^{4 \%}$	${ }_{4}^{4 \%}$	4%	${ }^{3 \%}$	3\％	${ }^{2 \%}$	2%	\％	0\％	\％	\％	\％\％	\％	\％	\％	0\％	\％	\％	\％	\％
$2{ }^{2415}$	3002.1 .30	－Antisera and immunological products，whether or not modified or obtained by means of biotechnological processes	5	V1	4\％	4%	4\％	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％
$2{ }^{2416}$	30，021，040	－－Haemogobin powder	5	HsL	5\％	${ }_{5 \%}$	5\％	5\％	5\％	5\％	5\％	5\％	5\％	5\％	5\％	5\％	5\％	5\％	5\％	5\％	${ }^{5 \%}$	5\％	5\％	5\％
$2{ }^{247}$	30，02，090	－Oner	5	HsL	${ }^{5 \%}$	${ }_{5 \%}^{5 \%}$	5\％	${ }^{5 \%}$	${ }^{5 \%}$	5\％	5\％	5%	${ }^{5 \%}$	${ }^{5 \%}$	${ }^{5 \%}$	5\％	${ }^{5 \%}$	${ }^{5 \%}$	5\％	5\％	${ }^{5 \%}$	5\％	${ }_{5 \%}$	${ }^{5 \%}$
$2{ }^{2418}$	30，02，010	－Telans toxid	5	HSL	5\％	5\％	5\％	5\％	5\％	5\％	5\％	5\％	5\％	5\％	5\％	5\％	5\％	5\％	5\％	5\％	5\％	5\％	5\％	5\％
249	30，22，020	－Pertussis，meases，meningitis or opio	5	HSL	${ }^{5 \%}$	5\％	5\％	${ }^{5 \%}$	${ }^{5 \%}$	5\％	${ }^{5 \%}$	5%	${ }^{5 \%}$	5%	5\％	5\％	${ }^{5 \%}$	${ }^{5 \%}$	5\％	5\％	${ }^{5 \%}$	5\％	${ }^{5 \%}$	5\％
2220	30，02，090	－other	5	HsL	5\％	${ }^{5 \%}$	${ }^{5 \%}$	${ }^{5 \%}$	${ }^{5 \%}$	5\％	${ }^{5 \%}$	${ }^{5 \%}$	${ }^{5 \%}$	${ }^{5 \%}$	${ }^{5 \%}$	${ }^{5 \%}$	${ }^{5 \%}$	${ }^{5 \%}$	5\％	${ }^{5 \%}$	${ }^{5 \%}$	${ }^{5 \%}$	${ }^{5 \%}$	${ }^{5 \%}$
$2{ }^{242}$	30，02，000	－vaccinestor veieiniay medicine	5	NT	$4{ }^{46}$	$4{ }^{4 \%}$	4\％	3\％	3\％	2\％	2\％	\％$\%$	0\％	\％	\％	\％	\％	0\％	\％	0\％	0\％	\％\％	\％	\％\％
242	30，29，000	Oner	5	HsL	5\％	${ }^{5 \%}$	5\％	${ }^{5 \%}$	5\％	5\％	${ }^{5 \%}$	5\％	${ }^{5 \%}$	5\％	5\％	5\％	5\％	${ }^{5 \%}$	\％	5\％	5\％	5\％	5\％	5\％
2423	3003：10．10	－Conaining amoxicilin（NW）orit sals	10	HsL	\％\％	10\％	\％	\％	0\％	\％\％	0\％	0\％	10\％	0\％	10\％	\％\％	0\％	0\％	\％	\％	\％	10\％	\％	．
224	3003．1020	Conaining ampecilin（NNN）orits salts	10	st	0\％	\％	10\％	\％	\％\％	\％	0\％	10\％	${ }^{8 \%}$	${ }^{7} \%$	6\％	5\％	4%	3\％	${ }^{2 \%}$	${ }^{1 \%}$	\％	\％	\％	\％
2245	30，03，090	－oner	10	Ist	10\％	10\％	${ }^{10 \%}$	0\％	0\％	${ }^{10 \%}$	10%	10\％	10\％	0\％	\％\％	\％\％	0\％	\％\％	\％	\％	10\％	0\％	\％	\％\％
${ }^{2426}$	30，32，000	－Conlaining otherantibioics	10	V1	9\％	${ }^{8 \%}$	6\％	${ }^{5 \%}$	$4{ }^{4 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	0\％	\％	0\％	\％	\％	0\％	\％	0\％	0\％	0\％	\％	\％	\％\％
${ }^{2427}$	30，03，100	\cdots Conaining insulin	10	V1	${ }^{9 \%}$	${ }^{8}$	6\％	${ }^{5 \%}$	${ }^{4 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	\％	0\％	\％\％	\％	\％	\％\％	\％	\％\％	\％	\％	\％	\％	\％
${ }^{2428}$	30，03，900	－Oner	10	V1	9\％	8%	6\％	${ }^{5 \%}$	4%	3\％	${ }^{2 \%}$	\％	\％	\％	\％	\％	\％	\％	\％\％	\％	\％	\％	\％	\％\％
$2{ }^{242}$	30，034，000	－Containing alkaloids or derivatives thereof but not contanining hormones or other products of heading 29．37 or antibiotics 29.37 or antibiotics	10	NT1	9\％	${ }^{8 \%}$	6\％	${ }^{5 \%}$	$4{ }^{4 \%}$	3\％	2\％	\％	\％	\％	0\％	0\％	0\％	0\％	0\％	0\％	0\％	0\％	0\％	\％
$2{ }^{238}$	30，03，000	－Other	10	Ist	10\％	10\％	10\％	0\％	0\％	10%	0\％	10\％	10\％	10\％	\％\％	0\％	0\％	\％	\％	\％	10\％	0\％	0\％	\％\％
${ }^{2431}$	3004.10 .15	$-\cdots$ Containing penicillin G（excluding penicillin G benzathine），phenoxymethy penicililin or salts thereof	10	${ }^{\text {st }}$	10\％	${ }^{10 \%}$	10\％	0\％	10\％	10\％	10\％	${ }^{10 \%}$	8\％	${ }^{7 \%}$	6\％	${ }^{5 \%}$	4%	${ }^{3} \%$	2\％	1\％	\％	0\％	\％	\％\％
${ }^{2432}$	3004．10．16	$\begin{aligned} & \text { - Containing ampicillin, amoxycillin or salts thereof } \\ & \text { of a kind taken orally } \end{aligned}$	10	ISL	10\％	10\％	10\％	0\％	10\％	10\％	10\％	0\％	10\％	10\％	0\％	0\％	0\％	0\％	\％\％	\％	0\％	\％\％	0\％	0\％
${ }^{2433}$	3004．10，19	－－．other	10	1st	\％	10\％	10\％	\％	0\％	10\％	10\％	10\％	10\％	10\％	\％	0\％	10\％	\％	\％	10%	10\％	\％	\％	\％
$2{ }^{234}$	3004.1021	－In ointmentom	10	st	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	8%	${ }^{7} \%$	6\％	5\％	4%	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{1 \%}$	\％	\％	\％	\％
$2{ }^{2355}$	3004.1029	Oner	10	HsL	\％\％	10\％	10\％	10\％	0\％	${ }^{10 \%}$	10\％	10\％	10\％	10\％	\％	\％	0\％	0\％	\％	\％	10\％	\％	\％	\％
${ }^{2236}$	010	－Containing gentamycin，lincomycin， sulfamethoxazole or their derivatives，of a kind taken orally or in ointment form	10	${ }^{\text {NT1 }}$	9\％	8%	6\％	5\％	4\％	${ }^{3 \%}$	${ }^{2 \%}$	\％	0\％	0\％	\％	\％	0\％	\％	0\％	0\％	\％	\％	\％	\％
$2{ }^{237}$	30，022，031	－Of a kind taken oraly	${ }^{10}$	V1	9\％	8%	6\％	5\％	4\％	${ }^{3 \%}$	${ }^{2 \%}$	0\％	0\％	0\％	\％	\％	\％	\％\％	\％\％	\％\％	\％	\％	\％	\％
${ }^{2438}$	30，022032	\cdots－ In onitmentiom	10	NT1	${ }^{9 \%}$	${ }^{8}$	6\％	${ }^{5 \%}$	4%	${ }^{3 \%}$	${ }^{2 \%}$	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％\％
$2{ }^{243}$	30，020，039	－Other	10	VT1	9\％	8\％	6\％	5\％	4\％	3\％	2\％	0\％	\％	0\％	\％	\％	0\％	\％	\％	\％	\％	\％	\％	\％
2440	30，042，071	\cdots Of a kind take orally orin oniment tom	10	Hst	0\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	0\％	0\％	10\％	0\％	10\％	10\％	10\％	0\％	0\％	\％\％
24	30，042，079	\cdots	10	V1	${ }^{9 \%}$	8\％	${ }^{6 \%}$	${ }^{5 \%}$	4%	3\％	2\％	0\％	\％	\％	\％\％	0\％	0\％	0\％	${ }^{0 \%}$	\％	\％	\％\％	\％	\％
242	30，022091	－Of a kind taken oraly orin oinment tom	10	Ist	\％	\％	10\％	\％\％	\％	\％\％	0\％	10\％	10\％	10\％	\％	\％	0\％	\％\％	\％	10\％	10\％	\％\％	10\％	10\％
$2{ }^{243}$	30，042099	－other	10	Hst	0\％	10\％	10\％	10\％	10\％	10\％	10%	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％
${ }^{244}$	30，04， 100	－Conaining insulin	10	HsL	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	\％	10\％	\％	\％	0\％
${ }^{245}$	30，043，210	－Connaining dexamentasone ortheridetrivives	10	N1	${ }^{9 \%}$	8%	6\％	5\％	4%	3\％	${ }^{2 \%}$	0%	\％	0%	\％\％	0\％	\％\％	0\％	0\％	0\％	0\％	\％\％	0\％	\％\％
${ }^{2446}$	30，043，240	－－Containing hydrocortisone sodium succinate or fluocinolone acetonide	10	IsL	0\％	10\％	10\％	\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	\％\％	${ }^{10 \%}$	\％
24	30，043，280	－－Other	10	Hst	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	${ }^{10 \%}$	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％
${ }^{2448}$	30，043，900	－Oner	10	NT1	9\％	${ }^{8 \%}$	6%	5\％	4%	${ }^{3} \%$	${ }^{2 \%}$	\％	0\％	\％	\％	0\％	0\％	\％\％	\％	0\％	\％	0\％	\％	\％
249	30，04，010	－Containing morphine or its derivatives，for	10	${ }^{\text {ISL }}$	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	\％	10\％	10\％	10\％	10\％
2450	20	－Containing quinine hydrochloride or dihydroquinine chloride，for injection	10	Hst	10\％	10%	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10%	10\％	10\％	10\％	\％\％	10\％	10\％	10\％	10\％
${ }^{2451}$	30，04，030	－－Containing quinine sulphate or bisulphate，of a kind taken orally	10	${ }^{\text {HSL }}$	10\％	${ }^{10 \%}$	10\％	${ }^{10 \%}$	${ }^{10 \%}$	${ }^{10 \%}$	10\％	10\％	10\％	10\％	10\％	${ }^{10 \%}$	10\％	10\％	10\％	0\％	10\％	10\％	10\％	10\％
${ }^{2452}$	30，04，040		10	HLL	10\％	10\％	10\％	\％\％	10\％	10\％	10\％	10\％	10\％	10\％	\％	10\％	10\％	10\％	10\％	\％	10\％	\％	${ }^{10 \%}$	\％\％
${ }^{2453}$	3 30，044，500		${ }^{10}$	${ }^{\text {ISL }}$	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	0\％	\％\％	10\％	\％\％	10\％	10\％	10\％	10\％
${ }^{2244}$	30，044，060	－Conalining treophlyne，of a knd takeno oraly	10	1st	10\％	10\％	${ }^{10 \%}$	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	0\％	${ }^{10 \%}$	0\％
$2{ }^{2455}$	30，044，070	－Conlaining atopone sulpale	${ }^{10}$	HSL	10\％	${ }^{10 \%}$	10\％	10\％	10\％	10\％	10\％	10\％	${ }^{10 \%}$	10\％	10\％	10\％	10\％	10\％	10\％	${ }^{10 \%}$	10\％	10\％	${ }^{10 \%}$	10\％
$2{ }^{2456}$	30，04，090	－Oner	10	V1	\％	${ }^{8 \%}$	6\％	5\％	4%	${ }^{3} \%$	${ }^{2 \%}$	－	\％	\％		\％	\％	\％\％	\％\％	－	\％	\％	\％	\％
245	30，04，010		10	HsL	10\％	10\％	10\％	10\％	10\％	10\％	${ }^{10 \%}$	${ }^{10 \%}$	10\％	${ }^{10 \%}$	${ }^{10 \%}$	${ }^{10 \%}$	10\％	10\％	10\％	10\％	${ }^{10 \%}$	${ }^{10 \%}$	${ }^{10 \%}$	${ }^{10 \%}$
2458	30，45，021	Of a kind takenoraly	10	HsL	10\％	${ }^{10 \%}$	10\％	${ }^{10 \%}$	10\％	10\％	10%	10\％	${ }^{10 \%}$	10\％	10\％	10\％	10\％	${ }^{10 \%}$	10\％	10\％	10\％	${ }^{10 \%}$	10%	0\％
$2{ }^{249}$	30，45，029	－Oner	10	sL	${ }^{10 \%}$	${ }^{10 \%}$	10\％	10\％	10\％	10\％	10\％	${ }^{10 \%}$	${ }^{8 \%}$	${ }^{7 \%}$	6\％	5\％	4%	3\％	${ }^{2 \%}$	${ }^{1 \%}$	0\％	\％	\％	0\％
2460	30，05，091	\cdots Connaining vinamin A, B or C	10	HsL	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％
$2{ }^{2461}$	30，45，099	－Omer	10	sL	10\％	${ }^{10 \%}$	10\％	10\％	10\％	10\％	10\％	10\％	${ }^{8 \%}$	${ }^{7 \%}$	6\％	5\％	4%	${ }^{3 \%}$	${ }^{2 \%}$	1\％	0\％	\％	0\％	\％
${ }^{2462}$	30，49，010	－Transdermal therapeutic system patches for the treatment of cancer or heart diseases	10	${ }^{\text {sL }}$	10\％	10\％	10\％	\％ 0	10\％	10\％	10\％	10\％	${ }^{\text {8\％}}$	${ }^{7 \%}$	6\％	${ }^{5 \%}$	4\％	3\％	${ }^{2 \%}$	${ }^{1 \%}$	\％	0\％	\％	0\％
${ }^{246}$	30，49，020	- Closed sterile water for inhalation，pharmaceutical grade	${ }^{10}$	${ }^{\text {HSL }}$	10\％	10\％	${ }^{10 \%}$	\％ 0	${ }^{10 \%}$	${ }^{10 \%}$	10\％	10\％	10\％	10\％	10\％	${ }^{10 \%}$	${ }^{10 \%}$	10\％	10\％	\％\％	10\％	10\％	0\％	10\％
2264	30，049，030	－Antispoics	10	Ist	10\％	10\％	10\％	${ }^{10 \%}$	${ }^{10 \%}$	10\％	10\％	10%	${ }^{10 \%}$	10\％	${ }^{10 \%}$	${ }^{10 \%}$	10\％	10\％	10\％	10\％	${ }^{10 \%}$	${ }^{10 \%}$	10\％	10\％
$2{ }^{2455}$	30，099，041	－Conlaining procaine hydrocolviride	10	${ }^{\text {sL }}$	10\％	${ }^{10 \%}$	10\％	${ }^{10 \%}$	${ }^{10 \%}$	10\％	10\％	${ }^{10 \%}$	${ }^{8 \%}$	${ }^{7} \%$	6\％	5\％	${ }^{4 \% 8}$	3\％	${ }^{2 \%}$	1\％	\％	\％\％	\％	\％\％
${ }^{2466}$	30，049，049	－Other	${ }^{10}$	Hst	10\％	${ }^{10 \%}$	${ }^{10 \%}$	${ }^{10 \%}$	${ }^{10 \%}$	${ }^{10 \%}$	${ }^{10 \%}$	${ }^{10 \%}$	${ }^{10 \%}$	10\％	10\％	${ }^{10 \%}$	${ }^{10 \%}$	${ }^{10 \%}$	\％\％	${ }^{10 \%}$	${ }^{10 \%}$	0\％	\％	10\％
246	30，049，051	$\begin{aligned} & \text {-- Containing acetylsalicylic acid, paracetamol or } \\ & \text { dipyrone (INN), of a kind taken orally } \end{aligned}$	10	${ }^{\text {sL }}$	10\％	${ }^{10 \%}$	\％\％	\％	0\％	\％	${ }^{10 \%}$	${ }^{10 \%}$	${ }^{8 \%}$	${ }^{7}$	${ }^{6 \%}$	5\％	4%	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{1 \%}$	\％	\％	\％	\％\％
2488	30，099，052	－Containing chopheniramine maleate	10	ISL	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	\％\％	10\％	0\％
246	30，049，053	Conaining dictorenac，ofa kind taken oraly	10	${ }^{\text {sL }}$	10\％	10\％	10\％	10\％	10\％	0\％	10\％	10\％	${ }^{8 \%}$	${ }^{7 \%}$	6\％	${ }^{5 \%}$	4%	3\％	${ }^{2 \%}$	${ }^{1 \%}$	\％	0\％	\％	\％
${ }^{2470}$	30，049，054	prioxicam（INN oribupoien	10	sL	10%	10%	10%	${ }^{10 \%}$	10%	10\％	10\％	10%	8%	${ }^{7}$	6\％	${ }^{5 \%}$	4%	3\％	${ }^{2 \%}$	1\％	\％	\％	\％	0\％

${ }^{2471}$	${ }^{33,04,0,055}$	－Oner，in inimentiom	10	st	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	${ }^{8 \%}$	${ }^{\text {7\％}}$	${ }^{6 \%}$	${ }^{5 \%}$	4\％	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{1 \%}$	\％	\％	\％\％	\％\％
472	30，04，0，59	－other	10	sL	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	8\％	${ }^{7} \%$	6\％	5\％	4\％	${ }^{3} \%$	${ }^{2 \%}$	${ }^{1 \%}$	${ }^{\circ}$	\％	\％	0\％
273	30，04，0，061	Conaining atemisinin，atesesuate orcho	10	st	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	\％	0\％	\％	10\％	10\％	\％	0\％	10\％	0\％	\％\％	0\％	
$2{ }^{274}$	30，04，062	－Containing pinaquine	10	st	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	8%	${ }^{7 \%}$	6\％	5\％	4\％	3\％	${ }^{2 \%}$	1\％	0\％	0\％	0\％	0\％
2475	30，04，0，03	\cdots Hebal medicaments	10	sL	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	8%	${ }^{7} \%$	6\％	${ }^{5 \%}$	4\％	3\％	${ }^{2 \%}$	1\％	0\％	\％	\％	0\％
$2{ }^{2476}$	30，04，0，69	Onter	10	sL	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	8%	7\％	6\％	${ }^{5 \%}$	4\％	${ }^{3 \%}$	${ }^{2 \%}$	1\％	\％	0\％	\％	0\％
2477	30，04，071	- Conatining piperazine or meendazole（NWN）	10	sL	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	8\％	${ }^{7 \%}$	6\％	5\％	4\％	3\％	${ }^{2 \%}$	${ }^{1 \%}$	0\％	\％	\％	\％\％
${ }^{2478}$	33，04，072	Hetal medicaments	10	sL	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	${ }^{8 \%}$	${ }^{7 \%}$	6\％	${ }^{5 \%}$	$4{ }^{4 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	1\％	0\％	\％	\％	\％
2479	30，04，0，79	Oner	10	st	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	8%	${ }^{7 \%}$	6\％	5\％	4%	3\％	${ }^{2 \%}$	1\％	\％	\％	\％	\％
2480	30，04，081	－Conaining deteroxamine，Ioriniection	10	st	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	0\％	0\％	${ }^{10 \%}$	\％
2481	30，04，082	\cdots－AnithVAlS medicamens	10	st	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	8%	${ }^{7} \%$	6\％	${ }^{5 \%}$	4\％	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{1 \%}$	0\％	0\％	\％	0\％
2482	30，04，089	－oner	10	st	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	${ }_{8}{ }^{\circ}$	${ }^{7} \%$	6\％	5\％	4\％	${ }^{3} \%$	${ }^{2 \%}$	${ }^{1 \%}$	\％	0\％	0\％	0\％
2483	30，04，091	Conaining sodium choride or glucose，tor intusion	10	${ }^{\text {st }}$	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	0\％	10\％	10\％	10\％	10\％	\％	10\％	10\％	10\％	\％	\％	\％
$2{ }^{284}$	30，04，0，92		10	sL	10\％	10\％	10\％	10\％	${ }^{10 \%}$	10\％	10\％	10\％	${ }^{8 \%}$	${ }^{7 \%}$	6\％	5\％	4\％	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{1 \%}$	\％	0\％	0\％	\％
2285	093	Ings sobitolo sabulamol，inoter io	10	${ }^{\text {sL }}$	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10%	${ }^{8 \%}$	${ }^{7 \%}$	${ }^{6 \%}$	5\％	${ }^{4 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	1\％	\％	\％	\％	\％
2286	30，04，094	－－－Containing cimetidine（INN）or ranitidine（INN） other than for injection	10	st	${ }^{10 \%}$	10\％	10\％	${ }^{10 \%}$	10\％	10\％	10\％	10\％	\％	10\％	0\％	10\％	0\％	\％o．	\％	0\％	\％	\％	\％	
2487	30，94，095	－－Containing phenobarbital，diazepam or chlorpromazine，other than for injection or infusion	10	st	10\％	10\％	10%	10%	10\％	0\％	10\％	10\％	8%	${ }^{7 \%}$	6\％	5\％	${ }^{4 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{1 \%}$	\％	\％	\％	0\％
${ }^{2488}$	30，049，096	－－－Nasal－drop medicaments containing naphazoline，xylometazoline or oxymetazoline	${ }^{10}$	sL	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	8%	${ }^{7 \%}$	6\％	5\％	4\％	3\％	${ }^{2 \%}$	1\％	\％	0\％	0\％	\％
$2{ }^{2489}$	30，04，0，098	\cdots－Hefara medicamens	10	${ }^{\text {sL }}$	10\％	10\％	10%	10\％	10\％	10\％	10\％	10\％	${ }^{8 \%}$	${ }^{7 \%}$	${ }^{\circ}$	${ }^{5 \%}$	${ }^{4 \%}$	3\％	${ }^{2 \%}$	${ }^{1 \%}$	0\％	0\％	\％	0\％
2490	30，04，099	Oher	10	st	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	${ }^{8 \%}$	7\％	6\％	5\％	4\％	${ }^{3 \%}$	2\％	1\％	\％	0\％	\％	\％
249	3305.10 .10	－－Impregnated or coated with pharmaceutical	5	Vr1	4\％	4\％	4\％	3\％	3\％	${ }^{2 \%}$	2\％	\％	0\％	\％	0\％	0\％	\％	0\％	\％	\％	0\％	0\％	\％	0\％
2992	33，05，0，90	－－other	5	NT1	4\％	4\％	4\％	3\％	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％	0\％	\％	\％	\％	\％	\％	0	\％	\％	\％
2493	30，05，0，10	Bancages	5	T1	4\％	4%	4\％	3\％	3\％	${ }^{2 \%}$	${ }^{2 \%}$	0\％	\％	0\％	0\％	\％	\％	0\％	\％	\％	\％	0\％	\％	0\％
${ }^{2949}$	30，05，020	Gaure	5	T1	${ }^{4 \%}$	4\％	4\％	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％\％	0\％	0\％	\％	0\％	\％	0\％	\％	\％	\％\％	\％	0\％	0\％
$2{ }^{295}$	30，05，9090	－Other	5	V1	4%	${ }^{4 \%}$	4\％	3\％	3\％	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％	\％	\％	\％	\％	\％	\％\％	\％	\％	\％	0\％
96	3006.10 .10	－－Sterile absorbable surgical or dental yarn；sterile surgical or dental adhesion barriers，whether or not absorbable	${ }^{5}$	${ }^{\text {NT1 }}$	4\％	4\％	4%	${ }^{3 \%}$	3\％	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％	\％	\％	\％	0\％	\％	\％	\％	\％	\％	\％
249	33，06，0，90	－－Other	5	NT1	4\％	${ }^{4 \%}$	4%	3\％	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	0\％	0\％	\％\％	0\％	0\％	0\％	0\％	\％	\％	\％	0\％	0\％	0\％
$2{ }^{2988}$	30，062，000	－Boodifruping reagens	5	NT1	4%	${ }^{4 \%}$	4%	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	0\％	0\％	\％	\％	\％	\％	0\％	0\％	0\％	0\％	\％	\％	\％
2499	30，06，010	－Barium sulpale，ofa k knot taken oraly	5	HSL	5\％	5\％	5\％	5\％	5\％	5\％	5\％	5\％	5\％	5\％	5\％	5\％	5\％	5\％	5\％	5\％	5\％	5\％	5\％	5\％
2500	30，06，302	－－Reagents of microbial origin，of a kind suitable for veterinary biological diagnosis	5	NT1	4\％	4\％	4\％	3\％	3\％	2\％	2\％	0\％	0\％	0\％	\％\％	0\％	0\％	0\％	\％	0\％	\％	\％	\％	\％
2501	33，06，3030	－OMer micoobil diagnosici reagens	5	HSL	${ }^{5 \%}$	5%	5\％	5\％	5\％	5\％	5\％	5\％	${ }^{5 \%}$	${ }^{5 \%}$	5\％	5\％	${ }^{5 \%}$	5\％	${ }^{5 \%}$	5\％	${ }^{5 \%}$	5\％	${ }^{5 \%}$	${ }^{5 \%}$
2502	30，06，300	－Oner	5	NT1	4%	4\％	4\％	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％	\％	\％	0\％	\％	\％	0\％	0\％	0\％	0\％	\％
2503	30，04，0，010	－Dental cemens and other dematalining	5	NT1	4\％	4\％	4\％	${ }^{3 \%}$	${ }^{3} \%$	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％	\％	\％\％	\％	\％	\％	\％	\％	\％	\％	\％
2504	30，064，020	－Boone reconstracion cemens	5	NT1	4%	4\％	4\％	3\％	3\％	${ }^{2 \%}$	2\％	0\％	0\％	0\％	\％	\％	\％	\％	\％	\％	\％	\％	0\％	0\％
2505	30，06，000	－Firstadab bexe and kis	5	V1	${ }_{4}^{4 \%}$	${ }^{4 \%}$	4\％	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	0\％	\％\％	\％	0\％	\％	0\％	\％	\％	0\％	\％	\％	\％
2506	33，06，000	－Chemical contraceptive preparations based on hormones，on other products of heading 29.37 or on spermicides	${ }_{5}$	NT1	$4{ }^{4 \%}$	${ }^{4 \%}$	$4{ }^{4 \%}$	3\％	3\％	${ }^{2 \%}$	${ }^{2 \%}$	0\％	0\％	\％	0\％	\％	\％	\％	\％	\％	0\％	0\％	\％	0\％
${ }^{2507}$	33，06，000		${ }^{5}$	NT1	4%	4\％	4\％	3\％	3\％	2\％	2\％	\％	\％\％	0\％	\％	0\％	\％\％	\％	\％\％	0\％	0\％	0\％	\％	\％\％
2508	30，069，100		5	NT1	4\％	4\％	4\％	3\％	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％\％	0\％	\％\％	\％\％	\％	\％	0\％	0\％	\％	0\％	0\％	0\％	0\％
2509	30，06，210	－－Of medicaments for the treatment of cancer， HIV／AIDS or other intractable diseases	5	NT1	4\％	4\％	4\％	3\％	3\％	${ }^{2 \%}$	2\％	0\％	0\％	0\％	0\％	0\％	\％	0\％	\％	\％	\％	0\％	\％	\％\％
2510	30，06，290	－．．oner	5	NT1	4\％	${ }^{4 \%}$	${ }^{4 \%}$	3\％	3\％	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％	\％	0\％	\％	0\％	\％	0\％	\％	\％	\％	0\％
2511	31，00，011	－Supplement fertilisers in liquid form，not hemically treated	5	NT1	4\％	4\％	4\％	3\％	${ }^{3 \%}$	${ }^{2 \%}$	2\％	\％	\％	0\％	0\％	\％	\％	\％	\％	\％	\％	\％	\％	0\％
2512	31，00，012	－Other，chemically teated	${ }^{5}$	NT1	4\％	${ }^{4 \%}$	4\％	3\％	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	0\％	\％\％	0\％	\％	0\％	0\％	\％	0\％	\％	0\％	\％	0\％
2513	31，00，019	－other	5	NT1	4%	$4{ }^{4 \%}$	4\％	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％	\％	\％	0\％	0\％	\％	0\％	0\％	\％	0\％	0%
2514	31，00，091	－－Supplement fertilisers in liquid form，not chemically treated	5	NT1	4\％	4\％	4\％	3\％	3\％	${ }^{2 \%}$	${ }^{2 \%}$	\％	0\％	\％	0\％	\％\％	\％	0\％	\％\％	\％	0\％	\％	0\％	\％
2515	31，00，092	Oiner，of a aima a rigin（other than vuano）． chemically treated	5	NT1	${ }^{4 \%}$	4\％	$4{ }^{4 \%}$	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	0\％	0\％	0\％	0\％	\％	\％	\％	\％	\％	\％	\％	0\％	\％
2516	31，00，0，099	－Oher	5	NT1	4\％	4\％	4\％	3\％	3\％	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	0\％	0\％	\％	\％	\％	\％	\％	\％	\％	\％	\％
2517	31，02，000	－Urea，whenere or roti naureous solution	5	NT1	4\％	4%	$4{ }^{4 \%}$	3\％	3\％	${ }^{2 \%}$	${ }^{2 \%}$	0\％	\％	\％	0\％	\％	\％	0\％	\％	\％	\％	\％	\％	\％\％
2518	31，02，100	－Ammonium suphate	5	V1	4\％	${ }^{4 \%}$	4\％	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	0\％	\％	\％	\％\％	\％	0\％	\％	\％	0\％	\％	\％	\％\％
2519	31，02，200	－Oner	5	NT1	4%	${ }^{4 \%}$	4\％	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	2\％	\％	0\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％
252	31，02，000	－Ammonium nitrate，whether or not in aqueous solution	${ }^{5}$	NT1	4\％	4\％	4\％	3\％	${ }^{3 \%}$	2\％	2%	\％	\％	0\％	\％	\％	\％	0\％	\％	\％	\％	\％	0\％	\％
2521	31，04，000	－Mixtures of ammonium nitrate with calcium carbonate or other inorganic non－fertilising substances substances	5	VT	4\％	4\％	4\％	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％
2522	31，02，000	－Sodium nitale	5	NT1	4\％	4\％	4\％	3\％	3\％	2\％	2\％	\％	\％	0\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％
${ }^{2523}$	31，02，000		${ }^{5}$	NT1	${ }^{4 \%}$	4\％	4\％	3\％	${ }^{3 \%}$	2%	${ }^{2 \%}$	0\％	\％	0\％	\％	\％	\％	\％	\％	0\％	0\％	0\％	0\％	\％
${ }^{2524}$	31，02，000	Mixurese of tuea and a ammonium nitate in aqueous Or anmonaca suluion	5	NT1	4\％	4\％	4\％	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％	0\％	\％	\％	\％	0\％	\％	\％	\％	\％	\％
2525	31，02，000	－Other，including mixtures not specified in the foregoing subheadings	${ }^{5}$	NT1	4\％	4\％	4\％	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	0\％	\％	\％	\％	\％	0\％	\％	\％	\％	\％	\％	\％
225	3103.10 .10	－Feedgrade	5	NT1	${ }^{4 \%}$	4\％	4%	3\％	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	0\％	\％\％	0\％	0\％	0\％	0\％	\％	\％	0\％	0\％	\％	\％
2257	31，03，0，90	－Onter	5	NT1	4%	${ }^{4 \%}$	4\％	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％	\％	\％	0\％	0\％	\％	0\％	0\％	\％	\％	\％
${ }^{2528}$	31，03，010	－Calcene p posponaiciceritises	5	NT1	4%	4%	4\％	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	0\％	\％	0\％	0\％	0\％	\％	\％	\％	0\％	0\％	\％	0\％
2529	31，03，0，90	－－oner	5	NT1	4\％	4\％	4%	3\％	3\％	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％
2530	31，02，2000	－Poassum choride	5	NT1	${ }^{4 \%}$	4\％	4\％	3\％	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％\％	0\％	\％\％	\％\％	\％	\％	0\％	\％	\％	\％\％	\％\％	0\％	0\％
253	31，04，000	－Poassium suphate	5	NT1	4\％	4\％	4\％	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％
2332	31，04，000	－Oner	5	NT1	$4{ }^{4 \%}$	4%	$4{ }^{4 \%}$	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	0\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％
253	3105．10．10	－－Superphosphates and calcined phosphatic fertilisers	5	NT1	4%	4\％	4\％	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	2\％	\％	\％	0\％	\％	\％	\％	0\％	\％	\％	\％	0\％	\％	\％
253	3105.1020	- －Mineral or chemical fertilisers containing two or three of the fertilising elements nitrogen，phosphorus and potassium	${ }^{5}$	NT1	4%	4\％	4%	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	0\％	\％	0\％	\％	\％	\％	\％	\％	\％	\％	\％
2535	31，51，090	－other	5	NT1	${ }^{4 \%}$	4\％	4\％	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	0\％	0\％	\％\％	0\％	0\％	0\％	0\％	0\％	0\％	0\％	0\％	0\％	0\％
2536	31，05，200	－Mineral or chemical fertilisers containing the three fertilising elements nitrogen，phosphorus and potassium	${ }^{5}$	NT1	4\％	4\％	4%	${ }^{3 \%}$	3\％	${ }^{2 \%}$	${ }^{2 \%}$	\％	0\％	\％	\％	0\％	\％	0\％	\％	\％	\％	\％	\％	\％
2537	31，05，000	－Diammonium hydrogenorthophosphate （diammonium phosphate）	5	NT1	4\％	4\％	4\％	3\％	3\％	2%	2\％	0\％	\％	\％	0\％	\％	0\％	\％	\％	\％	\％	\％	\％	\％
$2{ }^{258}$	31，04，000	－Ammonium dihydrogenorthophosphate （monoammonium phosphate）and mixtures thereof with diammonium hydrogenorthophosphate （diammonium phosphate）	5	NT1	4\％	4\％	4\％	3\％	3\％	2\％	2\％	\％\％	0\％	0\％	0\％	0\％	\％\％	0\％	\％\％	0\％	0\％	0\％	\％	0\％
2539	31，05，100	－Connaining nitales and phosphates	5	NT1	4\％	4\％	4\％	${ }^{3 \%}$	3\％	${ }^{2 \%}$	${ }^{2 \%}$	\％\％	\％	0\％	0\％	\％	0\％	\％	\％	0\％	0\％	0\％	0\％	\％
2540	31，05，900	－Oner	5	NT1	4\％	4\％	4\％	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％	\％	\％	0\％	\％	\％	\％	\％	\％	\％	0\％
2541	31，05，000		5	NT1	4\％	4\％	4\％	3\％	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	0\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％
${ }^{2542}$	31，05，000	－orner	5	NT1	4\％	4\％	4\％	3\％	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	0\％	0\％	${ }_{0} 0$	\％	\％	\％	\％	\％	\％	\％	0\％	\％	\％\％
${ }^{2543}$	32，01，000	Oubbracho extract	5	NT	${ }^{4 \%}$	$4{ }^{4 \%}$	${ }^{4 \%}$	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	0\％	0\％	\％	\％\％	\％	0\％	0\％	\％	\％	\％	\％\％	0\％	0\％
254	32，012，000	Watle extact	5	NT1	4\％	4%	4\％	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％\％
2545	32，019，010	bier	5	NT1	$4{ }^{4 \%}$	${ }^{4 \%}$	${ }^{4 \%}$	3\％	3\％	2%	2%	0\％	0\％	0\％	\％	0\％	\％	\％	\％	\％	0\％	0\％	\％	\％

香港•ASEAN FTAにかかる調査報告書

別添2－4 原産地品の関税撤廃スケジュール
（ラオス）

${ }^{2546}$	${ }^{32,019,090}$	Other	5	NT1	4\％	${ }^{4 \%}$	${ }^{4 \%}$	3\％	${ }^{\text {3\％}}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	0\％	0\％	0\％	0\％	\％	0\％	\％	0\％	0%	0\％	\％
2547	32，01，000		5	NT1	${ }^{4 \%}$	${ }^{4 \%}$	4%	3\％	3\％	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％
2548	32，02，000	－Oner	5	NT1	${ }^{46}$	4%	4%	3\％	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％\％	\％	0\％	0\％	\％	\％	\％	\％	\％	\％	\％	\％	\％\％
259	32，03，010	Of a kin usedin the lood of crink in insusies	5	NT1	4\％	4%	4%	${ }^{3} \%$	3\％	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％	\％	\％	\％	0\％	0	\％	\％	\％	\％	\％
2250	32，08，090	Oher	5	NT1	4\％	4\％	4%	3\％	3\％	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％	\％	0\％	0\％	\％	0\％	\％	0\％	0\％	0\％	0\％
2551	3204．11．10	Cruse	5	NT1	4\％	4%	4%	${ }^{3} \%$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％	\％	\％	\％	0\％	0\％	0\％	\％	\％	\％	0\％
2252	$32,041,190$	－Onher	5	NT1	4\％	4\％	4%	3\％	3\％	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％	0\％	\％	\％	\％	0\％	\％	\％	\％	\％	\％\％
253	$3204.12,10$	\cdots Acidyes	5	NT1	4\％	4%	4%	3\％	3\％	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％
2254	32，04，2，20	－Other	5	NT1	4\％	4\％	4%	3\％	3\％	2\％	${ }^{2 \%}$	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％
2255	32，04， 300	Basic dyes and preparations baseest thereon	5	NT1	4%	4%	4%	3\％	3\％	${ }^{2 \%}$	2%	\％	\％	\％	0\％	\％	\％	\％	0\％	\％	\％	\％	\％	\％
255	${ }^{32,04,4,400}$	Direct dyese and preapalions based thereon	5	NT1	4\％	4%	${ }^{4 \%}$	3\％	${ }^{3 \%}$	2%	${ }^{2 \%}$	\％\％	\％	0\％	\％\％	\％	0\％	0\％	0\％	\％	\％	\％	0\％	0\％
255	32，04，，500	$\begin{aligned} & \text {-- Vat dyes (including those usable in that state as } \\ & \text { pigments) and preparations based thereon } \end{aligned}$	5	NT1	4%	4%	${ }^{4 \%}$	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	0\％	0\％	\％	\％	\％	0\％	0\％	\％	\％	\％	\％	\％
$2{ }^{2588}$	32，04， 600	－Reacive dyes and preparaion s based thereon	5	${ }^{\text {NT1 }}$	4\％	4\％	4%	3\％	${ }^{3 \%}$	2%	${ }^{2 \%}$	0\％	\％	\％	\％	0\％	0\％	0\％	0\％	\％	\％	0\％	0\％	0\％
259	32，04，7，00	Pigmens and preparaions based thereon	5	${ }^{\text {NT1 }}$	4\％	4\％	4%	3\％	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	0\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	0\％	0\％
2560	32，04，，900	－－Other，including mixtures of colouring matter of two or more of the subheadings 3204.11 to 3204.19	5	${ }^{\text {NT1 }}$	4\％	4\％	4%	3\％	3\％	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	0\％	0\％	\％	0\％	\％	\％	\％	0\％	\％	\％	\％
2561	32，042，000		${ }^{5}$	NT1	4\％	4\％	4\％	3\％	3\％	2\％	${ }^{2 \%}$	0\％	\％	\％	0\％	\％	0\％	0\％	0\％	0\％	0\％	\％\％	\％	\％
2652	32，04，000	－other	5	NT1	4\％	4\％	$4{ }^{4 \%}$	3\％	${ }^{3 \%}$	2\％	${ }^{2 \%}$	0\％	\％	\％	\％	0\％	0\％	\％	0\％	\％\％	0\％	\％	0\％	0\％
2563	32，50，000	Colour lakes；preparations as specified in Note 3 to this Chapter based on colour lakes．	5	NT1	4%	4\％	4%	3\％	3\％	2\％	2%	0\％	\％	\％	0\％	0\％	0\％	0\％	\％	0\％	\％	\％	\％	\％
256	3206.11 .10	－．Pigmens	5	NT1	${ }^{4 \%}$	4%	4%	3\％	3\％	2\％	${ }^{2 \%}$	0\％	0\％	\％	0\％	\％	\％\％	\％\％	0\％	0\％	\％\％	0\％	\％	\％
2565	$32.06,190$	－－Oner	5	${ }^{\text {NT1 }}$	4\％	4%	4%	${ }^{3} \%$	${ }^{3} \%$	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％	\％	\％	\％\％	\％\％	\％	\％	\％	\％	\％	\％
2566	32，06，910	－Pgmens	5	NT1	4\％	\％	4\％	3\％	3\％	2\％	${ }^{2 \%}$	0\％	\％	\％	\％	\％	0\％	\％	\％	0\％	0\％	0\％	\％	\％\％
2567	32，06，1990	－Oner	5	NT1	4\％	4\％	4\％	3\％	3\％	2\％	2\％	0\％	\％	0\％	0\％	0\％	0\％	\％	\％\％	\％	0\％	\％	\％	\％
2568	32，062，010	－－Chrome yellow，chrome green and molybdate orange or red based on chromium compounds	5	NT1	4\％	4\％	4\％	3\％	3\％	2\％	${ }^{2 \%}$	\％	\％	\％\％	0\％	0\％	0\％	\％	\％	\％	\％	\％	\％	\％
2569	32，062，090	－oner	5	NT	${ }^{4 \%}$	4\％	${ }^{46}$	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	0\％	0\％	\％	0\％	0\％	0\％	0\％	0\％	0\％	0\％	0\％	\％	\％\％
2570	32，064，110	－Prepatioios	5	NT1	4\％	4\％	4%	3\％	3\％	2\％	${ }^{2 \%}$	\％	\％	\％	0\％	\％	\％	\％	\％	\％	\％	\％	\％	\％
2571	32，064，190	－other	5	NT1	4\％	4\％	4%	3\％	3\％	2\％	${ }^{2 \%}$	\％	0\％	0\％	0\％	\％	\％\％	0\％	\％	\％\％	0\％	0\％	\％	\％
2572	32，064，210	${ }^{-P \text { Prepataions }}$	5	NT1	4%	4\％	4%	3\％	3\％	2\％	${ }^{2 \%}$	\％\％	\％	\％\％	0\％	0\％	0\％	0\％	0\％	\％	0\％	0\％	0\％	\％
2573	32，064，290	Other	5	NT1	${ }^{4 \%}$	4%	4%	${ }^{3 \%}$	3\％	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％	\％\％	0\％	\％	\％	\％\％	\％	0\％	\％	\％	\％
2574	32，06，9，90	－Preparaions	5	NT1	4\％	4\％	4%	3\％	3\％	${ }^{2 \%}$	${ }^{2 \%}$	\％	0\％	0\％	0\％	\％	0\％	0\％	0\％	\％	\％	\％	\％	\％
2275	32，04，990	Onter	5	NT1	4%	4%	4%	3\％	3\％	2\％	2%	0\％	0\％	0\％	\％	\％	\％\％	0\％	0\％	0\％	0\％	0\％	0\％	\％
2576	32，06，010	－Preapations	5	NT1	4\％	4%	4%	3\％	3\％	2%	2%	\％	\％\％	0\％	\％	0\％	0\％	\％	\％	0\％	0\％	\％\％	\％	\％
2577	32，06，909	－Oner	5	V1	$4{ }^{4 \%}$	4%	4%	3\％	${ }^{3}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％	\％	\％	0\％	0\％	\％	\％	\％	\％	\％	\％
2578	32，07， 000	－Prepared pigments，prepared opacifiers，prepared colours and similar preparations	${ }^{5}$	NT1	4\％／	4\％	4%	3\％	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	0\％	\％	\％	\％	\％\％	\％	0\％	\％	\％	\％\％	\％	\％\％
2579	32，02，010	－－Enameltits	5	NT1	4\％	4\％	4%	3\％	3\％	2\％	2\％	0\％	\％	0\％	0\％	0\％	0\％	0\％	\％	0\％	0\％	0\％	\％\％	\％
2580	32．072，090	－－Oher	5	NT1	${ }^{4 \%}$	4%	4%	3\％	3\％	2%	${ }^{2 \%}$	\％	0\％	\％\％	0\％	0\％	\％	\％	\％\％	0\％	\％\％	\％\％	\％	0\％
2281	32，73，000	－Luquid lustes and simila r peparaions	5	NT1	4\％	4%	4%	3\％	3\％	2\％	${ }^{2 \%}$	\％\％	\％	\％\％	0\％	0\％	0\％	0\％	0\％	0\％	0\％	0\％	\％\％	0\％
2282	32，04，000	－Glass frit and other glass，in the form of powder， granules or flakes	5	NT1	4\％	4\％	4%	3\％	3\％	2%	${ }^{2 \%}$	\％	\％	0\％	0\％	\％	0\％	\％	0\％	\％	\％	0\％	\％	0\％
258	3208．10．11	．－．Of a kind used in denisisty	${ }^{20}$	${ }^{\text {EL }}$	\bigcirc	\bigcirc	\checkmark	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	U	－	0	\bigcirc	\bigcirc	，	\bigcirc	U	\bigcirc	\bigcirc	\bigcirc
2584	3208.10 .19	－－omer	${ }^{20}$	EL	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	－	\bigcirc	\bigcirc	\bigcirc	U	\bigcirc	\bigcirc	\bigcirc	U	U	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
2285	32，08，090	－other	${ }^{20}$	EL	－	0	ט	ט	0	0	O	O	0	U	0	U	\bigcirc	0	U	U	U	U	0	U
2586	32，082，940	－Antiforing or aniticorossive panins	${ }^{20}$	EL	－	\bigcirc	－	－	0	0	\bigcirc	${ }^{\circ}$	－	U	\bigcirc	0	${ }^{\circ}$	${ }^{\circ}$	\bigcirc	\bigcirc	\bigcirc	${ }^{\circ}$	${ }^{\circ}$	\bigcirc
2587	32，082，070	－Vamishes（ninucuding laculuss，of a kind used in denistry	${ }^{20}$	${ }^{\text {EL }}$	U	U	u	U	U	${ }^{\circ}$	\checkmark	－	U	u	U	u	u	u	U	\checkmark	u	\checkmark	－	U
2588	32，082，090	－－oner	${ }^{20}$	EL	U	\bigcirc	\bigcirc	U	U	U	U	U	U	0	U	U	U	U	U	U	\bigcirc	U	U	U
2289	32，09，011	Ofa kind usedi i denilisty	${ }^{20}$	IsL	\％	\％\％	20\％	\％	20\％	0\％	0\％	20\％	20\％	20\％	20\％	20\％	0\％	\％\％	20\％	20\％	20\％	\％	20\％	\％
2250	32，09，019	Onler	${ }^{20}$	${ }^{\text {HSL }}$	0\％	20\％	${ }^{20 \%}$	${ }^{20 \%}$	${ }^{20 \%}$	20\％	20\％	20\％	20\％	20\％	20\％	20\％	20\％	20\％	20\％	20\％	20\％	20\％	20\％	20\％
2291	32，09，021	Ofa kind usedin denisisty	${ }^{20}$	${ }^{\text {HSL }}$	20\％	20\％	${ }^{20 \%}$	20\％	20\％	20\％	20\％	20\％	20\％	20\％	20\％	20\％	20\％	20\％	20\％	20\％	20\％	20\％	20\％	20\％
2292	32，08，029	－oner	${ }^{20}$	${ }^{\text {HSL }}$	20\％	20\％	${ }^{20 \%}$	20\％	20\％	20\％	20\％	20\％	20\％	20\％	20\％	20\％	20\％	20\％	20\％	20\％	20\％	20\％	20\％	20\％
2293	32，08，0，90	－other	${ }^{20}$	HSL	20\％	20\％	20\％	20\％	20\％	20\％	20\％	20\％	20\％	20\％	20\％	20\％	20\％	\％	20\％	\％	20\％	\％\％	\％	20\％
259	3209.10 .10		${ }^{20}$	EL	\bigcirc	－	\bigcirc	\bigcirc	\bigcirc	\checkmark	\bigcirc	\bigcirc	\bigcirc	U	\bigcirc	\bigcirc	\bigcirc	\bigcirc	U	\bigcirc	\bigcirc	ט	－	\bigcirc
2295	32，09，040	－Leanere pants	${ }^{20}$	EL	－	U	U	U	U	－	\bigcirc	U	U	U	0	U	U	－	U	0	U	U	U	－
2596	32，09，0，050	－A Anitioning or aniticorosive panits	${ }^{20}$	EL	－	＂	U	U	0	${ }^{\circ}$	\checkmark	\checkmark	，	U	U	0	U	－	＂	＂	0	u	U	\bigcirc
2597	32，09，090	－Oner	${ }^{20}$	${ }^{\text {EL }}$	${ }^{0}$	0	\bigcirc	U	\bigcirc	0	${ }^{\circ}$	${ }^{\circ}$	\bigcirc	U	－	${ }^{\circ}$	${ }^{\circ}$	ט	ט	U	\bigcirc	U	U	U
2598	32，09，000	－Oner	${ }^{20}$	${ }^{\text {EL }}$	0	0	\bigcirc	U	\bigcirc	U	0	0	U	U	0	0	0	U	\bigcirc	0	\bigcirc	U	\bigcirc	\bigcirc
259	32，10，010	－Vansises（inculing lacuues）	${ }^{20}$	${ }^{\text {EL }}$	\bigcirc	U	－	ט	\bigcirc	\bigcirc	\bigcirc	ט	ט	U	0	U	ט	ט	ט	0	\bigcirc	ט	U	U
2200	32，10，020	－Disiempess	${ }^{20}$	${ }^{\text {EL }}$	\bigcirc	\bigcirc	ט	\bigcirc	\bigcirc	ט	\bigcirc	\bigcirc	，	U	－	\bigcirc	U	－	ט	0	\bigcirc	\checkmark	\bigcirc	\bigcirc
2201	32，10，0，30	－Prepared water pigments of a kind used for finishing leather	${ }^{20}$	${ }^{\text {EL }}$	¢	\bigcirc	\bigcirc	0	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	U	O	U	\bigcirc	ט	＊	ט	0	ט	\bigcirc	0
2202	32，100，050	－Popyreetane tar coatigs	${ }^{20}$	${ }_{\text {EL }}$	\bigcirc	\bigcirc	0	－	0	U	U	，	U	0	U	U	U	\bigcirc	U	U	0	，	\bigcirc	U
2803	32，10，091		${ }^{20}$	${ }^{\text {EL }}$	\bigcirc	\bigcirc	0	0	\bigcirc	\bigcirc	0	\bigcirc	－	0	0	\bigcirc	\bigcirc	0	－	－	\bigcirc	－	\bigcirc	\bigcirc
2204	32，100，099	－O．oner	${ }^{20}$	EL	\bigcirc			\checkmark	，	－	，	${ }^{\circ}$	\checkmark	U	U	ט	\bigcirc		U	\bigcirc	\bigcirc	0	\bigcirc	\bigcirc
2205	32，10，000	Preapead driers．	5	${ }^{\text {NT1 }}$	4\％	4\％	4%	${ }^{3 \%}$	${ }^{3} \%$	${ }^{2 \%}$	${ }^{2 \%}$	\％	0\％	\％	0\％	\％	0\％	0\％	0\％	\％	\％	\％	\％	\％
2206	32，12，000	－Stamping fols	5	NT1	4\％	4\％	4%	3\％	3\％	2\％	2\％	0\％	\％	0\％	\％	0\％	0\％	0\％	0\％	0\％	0\％	\％	\％	\％
2207	${ }^{32,12,0,011}$	${ }^{\text {Aluminuium pase }}$	${ }^{5}$	N1	4\％	4\％	4%	3\％	${ }^{3 \%}$	2\％	${ }^{2 \%}$	\％\％	\％	\％\％	\％\％	0\％	\％\％	\％	0\％	\％\％	\％\％	\％	\％	\％
2208	32，12，013	White lead dispersed in oil	5	NT1	4\％	4\％	4%	3\％	3\％	2\％	${ }^{2 \%}$	\％	\％	\％	\％	\％	\％	\％	\％\％	0\％	\％	\％	\％	\％
2209	32，12，0，14	－otre，for reatar	5	${ }^{\text {NT1 }}$	4\％	4%	4%	${ }^{3 \%}$	${ }^{3} \%$	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	0\％
22610	32，12，0，19	－other	5	NT1	4\％	4%	4%	${ }^{3 \%}$	${ }^{3 \%}$	2%	${ }^{2 \%}$	\％	\％	\％	\％	\％	0\％	\％\％	\％\％	\％	\％	\％\％	\％	\％
2261	32，12，021	Of a kind used in the tod of ofdink industries	5	NT1	4\％	4\％	4\％	3\％	3\％	2%	2\％	\％\％	0\％	\％\％	0\％	0\％	\％	\％	\％\％	0\％	0\％	0\％	\％	\％\％
2212	32，12，022	－Oner，dies	5	${ }^{\text {NT1 }}$	4\％	4\％	4%	${ }^{3 \%}$	${ }^{3} \%$	${ }^{2 \%}$	${ }^{2 \%}$	0\％	0\％	\％	\％	\％	0\％	0\％	0\％	\％	\％	\％	\％	\％
2613	32，12，029	－－other	5	NT1	4\％	4%	4%	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％
226	32，13，1，000	－Colurs insels	5	${ }^{\text {NT1 }}$	4\％	4\％	4%	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	0\％	\％	0\％	\％	0\％	0\％	0\％	\％	\％	\％	\％	\％
22615	32，139，000	－Oner	5	${ }^{\text {NT1 }}$	4\％	4\％	4%	3\％	3\％	2\％	${ }^{2 \%}$	\％\％	\％	\％\％	0\％	0\％	\％\％	\％\％	\％\％	0\％	0\％	0\％	\％	\％
226	32，14，000	－Glaziers＇putty，grafting putty，resin cements， caulking compounds and other mastics；painters＇ fillings	5	${ }^{\text {NT1 }}$	4\％	4\％	4%	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	0\％	\％	0\％	\％	\％	\％\％	0\％	\％	0\％	\％	\％	\％	\％
2617	32，14，000	－other	5	NT1	4%	4\％	4\％	3\％	3\％	2\％	${ }^{2 \%}$	\％\％	\％	0\％	0\％	0\％	0\％	\％	0\％	0\％	0\％	0\％	\％	\％
22618	3215.11 .10	－utraviolet cuabel ins	5	${ }^{\text {NT1 }}$	4\％	4\％	4\％	${ }^{3 \%}$	${ }^{3} \%$	${ }^{2 \%}$	${ }^{2 \%}$	0\％	\％\％	0\％	0\％	0\％	0\％	\％\％	0\％	0\％	0\％	0\％	\％	\％
2619	32，15，190	Onter	5	${ }^{\text {NT1 }}$	4%	4%	4%	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％\％	0\％	\％\％	\％	\％	0\％	0\％	\％	\％	\％\％	\％	\％
2220	32，15，900	－other	5	NT1	4\％	4%	4%	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％
2221	32，15，010	－Caton mass of akind used to manutacture one－	${ }^{5}$	NT1	4\％	4\％	4\％	${ }^{3 \%}$	${ }^{3 \%}$	2%	2%	0\％	0\％	0\％	0\％	0\％	\％\％	\％	0\％	\％	0\％	\％	\％	${ }^{0 \%}$
2222	32，15，0，60	－－Orawivg ink and witing ink	5	NT1	4\％	4%	4%	3\％	3\％	2\％	${ }^{2 \%}$	\％	0\％	0\％	0\％	0\％	0\％	0\％	0\％	\％	0\％	\％	\％	\％
2223	32，159，070	－－Ink of a kind suitable for use with duplicating machines of heading 84.72	${ }^{5}$	NT1	4%	4\％	4%	3\％	3\％	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％	0\％	\％	0\％	\％	\％	\％	\％	0\％	\％	${ }^{0}$
224	32，15，090	－Onter	5	NT1	4%	4%	4%	3\％	3\％	2\％	${ }^{2 \%}$	\％	0\％	\％	\％	0\％	\％	\％\％	0\％	0\％	0\％	0\％	\％	0\％
2285	33，01，200	－Oforane	5	${ }^{\text {NT1 }}$	4\％	4\％	4%	${ }^{3 \%}$	${ }^{3} \%$	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％	\％\％	\％	\％\％	\％\％	\％\％	\％	\％	\％	\％	\％
2236	${ }^{33,01,3,300}$	－oflemon	5	NT1	4%	4%	4%	${ }^{3} \%$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％
2267	${ }^{33,011,900}$	－Oner	5	NT1	4\％	4\％	4\％	3\％	3\％	${ }^{2 \%}$	${ }^{2 \%}$	\％\％	\％	\％\％	0\％	0\％	\％\％	0\％	0\％	0\％	0\％	\％	\％	\％
228	33，012，400	－Of pepeemmint（Mentra pipemia	5	NT1	4\％	4%	4%	3\％	3\％	${ }^{2 \%}$	${ }^{2 \%}$	\％	0\％	0\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％
228	33，012，500	－Ofoterem mins	5	NT1	4%	4%	${ }^{4 / 8}$	3\％	3\％	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％

${ }^{2630}$	33，012，900	Onter	5	NT1	4\％	4\％	${ }^{4 \%}$	${ }^{3 \%}$	3\％	${ }^{2 \%}$	2\％	0\％	0\％	\％\％	\％	0\％	\％	0\％	\％	\％	\％	\％	\％	\％\％
$2{ }^{2631}$	33，013，000	Resinods	5	NT	4\％	4\％	4\％	3\％	${ }^{3 \%}$	${ }^{2 \%}$	2\％	0\％	\％\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	${ }^{\circ}$
2232	33，019，010	－Aqueous distillates and aqueous solutions of	5	NT	$4{ }^{4 \%}$	4%	4%	3\％	3\％	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％
2263	33，019，090	－－oter	5	N1	4\％	4%	4\％	${ }^{3 \%}$	3\％	${ }^{2 \%}$	${ }^{2 \%}$	\％	0\％	\％	0\％	\％	\％	\％	\％	\％	0\％	\％	\％	\％
$2{ }^{2634}$	3302：10．10	in the manufacture of alcoholic beverages，in liquid form	5	${ }^{\text {NT1 }}$	4%	4\％	4\％	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％	\％	\％	\％	0\％	0\％	0\％	\％	\％	\％	\％
2285	3302.10 .20		${ }^{5}$	NT	4\％	4\％	4\％	3\％	3\％	${ }^{2 \%}$	2\％	0\％	0\％	0\％	0\％	\％	0\％	0\％	\％	\％	0\％	\％	\％	\％
2236	33，01，090	－Onter	5	N1	4%	4%	4\％	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	0\％	0\％	\％	\％	0\％	0\％	0\％	\％	\％	0\％	0\％	0\％	\％
2287	33，02，000	－Oher	5	V1	4%	${ }^{4 \%}$	${ }^{4 \%}$	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	0\％	0\％	0\％	0\％	0\％	\％	\％	\％	\％	0\％	0\％	\％\％
2288	33，03，000	Pertumes and toile waters．	${ }^{20}$	EL	，	U	－	\bigcirc	U	\bigcirc	ט	\bigcirc	－	ט	，	\bigcirc	U	U	U	ט	\bigcirc	\bigcirc	\bigcirc	ט
$2{ }^{2639}$	33，04，000	－Lip maxe－up prepeations	${ }^{20}$	EL	U	\bigcirc	－	U	\bigcirc	\bigcirc	U	\bigcirc	U	ט	－	\bigcirc	U	U	U	U	\bigcirc	\bigcirc	U	\bigcirc
22^{260}	33，02，200	－Eve make－up preparaions	${ }^{20}$	EL	\bigcirc	\bigcirc	\bigcirc	U	\bigcirc	\bigcirc	U	\bigcirc	U	\bigcirc	\bigcirc	U	U	\bigcirc	\bigcirc	\bigcirc	U	\bigcirc	U	\bigcirc
2264	33，04，000	Menicure and pedicure perepations	${ }^{20}$	HSL	20\％	20\％	20\％	20\％	20\％	20\％	20\％	20\％	20\％	20\％	20\％	20\％	${ }^{20 \%}$	20\％	20\％	\％\％	0\％	\％\％	20\％	20\％
$2{ }^{264}$	33，04， 100	Powders，whenere or oro compressed	${ }^{20}$	EL	U	－	0	O	U	U	U	\bigcirc	0	\bigcirc	\bigcirc	\bigcirc	U	U	\checkmark	\checkmark	\bigcirc	\checkmark	U	\checkmark
$2{ }^{2643}$	33，44，920	\cdots Antiacene creams	${ }^{20}$	IsL	20\％	20\％	0\％	20\％	${ }^{20 \%}$	20\％	0\％	20\％	0\％	0\％	${ }^{20 \%}$	20\％	${ }^{20 \%}$	20\％	20\％	20\％	0\％	${ }^{20 \%}$	20\％	20\％
2264	33，04，930	\cdots Oner flace or skin creans and blions	${ }^{20}$	HsL	20\％	20\％	20\％	20\％	20\％	20\％	20\％	20\％	20\％	20\％	20\％	${ }^{20 \%}$	${ }^{20 \%}$	20\％	20\％	20\％	20\％	20\％	20\％	20\％
286	33，04，990	－－Other	${ }^{20}$	HSL	20\％	20\％	20\％	20\％	20%	20\％	20\％	20\％	20\％	20\％	${ }^{20 \%}$	20\％	${ }^{20 \%}$	20\％	20\％	20\％	20\％	20\％	20\％	20\％
$2{ }^{2646}$	3385.10 .10	－Having antitungal properies	${ }^{20}$	HSL	20\％	20\％	20\％	20\％	${ }^{20 \%}$	20\％	20\％	20\％	20\％	20\％	${ }^{20 \%}$	${ }^{20 \%}$	${ }^{20 \%}$	20\％	20\％	${ }^{20 \%}$	20\％	20\％	20\％	20\％
$2{ }^{2647}$	33，05，090	－Oner	${ }^{20}$	HsL	20\％	20\％	20\％	20\％	20\％	20\％	20\％	20\％	20\％	20\％	20\％	20\％	${ }^{20 \%}$	20\％	20\％	20\％	20\％	20\％	20\％	\％\％
${ }^{2648}$	33，05， 000	Preparatios tor permanen weing orstaig	${ }^{20}$	EL	\bigcirc	\bigcirc	\bigcirc	U	O	\bigcirc	\bigcirc	－	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	－	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
$2{ }^{2649}$	33，05，000	－Harracuers	${ }^{20}$	HsL	0\％	${ }^{20 \%}$	20\％	${ }^{20 \%}$	0\％	20\％	20\％	${ }^{20 \%}$	20\％	0\％	${ }^{20 \%}$	0\％	0\％	20\％	20\％	20\％	20\％	\％\％	0\％	20\％
2250	33，55，000	－Oher	${ }^{20}$	IsL	20\％	20\％	20\％	20\％	0\％	20\％	20\％	20\％	20\％	20\％	${ }^{20 \%}$	20\％	${ }^{20 \%}$	20\％	20\％	20\％	20\％	20\％	20\％	20\％
2251	3306．10，10	－Prophyacicip pases or orowders	${ }^{20}$	EL	${ }^{\circ}$	${ }^{\circ}$	－	${ }^{0}$	－	${ }^{\circ}$	U	${ }^{\circ}$	－	${ }^{\circ}$	${ }^{\circ}$	－	${ }^{\circ}$	${ }^{0}$	－	${ }^{\circ}$	－	－	－	\bigcirc
265	33，061，090	－Other	${ }^{20}$	${ }^{\text {EL }}$	\bigcirc	0	0	0	0	0	U	\bigcirc	\bigcirc	0	\bigcirc	\bigcirc	U	0	0	0	0	0	\bigcirc	\bigcirc
$2{ }^{2653}$	33，02，000		${ }^{20}$	${ }^{\text {EL }}$	－	\bigcirc	\bigcirc	\bigcirc	U	\bigcirc	U	\bigcirc	－	\bigcirc	－	\bigcirc	U	0	\bigcirc	\bigcirc	－	0	－	U
2264	33，06，000	－Oner	${ }^{20}$	EL	\bigcirc	U	U	\bigcirc	U	0	U		，	，	U	U	\bigcirc	0	\checkmark	0	0	U	ט	U
2265	33，07，000	－Presshave，Shaving oraters Shavepepeparaions	10	N2	\％	\％	\％	${ }^{8}$	${ }^{6}$	${ }^{6 \%}$	${ }^{5 \%}$	${ }^{5 \%}$	4%	4%	3\％	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％	\％	\％	\％
256	33，02，000	－Peasonal deoodorants and antipespepiants	10	N2	\％	\％	8\％	8%	6\％	6\％	5\％	5\％	${ }^{4 \%}$	4\％	${ }^{3 \%}$	3\％	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％	\％	\％\％	\％
2265	33，07，000	－Pertumed bath salts and other bath preparations	10	N2	\％	\％	8%	${ }^{8 \%}$	6\％	6\％	5\％	5\％	4\％	4\％	3\％	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	0\％	0\％	\％	\％
$2{ }^{2658}$	33，04， 110	$\begin{aligned} & \hline \text { - Scented powders (incense) of a kind used } \\ & \text { duuring reigious rites } \end{aligned}$	10	N2	\％	\％	${ }^{8 \%}$	${ }^{8 \%}$	6\％	6\％	5\％	5\％	${ }^{4 \%}$	4\％	${ }^{\text {3\％}}$	3\％	2\％	${ }^{2 \%}$	\％	\％	\％	0\％	\％	\％\％
2659	33，04， 190	－－－oter	10	N2	\％	9\％	${ }^{8 \%}$	${ }^{8 \%}$	6\％	6\％	5\％	5\％	${ }^{4 \%}$	${ }_{4 \%}$	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	0\％	0\％	\％	0\％	\％	\％\％
2260	33，04，9，90	$\begin{array}{\|l} \hline- \text { Room perfuming preparations, whether or not } \\ \text { having disinfectant properties } \\ \hline \end{array}$	10	NT2	${ }^{9}$	9\％	\％	8\％	6\％	6\％	5\％	5\％	4\％	${ }^{4 \%}$	${ }^{3} \%$	${ }^{3 \%}$	2\％	${ }^{2 \%}$	\％	\％	0\％	\％	\％	0\％
2261	33，04，990	－－Oner	10	N2	\％	9\％	8%	${ }^{8 \%}$	6\％	6\％	5\％	5\％	4\％	4%	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％	\％	\％	\％
2662	33，79，010	－Animat oioiet peparations	10	N2	9\％	9\％	8%	${ }^{8 \%}$	6\％	6\％	5\％	5\％	4\％	4%	3\％	3\％	${ }^{2 \%}$	2\％	0\％	0\％	0\％	0\％	0\％	0\％
2263	33，07，030	－Papers and tissues，impregnated or coated with perfume or cosmetics	10	N2	9\％	\％	${ }^{8 \%}$	${ }^{8 \%}$	6\％	6\％	5\％	5\％	${ }^{4 \%}$	4\％	3\％	3\％	${ }^{2 \%}$	${ }^{2 \%}$	0\％	0\％	\％	\％	\％\％	\％
2264	33，07，040	－Other perfumery or cosmetics，including depilatories	10	HSL	0\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	0\％	10\％	\％\％
2665	33，79，050	－Conlact lens or atiticial eye solutions	10	NT2	\％	\％	8\％	8\％	6\％	6\％	5\％	5\％	4\％	4%	3\％	3\％	2\％	2\％	\％	0\％	0\％	0\％	\％	\％
2266	33，79，090	－Oner	10	N2	\％$\%$	\％	8%	${ }^{8 \%}$	6\％	6\％	5\％	5\％	4\％	$4{ }^{4 \%}$	3\％	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	0\％	\％\％	\％\％	\％	\％	\％
2267	$3301.11 / 10$	\cdots Medicaled products	${ }^{30}$	EL	U	0	U	ט	ט	U	ט	0	0	¢	U	0	0	ט	ט	U	U	ט	ט	ט
2268	3401．11：20	－Bats soap	30	EL	U	0	U	U	U	U	U	U	U	U	U	U	U	U	U	U	\bigcirc	\bigcirc	U	\bigcirc
2269	3401．1．1．30	O．Other，of felt or nonwovens，impregnated， coated or covered with soap or detergent	${ }^{30}$	EL	－	0	＂	－	U	\bigcirc	0	0	0	\bigcirc	－	0	＂	－	＂	U	U	U	－	${ }^{\circ}$
2870	34，01，190	\cdots	${ }^{30}$	EL		\checkmark	0	\bigcirc	－	\bigcirc	0	\bigcirc	\bigcirc	\bigcirc	－	，	\bigcirc	U	\bigcirc	\bigcirc	\bigcirc	U	0	\bigcirc
$2{ }^{2671}$	34，01，910	\cdots Of felt or nonwovens，impregnated，coated or covered with soap or detergent	${ }^{20}$	EL	U	O	0	0	0	0	U	0	0	0	－	U	U	0	0	0	0	－	－	\bigcirc
$2{ }^{2672}$	34，01，990	\cdots	${ }^{20}$	${ }_{\text {EL }}$	U	\checkmark	0	\bigcirc	U	U	\bigcirc	U	\bigcirc	\bigcirc	\bigcirc	\checkmark	U	\bigcirc	\bigcirc	\checkmark	\checkmark	\checkmark	\checkmark	\bigcirc
22^{273}	34，012，020	－Soap chips	${ }^{20}$	EL	U	ט	ט	ט	U	ט	0	ט	ט	0	ט	－	U	U	ט	ט	ט	ט	ט	U
2874	34，01， 0,91	\ldots Of a kind used for flotation de－inking of recycled	${ }^{20}$	EL	\bigcirc	－	\bigcirc	\bigcirc	\bigcirc	\bigcirc	U	\bigcirc	\bigcirc	\bigcirc	\bigcirc	ט	－	U	－	ט	ט	\bigcirc	ט	\bigcirc
2275	34，012，099	\cdots	${ }^{20}$	EL	U	U	\checkmark	\checkmark	\bigcirc	\bigcirc	\bigcirc	\checkmark	\bigcirc	ט	\bigcirc	u	0	u	U	u	U	\bigcirc	0	ט
2276	34，013，000	－Organic surface－active products and preparations for washing the skin，in the form of liquid or r ream and put up for retail sale，whether or not containing soap	${ }^{20}$	EL	u	\checkmark	\checkmark	\cup	\cup	\checkmark	\checkmark	\checkmark	\cup	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	ט	\checkmark	\checkmark
2267	${ }^{3402.11: 10}$	－Sulphated faty alconols	40	EL	\checkmark	\bigcirc	－	\bigcirc	U	\bigcirc	U	\bigcirc	u	\bigcirc	\bigcirc	\bigcirc	U	\bigcirc	U	\bigcirc	\bigcirc	\bigcirc	U	\bigcirc
2278	34，02，140	－．－Suphonated akyberenere	${ }^{40}$	EL		0	0	0	U	0	U	\bigcirc	U	0	U	U	U	\bigcirc	0		0	0	U	\bigcirc
2879	34，02，1，91	Wetting agents of a kind used in the manufacture of herbicides	${ }^{40}$	EL		U	\checkmark	－	\checkmark	\checkmark	U	U	－	\checkmark	\bigcirc	\checkmark	0	－	U	U	\checkmark	\checkmark	U	\bigcirc
2280	34，02，1，99	－onner	40	EL	\checkmark	，	0	\bigcirc	O	U	U	\bigcirc	，	0	U	0	0	U	U	U	\bigcirc	0	\bigcirc	，
2281	3302121.10	Wetting agents of a kind used in the manufacture of herbicides	40	EL	U	\checkmark	\checkmark	U	U	\checkmark	U	0	U	\checkmark	U	\bigcirc	\bigcirc	U	U	\checkmark	\checkmark	\checkmark	U	\checkmark
2882	34，01，290	－－Oner	${ }^{40}$	EL	\checkmark	0	\checkmark	\bigcirc	\bigcirc	U	\bigcirc	\bigcirc	\checkmark	\checkmark	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	U	\bigcirc	\bigcirc	\bigcirc	\bigcirc
2283	34，02，310		${ }^{40}$	HSL	20\％	40\％	40\％	40\％	${ }^{40 \%}$	20\％	40\％	40\％	40\％	${ }^{40 \%}$	${ }^{40 \%}$	40%	${ }^{40 \%}$	${ }^{40 \%}$	40\％	20\％	${ }^{40 \%}$	${ }^{40 \%}$	40\％	40\％
2884	34，02，330	\cdots Oner	${ }^{40}$	${ }^{\text {ISL }}$	20\％	${ }^{20 \%}$	40\％	40\％	20\％	20\％	${ }^{40 \%}$	${ }^{40 \%}$	${ }^{40 \%}$	20\％\％	40\％	${ }^{40 \%}$	40\％	${ }^{20 \%}$	40\％\％	${ }^{40 \%}$	40\％\％	40\％	40\％\％	20\％
2285	34，02，910	$\begin{array}{\|l} \hline \text {-. Ofa kind suitable for use in fife-extinguishing } \\ \text { preparations } \end{array}$	${ }^{40}$	EL	U	U	U	－	U	ט	U	U	U	U	U	U	U	U	\bigcirc	U	－	U	－	\bigcirc
2286	34，01，990	\cdots Oner	，	EL	\bigcirc	\bigcirc	${ }^{\circ}$	U	U	U	U	${ }^{\circ}$	U	${ }^{\circ}$	－	\bigcirc	U	\bigcirc	U	U	\bigcirc	\checkmark	\bigcirc	\bigcirc
2287	34，02，011	\cdots－Arioioic surface active pepearaions	40	HSL	40\％	${ }^{40 \%}$	${ }^{40 \%}$	40\％	${ }^{40 \%}$	40\％	40%	${ }^{40 \%}$	${ }^{40 \%}$	${ }^{40 \%}$	40%	${ }^{40 \%}$	40%	${ }^{40 \%}$	${ }^{40 \%}$	${ }^{40 \%}$	${ }^{40 \%}$	40%	${ }^{40 \%}$	40\％
2288	34，02，012	$\begin{aligned} & \text { - Anionic wasting preparations or cleaxing } \\ & \text { preparations, including bleaching, cleansing or } \\ & \text { degreasing preparations } \end{aligned}$	${ }^{40}$	HSL	0\％	40\％	40\％	40\％	${ }^{40 \%}$	40\％	40\％	40\％	\％\％	40\％	${ }^{40 \%}$	10\％	${ }^{40 \%}$	20\％	${ }^{40 \%}$	${ }^{0 \%}$	20\％	0\％	\％	${ }^{40 \%}$
2889	34，02，013	\cdots Onter suftace a ative preparaions	${ }^{40}$	HSL	40\％	${ }^{20 \%}$	40\％	40\％	20\％	40\％	20\％	40\％	40\％	${ }^{40 \%}$	${ }^{40 \%}$	40\％	${ }^{40 \%}$	${ }^{20 \%}$	40\％	${ }^{40 \%}$	20\％	${ }^{40 \%}$	40\％	40\％
2290	34，02，019	．．．Other wasting preparation or cleaning preparations inculuding bleaching，cleansing or degreasing preparations	${ }^{40}$	IsL	20\％	${ }^{20 \%}$	40\％	20\％	40\％	40\％	${ }^{40 \%}$	40\％	${ }^{40 \%}$	40\％\％	40\％	40\％	40\％	20\％	${ }^{40 \%}$	40\％	${ }^{40 \%}$	20\％	20\％	${ }^{40 \%}$
2291	34，02，091	－A Aroinc surface active pepenalions	${ }^{40}$	${ }^{\text {HsL }}$	20\％	${ }^{20 \%}$	${ }^{40 \%}$	40\％	20\％	40\％	${ }^{20 \%}$	${ }^{40 \%}$	${ }^{40 \%}$	40\％\％	40%	${ }^{40 \%}$	${ }^{40 \%}$	${ }^{20 \%}$	${ }^{40 \%}$	${ }^{40 \%}$	${ }^{40 \%}$	${ }^{40 \%}$	${ }^{40 \%}$	40\％
2292	34，02， 092	$\begin{aligned} & \text {.-Anionic washing preparations or cleaning } \\ & \begin{array}{l} \text { preparations, including bleaching, cleansing or } \\ \text { degreasing preparations } \end{array} \end{aligned}$	${ }_{40}$	HsL	40\％	${ }^{40 \%}$	40\％	40\％	40\％	40\％	40\％	40\％	40\％	40\％\％	${ }^{40 \%}$	40\％	40\％	${ }^{40 \%}$	40\％	${ }^{40 \%}$	${ }^{40 \%}$	${ }^{40 \%}$	40\％	40\％
2293	34，02，2，93	\cdots Oheres surace active preparaions	${ }^{40}$	HSL	40\％	40%	40\％	40\％	40\％	40\％	40%	40\％	40\％	40%	${ }^{40 \%}$	40%	${ }^{40 \%}$	${ }^{40 \%}$	${ }^{40 \%}$	${ }^{40 \%}$	${ }^{40 \%}$	${ }^{40 \%}$	40%	40\％
2294	34，02，099	$\begin{aligned} & \text { - Other washing preparations or cleaning } \\ & \begin{array}{l} \text { preparations, includinging beaching, cleansing or } \\ \text { degreasing preparations } \end{array} \end{aligned}$	${ }^{40}$	HSL	${ }^{40 \%}$	40\％	40\％	40\％	40\％	40\％	40\％	40\％	40\％	40\％	${ }^{40 \%}$	40\％	40\％	40\％	40\％	${ }^{40 \%}$	${ }^{40 \%}$	${ }^{40 \%}$	${ }^{40 \%}$	40\％
2209	34，02，011	\cdots Weting agens	${ }^{40}$	HsL	40\％	40\％	${ }^{40 \%}$	40\％	40\％	${ }^{40 \%}$	40\％\％	${ }^{40 \%}$	${ }^{40 \%}$	${ }^{40 \%}$	40\％	${ }^{40 \%}$	40\％	${ }^{40 \%}$	40\％\％	${ }^{40 \%}$	${ }^{40 \%}$	${ }^{40 \%}$	40\％	40\％
2296	34，02，012	－－Oner	${ }^{40}$	HsL	40\％	40\％	40\％	40\％	40\％	40\％	40\％	40\％	40\％	40\％	${ }^{40 \%}$	${ }^{40 \%}$	${ }^{40 \%}$	${ }^{20 \%}$	${ }^{40 \%}$	${ }^{40 \%}$	${ }^{40 \%}$	${ }^{20 \%}$	40\％	40\％
2297	34，02，013	－－Anionic washing preparations or cleaning preparations，including bleaching，cleansing or degreasing preparations	${ }^{40}$	HSL	20\％	40\％	40\％	40\％	00\％	20\％	20\％	40\％	40\％	40\％	${ }^{40 \%}$	40\％	${ }^{40 \%}$	${ }^{40 \%}$	40\％	20\％	20\％	${ }^{40 \%}$	${ }^{40 \%}$	40%
2298	34，02，014	－－Wetring agens	${ }^{40}$	HSL	40\％	${ }^{20 \%}$	40\％	40\％	20\％	40\％	${ }^{40 \%}$	${ }^{40 \%}$	${ }^{40 \%}$	${ }^{40 \%}$	${ }^{40 \%}$	${ }^{40 \%}$	${ }^{40 \%}$	${ }^{40 \%}$	${ }^{40 \%}$	40\％	${ }^{40 \%}$	${ }^{40 \%}$	${ }^{40 \%}$	40\％
2269	34，02，015	－Other	${ }^{40}$	${ }^{\text {HSL }}$	40\％	40\％	40\％	40\％	40\％	40\％	40\％	40\％	40\％	40%	${ }^{40 \%}$	40%	${ }^{40 \%}$	40\％	40%	${ }^{40 \%}$	40\％	40\％	40%	40\％
2200	34，02，019	—O Other washing preparations or cleaning preparations，including bleaching，cleansing or degreasing preparations	${ }^{40}$	HSL	40\％	40\％	40\％	40\％	40\％	40\％	${ }^{40 \%}$	40\％	40\％	20\％	${ }^{40 \%}$	${ }^{20 \%}$	40\％	${ }^{20 \%}$	40\％\％	40\％	${ }^{40 \%}$	40\％	40\％	20\％
2201	34，029，991	Weting agents	${ }^{40}$	HsL	20\％	${ }^{40 \%}$	${ }^{40 \%}$	${ }^{40 \%}$	40\％	40\％	20\％\％	${ }^{40 \%}$	${ }^{40 \%}$	20\％	40%	${ }^{40 \%}$	40%	${ }^{20 \%}$	${ }^{40 \%}$	${ }^{40 \%}$	${ }^{40 \%}$	${ }^{40 \%}$	40\％\％	40\％
2202	34，02，0，92	Other	${ }^{40}$	HSL	40\％	40%	40\％	40\％	40\％	40\％	${ }^{40 \%}$	40\％	${ }^{40 \%}$	40%	${ }^{40 \%}$	${ }^{40 \%}$	${ }^{40 \%}$	${ }^{40 \%}$	40\％	40\％	${ }^{40 \%}$	${ }^{40 \%}$	40\％	40\％
2703	34，02，903	- －Anionic washing preparations or cleaning preparations，including bleaching，cleansing or degreasing preparations	40	HSL	0\％	${ }^{40 \%}$	20\％	${ }^{40 \%}$	40\％	20\％	00\％	${ }^{40 \%}$	10\％	${ }^{40 \%}$	${ }^{40 \%}$	0\％	${ }^{40 \%}$	0\％	${ }^{40 \%}$	20\％	${ }^{40 \%}$	\％0\％	0\％	${ }^{\text {00\％}}$
2204	34，02，0，94	\cdots Weting agents	${ }^{40}$	HSL	40\％	${ }^{40 \%}$	40\％	40\％	40\％	40\％	${ }^{40 \%}$	40\％	40\％	40%	${ }^{40 \%}$	${ }^{40 \%}$	${ }^{40 \%}$	40\％	40\％	40\％	40\％	40\％	${ }^{40 \%}$	40\％
$2{ }^{2705}$	34，02，905	\cdots Onter	40	${ }^{\text {HSL }}$	40\％	100%	100%	10%	40\％	10\％	100%	100%	10%	40\％	40%	40\％	40\％	10\％	40\％	100%	40\％	40\％	40\％	40\％

（ラオス）

${ }^{2706}$	34，02，099	$\begin{aligned} & \text {-- Other washing preparations or cleaning } \\ & \text { preparations, including bleaching, cleansing or } \\ & \text { degreasing preparations } \end{aligned}$	${ }^{40}$	HSL	${ }^{40 \%}$	${ }^{40 \%}$	${ }^{40 \%}$	${ }^{40 \%}$	${ }^{40 \%}$	40\％	${ }^{40 \%}$	10\％\％	${ }^{40 \%}$	${ }^{40 \%}$	${ }^{40 \%}$	${ }^{40 \%}$	${ }^{40 \%}$	${ }^{40 \%}$	40\％	10\％	10\％	${ }^{40 \%}$	${ }^{40 \%}$	40\％
2207	${ }^{3003.11 .11}$	\cdots Lubicaing ol preparaions	10	NT2	9\％	9\％	8%	8\％	6\％	6\％	5\％	5\％	4%	4\％	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	2\％	\％	0\％	\％	\％	0\％	0\％
2708	${ }^{3403.11 .19}$	\cdots Other	10	NT2	9\％	9\％	${ }^{8 \%}$	8\％	6\％	6\％	5\％	5\％	4%	$4{ }^{4 \%}$	3\％	3\％	2\％	${ }^{2 \%}$	0\％	0\％	0\％	\％	\％	0\％
2709	33，03，190	\cdots	10	NT2	9\％	9\％	${ }^{8 \%}$	${ }^{8 \%}$	\％	6\％	5\％	5\％	4%	${ }^{4 \%}$	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％	\％	\％	0\％
2710	34，03，911	For aicratatengines	10	NT2	\％	9\％	${ }^{8 \%}$	${ }^{8 \%}$	6\％	6\％	5\％	${ }^{5 \%}$	4\％	$4{ }^{4 \%}$	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％	\％	\％	\％
271	3，03，912	Onter pepenations conlaining silione if	10	NT2	\％	9\％	8\％	${ }^{\text {8\％}}$	6\％	6\％	5\％	5\％	4\％	4\％	3\％	3\％	${ }^{2 \%}$	2\％	\％	0\％	\％	\％	\％	\％
272	34，03，9，99	Onter	10	NT2	\％	\％	8\％	${ }^{8 \%}$	6\％	6\％	5\％	5\％	4\％	$4{ }^{46}$	3\％	${ }^{3} \%$	${ }^{2 \%}$	${ }^{2 \%}$	0\％	\％	\％	\％	\％	\％
2713	3，031，990	－other	10	N2	\％	9\％	${ }^{8 \%}$	8%	6\％	6\％	${ }_{5 \%}$	${ }^{5 \%}$	4%	4%	3\％	3\％	${ }^{2 \%}$	${ }^{2 \%}$	\％	0\％	0\％	\％	\％	0\％
2714	38，03，111	Pepearail	10	T2	9\％	9\％	${ }^{8 \%}$	${ }^{8 \%}$	6\％	6\％	5\％	${ }^{5 \%}$	4%	${ }^{4 \%}$	3\％	3\％	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％	\％	\％	\％
2775	34，03，119	－other	10	NT2	\％	9\％	$8{ }^{8}$	${ }^{8 \%}$	6\％	6\％	5\％	5\％	4\％	4\％	3\％	3\％	2\％	${ }^{2 \%}$	\％	\％	\％	\％	\％	\％
2716	${ }^{3,03,09,190}$	Onter	10	NT2	9\％	${ }^{9 \%}$	${ }^{8 \%}$	${ }^{8 \%}$	6\％	6\％	${ }^{5 \%}$	${ }^{5 \%}$	4%	4%	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％	\％	\％	\％
2717	${ }^{34,03,9911}$	\cdots Foraticate engines	10	NT2	9\％	9\％	${ }^{8 \%}$	8%	6\％	6\％	5\％	5\％	$4{ }^{4 \%}$	$4{ }^{4 \%}$	${ }^{3 \%}$	3\％	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％\％	0\％	\％	0\％	0\％
2718	34，03，9，912	－other pepepations connaining silione oin	10	NT2	\％	9\％	${ }^{8 \%}$	${ }^{8 \%}$	6\％	6\％	5\％	5\％	4\％	$4{ }^{4 \%}$	${ }^{3 \%}$	${ }^{3 \%}$	2\％	${ }^{2 \%}$	\％	\％	\％	\％	\％	\％
2719	34，03，9919	\cdots Oner	10	NT2	\％	9\％	${ }^{8 \%}$	${ }^{8 \%}$	6\％	6\％	5\％	5\％	$4{ }^{4 \%}$	4\％	${ }^{3 \%}$	${ }^{3 \%}$	2\％	${ }^{2 \%}$	0\％	\％	\％	\％	\％	\％
2720	34，039，990	Oner	10	${ }^{\text {NT2 }}$	\％	9\％	8\％	${ }^{\text {8\％}}$	6\％	6\％	5\％	${ }^{5 \%}$	4\％	$4{ }^{4 \%}$	3\％	3\％	2%	${ }^{2 \%}$	\％	0\％	\％	\％	\％	\％\％
2721	34，02，, 000		10	N2	${ }^{9} \%$	9%	8\％	${ }^{8 \%}$	6\％	6\％	5\％	5\％	4%	$4{ }^{46}$	3\％	3\％	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	0\％	\％	\％	0\％
2722	${ }^{33,04,9,010}$	－ot chemicaly modified İgmie	10	T2	${ }^{9 \%}$	${ }^{9}$	${ }^{8 \%}$	${ }^{8 \%}$	6\％	6\％	${ }^{5 \%}$	${ }^{5 \%}$	4%	${ }^{4 \%}$	3\％	${ }^{\text {3\％}}$	${ }^{2 \%}$	${ }^{2 \%}$	\％\％	\％\％	\％\％	\％\％	0\％	\％\％
2723	38，04，909	－Other	10	T2	${ }^{9 \%}$	${ }^{9}$	${ }^{8 \%}$	${ }^{8 \%}$	6\％	6\％	${ }^{5 \%}$	${ }^{5 \%}$	4\％	$4{ }^{4 \%}$	3\％	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	0\％	\％	\％	\％	\％
2724	34，05，000	－Polishes，creams and similar preparations for footwear or leather	10	T2	\％	${ }^{\text {\％}}$	8%	8\％	6\％	6\％	${ }^{5 \%}$	5\％	4\％	4\％	3\％	3\％	2%	2\％	\％\％	\％	${ }^{\text {\％}}$	\％	\％	\％
$2{ }^{2725}$	34，05，000	－Polishes，creams and similar preparations for the maintenance of wooden furniture，floors or other woodwork	10	NT2	9\％	9\％	${ }^{8 \%}$	8%	6\％	6\％	5\％	5\％	4\％	4\％	${ }^{3 \%}$	3\％	${ }^{2 \%}$	2\％	\％	0\％	\％	\％	\％	0\％
$2{ }^{2726}$	3，0，53，000	－Polishes and similar preparations for coachwork， other than metal polishes	10	v2	${ }^{9 \%}$	9\％	${ }_{8}{ }^{\text {\％}}$	$8{ }^{8}$	6\％	6\％	5\％	5\％	4\％	4\％	3\％	3\％	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％	\％	\％	\％
$2{ }^{2727}$	${ }^{34,04,0,010}$	－－Scouring pastes and powders	10	T2	9\％	9\％	${ }^{8 \%}$	8\％	6\％	6\％	5\％	5\％	$4{ }^{4 \%}$	${ }^{4 \%}$	${ }^{3 \%}$	3\％	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％	0\％	\％	\％
2728	${ }^{34,05,090}$	－－omer	10	NT2	9\％	9\％	${ }^{8 \%}$	8%	6\％	6\％	5\％	5\％	$4{ }^{4 \%}$	${ }^{4 \%}$	3\％	3\％	2\％	${ }^{2 \%}$	\％	0\％	0\％	0\％	0\％	0\％
2729	38，05，010	－Metal poisises	10	NT2	\％	9\％	${ }^{8 \%}$	${ }^{8 \%}$	6\％	6\％	5\％	5\％	4%	4%	3\％	3\％	${ }^{2 \%}$	${ }^{2} \%$	\％	\％	\％	\％	\％	\％
2730	34，05，090	－－oner	10	HsL	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％
2731	3，06，000	Candes，tapers and the ilice．	10	${ }^{\text {NT2 }}$	\％	9\％	8\％	8\％	6\％	6\％	5\％	5\％	4%	4%	3\％	3\％	2%	${ }^{2 \%}$	0\％	0\％	\％	\％	0\％	\％
2732	38，07，010	－Modelling pastes，including those put up for children＇s amusement	10	NT2	9\％	9\％	${ }^{8 \%}$	${ }^{\text {8\％}}$	6\％	6\％	5\％	5\％	4\％	$4{ }^{4 \%}$	3\％	3\％	2%	${ }^{2 \%}$	\％	0\％	0\％	\％	\％	0\％
${ }^{33}$	34，070，220		10	Nт2	\％	9\％	${ }^{8 \%}$	8\％	6\％	6\％	5\％	5\％	4\％	4\％	3\％	3\％	2%	2\％	0\％	0\％	0\％	\％	0\％	0\％
$2{ }^{2734}$	34，070，030	－Other preparations for use in dentistry，with a basis of plaster（of calcined gypsum or calcium sulphate）	10	${ }^{\text {NT2 }}$	9\％	9\％	8\％	8\％	6\％	6\％	5\％	${ }^{5 \%}$	4\％	${ }^{4 \%}$	3\％	3\％	${ }^{2 \%}$	${ }^{2 \%}$	0\％	\％	0\％	0\％	\％	0\％
$2{ }^{2735}$	35，01，，000	Casein	5	V1	${ }^{4 \%}$	4\％	4\％	${ }^{3}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％	0\％	\％	\％	\％	0\％	\％	\％	\％	\％	\％
2736	35，09，010	Cassinates and other caseinderivivies	5	V1	4%	4\％	4\％	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	0\％	\％	\％	0\％	0\％	\％	\％	\％	\％	\％	\％	\％	\％
$2{ }^{2737}$	${ }^{35,019,020}$	－Casen glues	5	NT1	4%	4\％	4\％	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	0\％	\％	\％	\％	0\％	0\％	0\％	\％\％	0\％	\％\％	0\％	0\％
2738	35，021，100	－Died	5	${ }^{\text {NT1 }}$	4%	4\％	4\％	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％\％	0\％	\％	\％	\％	0\％	\％	0\％	\％	\％	\％	\％	\％
2739	35，02，900	－Oner	5	NT1	$4{ }^{4 \%}$	4\％	4\％	${ }^{3 \%}$	3\％	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％	\％	\％	0\％	\％	0\％	0\％	\％	\％	\％	0\％
2740	35，02，200		5	${ }^{\text {NT1 }}$	4\％	4\％	4\％	${ }^{3 \%}$	3\％	2%	${ }^{2 \%}$	0\％	\％	0\％	\％	\％	0\％	0\％	0\％	0\％	\％	\％	\％	0\％
274	35，02，900	－Oner	5	${ }^{\text {NT1 }}$	4\％	4\％	4\％	${ }^{3}$	${ }^{3} \%$	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％	\％	\％\％	\％	\％	\％	\％	\％	\％	\％	\％
2742	${ }^{35,030,011}$	－FFsg glus	5	${ }^{\text {NT1 }}$	4\％	4\％	${ }^{4 \%}$	${ }^{3 \%}$	3\％	${ }^{2 \%}$	${ }^{2 \%}$	0\％	0\％	\％	0\％	\％	0\％	\％	\％	\％	\％	\％	\％	\％
$2{ }^{274}$	35，030，19	－other	5	N1	4\％	4\％	4%	3\％	3\％	${ }^{2 \%}$	${ }^{2 \%}$	0\％	0\％	0\％	\％	0\％	0\％	0\％	\％	\％	\％	\％	\％	0\％
2744	${ }^{35,030,030}$	${ }_{\text {Iningass }}$	5	V1	4%	4%	${ }^{4 \%}$	3\％	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％	\％	\％	\％	0\％	\％	0\％	\％	\％	\％	\％
${ }^{2745}$	35，030，041	B－230 or higher on the Bloom scale	${ }^{5}$	N1	4\％	4\％	${ }^{4 \%}$	${ }^{3 \%}$	3\％	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％	\％	\％	0\％	\％	\％	\％	\％	\％	\％	\％
${ }^{2746}$	${ }^{35,03,049}$	－Onter	5	V1	${ }^{4 \%}$	${ }^{4 \%}$	${ }^{4 \%}$	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％	\％	\％	\％	\％	\％	0\％	\％	\％	\％	0\％
$2{ }^{277}$	35，00，000	Peptones and their derivatives；other protein substances and their derivatives，not elsewhere specified or included；hide powder，whether or not chromed．	5	NT1	4%	4\％	4\％	3\％	${ }^{3 \%}$	2%	2\％	0\％	\％	0\％	\％\％	\％	0\％	0\％	\％	0\％	\％	\％	\％	\％
${ }^{2748}$	${ }^{350510.10}$	－Dextins soluble or rosesed stacches	5	${ }^{\text {NT1 }}$	4%	4\％	4\％	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％	\％	\％	0\％	0\％	\％	\％	\％	\％	\％	0\％
${ }^{279}$	${ }^{35,55,090}$	－－other	5	NT1	4%	4\％	${ }^{4 \%}$	3\％	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	0\％	0\％	0\％	0\％	0\％	\％	0\％	0\％	0\％	0\％	\％	0\％
2250	35，052，000	－Glues	5	NT1	$4{ }^{4}$	4\％	4\％	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	2%	\％	\％	\％	\％	\％	0\％	\％	0\％	0\％	\％	0\％	\％	0\％
$2{ }^{2751}$	35，06，000	－Products suitable for use as glues or adhesives，put up for retail sale as glues or adhesives，not exceeding a net weight of 1 kg	5	HSL	${ }^{5 \%}$	5\％	5\％	5\％	5\％	5\％	5\％	5\％	5\％	5\％	5\％	5\％	5\％	5\％	5\％	5\％	5\％	5\％	5\％	5\％
$2{ }^{275}$	35，06，100	－－Adhesives based on polymers of headings 39.01 to 39.13 or on rubber	${ }^{10}$	ISL	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	0\％	${ }^{10 \%}$	10\％	${ }^{10 \%}$	10\％	10\％	10\％	10\％	0\％	10\％
$2{ }^{273}$	35，06，900	\cdots	10	Hst	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％
${ }^{2254}$	${ }^{35,071,000}$	－Remene and concentrases therof	5	T1	${ }^{4 \%}$	4\％	4\％	3\％	3\％	${ }^{2 \%}$	${ }^{2 \%}$	0\％	0\％	\％	\％\％	0\％	0\％	0\％	0\％	0\％	0\％	\％	\％	\％\％
${ }^{2255}$	${ }^{35,79,000}$	－ormer	5	T1	${ }^{4 \%}$	4%	${ }_{4 \%}$	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％\％	0\％	0\％	0\％	0\％	\％	\％	\％	0\％	0\％	0\％	\％	\％
$2{ }^{256}$	36，01，000	Propellent powders．	${ }^{10}$	${ }^{\text {EL }}$	\bigcirc	\bigcirc	－	\bigcirc	U	0	\bigcirc	\bigcirc	\checkmark	－	\bigcirc	\checkmark	\checkmark	U	\bigcirc	\bigcirc	－	0	U	\bigcirc
$2{ }^{257}$	36，02，000	Prepared explosives，other than propellent powders．	10	EL	\bigcirc	＂	\bigcirc	0	\bigcirc	${ }_{0}$	ט	U	U	\checkmark	\bigcirc	U	－	ט	ט	U	O	\checkmark	U	\bigcirc
${ }^{2258}$	35，03，0010	－Seniftusess lemenened caps：Storal lubes	10	EL	\bigcirc	，	0	U	${ }^{\circ}$	\bigcirc	${ }^{\circ}$	\checkmark	\bigcirc	\bigcirc	\bigcirc	0	U	，	U	，	0	0	\bigcirc	\bigcirc
${ }^{2759}$	${ }^{35,000,020}$	－Saley tuses or delonaing tuses	10	${ }^{\text {EL }}$	－	U	U	U	ט	U	U	U	U	\bigcirc	\bigcirc	U	－	U	U	U	U	\bigcirc	U	U
2260	35，00，090	－other	10	${ }^{\text {EL }}$	0	U	0	U	ט	0	U	U	0	\bigcirc	ט	\bigcirc	U	U	U	U	－	0	U	U
$2{ }^{2761}$	${ }^{36,04,000}$	－Friewors	${ }^{20}$	${ }^{\text {EL }}$	\bigcirc	－	ט	－	－	\bigcirc	U	U	－	－	\bigcirc	ט	\bigcirc	U	U	\bigcirc	－	\bigcirc	\bigcirc	\bigcirc
$2{ }^{272}$	36，04，9，20	－－Miniature pyrotechnic munitions and percussion caps for toys	${ }^{20}$	${ }^{\text {EL }}$	u	${ }^{\circ}$	${ }^{\circ}$	－	－	0	U	U	${ }^{\circ}$	${ }^{\circ}$	${ }^{\circ}$	${ }^{\circ}$	${ }^{\circ}$	\checkmark	U	${ }^{\circ}$	${ }^{\circ}$	${ }^{\circ}$	${ }^{\circ}$	${ }^{\circ}$
$2{ }^{273}$	36，04，0，30	－－Signaling tares or orockes	${ }^{20}$	EL	0	U	0	U	U	U	U	U	U	U	U	0	U	U	U	U	U	0	\bigcirc	U
${ }^{2764}$	${ }^{35,049,090}$	－－Oner	${ }^{20}$	${ }^{\text {EL }}$	\bigcirc	U	U	U	－	\bigcirc	－	U	U	0	\bigcirc	U	U	0	U	U	0	U	\bigcirc	\square
2785	36，05，000	Matches，other than pyrotechnic articles of heading 36．04．	${ }^{20}$	${ }^{\text {EL }}$	\bigcirc	U	O	U	\bigcirc	U	U	－	O	\checkmark	U	－	U	ט	ט	U	0	\checkmark	U	－
${ }^{2766}$	36，06， 000	－Liquid or liquefied－gas fuels in containers of a kind used for filling or refilling cigarette or similar lighters and of a capacity not exceeding 300 cm 3	${ }^{5}$	${ }^{\text {NT1 }}$	4\％	4\％	4\％	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	2\％	\％	\％	\％	\％	\％\％	0\％	0\％	\％	\％	\％	\％	0\％	\％
$2{ }^{277}$	36，099，010	－Solid or semi－solid fuels，solidified alcohol and	5	V1	${ }^{4 \%}$	${ }^{4 \%}$	${ }^{4 \%}$	${ }^{3 \%}$	3\％	${ }^{2 \%}$	${ }^{2 \%}$	0\％	\％	0\％	\％	\％	\％	0\％	\％	\％	\％	0\％	\％	${ }^{0 \%}$
$2{ }^{278}$	${ }^{35,069,020}$	－－Logner fins	5	NT1	4%	4\％	${ }^{4 \%}$	3\％	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	0\％	0\％	\％	\％	${ }^{0}$	0\％	\％	\％	0\％	0\％	\％	\％	\％\％
2279	36，06，030	－－Other ferro－cerium and other pyrophoric alloys in all forms	5	V1	4\％	4\％	4\％	3\％	${ }^{3 \%}$	2\％	2%	0\％	0\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％
270	${ }^{35,069,040}$		5	NT1	4%	4%	4%	${ }^{3 \%}$	${ }^{3 \%}$	2\％	${ }^{2 \%}$	0\％	0\％	0\％	0\％	\％	0\％	0\％	\％	\％	\％	\％	\％	0\％
$2{ }^{271}$	${ }^{35,069,090}$	－－omer	5	NT1	4\％	4\％	4%	3\％	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	0\％	0\％	0\％	0\％	0\％	0\％	\％	\％	0\％	\％	\％	\％	0\％
272	${ }^{37,01,000}$	－Forxay	5	NT1	${ }^{4 \%}$	4\％	${ }^{4 \%}$	3\％	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	0\％	0\％	0\％	0\％	0\％	0\％	\％	0\％	0\％	0\％	0\％	\％	0\％
2773	${ }^{33,02,000}$	－ －nsantrpinftilim	10	NT2	9\％	9\％	${ }^{8 \%}$	${ }^{8 \%}$	6\％	6\％	5\％	5\％	4%	4%	3\％	${ }^{3 \%}$	2%	${ }^{2 \%}$	\％	0\％	0\％	\％	\％	0\％
277	37，013，000	－Other plates and film，with any side exceeding 255 mm	10	NT2	\％${ }^{9}$	9\％	8\％	8\％	6\％	6\％	5\％	5\％	4%	$4{ }^{46}$	3\％	3\％	${ }^{2 \%}$	${ }^{2 \%}$	\％	0\％	0\％	\％	\％	\％
${ }^{2775}$	37，091，110	\cdots Of a kind sulubue tor use in ine epining industry	10	T2	${ }^{9 \%}$	\％	${ }^{8 \%}$	${ }^{8 \%}$	6\％	${ }^{6 \%}$	5\％	5\％	${ }^{4 \%}$	${ }^{4 \%}$	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	0\％	0\％	0\％	\％	\％	0\％
$2{ }^{2776}$	${ }^{37,09,9,90}$	\cdots	10	${ }^{\text {NT2 }}$	9\％	9\％	${ }^{8 \%}$	${ }^{8 \%}$	6\％	6\％	${ }_{5 \%}$	5\％	${ }^{4 \%}$	${ }^{4 \%}$	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	0\％	\％	0\％	\％	\％	0\％
277	${ }^{33,019,910}$	Of a kind sutiabel for use in the perining industry	10	${ }^{\text {N／2 }}$	${ }^{9 \%}$	${ }^{9 \%}$	${ }^{8 \%}$	8%	\％	6\％	${ }^{5 \%}$	5\％	4%	4%	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％\％	\％	\％	\％	\％\％
${ }^{2778}$	${ }^{37,019,990}$	Onher	${ }^{10}$	N2	9\％	9\％	${ }^{8 \%}$	${ }^{8 \%}$	${ }^{6 \%}$	${ }^{6 \%}$	${ }^{5 \%}$	${ }^{5 \%}$	${ }^{4 \%}$	${ }^{4 \%}$	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％	0\％	${ }^{0}$	\％
2779	${ }^{37,02,000}$	－Forxay	5	V1	${ }^{4 \%}$	${ }^{4 \%}$	4%	${ }^{3 \%}$	3\％	${ }^{2 \%}$	${ }^{2 \%}$	0\％	0\％	\％	\％	0\％	0\％	\％	\％	\％	0\％	\％\％	\％	\％
2280	${ }^{37,02,100}$	－For colur phologapaphy（oosch crome）	10	NT2	\％	${ }^{9}$	${ }^{8 \%}$	${ }^{8 \%}$	6\％	${ }^{6 \%}$	${ }^{5 \%}$	5\％	4%	4\％	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	2\％	\％	\％	\％	\％	\％	\％
2781	${ }^{37,02,2,200}$	－Onter，whit siver halide emusion	10	NT2	${ }^{9 \%}$	9\％	${ }^{8 \%}$	8%	6\％	6\％	5\％	5\％	${ }^{4 \%}$	${ }^{4 \%}$	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	0\％	\％	\％	\％\％
2782	${ }^{38,02,900}$	－Other	10	NT2	${ }^{9 \%}$	9\％	${ }^{8 \%}$	${ }^{8 \%}$	6\％	\％	${ }^{5 \%}$	5\％	4%	${ }^{4 \%}$	${ }^{3 \%}$	${ }^{3 \%}$	2\％	${ }^{2 \%}$	\％	\％	\％	\％	\％	\％
${ }^{2783}$	37，024，100	－－Of a width exceeding 610 mm and of a length exceeding 200 m ，for colour photography （polychrome）	10	N2	${ }^{9 \%}$	9\％	8\％	8\％	6\％	6\％	5\％	5\％	4\％	4\％	3\％	3\％	2\％	${ }^{2 \%}$	\％	\％	\％	\％	\％	\％

${ }^{2784}$	$]^{3,024,200}$	－Of wisith exceaing 610 mmandofatength	10	${ }^{\text {N／2 }}$	\％	\％	${ }^{8 \%}$	${ }^{8 \%}$	${ }^{6 \%}$	${ }^{6 \%}$	${ }^{5 \%}$	${ }^{5 \%}$	${ }^{4 \%}$	${ }^{4 \%}$	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％\％	\％	\％\％	\％	\％
${ }^{2785}$	${ }^{3,024,300}$		10	N2	9\％	\％\％	${ }^{8 \%}$	${ }^{8 \%}$	${ }^{6 \%}$	6\％	${ }^{\text {5\％}}$	${ }^{5 \%}$	${ }^{4 \%}$	4\％	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％	\％	0\％	\％
2786	37，024，400	－Of a width exceeding 105 mm but not exceeding 610 mm	10	N2	${ }^{9}$	\％	${ }^{8 \%}$	${ }^{8 \%}$	6\％	6%	${ }^{5 \%}$	${ }^{5 \%}$	${ }^{4 \%}$	4\％	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％	\％	\％	\％
$2{ }^{278}$	3，${ }^{3}, 25,220$	Ofa kind sutiabe for susi in ciemamagraph	10	ง2	${ }^{9 \%}$	\％	${ }^{8 \%}$	${ }^{8 \%}$	6\％	6\％	${ }^{5 \%}$	${ }^{5 \%}$	$4{ }^{4 \%}$	4\％	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％	\％	\％	\％
2788	${ }^{3,025,290}$	O Oher	10	ग2	${ }^{9 \%}$	\％	${ }_{8} 8$	\％	6\％	6\％	${ }^{5 \%}$	${ }^{5 \%}$	${ }^{4 \%}$	4\％	3\％	3\％	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％	\％	\％	\％\％
${ }^{2789}$	37，025，300	Of a width exceeding 16 mm but not exceeding 35 mm and of a length not exceeding 30 m ，for slides	${ }^{10}$	v2	9\％	9\％	8\％	${ }^{8 \%}$	${ }^{6 \%}$	6\％	${ }^{5 \%}$	${ }^{5 \%}$	${ }^{4 \%}$	${ }^{4 \%}$	${ }^{3 \%}$	3\％	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％	\％	\％	0\％
2790	3，${ }^{3,025,40}$	－－Of a kind suitable for used in medical，surgical， dental or veterinary sciences or in the printing industry	10	NT2	${ }^{9 \%}$	${ }^{9 \%}$	${ }^{8 \%}$	${ }^{8 \%}$	${ }^{6 \%}$	6\％	${ }^{5 \%}$	${ }^{5 \%}$	4%	4\％	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％	\％	0\％	\％
${ }^{2791}$	${ }^{3,025,490}$	－－．omer	10	N2	9\％	9\％	8\％	8%	6\％	6\％	5\％	5\％	$4{ }^{4 \%}$	4%	3\％	3\％	${ }^{2 \%}$	${ }^{2 \%}$	0\％	0\％	0\％	0\％	0\％	0\％
$2{ }^{279}$	${ }^{3,025,520}$		10	NT2	9\％	9\％	${ }^{8 \%}$	${ }^{8 \%}$	${ }^{6 \%}$	6\％	${ }^{5 \%}$	${ }^{5 \%}$	${ }^{4 / 6}$	${ }^{4 / 6}$	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％	\％	\％\％	\％
${ }^{2793}$	3，026，550	．．．Of a kind suitable for used in medical．surgical， dental or veterinary sciences or or in the printing industy	${ }^{10}$	NT2	9\％	9\％	8\％	${ }^{8 \%}$	${ }^{6 \%}$	6\％	5\％	${ }^{5 \%}$	${ }^{4 \%}$	4\％	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	0\％	\％	\％	\％	\％	\％
279	${ }^{3,025,590}$	－omer	10	Hst	0\％	0\％	${ }^{10 \%}$	${ }^{10 \%}$	${ }^{10 \%}$	10\％	0\％	${ }^{10 \%}$	${ }^{10 \%}$	10\％	${ }^{10 \%}$	${ }^{10 \%}$	0\％	0\％	${ }^{10 \%}$	0\％	10\％	10\％	\％\％	0\％
$2{ }^{2795}$	${ }^{3,025,620}$	－－Oa kind sutiable for ses in in inemalography	${ }^{10}$	N2	9\％	\％\％	8\％	8\％	6\％	6\％	${ }^{5 \%}$	${ }^{5 \%}$	4%	4\％	3\％	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	0\％	0\％	\％	\％	\％\％	\％\％
296	${ }^{37,025,990}$	－other	10	NT2	9\％	9\％	8\％	${ }_{8}^{8}$	${ }^{6 \%}$	6\％	${ }^{5 \%}$	${ }^{5 \%}$	${ }^{4 \%}$	$4{ }^{4 \%}$	${ }^{3}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	0\％	\％\％	\％	0\％	\％
2797	${ }^{3,029,680}$		10	NT2	9\％	9\％	${ }^{8 \%}$	${ }^{8 \%}$	6\％	6%	${ }^{5 \%}$	${ }^{5 \%}$	${ }^{4 \%}$	$4{ }^{4 \%}$	${ }^{3 \%}$	3\％	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％	\％	\％	\％
2798	37，029，90	Oner	10	NT2	\％	9\％	${ }^{8 \%}$	\％	6\％	6%	${ }^{5 \%}$	${ }^{5 \%}$	${ }^{4 \%}$	${ }^{4 \%}$	${ }^{3}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	0\％	0\％	0\％	\％	\％	\％
279	${ }^{37,029,710}$	Of a kno sutube for or sei in inemaiogaphy	${ }^{10}$	N2	9\％	\％	${ }^{8 \%}$	${ }^{8 \%}$	${ }^{6 \%}$	6\％	${ }^{5 \%}$	${ }^{5 \%}$	${ }^{4 / 8}$	${ }^{4 \%}$	${ }^{3 \%}$	${ }^{3} \%$	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	0\％	\％	\％	\％
2800	37，029，700	Other	10	NT2	9\％	\％	8%	${ }^{8 \%}$	6\％	6\％	5\％	${ }^{\text {5\％}}$	${ }^{4 \%}$	$4{ }^{46}$	3\％	3\％	${ }^{2 \%}$	${ }^{2 \%}$	0\％	0\％	\％	\％	0\％	0\％
2201	${ }^{37,029,810}$		10	NT2	9\％	9\％	${ }^{8 \%}$	${ }^{8 \%}$	6\％	6\％	${ }^{5 \%}$	${ }^{5 \%}$	$4{ }^{4 \%}$	${ }^{4 \%}$	3\％	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％	\％	\％	\％
2802	37，029，30	Onher，of a lerght of 120 mor more	10	NT2	9\％	\％	${ }^{8 \%}$	$8{ }_{8}^{8 \%}$	6\％	6\％	5\％	5\％	${ }^{4 \%}$	${ }^{4 \%}$	3\％	3\％	${ }^{2 \%}$	2\％	\％	\％	\％	\％	\％\％	\％\％
2803	37，029，900	Onter	10	NT2	\％	\％	${ }^{\text {8\％}}$	${ }^{8 \%}$	6\％	6\％	5\％	${ }^{5 \%}$	${ }^{46}$	4\％	3\％	${ }^{3 \%}$	${ }^{2 \%}$	2\％	\％	\％	0\％	\％	0\％	\％
2804	${ }^{3083.10 .10}$	－Ota widh notexeesedin $1,000 \mathrm{~mm}$	10	NT2	9\％	9\％	8%	8%	6\％	6\％	5\％	5\％	${ }^{4 \%}$	4%	3\％	${ }^{3 \%}$	${ }^{2 \%}$	2\％	\％	\％	\％	\％	\％	\％
2205	${ }^{37,031,090}$	Onher	10	NT2	${ }^{9}$	9\％	${ }^{8 \%}$	${ }^{8 \%}$	6\％	${ }^{6 \%}$	${ }^{5 \%}$	${ }^{5 \%}$	$4{ }^{4 \%}$	$4{ }^{4 \%}$	3\％	3\％	${ }^{2 \%}$	2\％	0\％	\％	\％\％	0\％	${ }^{0 \%}$	0\％
2206	37，032，00	Other，for colur p pologapapy（ opycherome）	10	N2	9\％	9\％	${ }_{8} 8$	${ }^{8 \%}$	6\％	6\％	${ }^{5 \%}$	${ }^{5 \%}$	${ }^{4 \%}$	$4{ }^{4 \%}$	${ }^{3 \%}$	${ }^{3}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	0\％	\％	\％	\％
2887	37，039，000	Oner	10	NT2	\％	9\％	8\％	8\％	6\％	6\％	5\％	5\％	4%	${ }^{4 \%}$	${ }^{3} \%$	${ }^{3} \%$	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％	\％	\％	\％\％
2208	${ }^{3,7,040,10}$	X－apy plase of ilim	10	N2	9\％	\％\％	8\％	8\％	6\％	6\％	5\％	${ }^{5 \%}$	4\％	$4{ }^{4 \%}$	3\％	3\％	2\％	2\％	0\％	\％	0\％	\％\％	0\％	0\％
2209	${ }^{3,7,040,90}$	Oher	10	NT2	9\％	9\％	8%	8\％	6\％	6\％	5\％	${ }^{5 \%}$	4%	4%	${ }^{3 \%}$	${ }^{3 \%}$	2%	${ }^{2 \%}$	\％	\％	\％	\％	0\％	\％
2210	${ }^{37,051,000}$	For ofster repocouction	10	NT2	9%	9\％	8%	${ }^{8 \%}$	6%	6\％	5\％	${ }^{5 \%}$	4%	4%	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	0\％	\％	\％	\％	\％	\％
2811	${ }^{37,059,010}$	－xay	10	N2	9\％	9\％	8%	${ }^{8 \%}$	6%	6\％	${ }^{5 \%}$	${ }^{5 \%}$	4%	$4{ }^{4}$	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％	\％	\％	\％
2212	37，059，20	Mcorim	10	NT2	\％	\％	8\％	8\％	6\％	6\％	5\％	5\％	${ }^{4 \%}$	$4{ }^{4 \%}$	3\％	3\％	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％\％	\％	\％	\％
${ }^{2813}$	${ }^{37,059,090}$	Onher	10	N2	9\％	\％	${ }^{8 \%}$	${ }^{8 \%}$	6\％	6\％	5\％	${ }^{5 \%}$	${ }^{4 \%}$	$4{ }^{4 \%}$	3\％	3\％	${ }^{2 \%}$	${ }^{2 \%}$	0\％	\％	\％\％	\％\％	0\％	0\％
2814	${ }^{3706.0 .10}$	－－Newsreels，travelogues，technical and scientific films	${ }^{10}$	NT2	9%	\％	${ }^{8 \%}$	${ }^{8 \%}$	6\％	6\％	${ }^{5 \%}$	${ }^{5 \%}$	${ }^{4 \%}$	${ }^{46}$	${ }^{3 \%}$	${ }^{\text {3\％}}$	${ }^{2 \%}$	2%	\％	\％	\％	\％	\％	0\％
2215	${ }^{3706.10 .30}$	－－Other documenay	10	N2	${ }^{9 \%}$	9\％	8%	${ }^{8 \%}$	6\％	6\％	${ }^{5 \%}$	${ }^{5 \%}$	${ }^{4 \%}$	${ }^{4 \%}$	3\％	${ }^{3}$	${ }^{2 \%}$	2%	\％	\％	\％	0\％	\％	0\％
2286	${ }^{37,061,040}$	Ohmer，conssing only of sound track	10	NT2	9\％	9\％	${ }_{8}^{8 \%}$	${ }^{8 \%}$	${ }^{6 \%}$	6%	${ }^{5 \%}$	${ }^{5 \%}$	$4{ }^{4 \%}$	$4{ }^{4 \%}$	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％	\％	\％	\％
22817	${ }^{37,061,090}$	Other	10	N2	9\％	9\％	8\％	8\％	6\％	6\％	5\％	${ }^{5 \%}$	4%	$4{ }^{4 \%}$	3\％	3\％	2\％	${ }^{2 \%}$	\％	\％	0\％	\％\％	\％	0\％
${ }^{2818}$	37，069，010	－Newsreels，travelogues，technical and scientific films	${ }^{10}$	N2	9\％	9\％	8%	${ }^{8 \%}$	6%	6\％	${ }^{5 \%}$	${ }^{5 \%}$	${ }^{4 \%}$	${ }^{4 \%}$	${ }^{3 \%}$	${ }^{3} \%$	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％	\％	\％	\％
2219	${ }^{37,069,30}$		10	NT2	9\％	9\％	8%	${ }^{8 \%}$	6\％	6\％	5\％	${ }^{5 \%}$	4%	${ }^{4 \%}$	${ }^{3 \%}$	3\％	${ }^{2 \%}$	${ }^{2 \%}$	\％\％	\％	0\％	\％\％	\％	\％
2220	${ }^{3,7,099,40}$	－otrer，conssing ony of sound trak	10	N2	9\％	9\％	8\％	${ }^{8 \%}$	6%	6\％	5\％	${ }^{5 \%}$	4\％	4\％	3\％	3\％	2%	2\％	0\％	\％	0\％	\％	0\％	\％
2221	${ }^{37,069,90}$	－Other	10	NT2	9\％	9\％	8%	${ }^{8 \%}$	6\％	6\％	5\％	${ }^{5 \%}$	4%	4%	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％\％	\％	\％	\％	\％	0\％
2282	${ }^{37,071,000}$	Sensisising emulions	10	NT2	${ }^{9 \%}$	9\％	8%	${ }^{8 \%}$	6%	6%	5\％	${ }^{5 \%}$	$4{ }^{4 \%}$	4%	${ }^{3 \%}$	3\％	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％	\％	\％	\％
${ }^{2223}$	37，079，010	－Fasalight maemials	10	NT2	9\％	\％	\％	${ }^{8 \%}$	6\％	6\％	5\％	5\％	4\％	4\％	${ }^{3} \%$	${ }^{3 \%}$	${ }^{2 \%}$	2%	\％	\％	\％	\％	\％	\％
2284	37，079，90	－Onter	10	NT1	9\％	${ }_{8} \%$	6\％	5\％	4\％	3\％	${ }^{2 \%}$	0\％	\％	\％	\％	\％	\％	\％	\％	\％	0\％	\％	\％	0\％
2285	38，011，000	Afficial graphlie	5	NT1	4%	4\％	4\％	3\％	3\％	2\％	2%	0\％	0\％	\％	\％	0\％	\％	0\％	\％	\％	0\％	0\％	\％	\％\％
2286	${ }^{38,012,000}$	－Colloida or semimicolodidal graphie	5	NT1	4%	$4{ }^{4 \%}$	${ }^{4 \%}$	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％
${ }^{2827}$	${ }^{38,013,000}$	－Carbonaceous pastes for electrodes and similar pastes for turnace linings	${ }^{5}$	$\sqrt{\text { T1 }}$	4%	$4{ }^{4 \%}$	$4{ }^{4 \%}$	\％	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	0\％	0\％	\％	\％	\％	\％	0\％	\％	\％	\％	\％	0\％	\％
2288	38，019，00	－Oner	5	NT1	${ }^{4 \%}$	4%	$4{ }^{4 \%}$	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	2\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％\％	\％	0\％
2289	38，021，000	Activede cataon	5	NT1	4%	$4{ }^{4 \%}$	4%	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	0\％	\％	0\％	\％	\％	0\％	\％	\％	\％	\％	\％
2830	${ }^{38,029,10}$	－Activate bauxte	5	NT1	4%	4%	4%	3\％	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％	\％	\％	\％	\％\％	\％\％	\％	0\％	\％	\％	0\％
$2{ }^{231}$	${ }^{38,029,20}$	－Activated days or racivaed earths	5	NT1	4%	4\％	4%	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％
2832	38，029，90	－other	5	NT1	4\％	4%	4%	3\％	3\％	${ }^{2 \%}$	${ }^{2 \%}$	0\％	0\％	0\％	\％	\％	\％	0\％	0\％	0\％	0\％	0\％	0\％	0\％
2833	38，30，000	Tall li，whentere or not retined．	5	NT1	4%	$4{ }^{4 \%}$	$4{ }^{4 \%}$	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	0\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	0\％	0\％
$2{ }^{284}$	38，040，10	－Concentalae supphie ye	5	NT1	4\％	4\％	4\％	3\％	${ }^{3 \%}$	2\％	${ }^{2 \%}$	\％	\％	\％	\％	\％	\％	\％	\％\％	\％	\％	\％	\％	\％
2835	38，040，90	Other	5	NT1	4%	4%	4%	3\％	3\％	2\％	2\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％
$2{ }^{286}$	38，051，000	－Gum，wood orsuphate ulupenine ois	5	NT1	4%	4\％	4\％	3\％	3\％	2\％	${ }^{2 \%}$	0\％	\％	\％	\％	\％	0\％	\％	\％	\％	\％	\％	\％	\％
${ }^{2387}$	${ }^{38,059,000}$	Other	5	NT1	$4{ }^{4 \%}$	4%	${ }^{4 \%}$	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	0\％	0\％	\％	0\％	\％\％	\％	\％	0\％	\％\％	\％	\％
$2{ }^{288}$	38，061，000	Rosin and resin aciss	5	NT1	4%	$4{ }^{4 \%}$	${ }_{4}^{4 \%}$	${ }^{3 \%}$	3\％	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％	0\％	\％	\％	\％	\％	\％	\％	\％	0\％	\％
2839	${ }^{38,082,000}$	－Sals of rosin，of resin acids or of defivatives of rosin or resin acids，other than salts of rosin adducts	5	NT1	4%	4\％	4\％	3\％	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％
2840	38，083，10	－Imblors	5	NT1	4\％	4\％	4\％	3\％	3\％	2\％	2\％	\％	0\％	\％	\％	0\％	0\％	\％\％	\％	\％	\％	\％\％	\％	\％
284	${ }^{38,083,90}$	－other	5	${ }^{\text {NT1 }}$	${ }^{4 \%}$	4\％	$4{ }^{4 \%}$	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	0\％	0\％	\％	\％	\％	\％	\％\％	\％	\％	\％	\％	\％
$2{ }^{282}$	${ }^{3,0690,010}$	－Run gums inbocks	5	NT1	4%	4\％	4%	3\％	3\％	2\％	${ }^{2 \%}$	\％	0\％	0\％	0\％	\％	\％	0\％	0\％	\％	0\％	0\％	0\％	\％
2843	38，069，90	Other	5	NT1	4%	4%	4%	3\％	3\％	${ }^{2 \%}$	2\％	\％	\％	0\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％
284	33，07，000	Wood tar；wood tar oils；wood creosote；wood naphtha；vegetable pitch；brewers＇pitch and similar preparations based on rosin，resin acids or on vegetable pitch．	5	NT1	4\％	4%	4%	${ }^{3 \%}$	3\％	2\％	${ }^{2 \%}$	\％	\％	\％	\％	\％	\％	\％\％	\％	\％	\％\％	\％\％	\％	\％
2845	38，085，10	－Insecticies	5	NT1	4%	$4{ }^{4 \%}$	4\％	3\％	${ }^{3 \%}$	${ }^{2 \%}$	2\％	\％	\％	0\％	\％	\％	\％	\％	\％	\％	0\％	0\％	0\％	0\％
2846	38，085，021	－Inaersolcoomaneas	5	NT1	4\％	4%	4\％	${ }^{3} \%$	${ }^{3 \%}$	${ }^{2 \%}$	2%	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％
2847	38，085，29	Onher	5	NT1	4%	4\％	4\％	3\％	3\％	2\％	2\％	0\％	0\％	0\％	0\％	\％	\％	0\％	0\％	\％	\％	\％	0\％	\％
2848	${ }^{38,085,531}$	\cdots－Inaecsoso conlainers	5	NT1	4%	$4{ }^{4 \%}$	4%	3\％	3\％	${ }^{2 \%}$	2\％	0\％	0\％	0\％	\％	\％	\％	\％	\％	\％	0\％	\％	\％	\％
289	${ }^{38,085,39}$	Onter	${ }^{5}$	NT1	4%	$4{ }^{4 \%}$	4%	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	0\％	\％
2280	38，085，40	－Anisprouting products	5	NT1	4%	4%	4\％	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	0\％	\％	\％	\％	\％	\％\％	\％	\％	\％	\％	\％
2251	38，835，50	－Panatgowntregulaos	5	NT1	4%	4\％	4%	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	2\％	0\％	0\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％
2232	3， 3 ，85，60	Disineceants	5	NT1	4%	4%	4%	${ }^{3 \%}$	3\％	2%	2%	\％	0\％	0\％	\％	\％	\％	\％	\％\％	\％	\％	\％	0\％	\％
22^{253}	38，085，091	－－Wood preservatives，being preparations other than surface coatings，containing insecticides or fungicides	${ }_{5}$	NT1	4\％	4\％	4\％	${ }^{3 \%}$	3\％	2%	${ }^{2 \%}$	0\％	0\％	\％	0\％	0\％	\％	\％	0\％	\％	\％	\％	0\％	\％
2254	38，085，999	－Other	5	NT1	4\％	4\％	4\％	3\％	3\％	${ }^{2 \%}$	2\％	0\％	0\％	0\％	0\％	\％\％	0\％	0\％	\％\％	0\％	0\％	0\％	0\％	0\％
2255	38，089，111	$\underset{\substack{\cdots \\ \text { methycaratiamamate }}}{ }$ 2．（1－Methylpropy）phenol	${ }^{5}$	NT1	\％	${ }^{4 \%}$	4\％	${ }^{3} \%$	3\％	2\％	${ }^{2 \%}$	0\％	\％	\％	\％	0\％	0\％	0\％	\％	\％	0\％	\％	\％	\％\％
$2{ }^{286}$	${ }^{38,089,119}$	\cdots	5	NT1	4%	4%	4%	3\％	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	0\％	\％	\％	\％	\％	\％\％	\％	\％	\％	0\％	\％
2287	${ }^{38,089,120}$	In he tom of mosatio ocols	5	${ }^{\text {NT1 }}$	${ }^{4 \%}$	${ }^{4 \%}$	${ }^{4 \%}$	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％
2258	${ }^{38,089,130}$	In the fom of mosulitio mals	${ }^{5}$	NT1	4%	$4{ }^{4}$	4%	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	2\％	\％\％	\％	0\％	\％	\％	\％	\％	0\％	\％	\％	\％	\％	\％
2289	${ }^{3,089,191}$	－Having a deodorising funcion	5	NT1	4%	4\％	$4{ }^{4 \%}$	3\％	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％	0\％	\％	\％	0\％	0\％	\％	\％	0\％	\％	\％\％
2860	${ }^{38,089,192}$	\cdots Oner	5	NT1	4\％	4\％	4\％	${ }^{3 \%}$	${ }^{3 \%}$	2\％	${ }^{2 \%}$	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％
2861	${ }^{38,089,193}$	Having a deodorising turcion	5	NT1	${ }^{4 \%}$	4%	4%	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	0\％
2862	${ }^{38,089,199}$	Other	5	NT1	4%	4\％	4\％	3\％	3\％	2\％	${ }^{2 \%}$	\％	\％	0\％	0\％	\％	\％	0\％	\％	0\％	0\％	\％\％	\％\％	\％\％
2863	8，089，211	$\begin{array}{\|l\|l\|} \hline \text { by net weight avidamycin content not exceeding } 3 \% \\ \hline \text { by } \end{array}$	${ }^{5}$	NT1	4\％	4\％	4\％	3\％	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％	\％	\％	0\％	\％	\％	0\％	0\％	\％\％	\％	0\％
2884	38，089，219	Other	5	$\mathrm{Nr}^{\text {NT1 }}$	4\％	4\％	4\％	3\％	3\％	${ }^{2 \%}$	2\％	\％	0\％	\％	\％	\％	0\％	\％	\％	\％	0\％	\％	\％	\％

香港•ASEAN FTAにかかる調査報告書
 別添2－4 原産地品の関税撤廃スケジュール

（ラオス）

香港•ASEAN FTAにかかる調査報告書

（ラオス）

	2mas	${ }^{\circ}$			．	\cdots	${ }^{\circ}$																	
－n	camem																							
	5mbm																							
\％mem																								
beem	± 2																							
－	2m																							
N						＊		－	\cdots															
\％																								
\％	\％																							
．					$\frac{2.1}{w}$	${ }^{*}$	－	${ }^{\circ}$	${ }^{\circ}$	${ }^{\circ}$	＊			"							${ }^{\circ}$	${ }^{\circ}$		
\％					${ }^{m} \pm$	${ }^{*}$			－															
	\％emmeme				\％	＊	＊	＊	＊	－	＊			＊							，	\％		
	\％emmemmme																							
\％									\％															
\％																								
Nome	－													x_{∞}^{∞}										
\％	－mam																							
\％mom	．nem					\cdots		\cdots	\％		＊			${ }^{-}$										
\％	\％					${ }^{*}$																		
N mem	－				${ }^{2}+$	\cdots	＊	－																
，	\％emme					＊			－			，												
\％						\cdots		．		${ }_{4}^{*}$				${ }^{\circ}$										
23n	\％eme																							
3－3memen	－				\cdots			\cdots	\％															
\％	）																							
mom	nem																							
T－mmem					\cdots	＊		－	\cdots		${ }^{*}$		${ }^{*}$											
－	－wmem				\cdots	\cdots		－			－													
\cdots	\cdots																							
\％omm						\cdots		－																
\cdots					\div																			
\％．．．w	\％mme				\div			－																
\％emem	－	：																						
	＋																							
为	\cdots	\because			8	\cdots	＊	＊	－					${ }^{\circ}$										
\％	nem																							
Nomem	＋	：			$\frac{\%}{4}$			＊																
	－					\cdots			\％															
Nmem	\cdots																							
为	\％																							
Wemme	－					\cdots		${ }^{\circ}$																
\％mam	\cdots	－			*	\cdots		－																
，		－			*	＊		－																
\％								－																
－	－				\ldots																			
Nomem	－	：			$*$																			
						\cdots																		
\％	\cdots	：			\cdots																			
\％	，	．																						
\％																								

香港•ASEAN FTAにかかる調査報告書

$\sqrt{3024}$	${ }^{33,052,900}$	Other	5	NT1	4\％	4\％	4\％	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	0\％	0\％	0\％	0\％	0\％	0\％	0\％	0\％	0\％	0\％	0\％	\％	\％
3302	39，05，010	Indispesion	5	NT1	4%	4%	4%	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％\％	\％	0\％	\％\％
3302	3，05，990	－other	5	NT1	4\％	$4{ }^{4 \%}$	4%	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％	\％	\％	\％	\％	0\％	\％	\％	\％	\％	\％
3327	39，05，，10	\cdots risperson	5	NT1	4\％	${ }^{4 \%}$	4%	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％	\％	\％	\％	\％	0\％	\％	\％	\％	\％	\％ 0
3302	3，05，，90	－Other	5	NT1	4%	$4{ }^{4 \%}$	4%	${ }^{3 \%}$	${ }^{\text {\％}}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％
3302	3，05，990	In aqueus sispersion	5	NT1	4%	4%	4%	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	${ }^{\circ}$	\％	\％	\％	\％	0\％	\cdots	\％	\％	\％	${ }_{0}$	\％
33030	39，05，920	In nomaquous sispersion	5	NT1	4%	4%	4%	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％\％
3303	3，05，990	Other	5	NT1	4%	4%	4%	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％	\％	\％	\％	0\％	\％	\％	\％	\％	\％	\％
33032	${ }^{3006.10 .10}$	－Indispesion	5	NT1	4%	4%	4%	${ }^{3 \%}$	3\％	${ }^{2 \%}$	2\％	\％	\％	\％	\％	0\％	\％\％	\％	0\％	\％	\％	0\％	0\％	0\％
$3{ }^{3033}$	39，06，090	－Oner	5	NT1	4%	4%	4%	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％	\％	\％	\％	\％	0\％	\％	\％	\％	0\％	\％
$3{ }^{3034}$	3，06，020	－Indisestion	5	NT1	4\％	4%	4%	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％	\％	\％	\％	\％	0\％	\％	\％	\％	\％	\％
33035	${ }^{39,069,092}$	－Sodium poyacryate	5	NT1	4%	4%	4\％	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％	\％	\％	0\％	0\％	\％	\％	\％\％	\％	\％	0\％
$3{ }^{3036}$	39，069，999	Other	5	NT1	4\％	4%	4\％	3\％	3\％	2\％	2\％	\％\％	0\％	0\％	\％	\％	\％	0\％	\％	\％\％	\％	\％	\％	\％\％
33037	39，071，000	－Poyacealas	5	NT1	4\％	4\％	4%	${ }^{3 \%}$	3\％	${ }^{2 \%}$	2\％	\％	\％	\％\％	0\％	\％	\％	0\％	0\％	\％	\％	\％	0\％	\％
$3{ }^{3038}$	39，02，010	－－Popyerameatyene etere gycol	5	NT1	4%	4%	4\％	${ }^{3 \%}$	${ }^{\text {3\％}}$	${ }^{2 \%}$	2\％	0\％	\％	\％	0\％	\％	0\％	0\％	\％	\％	\％	0\％	0\％	0\％
3039	39，02， 090	－Oner	5	NT1	4%	4\％	4%	3\％	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％	\％	\％\％	\％	\％	\％	\％	\％	\％	0\％	\％\％
3800	39，07，．20		5	NT1	4%	4%	4%	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％	\％	\％	\％	\％	0\％	\％	\％	\％\％	0\％	\％
3304	${ }^{39,073,030}$	－－In the tom of liquids of pasas	5	NT1	4\％	4\％	4%	3\％	3\％	2\％	${ }^{2 \%}$	0\％	0\％	\％\％	0\％	0\％	\％\％	\％	\％	0\％	0\％	\％	0\％	\％\％
3042	39，07，090	－Oher	5	NT1	4%	4%	4%	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	2%	\％	\％	\％	\％	\％	\％	0\％	0\％	\％	\％\％	\％	0\％	\％
3043	39，074，000	－Poycatomaes	5	${ }^{\text {NT1 }}$	4%	4\％	4%	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％	\％	\％	\％	\％	0\％	\％	\％	\％	\％	\％
3044	39，075．010	－In the fom of flauis or opases	5	NT1	4\％	4\％	4%	${ }^{3} \%$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％
3305	39，07，090	Other	5	NT1	4\％	4\％	4%	${ }^{3 \%}$	3\％	2\％	2\％	\％\％	\％	\％	\％	\％	\％	0\％	\％	\％\％	\％	\％	\％	\％
3306	39，076，010	－－ dispersion	5	NT1	4\％	4\％	4\％	3\％	3\％	2%	2\％	0\％	\％	\％	\％	\％	\％	\％\％	\％	\％\％	\％	\％	\％	\％
3047	39，07，020	Gianues	5	V1	4%	${ }^{4 \%}$	$4{ }^{4 \%}$	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	0\％	\％	\％	\％	0\％	0\％	\％	\％	0\％	0\％	0\％
3308	39，07，090	－other	5	NT1	4\％	4%	4%	${ }^{3 \%}$	${ }^{3 \%}$	2\％	${ }^{2 \%}$	\％	\％	\％	0\％	\％	\％	\％	\％	\％	\％	\％	0\％	\％
3049	39，07，000	－Poyllaciciacio	5	NT1	4\％	4%	4%	3\％	3\％	2\％	2\％	0\％	\％	0\％	\％	\％\％	\％	\％	\％	\％	0\％	\％	\％	\％
3350	39，079，120	－ － coip fom	5	${ }^{\text {NT1 }}$	4\％	4\％	${ }^{4 \%}$	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％	\％	\％	\％	\％\％	\％	\％\％	0\％	\％\％	0\％	\％
3351	339，09， 130	－Inte tom of fluwis or prases	5	NT1	4%	4%	4%	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	2\％	0\％	\％	\％	\％	0\％	\％\％	\％	\％	\％	\％	0\％	0\％	\％
3352	39，07，190	Onher	5	NT1	4%	${ }^{4 \%}$	${ }^{4 \%}$	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	0\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	0\％	\％
$3{ }^{3053}$	39，07，990	Ota kind used tor coaing，inpowder fom	5	NT1	4\％	4\％	$4{ }^{4 \%}$	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％\％	\％	\％	\％\％	\％	\％	\％	0\％	\％	\％	\％
3354	39，07，990	Other	5	${ }^{\text {NT1 }}$	4\％	4\％	4%	3\％	3\％	2\％	2\％	0\％	\％	\％	\％	0\％	\％	0\％	0\％	\％	\％	\％	0\％	\％
32055	${ }^{3908} \cdot 10.10$	－－Potamide 6	${ }^{5}$	NT1	4\％	4\％	${ }^{4 \%}$	3\％	${ }^{3 \%}$	2%	2%	0\％	\％\％	\％\％	\％	\％\％	\％\％	\％\％	\％	\％\％	0\％	\％\％	0\％	\％\％
$3{ }^{3056}$	33，08，090	－other	5	V1	4%	$4{ }^{4 \%}$	$4{ }^{46}$	3\％	${ }^{\text {3\％}}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	0\％	0\％	0\％	\％	\％	\％	0\％	\％	\％	0\％	0\％	\％
33057	3，08，000	－other	5	NT1	4\％	4%	4\％	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	0\％	0\％
3058	${ }^{3909.10 .10}$	Mouling compounds	5	NT1	4\％	4%	4%	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％	\％	\％	\％	\％	\％	\％\％	\％	\％	\％	\％
359	39，09，090	Onher	5	${ }^{\text {NT1 }}$	${ }^{4 \%}$	4%	${ }^{4 \%}$	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％	\％	\％	\％\％	\％\％	\％	\％	0\％	\％	0\％	\％
3300	33，02，010	－Mouding compounds	5	NT1	4\％	4\％	4%	3\％	3\％	${ }^{2 \%}$	2\％	0\％	\％	0\％	0\％	0\％	\％\％	\％	\％	0\％	0\％	0\％	0\％	\％
3061	${ }^{30,02,090}$	－Oher	5	NT1	4%	4%	4%	${ }^{3 \%}$	3\％	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％	\％	\％	\％	\％	\％	\％	0\％	\％	0\％	\％
3062	3，03，010	－－Mouling compouns	5	NT1	4\％	4%	${ }^{4 \%}$	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％
3303	3，09，091	Gyoxal monouren resin	5	NT1	4\％	4%	4%	${ }^{3} \%$	3\％	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％
3064	39，03，099	Other	5	${ }^{\text {NT1 }}$	${ }^{4 \%}$	4%	${ }^{4 \%}$	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	0\％	\％	\％	\％	\％\％	\％	\％	\％	\％	\％	\％	0\％	\％
3306	3，04，010	－Moulding compounds other than phenol formaldehyde	5	${ }^{\text {T1 }}$	4\％	4\％	4\％	${ }^{3 \%}$	${ }^{3 \%}$	2\％	${ }^{2 \%}$	0\％	\％	0\％	\％	\％	0\％	0\％	\％	\％\％	\％	\％	\％	\％
3306	33，04，990	－－Other	5	V1	4\％	${ }_{4 \%}$	4\％	3\％	3\％	2%	2\％	\％\％	0\％	\％\％	\％\％	0\％	\％\％	\％\％	0\％	\％\％	0\％	\％\％	0\％	0\％
3307	3，05，000	Polyreatanes	5	V1	4%	4%	4%	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	2\％	\％	\％	0\％	0\％	\％	\％	\％	0\％	\％	\％	0\％	0\％	\％\％
3088	39，10，020	－hdospesison orin solutions	5	NT1	4\％	4\％	4%	${ }^{3 \%}$	3\％	2\％	${ }^{2 \%}$	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％
3306	39，10，090	－Oner	5	NT1	4%	4%	${ }^{4 \%}$	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％
3070	39，11，000		5	${ }^{\text {NT1 }}$	4\％	4\％	${ }^{4 \%}$	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	0\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％
3307	${ }^{39,119,000}$	－otner	5	NT1	4\％	4\％	4%	3\％	${ }^{3 \%}$	${ }^{2 \%}$	2\％	\％\％	\％\％	\％\％	0\％	0\％	0\％	0\％	0\％	0\％	0\％	0\％	\％	\％
3072	${ }^{3,12,1,100}$	－－Norplasisicised	5	NT1	4%	4%	${ }^{4 \%}$	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	2\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	0\％	\％	\％	\％
3073	$3^{3,12,2,200}$	－－Passicised	5	NT1	${ }^{4 \%}$	4\％	${ }^{4 \%}$	${ }^{3 \%}$	${ }^{3} \%$	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％
3074	39，12，${ }^{\text {a }} 1$	－Walerbsased semitifisisted nitiocelluso	5	NT1	4\％	4\％	4%	3\％	3\％	2\％	2\％	0\％	0\％	\％	\％	\％	0\％	0\％	0\％	\％	0\％	\％	\％	\％
3075	39，12，019	－other	5	NT1	4\％	4%	4%	3\％	3\％	2\％	2\％	0\％	\％\％	\％	\％	\％	0\％	\％	\％	\％	0\％	\％	\％	\％\％
33076	${ }^{39,12,2,020}$	Pasasicsed	5	V1	4%	4%	$4{ }^{46}$	${ }^{3 \%}$	3\％	${ }^{2 \%}$	${ }^{2 \%}$	\％\％	\％	\％	\％	\％\％	\％	\％	\％	\％	\％\％	\％	\％	0\％
3307	39，12，100	Carboxmenhy clluluse and it salis	5	NT1	4%	4%	4\％	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	0\％	0\％	0\％	\％	\％	0\％	0\％	0\％	\％	\％	\％\％	\％	\％\％
3078	3，12，9，90	－other	5	NT1	4%	4%	4%	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％
3079	39，12，0，20	Granues	5	NT1	4\％	4\％	4%	3\％	3\％	2\％	2\％	0\％	\％\％	\％	\％	0\％	\％	0\％	0\％	\％	\％	\％	0\％	\％
33080	$3^{3,12,0,90}$	Other	5	${ }^{\text {NT1 }}$	4%	4\％	${ }^{4 \%}$	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％
3081	39，13，000	－Alginica aco，it salts and sesers	5	NT1	4%	4%	4%	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	2\％	0\％	\％	\％	\％	0\％	\％	\％	\％	\％	0\％	0\％	\％	0\％
3382	39，13，010	－－Hardened proteins	5	NT1	4%	4%	${ }^{4 \%}$	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％	\％	\％	\％\％	\％	\％	\％	0\％	\％\％	\％	0\％
3303	39，13，020		5	NT1	4\％	4\％	$4{ }^{4 \%}$	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	2\％	\％	\％	\％	\％	\％	\％\％	\％	\％	\％	\％	\％	\％	\％
33084	${ }^{3,13,13,030}$	－Sacch based poymers	5	NT1	4%	4%	4%	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％	\％	\％	\％	\％	\％	\％	0\％	\％	\％	\％
33085	3，13，9090	－－Oher	5	V1	4%	4%	$4{ }^{4 \%}$	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％
3086	33，140，000	lon－exchangers based on polymers of headings 39.01 to 39.13 ，in primary torms．	5	T1	${ }^{4 \%}$	4%	4%	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	0\％	\％	\％	\％	0\％	\％	${ }^{0 \%}$	\％	\％	\％	\％	\％	${ }_{0}$
3087	${ }^{3915.10 .10}$		5	NT1	4\％	4\％	4%	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	0\％	0\％	0\％	0\％	\％	0\％	0\％	\％	\％	0\％	0\％	\％
3308	3，15，090	－OMer	5	NT1	4%	4\％	$4{ }^{4}$	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％
3308	3，15，0，010	－－of monigid celluar products	5	NT1	4\％	4\％	4%	${ }^{3 \%}$	3\％	${ }^{2 \%}$	2\％	\％	\％	\％	\％	\％	\％\％	\％	\％	0\％	0\％	\％\％	\％	\％
3300	33，15，090	－other	5	${ }^{\text {NT1 }}$	${ }^{4 \%}$	4\％	${ }^{4 \%}$	${ }^{3 \%}$	${ }^{3} \%$	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％
3309	33，153，010	－Of mominid celluar prosictis	5	NT1	4\％	4\％	4%	${ }^{3 \%}$	3\％	2\％	2\％	0\％	0\％	0\％	0\％	0\％	0\％	0\％	0\％	0\％	0\％	0\％	\％	\％
3302	33，15，090	－OMmer	5	V1	4%	4%	4%	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	2\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	0\％
$3{ }^{3093}$	39，15，000	－Ofoterep pasitics	5	${ }^{\text {NT1 }}$	4\％	4\％	4\％	${ }^{3 \%}$	3\％	2\％	${ }^{2 \%}$	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％
3304	${ }^{39616.10 .10}$	－Monolilament	5	NT1	4\％	4\％	4\％	${ }^{3 \%}$	3\％	${ }^{2 \%}$	2\％	\％	\％	\％	\％	\％	0\％	\％	\％	\％	0\％	\％	\％	\％
3305	${ }^{3961.10 .20}$	\cdots－Rods，sitics and porilies shapes	5	NT	4%	4%	${ }^{4 \%}$	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	0\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％
3306	39，162，010	－－Monolilament	5	V1	4\％	4\％	4\％	3\％	3\％	2\％	2\％	0\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％
3307	${ }^{3,16,2,20}$	－Roos，sicicks and p pollies shapes	5	V1	4%	4%	${ }^{4 \%}$	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	2\％	\％	\％	\％	0\％	\％	\％\％	0\％	0\％	\％	\％	0\％	\％	\％\％
3308	39，16，041	－Monotiament	5	NT1	4\％	4\％	4\％	${ }^{3 \%}$	${ }^{3 \%}$	2\％	${ }^{2 \%}$	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％
3309	33，16，049	Onher	5	${ }^{\text {NT1 }}$	4%	4\％	${ }^{4 \%}$	${ }^{3 \%}$	3\％	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	0\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％
3100	33，169，550	Of ulcanised fibe	5	NT1	4\％	4\％	4\％	3\％	3\％	${ }^{2 \%}$	2\％	0\％	0\％	0\％	0\％	0\％	0\％	0\％	0\％	0\％	0\％	0\％	\％	\％
3101	${ }^{39,169,060}$	－Ot chemical deivalive of naural unber	5	NT1	4%	4%	4\％	${ }^{3 \%}$	3\％	${ }^{2 \%}$	${ }^{2 \%}$	\％\％	\％\％	0\％	0\％	\％\％	\％\％	\％\％	0\％	\％	\％	0\％	\％	0\％
$3{ }^{3102}$	39，16，091	－Monotiament	5	${ }^{\text {NT1 }}$	${ }^{4 \%}$	4\％	${ }^{4 \%}$	${ }^{3 \%}$	${ }^{3} \%$	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％	\％	\％	\％\％	\％	\％	\％	\％	\％	\％	\％
${ }^{3103}$	39，16，099	－Other	5	VT1	4\％	4\％	${ }^{4 \%}$	3\％	3\％	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％	\％	\％	\％\％	\％	\％	\％	0\％	\％	\％	\％
3104	${ }^{3997.10 .10}$	－ot tardened proterens	5	NT	4%	4%	${ }^{4 \%}$	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	2\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％
$3{ }^{3105}$	39，771，900	－Other	5	NT	4\％	4\％	${ }^{4 \%}$	3\％	3\％	2\％	${ }^{2 \%}$	0\％	\％	\％\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％
${ }^{3106}$	${ }^{39,17,100}$	Of poymers of ethyene	${ }^{20}$	${ }^{\text {EL }}$	\bigcirc	\checkmark	\bigcirc	U	\checkmark	\bigcirc	\bigcirc	\checkmark	U	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	－	－	－	\bigcirc	\bigcirc	\bigcirc
${ }^{3107}$	39，17，200	－－ot popmers of provene	${ }^{20}$	${ }^{\text {EL }}$	\bigcirc	\bigcirc	U	U	O	\bigcirc	U	U	－	－	O	－	U	U	U	U	U		U	\bigcirc
${ }^{3108}$	${ }^{3,172,300}$	－Of posmers of tiny chloride	${ }^{20}$	${ }_{\text {EL }}$	\bigcirc	\bigcirc	\bigcirc	U	U	\bigcirc	\bigcirc	U	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	U	\bigcirc	U	U	\bigcirc	U	\bigcirc
3109	$3^{39,172,900}$	Of onere Pasasics	${ }^{20}$	${ }^{\text {sta }}$	20\％	20\％	20\％	20\％	20\％	20\％	20\％	20\％	20\％	\％	20\％	\％	20\％	\％	20\％	\％	20\％	20\％	0\％	0\％
${ }^{3110}$	39，17，100	$-\because$ Fiexibe tubes，pipes and hoses，having a minimum 27.6 MPa	${ }^{20}$	${ }^{\text {EL }}$	\checkmark	U	U	U	\bigcirc	U	－	U	U	U	U	\bigcirc	\bigcirc	U	U	U	\bigcirc	\checkmark	U	U
${ }^{3111}$	${ }^{3,173,210}$	－Sausage or ham casings	${ }^{20}$	${ }_{\text {EL }}$	\checkmark	\checkmark	\bigcirc	U	ט	\bigcirc	\bigcirc	\bigcirc	0	\bigcirc	\bigcirc	\bigcirc	－	\bigcirc	\bigcirc	ט	\bigcirc	0	U	\checkmark
$3{ }^{3112}$	$33,17,230$	－other	${ }^{20}$	${ }^{\text {EL }}$	U	U	ט	U	ט	U	U	U	\bigcirc	\bigcirc	\bigcirc	U	U	U	\bigcirc	U	U	U	U	\bigcirc
${ }^{3113}$	39，17，300	－－Other，not reinforced or otherwise combined with other materials，with fittings	${ }^{20}$	EL	0	\bigcirc	0	\bigcirc	\checkmark	0	0	－	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	0	－	\bigcirc	\bigcirc	\bigcirc	\bigcirc	－

香港•ASEAN FTAにかかる調査報告書
 別添2－4 原産地品の関税撤廃スケジュール

（ラオス）

$\sqrt{314}$	［3，173，900	Other	40	EL	U	U	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	U	\bigcirc	U	U	\bigcirc					
${ }^{3115}$	33，174，000	FFiting	${ }^{20}$	${ }_{\text {EL }}$	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	U	U	\bigcirc
${ }^{3116}$	3918．10．11	${ }^{- \text {Tilies }}$	10	IsL	0\％	10\％	\％\％	0\％	10\％	10\％	10\％	10\％	0\％	0\％	\％\％	10\％	0\％	\％\％	\％	0\％	10\％	10\％	10\％	10\％
3117	$3{ }^{3918.0 .19}$	Oner	10	Hst	10\％	\％	10\％	10\％	10\％	10\％	10\％	0\％	10\％	0\％	0\％	10\％	10\％	10\％	0\％	\％	10\％	0\％	10\％	10\％
${ }^{3118}$	33，18，090	－Other	10	${ }^{\text {HSL }}$	${ }^{10 \%}$	0\％	10\％	10\％	10\％	\％	10\％	0\％	10\％	0\％	10\％	0\％	10\％	10\％	0\％	\％	\％\％	10\％	0\％	0\％
319	33，18，0011	－Ties，of popentylyene	10	HSL	10\％	\％\％	0\％	10\％	10\％	10\％	10\％	10\％	${ }^{10 \%}$	0\％\％	10\％	10%	${ }^{10 \%}$	10\％	\％\％	10\％	10\％	\％\％	10\％	\％\％
3120	3，18，0，013	－Onter，of poyentyrene	10	HsL	10\％	0\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％
${ }^{3121}$	33，18，0，14	OOC Chenicald derivaives of nautaral luber	10	${ }^{\text {HSL }}$	${ }^{10 \%}$	${ }^{10 \%}$	10\％	10\％	10\％	10\％	10\％	10\％	10\％	0\％	10\％	10\％	10\％	10\％	\％	10\％	10\％	10\％	10\％	10%
${ }^{3122}$	33，18，0，19	－－Oher	10	${ }^{\text {HSL }}$	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	${ }^{10 \%}$	10\％	10\％	10\％	${ }^{10 \%}$	10\％
${ }^{3123}$	33，18，9，91	－or polyentyene	10	${ }^{\text {HSL }}$	${ }^{10 \%}$	${ }^{10 \%}$	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％
$3{ }^{3124}$	33，18，092	\cdots Of Chemicalderivalus of r naturar ruber	10	Hst	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％
3125	33，18，099	－Onher	10	Hst	10\％	0\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％
${ }^{3126}$	33919.10 .10	－ polymers of viny chloride	10	${ }^{\text {HSL }}$	10\％	0\％	10\％	10\％	10\％	10\％	10\％	10\％	\％\％	\％	10\％	10\％	10\％	10\％	\％	10\％	10\％	0\％	10\％	10\％
${ }^{3127}$	33919.1020	－of poveatyene	10	HSL	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％
${ }^{3128}$	33，191，090	－Other	10	${ }^{\text {HSL }}$	10\％	10\％	10\％	10\％	10\％	10\％	${ }^{10 \%}$	10\％	10\％	10\％	10\％	10\％	10\％	10\％	\％\％	10\％	10\％	\％	10\％	10\％
${ }^{3129}$	33，199，010	Of poymers of viny chioride	10	Hst	${ }^{10 \%}$	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	${ }^{10 \%}$	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％
${ }^{3130}$	33，19，020	－of hardened provens	10	${ }^{\text {HSL }}$	${ }^{10 \%}$	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％
${ }^{3131}$	33，19，090	－other	10	Hst	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％
${ }^{3132}$	33，20，000	－Of posmers of ethyene	${ }^{10}$	${ }^{\text {HSL }}$	${ }^{10 \%}$	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	${ }^{10 \%}$	10\％
${ }^{3133}$	33，202，010	－Biaxilly ofented dolypropyene（BOPP）film	10	HSL	${ }^{10 \%}$	\％\％	10\％	10\％	10\％	10\％	10\％	${ }^{10 \%}$	10\％	\％	10\％	10\％	10\％	10\％	0\％	10\％	10\％	10\％	10\％	10\％
${ }^{3134}$	33，202，900	－Oner	10	Hst	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	${ }^{10 \%}$	${ }^{10 \%}$	10\％	${ }^{10 \%}$	10\％	10\％	${ }^{10 \%}$	10\％	${ }^{10 \%}$
${ }^{3135}$	33，20，010	－Of a kind Used as an a anessive by meling	10	HSL	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％
${ }^{3136}$	33，20，202	－－Acrylonitrile butadiene styrene（ABS）sheets of a kind used in the manufacture of refrigerators	10	HSL	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	\％	10\％	10\％	10\％	10\％	10\％
${ }^{3137}$	33，20，090	－other	10	HsL	10\％	${ }^{10 \%}$	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10%	10\％	10\％	10\％	10\％
${ }^{3138}$	33，20，4，300	－Containing by weight not less than 6\％of plasticisers	10	Hst	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％
${ }^{3139}$	33，20，4，00	－－oter	10	HsL	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％
${ }^{3140}$	33，205，100	－Of poylmenty mentacrylat）	${ }^{10}$	HSL	${ }^{10 \%}$	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％
${ }^{3141}$	33，20，5，00	－Oner	10	HSL	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％
${ }^{3142}$	33，20，110	\cdots	10	${ }^{\text {HSL }}$	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	${ }^{10 \%}$	${ }^{10 \%}$	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10%
${ }^{3143}$	33，20，，190	Other	10	${ }^{\text {HSL }}$	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％
${ }^{3144}$	33，20，200	Of poyletivene eterephtualae）	10	${ }^{\text {HSL }}$	${ }^{10 \%}$	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％
3^{3145}	33，20，300	－－Ot unsaturated poyesesters	10	${ }^{\text {HSL }}$	${ }^{10 \%}$	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％
${ }^{3146}$	3，20，900	－Of ofer polyesesers	10	Hst	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％
${ }^{3147}$	${ }^{33,207,110}$	－Cellophane film	${ }^{10}$	HSL	${ }^{10 \%}$	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％
${ }^{3148}$	33，207，190	－other	10	IsL	10\％	10\％	10\％	10\％	${ }^{10 \%}$	10\％	10\％	${ }^{10 \%}$	10\％	10\％	10\％	10%	${ }^{10 \%}$	10\％	10\％	${ }^{10 \%}$	10\％	${ }^{10 \%}$	10\％	${ }^{10 \%}$
${ }^{3149}$	33，20，7，300	－ot collusesa actate	10	HSL	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％
${ }^{3150}$	33，207，910	Of infocelluse（ Gun coton）	10	${ }^{\text {HSL }}$	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％
${ }^{3151}$	33，207，990	Other	10	Hst	${ }^{10 \%}$	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％
${ }^{3152}$	33，209，10	－．－Film of a kind used in safety glass，of a thickiness exceeding 0.38 mm but not exceeding 0.75 m 0.76 mm ，and of a width not exceeding 2 m	10	HSL	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％
${ }^{3153}$	33，20， 190	Onter	10	Hst	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％
$3{ }^{3154}$	33，20，210	\cdots	10	Hst	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％
${ }^{3155}$	33，20，290	－Other	10	HSL	${ }^{10 \%}$	0\％	10\％	10\％	10\％	10\％	10\％	10\％	${ }^{10 \%}$	10\％	${ }^{10 \%}$	10\％	10\％	10\％	${ }^{10 \%}$	10\％	10\％	10\％	10\％	10\％
${ }^{3156}$	33，20，300	Ofaminoresins	10	Hst	${ }^{10 \%}$	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	${ }^{10 \%}$	${ }^{10 \%}$	10\％	${ }^{10 \%}$	10\％	10\％	10\％	10\％	10%
${ }^{3157}$	33，20，410	－－Phenol tommadehyde（bazefile）sheels	10	${ }^{\text {HSL }}$	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	${ }^{10 \%}$	${ }^{10 \%}$	${ }^{10 \%}$	${ }^{10 \%}$	${ }^{10 \%}$	10\％	10\％	10\％
${ }^{3158}$	33，209，490	－other	10	Hst	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	${ }^{10 \%}$	10\％	10\％	10\％	10\％	10\％	10\％	10\％	${ }^{10 \%}$
$3{ }^{3159}$	3，20，9，90	\cdots Of hardened proteins or of chemical derivatives of natural rubber	10	HsL	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％
${ }^{3160}$	33，20，990	\cdots	10	HSL	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10%	10\％
${ }^{3161}$	3221．11：20	\cdots Rigd	10	Hst	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％
${ }^{3162}$	${ }^{33,211,190}$	\cdots	10	${ }^{\text {HSL }}$	${ }^{10 \%}$	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	${ }^{10 \%}$	${ }^{10 \%}$	10\％	10\％	10\％	10\％	10\％	10\％	${ }^{10 \%}$	${ }^{10 \%}$
${ }^{3163}$	33，21，200	－ O polymes so viny chloride	10	${ }^{\text {HSL }}$	10\％	0\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10%	10\％	10\％	10\％
${ }^{3164}$	33，21，310	${ }^{-\mathrm{Rgid}}$	10	${ }^{\text {HSL }}$	${ }^{10 \%}$	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	${ }^{10 \%}$	10\％	10\％	10\％	10\％	10\％
${ }^{3165}$	33，21，390	Onter	10	HSL	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10%	10\％	10\％	10\％
${ }^{3166}$	$33,21,420$	\cdots－Rigd	10	${ }^{\text {HSL }}$	${ }^{10 \%}$	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	${ }^{10 \%}$	10\％	10\％	10\％	10\％	10\％	10\％	10\％
${ }^{3167}$	33，21，490	－OMer	10	HSL	${ }^{10 \%}$	${ }^{10 \%}$	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10%	10\％	10\％	${ }^{10 \%}$
${ }^{3168}$	3，21，1，20	\cdots－ igid	10	HSL	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％
3169	33，21，990	－Oner	10	HsL	10\％	0\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％
${ }^{3170}$	33，219，010	－ot uluanised tive	10	${ }^{\text {HSL }}$	10\％	\％\％	10\％	10\％	${ }^{10 \%}$	10\％	10\％	${ }^{10 \%}$	10\％	0\％	${ }^{10 \%}$	10\％	10\％	10\％	0\％	10\％	${ }^{10 \%}$	${ }^{10 \%}$	10\％	${ }^{10 \%}$
${ }^{3171}$	33，219，020	－of hardened protens	10	HsL	${ }^{10 \%}$	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	${ }^{10 \%}$
${ }^{3172}$	33，219，030		10	HSL	${ }^{10 \%}$	${ }^{10 \%}$	10\％	10\％	10\％	10\％	10\％	10\％	${ }^{10 \%}$	${ }^{10 \%}$	10\％	10\％	10\％	10\％	10%	10\％	10\％	10\％	10\％	10\％
${ }^{3173}$	33，219，090	－other	10	${ }^{\text {HSL }}$	10\％	10\％	10\％	10\％	${ }^{10 \%}$	10\％	${ }^{10 \%}$	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％
3174	${ }^{3222.10,10}$	－Bans	5	${ }^{\text {NT1 }}$	4\％	4\％	4\％	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％	\％	\％	\％	0\％	0\％	\％	\％	\％	\％	\％
${ }^{3175}$	33，22，，090	－other	5	NT1	4\％	4\％	4\％	3\％	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％
3176	33，22，000	－Lavator sala sand covers	5	${ }^{\text {NTI }}$	4\％	4\％	4\％	3\％	3\％	2\％	2\％	0\％	0\％	\％	0\％	\％	\％	\％	\％	\％	\％	0\％	\％	\％
${ }^{3177}$	33，29，011	\cdots Parts of fusting sisems	5	NT1	4%	$4{ }^{4 \%}$	$4{ }^{4 \%}$	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％
${ }^{3178}$	33，29，012	$\begin{aligned} & \text {-- Flushing cisterns equipped with their } \\ & \text { mechanisms } \end{aligned}$	${ }^{5}$	${ }^{\text {NT1 }}$	4\％	4\％	4\％	3\％	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％\％
${ }^{3179}$	33，29，0，19	\cdots Other	5	NT1	4\％	4\％	4\％	3\％	3\％	2\％	${ }^{2 \%}$	0\％	0\％	\％	0\％	0\％	0\％	0\％	0\％	0\％	0\％	\％	\％	0\％
${ }^{3180}$	33，22，090	－other	5	NT1	4%	4%	${ }^{4 \%}$	${ }^{3 \%}$	3\％	2\％	${ }^{2 \%}$	0\％	0\％	0\％	\％\％	0\％	\％	0\％	\％	\％	\％	\％	\％	\％
${ }^{3181}$	${ }^{3923.10 .10}$	－Film，IPe and oficial disc cases	${ }^{20}$	HsL	20\％	20\％	20\％	20\％	20\％	20\％	20\％	20\％	20\％	20\％	20\％	20\％	20\％	20\％	20\％	20\％	20\％	20\％	20\％	${ }^{20 \%}$
${ }^{3182}$	33，23，0，90	－－other	${ }^{20}$	HSL	20\％	20\％	20\％	20\％	20\％	20\％	20\％	20\％	20\％	20\％	20\％	20\％	20\％	20\％	20\％	20\％	20\％	20\％	20\％	20\％
${ }^{3183}$	33，232，111		${ }^{40}$	EL	－	U	U	U	－	U	U	U	U	U	－	－	U	U	ט	ט	－	ט	ט	\bigcirc
${ }^{3184}$	33，23， 119	Onher	${ }^{40}$	EL	\checkmark	0	\bigcirc	\bigcirc	\bigcirc	\checkmark	\checkmark	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\checkmark	\checkmark		\bigcirc	\bigcirc	\bigcirc	\bigcirc	\checkmark
${ }^{3185}$	33，23， 191		40	EL	ט	u	u	u	u	u	u	u	u	u	u	ט	u	u	\checkmark	u	u	u	ט	\checkmark
${ }^{3186}$	33，23，199	Oher	40	EL	U	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	U	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	U	\bigcirc	U	\bigcirc	\bigcirc	\bigcirc	\bigcirc
${ }^{3187}$	33，23，910	－－Aseptic bags whether or not teinforced with aluminium foil（（therer than retort pouches），of a width of 315 mm or more and of a length of 410 mm or more，incorporating a sealed gland	40	${ }^{\text {el }}$	\cup	\checkmark	u	\cup	\cup	\checkmark	\cup	u	\cup	u	\checkmark	u	u	u	ט	u	\cup	\cup	\cup	\checkmark
${ }^{3188}$	33，232，990	－－．other	${ }^{40}$	${ }^{\text {EL }}$	\bigcirc	U	\bigcirc	0	\bigcirc	\bigcirc	\bigcirc	\bigcirc	0	U	\bigcirc	\bigcirc	\bigcirc	－	0	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
${ }^{3189}$	33，23，200		${ }^{10}$	${ }^{\text {sL }}$	10\％	0\％	\％\％	0\％	10\％	10\％	10\％	10\％	${ }^{8 \%}$	${ }^{7 \%}$	${ }^{6 \%}$	${ }^{5 \%}$	${ }^{4 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{1 \%}$	\％	\％	\％	\％
3190	33，23，900	－other	10	sL	10%	${ }^{10 \%}$	${ }^{10 \%}$	${ }^{10 \%}$	${ }^{10 \%}$	10\％	10\％	${ }^{10 \%}$	${ }^{8 \%}$	${ }^{7} \%$	6\％	${ }^{5 \%}$	${ }^{4 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	1\％	0\％	0\％	\％	0\％
$3{ }^{319}$	39，234，010		${ }^{10}$	जT2	${ }^{9 \%}$	${ }^{9 \%}$	${ }^{8 \%}$	${ }^{8 \%}$	${ }^{6 \%}$	${ }^{6 \%}$	${ }^{5 \%}$	${ }^{5 \%}$	${ }^{4 \%}$	${ }^{4 \%}$	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	${ }^{0 \%}$	${ }^{\text {\％\％}}$	\％	\％	\％	${ }^{0 \%}$
${ }^{3192}$	33，24，9090	－－other	${ }^{10}$	${ }^{\text {NT2 }}$	9\％	9\％	${ }^{8 \%}$	${ }^{8 \%}$	6\％	6\％	${ }^{5 \%}$	${ }^{5 \%}$	4\％	4\％	3\％	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％\％	0\％	\％	\％	\％	\％
${ }^{3193}$	33，25，000	Sioppers，ids，caps and ofere cosuses	10	NT2	${ }^{\text {\％}}$	9\％	${ }^{8 \%}$	${ }^{8 \%}$	6\％	6\％	${ }^{5 \%}$	5\％	${ }^{4 \%}$	${ }^{4 \%}$	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％	\％	\％	\％
3194	33，23，010	－Tootpasase wubes	${ }^{20}$	EL	U	ט	－	\bigcirc	ט	\bigcirc	\checkmark	\bigcirc	\bigcirc	\bigcirc	－	－	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\checkmark	\checkmark	\bigcirc	\bigcirc
${ }^{3195}$	33，23，9090	Oner	${ }^{20}$	${ }^{\text {HSL }}$	${ }^{20 \%}$	20\％	20\％	20\％	${ }^{20 \%}$	20\％	${ }^{20 \%}$	${ }^{20 \%}$	20\％	20\％	20\％	20\％	${ }^{20 \%}$	20\％	${ }^{20 \%}$	20\％	20\％	20\％	${ }^{20 \%}$	${ }^{20 \%}$
${ }^{3196}$	3，24，1，00	Tableware and kicicremware	${ }^{20}$	${ }^{\text {HsL }}$	20\％	120%	20%	20\％	${ }^{20 \%}$	20%	20%	20%	20\％	${ }^{20 \%}$	20%	$2{ }^{20 \%}$	20%	20%	20%	20%	20\％	20%	$2{ }^{20 \%}$	20\％

3197	［3，249，010	Ed pans，urinas（poratal type）or chamberpoos	${ }^{20}$	EL		u	u	U	－	0	U	U		U	U				，				，	
3198	39，29，900	Other	20	EL	U	U	U	U	U	U	U	U	U	U	U	U	U	ט	\bigcirc	\bigcirc	U	U	U	\bigcirc
319	9，251，000	－Reservoirs，tanks，vats and similar containers，of a	10	IsL	10\％	\％	\％\％	${ }^{10 \%}$	10\％	10%	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	\％\％
3200	33，25，000	－Doors winows and ther frames and dressolods tor	10	HSL	10\％	10\％	10%	10%	${ }^{10 \%}$	${ }^{10 \%}$	10%	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％
3201	39，25，000	－Shutters，blinds（including Venetian blinds）and	10	HsL	10\％	10\％	10%	${ }^{10 \%}$	${ }^{10 \%}$	10\％	${ }^{10 \%}$	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	\％\％	10\％	10\％	10\％	0\％
3202	39，25，000	－other	10	HsL	10\％	10\％	10\％	10\％	10\％	10\％	10%	10%	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	${ }^{10 \%}$	10\％	10\％	10\％
3203	39，26，000	－otitice ors shool supplies	10	HsL	10\％	\％\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	\％	10\％	0\％	10\％	10\％
3204	39，26，206	－－Articles of apparel used for protection from chemical substances，radiation or fire	10	HsL	${ }^{10 \%}$	10\％	${ }^{10 \%}$	${ }^{10 \%}$	${ }^{10 \%}$	10\％	10\％	${ }^{10 \%}$	${ }^{10 \%}$	${ }^{10 \%}$	${ }^{10 \%}$	10\％	${ }^{10 \%}$	${ }^{10 \%}$	10\％	10\％	10\％	10\％	10%	10\％
$\stackrel{325}{ }$	39，62，290	－－Other	10	Hst	\％	10\％	10\％	10\％	10\％	10\％	10%	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％
3206	39，28，000		10	HsL	0\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	${ }^{10 \%}$	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％
3307	39，24，000	－Satuetes and ofere ormanenala aricos	10	HLL	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％
3208	39，69，010	－Foals or fishing nets	10	HL	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	\％
3209	39，26，020	－－Fans and handscreens，frames and handles therefor，and parts thereof	10	HsL	10\％	10\％	10\％	10\％	10\％	10\％	10\％	\％	\％\％	10\％	10\％	10\％	\％	10\％	10\％	10\％	10\％	0\％	10\％	10\％
3210	39，26，032	\cdots	${ }^{10}$	IsL	0\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	${ }^{10 \%}$	10\％	10\％	10\％	10\％	10\％	${ }^{10 \%}$	0\％	${ }^{10 \%}$	${ }^{10 \%}$
3211	39，29，039	…oner	0	Ist	10\％	10\％	10%	10\％	${ }^{10 \%}$	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	0\％	10\％	\％
3212	39，26，041	Poice stieds	10	SL	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	${ }^{8 \%}$	${ }^{\text {7\％}}$	6\％	5\％	4\％	${ }^{3 \%}$	${ }^{2 \%}$	1\％	\％	\％\％	\％	\％
3213	3，2，		10	sL	10\％	10\％	10\％	${ }^{10 \%}$	10\％	10\％	10\％	${ }^{10 \%}$	${ }^{8 \%}$	${ }^{7 \%}$	6\％	${ }^{\text {5\％}}$	${ }^{4 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{1 \%}$	\％	\％	\％	0\％
3214	33，26，094	－Lie saving cushions sor the protecilion of	10	sL	10\％	10\％	10\％	10\％	10\％	10\％	10\％	${ }^{10 \%}$	${ }^{8 \%}$	${ }^{7} \%$	6\％	${ }^{5 \%}$	${ }^{4 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{\text {\％}}$	\％	0\％	\％	\％
3215	39，26，049	\cdots	10	sL	0\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	${ }^{8}$	${ }^{\text {\％}}$	6\％	${ }^{5 \%}$	$4{ }^{4 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{1 \%}$	\％	\％	\％	0\％
3216	39，29，053	\cdots－Tansmisison or conveer belis or beding	10	sL	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	8\％	7\％	6\％	5\％	4\％	3\％	2\％	1\％	\％	\％	0\％	\％
3217	39，26，055		10	sL	\％	0\％	0\％	0\％	0\％	10\％	10\％	10\％	${ }^{8 \%}$	${ }^{7 \%}$	6\％	${ }^{5 \%}$	${ }^{4 \%}$	3\％	${ }^{2 \%}$	${ }^{1 \%}$	0\％	0\％	\％	\％
3218	39，69，059	Onter	10	sL	\％	0\％	10\％	10%	10\％	10\％	10\％	10%	\％	\％	6\％	${ }^{5 \%}$	$4{ }^{4 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	1\％	\％	\％	0\％	\％
3219	39，29，060	－－Poutry feeders	10	sL	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	${ }^{8 \%}$	\％	6\％	5\％	4%	3\％	2\％	1\％	\％	\％	\％	\％
3220	39，26，070	－－Padding for articles of apparel or clothing accessories	10	st	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	8\％	${ }^{7 \%}$	6\％	5\％	4\％	3\％	2%	1\％	\％	0\％	\％	0\％
3321	39，26，081	－－Shoelass	10	st	\％ 0	10\％	\％\％	${ }^{10 \%}$	${ }^{10 \%}$	${ }^{10 \%}$	${ }^{10 \%}$	10\％	8\％	${ }^{7} \%$	6\％	${ }^{5 \%}$	${ }^{4 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{1 \%}$	\％	\％	\％	0\％
3322	39，26，082	－Prayer beads	10	st	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	${ }^{8 \%}$	${ }^{7} \%$	6\％	${ }^{5 \%}$	4%	3\％	2\％	1\％	\％	0\％	0\％	0\％
3223	39，69，089	－Other	10	sL	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	${ }^{8 \%}$	\％	6\％	5\％	4%	3\％	2%	1\％	0\％	\％	\％	0\％
322	39，29，091	Of a knd used tor grain storage	10	HsL	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	${ }^{10 \%}$	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％
3225	39，26，092	－－－Empty capsules of a kind suitable for pharmaceutical use	10	HSL	10\％	10\％	10\％	10\％	10\％	${ }^{10 \%}$	${ }^{10 \%}$	10\％	\％	10\％	10\％	10\％	\％	10\％	10\％	${ }^{10 \%}$	${ }^{10 \%}$	10\％	${ }^{10 \%}$	0\％
322	39，26，099	…oter	10	ist	0\％	10\％	10\％	10\％	0\％	10\％	10\％	0\％	0\％	10\％	10\％	\％	0\％	10\％	10\％	10\％	10\％	\％\％	10\％	0\％
3327	4001．10．11	－Centritge conementale	5	T1	4%	4\％	4\％	3\％	3\％	${ }^{2 \%}$	2%	\％	0\％	0\％	0\％	\％	0\％	\％	0\％	\％	\％	\％	0\％	\％
${ }^{3228}$	4001.10 .19	－Other	5	V1	$4{ }^{4 \%}$	${ }^{4 \%}$	4%	3\％	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％\％	0\％	\％\％	\％	0\％	0\％	0\％	0\％	\％	\％	\％	\％\％
329	4001．1022	Centifige conementale	5	V1	4%	4%	$4{ }^{4}$	${ }^{3 \%}$	${ }^{3} \%$	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	0\％	\％	\％	0\％	0\％	\％	\％	\％	\％	\％	0\％
3230	4001．1022	Onter	5	V1	${ }^{4 \%}$	4%	4\％	${ }^{3}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％
3323	40，012，10	－Rss Grade 1	5	NT1	4\％	${ }^{4 \%}$	4%	${ }^{3 \%}$	3\％	${ }^{2 \%}$	${ }^{2 \%}$	0\％	\％	\％	\％	\％	\％\％	0\％	\％	0\％	\％	0\％	\％	0\％
3322	40，012，120	－RSS Grade 2	5	NT1	4%	4%	4%	${ }^{3 \%}$	3\％	2\％	${ }^{2 \%}$	0\％	0\％	0\％	0\％	\％	0\％	\％	0\％	\％	\％	\％	\％	\％
$3{ }^{233}$	40，012，130	－RSS Grade 3	5	NT1	4%	4\％	4\％	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	0\％	\％	\％	\％	0\％	\％	0\％	0\％	0\％	\％	\％	\％	0\％
${ }^{3234}$	40，012，140	－RSS Grade 4	5	NT1	4%	4%	4\％	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％	\％	0\％	\％	\％	\％	\％	\％	\％	\％	0\％
3235	40，012，150	－Rss Grade 5	5	NT1	4\％	4\％	4\％	3\％	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％
${ }^{3236}$	40，012，190	Onter	5	N1	4%	4%	4\％	3\％	3\％	2\％	2\％	0\％	\％\％	\％	\％\％	0\％	\％	\％	\％	0\％	\％	0\％	0\％	\％
${ }^{3237}$	${ }^{40,012,210}$	${ }^{\text {TSNR } 10}$	5	V1	4%	4\％	4%	3\％	3\％	${ }^{2 \%}$	${ }^{2 \%}$	0\％	\％	\％	\％	\％	0\％	0\％	\％	\％	\％	\％	0%	\％
3238	${ }^{40,012,220}$	TSNR 20	5	T1	${ }^{4 \%}$	4%	4%	3\％	3\％	${ }^{2 \%}$	2\％	0\％	\％	\％	\％	0\％	\％	0\％	\％	\％	\％	\％	\％	\％\％
3239	40，0，2，230	SNFL	5	V1	4%	4\％	4\％	${ }^{3}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％	0\％	\％	\％	0\％	0\％	\％	\％	\％	\％	\％
3320	${ }^{40,012,240}$	－TSNR CV	5	NT1	4\％	4\％	4%	${ }^{3 \%}$	${ }^{3 \%}$	2%	${ }^{2 \%}$	0\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	0\％	\％	0\％
324	${ }^{40,012,250}$	TSNR GP	5	NT1	4%	4\％	4\％	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	0\％	\％	\％	\％	0\％	\％	0\％	\％	\％	\％	0\％	\％	\％
$3{ }^{322}$	${ }^{40,012,230}$	－OMner	5	NT1	4%	4\％	4%	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％	\％	0\％	\％\％	\％	\％	0\％	\％	\％	\％	\％
$3{ }^{324}$	${ }^{40,012,910}$	Ar．dine s speets	5	NT1	${ }^{4 \%}$	4\％	${ }^{4 \%}$	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％	\％	0\％	\％	0\％	\％	\％	\％	\％	0\％	0\％
324	${ }^{40,0,012,920}$	${ }^{\text {Lalexcepeps }}$	5	NT1	${ }^{4 \%}$	4%	4\％	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％	\％	\％	\％	0\％	\％	\％	\％	\％	\％	0\％
3245	20，012，930	Sole crepes	5	NT1	4\％	4\％	4\％	3\％	3\％	2\％	2\％	0\％	0\％	\％	0\％	0\％	\％	0\％	\％	\％	\％	\％	\％	\％
$3{ }^{326}$	40，012，940	\cdots－Remilded creeses，inculung lat bakak crepes	5	N1	4\％	4%	4\％	3\％	3\％	2\％	2%	0\％	0\％	\％	\％	0\％	\％	0\％	\％	\％	\％	\％	\％	\％
$3{ }^{327}$	${ }^{40,012,950}$	Ofnercrepes	5	V1	4%	4\％	4%	${ }^{3 \%}$	3\％	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％
3248	40，012，960	Supeior processing unber	5	V1	4%	4\％	4%	${ }^{3 \%}$	3\％	${ }^{2 \%}$	${ }^{2 \%}$	\％	0\％	0\％	0\％	0\％	0\％	0\％	0\％	\％	\％	\％	\％	\％
3249	20，012，970	Skim ruber	5	NT1	4\％	4\％	4\％	${ }^{3 \%}$	${ }^{3 \%}$	2%	${ }^{2 \%}$	\％	\％	\％	\％	\％	\％	0\％	\％	\％	\％	0\％	\％	\％
3250	40，012，980	Scrap（tree，eartho or mokere）and cup lump	5	${ }^{\text {NT1 }}$	${ }^{4 \%}$	4\％	${ }^{4 \%}$	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％\％	\％	\％	\％	\％	0\％	\％	0\％	\％	\％	0\％	\％
3351	${ }^{40,012,991}$	Inpimay toms	5	NT1	4%	4\％	4%	${ }^{3 \%}$	3\％	2\％	${ }^{2 \%}$	0\％	0\％	0\％	0\％	0\％	0\％	0\％	0\％	\％	\％\％	\％	\％	0\％
3252	40，012，999	Onher	5	NT1	4%	4\％	4%	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	0\％	\％	\％	\％	0\％	\％	0\％	\％	0\％	\％	\％	0\％	0\％
$3{ }^{3253}$	40，013，011	Inpimax toms	5	NT1	4\％	4\％	4\％	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％	0\％	\％	\％	0\％	\％	\％	\％	\％	\％	0\％
$3{ }^{3254}$	40，013，019	Onher	5	NT1	4\％	4\％	4%	3\％	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％
3225	20，013，091	－Inpimay toms	5	NT1	4\％	4\％	4\％	${ }^{3 \%}$	3\％	2\％	2\％	0\％	\％\％	0\％	\％\％	\％	\％	0\％	\％	\％\％	\％	\％\％	\％\％	\％\％
3256	20，013，099	－－omer	5	N1	4\％	${ }^{4 \%}$	4\％	3\％	3\％	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％	\％	\％	0\％	0\％	\％	\％	0\％	\％	\％	\％\％
3357	40，021，100	－Latex	5	NT1	${ }^{4 \%}$	${ }^{4 \%}$	4\％	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	0\％	0\％	0\％	0\％	0\％	0\％	0\％	0\％	0\％	\％	\％
3258	40，02，910	$\begin{aligned} & \text {-- - In primary forms or in unvulcanised, } \\ & \text { uncompounded plates, sheets or strip } \\ & \hline \end{aligned}$	${ }^{5}$	NT1	4\％	4\％	4%	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	0\％	0\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％
3259	40，01，990	－－Other	5	NT1	4\％	${ }^{4 \%}$	4\％	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	0\％	\％\％	\％	\％	0\％	0\％	0\％	\％	\％	\％	0\％	\％	0\％
3260	20，020，010	－Inpimax toms	5	NT1	4\％	4\％	4\％	${ }^{3 \%}$	3\％	2\％	${ }^{2 \%}$	0\％	\％\％	\％	\％	0\％	0\％	0\％	0\％	\％	\％	\％	\％	\％
3261	40，02，2，90	－－Other	5	NT1	4\％	$4{ }^{4 \%}$	4%	${ }^{3 \%}$	3\％	2\％	${ }^{2 \%}$	0\％	\％	\％	\％	0\％	0\％	0\％	\％	0\％	0\％	0\％	0\％	0\％
${ }^{3262}$	40，02， 110	－．UUnuluanised，uncompounded plases，streas or	5	NT1	4\％	4\％	4\％	3\％	3\％	${ }^{2 \%}$	2\％	\％	0\％	\％	\％	\％	0\％	0\％	\％	\％	\％	\％	\％	0\％
3263	40，02，190	－－Oner	5	NT1	4%	4%	4\％	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	0\％	\％	\％	0\％	0\％	\％	\％	\％	0\％	\％	\％	0\％	0\％
${ }^{3264}$	20，02，9，90	\cdots	5	${ }^{\text {NT1 }}$	4\％	4\％	4\％	3\％	3\％	2%	${ }^{2 \%}$	0\％	0\％	\％	\％	\％	0\％	\％	\％	0\％	\％	\％	\％	0\％
3265	40，02，9，90	\cdots	5	NT1	4\％	4\％	4\％	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	2\％	0\％	\％	\％	\％	\％	\％	0\％	0\％	0\％	\％	\％	\％	0\％
${ }^{3266}$	20，024，100	－Latex	5	NT1	${ }^{4 \%}$	4\％	${ }^{4 \%}$	${ }^{3 \%}$	3\％	2%	${ }^{2 \%}$	0\％	0\％	\％	\％	0\％	\％\％	\％	0\％	\％	\％	0\％	0\％	0\％
${ }^{3267}$	${ }^{40,024,910}$	－Inpimay ${ }^{\text {arms }}$	5	V1	4%	4%	4\％	${ }^{3 \%}$	${ }^{3 \%}$	2%	${ }^{2 \%}$	0\％	0\％	0\％	0\％	\％	\％	0\％	0\％	0\％	\％	0\％	0\％	0\％
${ }^{2268}$	${ }^{40,024,990}$	－other	5	V1	4%	4%	4%	3\％	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	0\％	\％\％	\％	0\％	0\％	\％	0\％	0\％	0\％	\％	0\％	\％	0\％
3369	40，02， 100	－Latex	5	NT1	4%	4%	4\％	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	0\％	0\％	\％	0\％	\％	\％	0\％	\％	\％	\％	\％	\％	0\％
3270	40，02，9，90	\cdots－ mpimay toms	5	NT1	4\％	4\％	4\％	3\％	3\％	${ }^{2 \%}$	2\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％
3271	20，025，990	Oner	5	NT1	4\％	4\％	4\％	${ }^{3 \%}$	3\％	2%	${ }^{2 \%}$	0\％	\％\％	\％	\％	0\％	0\％	\％	\％	\％	\％	\％	\％	\％
3272	40，02，010	－Inpimay toms	5	NT1	4%	4\％	4%	${ }^{3 \%}$	3\％	2\％	${ }^{2 \%}$	0\％	\％	0\％	0\％	0\％	0\％	0\％	\％	0\％	0\％	0\％	\％	0\％
$3{ }^{3273}$	40，02，0，90	Other	5	NT1	4%	4\％	4%	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	2\％	\％	\％	\％	\％	0\％	\％	0\％	\％	\％	\％	\％	0\％	0\％
3274	40，02，0，10	－Inpimay toms	5	${ }^{\text {NT1 }}$	4\％	4\％	${ }^{4 \%}$	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％	\％	\％	\％	0\％	0\％	\％	\％	\％	\％	0\％
3275	40，027，090	－other	5	${ }^{\text {NT1 }}$	4\％	4\％	4\％	${ }^{3 \%}$	3\％	2%	${ }^{2 \%}$	\％\％	\％\％	0\％	\％	\％	0\％	0\％	\％	\％	\％	\％	\％	\％\％
${ }^{3276}$	40，08， 010	－－Mixtures of natural rubber latex with synthetic rubber latex	${ }^{5}$	NT1	${ }^{4 \%}$	${ }^{4 \%}$	4\％	3\％	3\％	${ }^{2 \%}$	${ }^{2 \%}$	0\％	\％	\％	\％	${ }^{0 \%}$	\％	\％	${ }^{0 \%}$	\％	${ }^{0 \%}$	\％	${ }^{0}$	\％\％
${ }^{327}$	40，082，090	－Onter	${ }^{5}$	V1	${ }^{4 \%}$	4\％	4\％	${ }^{3 \%}$	3\％	2\％	${ }^{2 \%}$	0\％	0\％	\％	0\％	\％	0\％	${ }^{0 \%}$	${ }^{0 \%}$	${ }^{0 \%}$	0\％	0\％	\％	\％\％
${ }^{3278}$	40，02，100	－－Laex	${ }^{5}$	NT1	4%	4\％	4\％	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％
${ }^{3279}$	40，02	－－－In primary forms or in unvulcanised， uncompounded plates，sheets or strip	${ }^{5}$	NT1	${ }^{4 \%}$	${ }^{4 \%}$	${ }^{4 \%}$	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	2\％	0\％	0\％	0\％	0\％	0\％	0\％	0\％	0\％	\％	\％	\％	\％	\％
3280	40，02，990	－－Oner	5	NT1	4\％	4\％	4\％	${ }^{3 \%}$	3\％	2\％	${ }^{2 \%}$	0\％	0\％	0\％	0\％	0\％	0\％	0\％	0\％	0\％	\％	0\％	0\％	0\％
	20，03，000	Reclaimed rubber in primary forms or in plates， sheets or strip．	5	${ }^{\text {NT1 }}$	${ }^{4 \%}$	${ }^{4 \%}$	4\％	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	0\％	0\％	\％	\％	${ }^{0 \%}$	\％	\％	${ }^{0 \%}$	${ }^{0 \%}$	\％	\％	\％	\％\％
${ }^{382}$	40，00，000	Waste，parings and scrap of rubber（other than hard rubber）and powders and granules obtained therefrom．	5	V1	${ }^{4 \%}$	${ }^{4 \%}$	4\％	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	0\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％

香港•ASEAN FTAにかかる調査報告書
 別添2－4 原産地品の関税撤廃スケジュール

（ラオス）

$\sqrt{3283}$	${ }^{4005.10,10}$	－f natura gums	5	NT1	4\％	${ }^{4 \%}$	4\％	3\％	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	0\％	0\％	0\％	0\％	\％	\％\％	0\％	0\％	\％\％	\％	\％	\％\％	
3324	40，051，090	－Oner	5	NT1	${ }^{4 \%}$	$4{ }^{4 \%}$	4\％	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％	0\％	0\％	0\％	0\％	\％	\％	\％	0\％	\％	\％\％
3285	20，052，000	Solutions；dispersions other than those of subheading 4005.10	5	NT1	4\％	4\％	4\％	3\％	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	
3286	40，059，110	‥or natual sums	5	NT1	4\％	4%	${ }^{4 \%}$	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	0\％	0\％	0\％	0\％	\％	0\％	\％	\％	\％	\％	\％	\％	\％
3387	40，059，1	－－Other	5	NT1	$4{ }^{4 \%}$	4%	$4{ }^{4 \%}$	3\％	3\％	${ }^{2 \%}$	${ }^{2 \%}$	0\％	0\％	\％	\％	\％	\％	\％	0\％	\％	\％	\％	\％	0\％
3288	20，059，910	－Latax	5	NT1	4\％	4%	4\％	3\％	${ }^{3 \%}$	2\％	${ }^{2 \%}$	0\％	\％	\％	\％\％	\％	\％\％	\％	\％	\％	\％	\％	\％	0\％
3329	40，05，990	－other	5	NT1	${ }^{4 \%}$	4%	4\％	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }_{2 \%}{ }^{2 \%}$	0\％	0\％	0\％	0\％	0\％	0\％	0\％	0\％	\％	0\％	0\％	0\％	\％
3290	40，06，1，00	－＂Camel－back＂strips for retreading rubber tyes	5	NT1	${ }^{4 / 6}$	4%	4\％	3\％	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	0\％	\％	\％	0\％	0\％	0\％	0\％	\％	\％	\％	0\％	\％	0\％
3291	20，069，010	－－ot natua gums	5	NT1	4%	4\％	4\％	3\％	${ }^{3 \%}$	${ }^{2 \%}$	2\％	\％	\％	\％\％	0\％	\％\％	0\％	\％	\％\％	\％	0\％	\％\％	\％	\％
3292	40，06，9090	－－other	5	NT1	4%	4\％	4%	${ }^{3 \%}$	3\％	${ }^{2 \%}$	${ }^{2 \%}$	0\％	\％	\％	\％	\％	\％	\％	\％	\％\％	\％	\％	\％	\％
3293	20，00，000	Vulcanised rubber tread and corc．	5	NT1	4%	4\％	4\％	${ }^{3 \%}$	${ }^{3 \%}$	2\％	${ }^{2 \%}$	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％
3294	4008.11 .10	－－－Exceeding 5 mm in thickness，lined with textile fabric on one side	${ }^{5}$	NT1	${ }^{4 \%}$	${ }^{4 \%}$	4\％	3\％	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	0\％	\％	\％	\％	0\％	\％\％	\％	\％	\％	\％	\％	\％
3295	4008．11：20	－－－Oner，loor ties and wallies	5	NT1	${ }^{4 \%}$	${ }_{4}^{4 \%}$	${ }^{4 \%}$	3\％	3\％	${ }^{2 \%}$	2\％	\％	\％	\％	0\％	0\％	\％	\％	\％	\％	\％	0\％	\％	0\％
3329	40，08， 1,190	－Other	5	NT1	${ }^{4 \%}$	4%	${ }^{4 \%}$	3\％	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	0\％	\％\％	\％	\％	\％	0\％	\％	\％	\％	0\％	\％	0\％
3297	40，08，9，900	－－other	5	NT1	4%	4\％	4\％	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	0\％	0\％	0\％	0\％	0\％	0\％	0\％	\％	\％	0\％	0\％	0\％
3298	40，082，110	－－－Exceeding 5 mm in thickness，lined with textile fabric on one side	${ }^{5}$	NT1	${ }^{4 \%}$	4\％	4\％	3\％	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	0\％	\％\％	\％	\％	0\％	0\％	\％\％	\％	0\％	0\％	\％	0\％
3329	20，02，120	\cdots Ofter，flor ties and wall lies	5	HSL	${ }^{5 \%}$	5\％	${ }^{5 \%}$	5\％	${ }^{5 \%}$	5\％	5\％	5\％	${ }^{5 \%}$	5\％	${ }^{5 \%}$	${ }^{5 \%}$	5\％	5\％	5\％	5\％	5\％	5\％	5\％	${ }^{5 \%}$
3300	20，02，190	－－Other	5	HSL	5%	5\％	${ }^{5 \%}$	5\％	5\％	${ }^{5 \%}$	${ }^{5 \%}$	${ }^{5 \%}$	5\％	5\％	${ }^{5 \%}$	5\％	5\％	5\％	${ }^{5 \%}$	5\％	5\％	${ }^{5 \%}$	5\％	5\％
3301	40，082，900	－other	5	NT1	4%	4%	4\％	3\％	${ }^{3 \%}$	${ }^{2 \%}$	2\％	\％	\％	\％	\％	\％	\％	\％	\％	\％\％	\％	\％	\％	\％
3302	20，09，100	－Witoun fiting	10	N2	\％	\％	${ }_{8}^{8 \%}$	8\％	6\％	6\％	5\％	5\％	${ }^{4 \%}$	4\％	3\％	3\％	${ }^{2 \%}$	${ }^{2 \%}$	\％	0\％	0\％	\％	\％	0\％
3303	4009．12：10	－Mining surry sution and discharge hoses	10	NT2	\％	9\％	8\％	8\％	6\％	6\％	5%	5\％	${ }^{4 \%}$	4\％	3\％	3\％	2\％	2\％	\％\％	\％	\％	0\％	\％	0\％
3304	40，09，2030	－－Omer	10	NT2	\％\％	\％	$8{ }^{8}$	${ }^{8 \%}$	6\％	6\％	${ }^{5}$	5\％	${ }^{4 \%}$	4\％	3\％	3\％	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％\％	0\％	\％	\％
3305	40，02，110	\cdots Mining surry scicion and dischays osses	10	N2	\％	9\％	8\％	${ }^{8 \%}$	6\％	6\％	5\％	5\％	${ }^{4 \%}$	4\％	3\％	${ }^{3 \%}$	2\％	${ }^{2 \%}$	\％	\％	\％	\％	0\％	0\％
3306	20，02，190	－other	10	N2	9\％	9\％	${ }^{8 \%}$	8\％	6\％	6\％	5\％	5\％	4\％	4\％	${ }^{3 \%}$	${ }^{3 \%}$	2\％	${ }^{2 \%}$	0\％	\％	0\％	0\％	\％	\％
3307	40，092，210	\cdots Mining surry sucioio and discharg onses	10	N2	9\％	9\％	${ }_{8}^{8 \%}$	${ }^{8 \%}$	6\％	6\％	5\％	5\％	4\％	4\％	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	0\％	\％\％	0\％	0\％	\％	\％
3308	${ }^{40,092,290}$	\cdots	10	N2	9\％	9\％	${ }^{8 \%}$	${ }^{8 \%}$	6\％	6\％	5\％	5\％	4\％	4\％	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	0\％	\％	\％	0\％	\％	\％
3309	40，03， 110	Mingo surrs sucioion and discharge hoses	10	N2	\％	9\％	${ }^{8 \%}$	8\％	6\％	6\％	5\％	5\％	4\％	4\％	3\％	3\％	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％	\％	\％	\％
3310	40，09， 191		10	N2	\％	\％	8%	8\％	${ }^{6 \%}$	6\％	5\％	5\％	4\％	4\％	3\％	${ }^{3 \%}$	2\％	${ }^{2 \%}$	\％	0\％	\％	0\％	\％	\％
3311	40，03， 199	－－Onter	10	N2	${ }^{9 \%}$	9\％	${ }^{8 \%}$	8\％	6\％	6\％	${ }^{\text {5\％}}$	${ }^{5 \%}$	${ }^{4 \%}$	4\％	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	0\％	\％	0\％	0\％	0\％	0\％
3312	40，09，2，210	－Mining surry sucioio and discharge hoses	10	N2	${ }^{9}$	9\％	${ }^{8 \%}$	8\％	6\％	6\％	5\％	5\％	4\％	4\％	3\％	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％	0\％	\％	0\％
3313	40，09，290	－Other	10	N2	9\％	9\％	${ }^{8 \%}$	8\％	6\％	6\％	5\％	5\％	4\％	4%	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％	\％	\％	\％
3314	20，04，100	－Witout ftitos	10	N2	\％	9\％	${ }^{8 \%}$	${ }^{8 \%}$	6\％	6\％	5\％	5\％	4\％	4\％	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	0\％	\％	0\％	\％	\％\％
3315	40，094，210	\cdots Minins surry scition and discharge hoses	10	N2	9\％	9\％	${ }^{8 \%}$	${ }^{8 \%}$	6\％	6\％	${ }^{5 \%}$	5\％	4\％	4\％	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	0\％	\％	\％	\％	\％	\％
3316	40，044，230	－－other	10	N2	${ }^{9}$	${ }^{9 \%}$	${ }^{8 \%}$	${ }^{8 \%}$	6\％	6\％	5\％	5\％	4%	4\％	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％\％	\％	\％	\％	\％
3317	20，01，，00	－Reniloreced ony with meal	10	NT1	\％	8\％	6\％	5\％	4\％	3\％	2\％	\％	\％	\％\％	\％	\％	\％	\％	\％	\％	\％	0\％	\％	\％
3318	20，010，200		${ }^{10}$	NT1	\％	8%	6\％	5\％	${ }^{4 \%}$	3\％	2\％	\％\％	0\％	\％\％	0\％	\％	\％\％	\％	0\％	\％\％	0\％	\％	\％	\％
3319	20，01，900	－other	10	NT1	9\％	8\％	6\％	5\％	4\％	3\％	${ }^{2 \%}$	\％	0\％	\％	0\％	\％	0\％	\％	\％	\％	0\％	0\％	0\％	\％
${ }^{332}$	40，10， 100	- Endless transmission belts of trapezoidal cross－ section（V－－belts）， V －ribbed，of an outside circumference exceeding 60 cm but not exceeding 180 cm	10	NT1	9\％	${ }^{8 \%}$	6\％	5\％	4\％	3\％	2\％	\％\％	\％\％	\％	\％\％	\％	\％\％	\％	\％\％	\％	\％	\％\％	\％	\％
3331	40，10，200	- Endless transmission belts of trapezoidal cross－ section（V－belts），other than V－ribed，of an outside circumference exceeding 60 cm but not exceeding 180 cm	10	NT1	\％	${ }^{8 \%}$	6\％	5\％	4%	3\％	${ }^{2 \%}$	\％	\％	\％	0\％	0\％	\％	\％	\％\％	\％	\％	0\％	0\％	\％
${ }^{332}$	40，103，300		10	NT1	\％	${ }^{8} \%$	6\％	5\％	4\％	3\％	2\％	\％	\％	0\％	\％\％	\％	\％	\％	\％	\％	0\％	\％	0\％	\％
$3{ }^{323}$	40，10，4，00	－Endless transmission belts of trapezoidal cross－ section（V－belts），other than V－ribed，of an outside circumference exceeding 180 cm but not exceeding 240 cm	10	HSL	\％\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	0\％	\％\％	10\％	10\％	0\％	10\％	10\％	10\％	10\％	10\％	0\％	0\％
3334	40，10，5，500		10	NT1	\％	${ }^{8 \%}$	6\％	5\％	4%	${ }^{3 \%}$	${ }^{2 \%}$	0\％	0\％	\％	\％	\％	\％	0\％	\％	\％\％	0\％	0\％	\％	${ }^{0 \%}$
3325	20，10，${ }^{\text {a }}$（		10	NT1	9\％	${ }^{8 \%}$	6\％	5\％	4\％	${ }^{3 \%}$	${ }^{2 \%}$	\％	0\％	0\％	0\％	\％	0\％	\％	\％	0\％	0\％	\％	0\％	\％\％
3326	40，103，900	－－other	10	NT1	9\％	${ }_{8 \%}$	6\％	5\％	4\％	3\％	${ }^{2 \%}$	\％	0\％	\％	\％	\％	\％	\％	0\％	0\％	0\％	\％	\％	\％
	40，11，000	$\begin{aligned} & \text { - Of a kind used on motor cars (including station } \\ & \text { wagons and racing cars) } \\ & \hline \end{aligned}$	10	NT1	9\％	${ }^{8 \%}$	6\％	5\％	4%	${ }^{3} \%$	${ }^{2 \%}$	\％	\％	\％	\％	\％	0\％	\％	\％	\％	\％	\％\％	\％	\％
${ }^{3328}$	40，112，010	－－Ofa width note exeeding 450mm	${ }^{10}$	Hst	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	${ }^{10 \%}$	10\％	${ }^{10 \%}$	0\％	${ }^{10 \%}$	10\％	\％ 0	0\％	10\％	\％\％	10\％	0\％
3329	20，12，0900	Oner	10	Hst	10\％	10\％	0\％	10\％	10\％	${ }^{10 \%}$	10\％	${ }^{10 \%}$	10\％	${ }^{10 \%}$	10\％	${ }^{10 \%}$	${ }^{10 \%}$	10\％	0\％	0\％	10\％	10\％	10\％	10\％
3330	40，113，000	－Oa kind ssed on a icratt	5	NT1	4\％	4\％	$4{ }^{4 \%}$	3\％	3\％	${ }^{2 \%}$	${ }^{2 \%}$	0\％	0\％	\％	0\％	0\％	0\％	0\％	0\％	0\％	0\％	0\％	0\％	0\％
${ }^{3331}$	40，114，000	－Of a kind used on molorycles	10	${ }^{\text {HSL }}$	10\％	${ }^{10 \%}$	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％
3332	20，115，000	－Ota kind used on biocles	5	NT1	$4{ }^{4 \%}$	4\％	4%	${ }^{3} \%$	3\％	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％	\％	\％	\％	\％	\％	0\％	\％	\％	\％	\％\％
${ }^{333}$	40，116，110	O－Of a kind used on agricullural or forestry tractors of heading 87.01 or agricutural or forestry machinery of heading 84.29 or 84.30	10	HSL	${ }^{10 \%}$	${ }^{10 \%}$	10\％	10\％	10\％	10\％	10\％	10\％	10\％	${ }^{10 \%}$	10\％	10\％	10\％	10\％	10\％	0\％	10\％	10\％	10\％	\％
${ }^{333}$	20，116，190	Onher	10	${ }^{\text {HSL }}$	10\％	10%	10\％	10\％	10\％	${ }^{10 \%}$	10%	10\％	${ }^{10 \%}$	${ }^{10 \%}$	10\％	10\％	${ }^{10 \%}$	10\％	10\％	10\％	10\％	10\％	10%	10\％
${ }^{3335}$	40，116，210	Of a kind used on tractors，machinery of heading 84.29 or 84.30 ，forklifts or other industrial handling vehicles and machines	${ }^{10}$	HsL	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％
${ }^{3336}$	40，116，290	－other	10	${ }^{\text {HSL }}$	10\％	${ }^{10 \%}$	10\％	10\％	10\％	${ }^{10 \%}$	10\％	10\％	${ }^{10 \%}$	${ }^{10 \%}$	${ }^{10 \%}$	10\％	${ }^{10 \%}$	10\％	${ }^{10 \%}$	10%	${ }^{10 \%}$	${ }^{10 \%}$	${ }^{10 \%}$	${ }^{10 \%}$
	16，310		${ }^{10}$	${ }^{\text {HSL }}$	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％
${ }^{3338}$	40，116，390	－－Other	10	HSL	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％
3339	40，116，900	－－other	10	HSL	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％
${ }^{3340}$	40，11，2，210	－．Of a kind used on tractors，machinery of heading 84.29 or 84.30 or wheel－barows	${ }^{10}$	HsL	10\％	\％\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	${ }^{10 \%}$	10\％
${ }^{3341}$	$40.119,290$	\cdots	${ }^{10}$	HsL	${ }^{10 \%}$	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10%
$3{ }^{342}$	40，119，310	Of a kind used on tractors，machinery of heading 84.29 or 84.30 ，forklifts，wheel－barrows or other industrial handling vehicles and machines	10	HSL	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	100\％	10\％	10\％	10\％
${ }^{3343}$	40，119，390	－Oner	10	HSL	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10%	10\％	10\％	10\％	10\％	10\％	10\％	10\％	${ }^{10 \%}$	10%	10\％
	20，119，410	or Of a kind used on machinery of heading 84.29	${ }^{10}$	HSL	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％
3345	0，119，420	Of a kind used on tractors，forklifts or other industrial handling vehicles and machines	${ }^{10}$	ist	10\％	${ }^{10 \%}$	10\％	10\％	${ }^{10 \%}$	10\％	${ }^{10 \%}$	${ }^{10 \%}$	${ }^{10 \%}$	${ }^{10 \%}$	\％\％	10\％	10\％	10\％	\％\％	10\％	0\％	10\％	10\％	\％
${ }^{3346}$	40，119，490	－－other	10	HSL	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％
$3{ }^{347}$	40，119，910	－－Of k kind Lsed onvenicies of Crapeler 87	10	Hst	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	${ }^{10 \%}$	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％
${ }^{334}$	40，11，9，920	or Of a kind used on machinery of heading 84.29	10	HSL	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％
3349	20，119，930	$\cdots \mathrm{Omer}$ ，Of a widh exceeding 450 mm	${ }^{10}$	${ }^{\text {HsL }}$	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	${ }^{10 \%}$	${ }^{10 \%}$	10\％	10\％	10\％	${ }^{10 \%}$
3350	40，119，990	\cdots	${ }^{10}$	${ }^{\text {HSL }}$	10\％	${ }^{10 \%}$	10\％	10\％	10\％	10\％	10\％	10\％	${ }^{10 \%}$	${ }^{10 \%}$	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10%
${ }^{3351}$	20，12，100	－－Of a kind used on motor cars（including station wagons and racing cars）	${ }^{10}$	Hst	10\％	10\％	10\％	10\％	${ }^{10 \%}$	10\％	10\％	10\％	0\％	10\％	0\％	${ }^{10 \%}$	10\％	10\％	10\％	10\％	\％	10\％	10\％	10\％
3352	20012.12 .10		10	HsL	${ }^{10 \%}$	${ }^{10 \%}$	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	${ }^{10 \%}$	10\％	${ }^{10 \%}$	${ }^{10 \%}$	${ }^{10 \%}$	${ }^{10 \%}$	10\％	${ }^{10 \%}$	${ }^{10 \%}$	${ }^{10 \%}$
${ }^{353}$	${ }^{40,121,230}$	－－Omer	10	HSL	10\％	${ }^{10 \%}$	10\％	10\％	${ }^{10 \%}$	${ }^{10 \%}$	${ }^{10 \%}$	10\％	10\％	${ }^{10 \%}$	${ }^{10 \%}$	${ }^{10 \%}$	10\％	10\％	${ }^{10 \%}$	10\％	${ }^{10 \%}$	${ }^{10 \%}$	10\％	10\％
${ }^{335}$	${ }^{\text {20，121，300 }}$	－ota kind ssed on a icratt	10	HSL	10\％	10\％	10\％	10\％	10\％	${ }^{10 \%}$	10\％	10\％	10\％	10\％	${ }^{10 \%}$	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％
3355	40，12，9，90	$\cdots{ }^{-}$Of a kind used on molocrecles	10	HSL	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％
3356	${ }^{40,121,920}$	\cdots Ofa kind used on bicrles	10	${ }^{\text {HSL }}$	$1{ }^{10 \%}$	10%	10%	10%	10%	10%	10%	10%	10%	10%	10%	10%	10%	10\％	10\％	10\％	10%	10\％	10\％	10%

香港•ASEAN FTAにかかる調査報告書

（ラオス）

3357	0，12，930	Or 84.3 Fan and used on machiney of heading 84.29	10	${ }^{\text {HSL }}$	${ }^{10 \%}$	10\％	10\％	10%	$1{ }^{10 \%}$	10\％	10%	10\％	10\％	${ }^{10 \%}$	${ }^{10 \%}$	${ }^{10 \%}$	${ }^{10 \%}$	10\％	10%	${ }^{10 \%}$	10%	10%	${ }^{10 \%}$	${ }^{10 \%}$
3358	0，121，940		10	HsL	10\％	10\％	10\％	10\％	10\％	10\％	${ }^{10 \%}$	10\％	10\％	10\％	${ }^{10 \%}$	10\％	10\％	10\％	10%	${ }^{10 \%}$	10\％	10\％	10\％	10\％
3359	40，12，990	－－Other	10	HL	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％
3360	10	－Of a kind used on motor cars（including station vagons，racing cars）	10	＋st	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％
3381	${ }^{40,122,021}$	\cdots Of weith 0 0 exceeding 450 mm	10	1 LSL	10\％	10\％	10\％	${ }^{10 \%}$	10%	10\％	10\％	10\％	${ }^{10 \%}$	\％\％	${ }^{10 \%}$	10\％	10\％	10\％	10%	10\％	10\％	${ }^{10 \%}$	${ }^{10 \%}$	10%
3362	${ }^{40,122,029}$	－oter	10	${ }_{\text {ISL }}$	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	0\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％
3363	40，122，030	Ofa kind usedo on aicrath	10	HSL	10\％	10\％	10\％	0\％	10\％	10\％	10\％	\％	0\％	0\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10%
3364	40，12，2040	Ota kind used on molorycles	10	HL	10\％	10\％	10\％	\％	10\％	10\％	10\％	\％	\％\％	0\％	${ }^{10 \%}$	10\％	${ }^{10 \%}$	10\％	\％	10%	10%	10\％	\％\％	10%
3385	40，12，2，50	－－Ota kind used on bicyles	10	HSL	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％
3366	40，12，2，60	－Of ara kid Used on machiney of theading 84.29 or	10	HSL	${ }^{10 \%}$	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	0\％	10\％	10\％	10%
3367	b，122，070	－Of a kind dsed on oneme renicics of C Chapere 87	10	${ }^{\text {ISL }}$	10\％	10\％	10\％	10\％	10\％	10\％	10\％	\％	\％ 0	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	\％
${ }^{3368}$	40，12，2091	－Buted dyes	${ }^{10}$	HsL	10\％	10\％	${ }^{10 \%}$	${ }^{10 \%}$	10\％	10\％	10\％	10\％	${ }^{10 \%}$	\％\％	10\％	${ }^{10 \%}$	10\％	10\％	10\％	10\％	10\％	${ }^{10 \%}$	${ }^{10 \%}$	10\％
3369	20，122，099	－－Other	10	ISL	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％
${ }^{3370}$	40，12，9，014	－－－Solid tyres exceeding 250 mm in external diameter，of a width not exceeding 450 mm	10	${ }^{\text {HSL }}$	10\％	10\％\％	10\％	10\％	${ }^{10 \%}$	10\％	${ }^{10 \%}$	${ }^{10 \%}$	${ }^{10 \%}$	10\％	${ }^{10 \%}$	10\％	${ }^{10 \%}$	${ }^{10 \%}$	${ }^{10 \%}$	${ }^{10 \%}$	10\％	\％	\％	10\％
371	（129，015	－－－Solid tyres exceeding 250 mm in external diameter，of a width exceeding 450 mm ，for use on vehicles of heading 87.09	10	Hst	${ }^{10 \%}$	${ }^{10 \%}$	${ }^{10 \%}$	${ }^{10 \%}$	100	10\％	${ }^{10 \%}$	${ }^{10 \%}$	${ }^{10 \%}$	10\％	${ }^{10 \%}$	${ }^{10 \%}$	${ }^{10 \%}$	10\％	${ }^{10 \%}$	${ }^{10 \%}$	${ }^{10 \%}$	${ }^{10 \%}$	10\％	${ }^{10 \%}$
3372	40，12，016	－－Other solid tyres exceeding 250 mm in external diameter，of a width exceeding 450 mm	10	IsL	10\％	0\％	0\％	\％\％	10\％	10\％	10\％	\％	0\％	0\％	10\％	10\％	10\％	10\％	${ }^{10 \%}$	10%	${ }^{10 \%}$	10\％	\％	10\％
${ }^{3373}$	40，129，019	－other	10	HsL	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％
3374	40，12，0，21	－Of width note exceading 450 mm	10	HsL	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％
3375	${ }^{40,129,022}$	Ot a widh exceeding 450 mm	${ }^{10}$	${ }_{\text {ISL }}$	10\％	${ }^{10 \%}$	${ }^{10 \%}$	${ }^{10 \%}$	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	${ }^{10 \%}$	10\％	10\％	${ }^{10 \%}$	10\％	10\％	${ }^{10 \%}$	10\％
3376	40，12，9，70	－－Replaceable tyre treads of a width not exceeding 450 mm	10	＋sL	10\％	10\％	10\％	0\％	10\％	10\％	10\％	\％	0\％	0\％	10\％	10\％	10\％	10\％	\％	10\％	10\％	10\％	0\％	10\％
3337	20，129，808	－Treetaps	10	HSL	10\％	${ }^{10 \%}$	${ }^{10 \%}$	${ }^{10 \%}$	10\％	10\％	10\％	\％	0\％	10\％	10\％	10\％	${ }^{10 \%}$	${ }^{10 \%}$	${ }^{10 \%}$	0\％	10\％	10\％	10\％	10\％
3378	20，129，909	－－other	10	HSL	10\％	10\％	10\％	10\％	${ }^{10 \%}$	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	${ }^{10 \%}$	0\％	10\％	10\％	10\％
3379	4013，10．11	－－－Suitable for fitting to tyres of a width not exceeding 450 mm	10	HSL	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	\％	10\％	\％	\％
3380	$\frac{10.19}{}$		${ }^{10}$	${ }^{\text {sL }}$	${ }^{10 \%}$	10\％	10\％	10%	10\％	10\％	10\％	\％	${ }^{8 \%}$	${ }^{7 \%}$	6\％	${ }^{5 \%}$	4\％	3\％	${ }^{2 \%}$	${ }^{\text {\％}}$	0\％	\％	\％	\％
${ }^{3381}$	3．10．21	－Suitable for fitting to tyres of a width not exceeding 450 mm	10	${ }^{\text {sL }}$	10\％	10\％	10\％	${ }^{10 \%}$	10\％	10\％	10\％	\％	${ }^{8 \%}$	${ }^{7 \%}$	6\％	${ }^{5 \%}$	4\％	3\％	${ }^{2 \%}$	1\％	\％	\％	\％	\％
3382	13.10 .29	－Sutiable for fiting to tyese of a widh exceeding	10	N2	${ }^{9 \%}$	\％	${ }_{8 \%}$	${ }^{8 \%}$	6\％	6\％	${ }^{5 \%}$	5\％	${ }^{4 \%}$	${ }^{4 \%}$	3\％	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％	\％	\％	\％
3383	20，132，000	－Ofa kind used on biccles	5	HSL	5\％	${ }^{5 \%}$	5\％	5\％	5\％	5\％	${ }^{5 \%}$	5\％	${ }^{5 \%}$	5\％	5\％	${ }^{5 \%}$	5\％	${ }^{5 \%}$	5\％	${ }^{5 \%}$	5\％	${ }^{5 \%}$	${ }^{5 \%}$	${ }^{5 \%}$
3384	40，13，0011	－－Suitable for fitting to tyres of a width not exceeding 450 mm	10	${ }_{\text {HLL }}$	${ }^{10 \%}$	10\％	10\％	0\％	10\％	10\％	\％	\％	0\％	10\％	0\％	10\％	10\％	\％	0\％	0\％	\％	\％\％	\％	\％
3385	3，019		10	＋sL	10\％	10\％	10\％	${ }^{10 \%}$	10\％	\％	\％	\％	0\％	10\％	${ }^{10 \%}$	0\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％
3386	40，13，9020	－Oa kind sedo on motocyles	10	ISL	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％
3387	40，13，0，31	－－Suitable for fitting to tyres of a width not exceeding 450 mm	10	HL	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％
${ }^{3388}$	${ }^{40,13,9,039}$	\cdots Suliable for fiting to tyres of a widh exceading	10	${ }^{\text {ISL }}$	10\％	10\％	10\％	${ }^{10 \%}$	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	${ }^{10 \%}$	10\％	\％\％	10\％
3389	40，13，9040	－OTa kind usedo on aicrat	10	HsL	10\％	10\％	10\％	${ }^{10 \%}$	10\％	10\％	10\％	10\％	10\％	10\％	10\％	${ }^{10 \%}$	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％
3390	40，13，909	－－－Suitable for fitting to tyres of a width not exceeding 450 mm	10	HsL	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	0\％	10\％	10\％	10\％	10\％	10\％
339	40，13，9099	－－Suitable for fitting to tyres of a width exceeding 450 mm	10	＋sL	10\％	10\％	\％\％	${ }^{10 \%}$	${ }^{10 \%}$	10\％	0\％	\％\％	10\％	10\％	\％\％	\％	10\％	10\％	10\％	\％	10\％	10\％	\％	10\％
3392	40，14，000	－Shaat contraepplies	10	sL	\％	0\％	10\％	\％\％	10\％	10\％	10\％	0\％	$8{ }^{8 \%}$	${ }^{7 \%}$	6\％	5\％	4\％	3\％	${ }^{2 \%}$	1\％	\％	\％	\％	\％
3393	40，14，0，010	－Teast for fededing botles and similaraticies	10	NT2	9\％	9%	8\％	8\％	6\％	6\％	5\％	5\％	4\％	4\％	3\％	3\％	2\％	2\％	0\％	0\％	0\％	\％	\％	\％
3394	40，149，940	－Stopersis or hamameenical use	10	N2	9\％	\％	${ }^{8 \%}$	${ }^{8 \%}$	6\％	6%	5\％	5\％	4%	4%	3\％	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％	\％	\％	\％\％
3395	40，149，990	－other	10	N2	${ }^{9 \%}$	\％	${ }_{8 \%}$	${ }_{8 \%}$	6\％	6\％	5\％	5\％	4%	4%	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％	\％	\％	\％\％
${ }^{3396}$	20，151，100	－Sugical	5	N1	4%	4%	4\％	3\％	3\％	2%	${ }^{2 \%}$	\％\％	\％	\％\％	\％	0\％	0\％	0\％	0\％	0\％	\％\％	\％	\％	\％
3397	${ }^{20,151,900}$	－other	10	${ }^{\text {NT2 }}$	\％\％	9\％	8\％	8\％	6\％	6\％	5\％	5\％	${ }^{4 \%}$	4\％	3\％	${ }^{3 \%}$	2%	${ }^{2 \%}$	0\％	0\％	0\％	\％	\％	\％
3398	40，159，010	－Lead apons	10	NT2	9\％	9\％	${ }^{8 \%}$	${ }^{8 \%}$	6\％	6\％	5\％	5\％	$4{ }^{4 \%}$	4\％	3\％	${ }^{3 \%}$	2\％	${ }^{2 \%}$	\％\％	0\％	\％\％	0\％	\％	0\％
3339	40，159，020	－－Divers suis（wet suis）	10	NT2	${ }^{9 \%}$	9\％	${ }^{8 \%}$	${ }^{8 \%}$	6\％	6\％	5\％	5\％	4%	4\％	3\％	3\％	${ }^{2 \%}$	2\％	\％\％	\％	\％	\％	\％\％	\％
3300	20，159，900	－other	10	NT2	${ }^{9 \%}$	9\％	${ }_{8 \%}$	${ }^{8 \%}$	${ }^{6 \%}$	6\％	${ }^{5 \%}$	${ }^{5 \%}$	$4{ }^{4 \%}$	4\％	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％	0\％	\％	\％
${ }^{301}$	2006．60：010		10	N2	${ }^{\%}$	\％	${ }^{8 \%}$	8%	${ }^{6 \%}$	6\％	5\％	5\％	${ }^{4 \%}$	4%	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	2\％	\％	0\％	\％	0\％	\％	0\％
3302	4016.10 .20	\cdots－Foor files and walllies	10	N2	9\％	9\％	8\％	8\％	6\％	6\％	5\％	5\％	4\％	4\％	3\％	3\％	2\％	2\％	0\％	\％	\％\％	\％	\％	\％
$3{ }^{303}$	40，16，090	－other	10	N2	\％	9\％	8\％	8\％	6\％	6\％	5\％	5\％	4%	4\％	3\％	3\％	2\％	2\％	\％	\％	0\％	\％	\％	\％
3304	20，169，110	－Mals	10	v2	9\％	9\％	${ }^{8 \%}$	${ }^{8} \%$	6\％	6\％	5\％	5\％	$4{ }^{4 \%}$	4\％	${ }^{3 \%}$	${ }^{3} \%$	2\％	${ }^{2 \%}$	\％	\％	\％	\％	\％	\％
3305	40，16，120	－Ties	10	N2	${ }^{9 \%}$	${ }^{9}$	${ }^{8 \%}$	${ }_{8 \%}$	6\％	6\％	${ }^{5 \%}$	5\％	4%	${ }^{4 \%}$	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％	\％	\％	\％
3306	40，16，190	－Other	10	NT2	${ }^{\text {\％}}$	9\％	${ }^{8 \%}$	${ }^{8 \%}$	${ }^{6 \%}$	6\％	5\％	5\％	4%	4\％	3\％	${ }^{3}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％	\％	\％	\％
3307	40，169，210	\cdots－ Easeritips	5	NT1	${ }^{4 \%}$	$4{ }^{4 \%}$	4\％	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％\％	\％	0\％	\％\％	\％	\％\％	\％	\％\％	\％	\％	\％
$3{ }^{308}$	20，69，290	－other	5	V1	4\％	4\％	4\％	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	0\％	\％	\％\％	\％	\％	\％	0\％	0\％	\％	0\％	0\％	\％	0\％
3309	40，16，310		10	NT2	9\％	\％	${ }^{8 \%}$	${ }^{8 \%}$	6\％	6\％	5\％	5\％	4\％	${ }^{4 \%}$	${ }^{3 \%}$	${ }^{3 \%}$	2\％	2\％	\％	\％	0\％	\％	\％	\％
$3{ }^{310}$	40，16，320	－－－Gaskets and o－rings，of a kind used on motor vehicles of heading $87.02,87.03,87.04$ or 87.11	10	Hst	10\％	${ }^{10 \%}$	10%	10%	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	${ }^{10 \%}$	0\％	10\％	0\％	\％	10\％	\％ 0	10\％
$3{ }^{3411}$	40，169，390	Oner	${ }^{10}$	fsL	0\％\％	10\％	10\％	10\％	10\％	10\％	10%	10\％	0\％	0\％	10%	10%	10%	10%	10%	10\％	10%	10%	${ }^{10 \%}$	10\％
${ }^{3412}$	20，16，900		10	v2	${ }^{9 \%}$	9\％	${ }^{8 \%}$	${ }^{8 \%}$	6\％	6\％	${ }_{5 \%}$	${ }^{5 \%}$	${ }^{4 \%}$	4\％	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	0\％	\％	0\％	\％	\％	0\％
$3{ }^{3413}$	40，69，500	－Other inluatabe aricies	10	NT2	${ }^{9 \%}$	9\％	${ }_{8 \%}$	8\％	6\％	6\％	5\％	5\％	4\％	4\％	3\％	3\％	2\％	${ }^{2 \%}$	0\％	0\％	\％\％	0\％	0\％	\％$\%$
3314	40，16，9，913	$\begin{aligned} & \text {--- Weatherstripping, of a kind used on motor } \\ & \text { vehicles of heading } 87.02 \\ & 87.03 \text { or } 87.04 \end{aligned}$	10	NT2	${ }^{\text {\％}}$	\％	${ }^{8 \%}$	${ }^{8 \%}$	6\％	6\％	5\％	5\％	$4{ }^{4 \%}$	4\％	${ }^{3 \%}$	${ }^{3}$	${ }^{2 \%}$	2\％	\％	\％	\％	\％	\％	\％
3345	40，169，914	$-\mathrm{-}$－Other，for vehicles of heading $87.02,87.03$ ， $87.04,87.05$ or 87.11	10	NT2	\％${ }^{\text {\％}}$	${ }^{9 \%}$	${ }^{8 \%}$	${ }_{8 \%}$	6\％	${ }^{6 \%}$	${ }^{5 \%}$	${ }^{5 \%}$	${ }^{4 \%}$	${ }^{4 \%}$	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％	\％	\％	\％
3346	40，69，915		10	ज2	${ }^{\text {\％}}$	9\％	8\％	8\％	\％\％	\％	${ }^{5 \%}$	${ }^{5 \%}$	${ }^{4 \%}$	$4{ }^{4 \%}$	3\％	3\％	${ }^{2 \%}$	${ }^{2 \%}$	0\％	0\％	\％	0\％	\％	\％\％
313	40，16，9，96	\cdots Bicycle muduaras	10	N2	${ }^{9}$	${ }^{9 \%}$	${ }^{8 \%}$	${ }^{8 \%}$	6\％	6\％	5\％	${ }^{5 \%}$	${ }^{4 \%}$	4\％	${ }^{3 \%}$	${ }^{3} \%$	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％	\％	\％	\％
${ }^{3418}$	20，16，9977	．．．．Bicyle pars	10	N2	9\％	9\％	8\％	8\％	6\％	6\％	5\％	5\％	4%	4\％	3\％	3\％	2\％	2\％	\％	0\％	\％\％	0\％	\％	\％
3319	20，169，918	\cdots Onterbicrcle accessories	10	NT2	9\％	9\％	${ }^{8 \%}$	${ }^{8 \%}$	6\％	6%	5\％	5\％	4%	4\％	${ }^{\text {3\％}}$	${ }^{3}$	${ }^{2 \%}$	2\％	\％	\％	\％	\％	\％	\％\％
3320	40，169，919	Other	10	NT2	9\％	9\％	${ }^{8 \%}$	${ }^{8 \%}$	6\％	6\％	5\％	5\％	$4{ }^{4 \%}$	4\％	3\％	3\％	${ }^{2 \%}$	2\％	\％\％	\％	\％\％	\％	\％	\％
$3{ }^{321}$	40，169，920		10	N2	\％	9\％	${ }^{8 \%}$	${ }^{8 \%}$	6\％	6%	5\％	5\％	4%	4\％	3\％	3\％	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％	\％	${ }^{0 \%}$	\％\％
3322	20，169，930	－－Rubber bands	10	${ }^{\text {NT2 }}$	9\％	9\％	${ }^{8 \%}$	8%	6\％	6\％	${ }^{5 \%}$	5\％	4\％	4\％	3\％	${ }^{3 \%}$	2%	${ }^{2 \%}$	0\％	\％	\％\％	0\％	\％	\％
$3{ }^{323}$	20，169，940	－Walties	10	NT2	\％\％	9\％	8\％	8\％	6\％	6\％	5\％	5\％	$4{ }^{4 \%}$	4%	3\％	${ }^{3 \%}$	2\％	${ }^{2 \%}$	0\％	\％	0\％	\％	\％	\％\％
$3{ }^{324}$	40，69，951	\cdots Ruberololes	10	N2	9\％	\％	${ }^{8 \%}$	${ }^{8 \%}$	6%	6\％	${ }^{5 \%}$	5\％	4%	4%	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％	\％	\％	\％
$3{ }^{325}$	40，169，952	\cdots ．Tye mould badears	10	N2	\％$\%$	9\％	${ }^{8 \%}$	${ }^{8 \%}$	${ }^{6 \%}$	6\％	5%	5\％	$4{ }^{4 \%}$	4\％	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	0\％	\％	\％	\％	\％
${ }^{3326}$	${ }^{20,169,953}$	\cdots Eectrical insulaor hoods	10	NT2	\％$\%$	\％	${ }^{8 \%}$	${ }^{8 \%}$	6\％	6\％	5\％	5\％	${ }^{4 \%}$	4\％	3\％	3\％	2\％	${ }^{2 \%}$	\％\％	\％	\％\％	0\％	\％	\％
${ }^{342}$	40，66，954	--- Rubber grommets and rubber covers for automotive wiring harnesses	10	NT2	9\％	9\％	${ }^{8 \%}$	8\％	6\％	6\％	${ }^{5 \%}$	5\％	4%	${ }^{4 \%}$	${ }^{3 \%}$	${ }^{3 \%}$	2\％	${ }^{2 \%}$	0\％	\％	0\％	${ }^{0}$	\％	\％\％
${ }^{3228}$	20，169，959	\cdots	10	T2	9\％	9\％	8\％	8\％	6\％	6\％	5\％	${ }^{5 \%}$	${ }^{4 \%}$	${ }^{4 \%}$	${ }^{3 \%}$	3\％	${ }^{2 \%}$	${ }^{2 \%}$	0\％	0\％	0\％	\％\％	\％	\％
3329	20，169，960	${ }^{- \text {Rall pads }}$	10	N2	9\％	9\％	${ }^{8 \%}$	${ }^{8 \%}$	6\％	6\％	5\％	5\％	4%	4%	${ }^{3 \%}$	${ }^{3 \%}$	2\％	${ }^{2 \%}$	\％	\％	\％\％	\％	\％	\％
${ }^{3330}$	20，69，970	Structura beaings in icluring birige beaining	10	T2	9\％	9\％	${ }^{8 \%}$	${ }^{8 \%}$	6\％	6\％	${ }^{5 \%}$	${ }^{5 \%}$	${ }^{4 \%}$	$4{ }^{4 \%}$	3\％	3\％	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％	\％	\％	\％
${ }^{3331}$	40，69，991	${ }^{- \text {Tabal coverings }}$	${ }^{10}$	NT2	\％	${ }^{9 \%}$	${ }^{8 \%}$	${ }^{8 \%}$	${ }^{6 \%}$	6\％	${ }^{5 \%}$	${ }^{5 \%}$	4%	${ }^{4 \%}$	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％	\％	\％	\％
$3{ }^{332}$	40，169，999	\cdots Other	10	NT2	9\％	9\％	${ }^{8 \%}$	${ }^{8 \%}$	6\％	6\％	5\％	5\％	4%	4\％	3\％	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％\％	\％	\％\％	\％	\％	\％
${ }^{333}$	20，170，010	－Foor ries and wallilies	10	${ }^{\text {NT2 }}$	\％	9\％	8\％	8\％	6\％	6\％	5\％	5\％	${ }^{4 \%}$	4\％	3\％	3\％	${ }^{2 \%}$	${ }^{2 \%}$	0\％	\％	\％\％	\％	\％	\％
${ }^{334}$	20，170，020	Onere aticies of harat ubber	10	NT2	9\％	\％\％	8\％	${ }^{8 \%}$	6\％	6%	5\％	5\％	$4{ }^{4 \%}$	4\％	3\％	3\％	2\％	${ }^{2 \%}$	0\％	\％	0\％	0\％	\％	\％\％
${ }^{3335}$	20，170，090	Other	10	N2	9\％	9\％	${ }^{8 \%}$	${ }_{8 \%}$	6\％	6%	5\％	5\％	4%	4%	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	0\％	0\％	\％\％	0\％	\％	\％\％
$3{ }^{336}$	41，02，0，010	－Peetamed	${ }^{20}$	EL	ט	\bigcirc	ט	－	ט	\bigcirc	\bigcirc	U	\bigcirc	\bigcirc	\bigcirc	U	\bigcirc	\bigcirc	－	\bigcirc	－	\bigcirc	U	\bigcirc
${ }^{3337}$	${ }^{41,012,2,90}$	Other	${ }^{20}$	${ }^{\text {EL }}$	ט	U	U	0	\bigcirc	\bigcirc	\bigcirc	U	－	－	ט	0	0	U	U	0	0	\bigcirc	0	U

香港•ASEAN FTAにかかる調査報告書
 別添2－4 原産地品の関税撤廃スケジュール

（ラオス）

${ }^{3338}$	［4，015，010	－－Preatamed	${ }^{20}$	EL	ט	U	0	0	\bigcirc	U	0	0	U	U	0	U	U	U	U	U	U	0	U	0
3383	41，05，900	－Other	${ }^{20}$	EL	\bigcirc	\bigcirc	－	\bigcirc	U	U	\bigcirc	\bigcirc	U	\bigcirc	\bigcirc	U	U	－	－	U	\bigcirc	U	\bigcirc	U
$3{ }^{340}$	41，01，0，010	Preetamed	${ }^{20}$	EL	U	0	U	U	U	ט	ט	0	U	U	U	0	0	U	U	0	U	0	U	0
${ }^{3441}$	${ }^{41,09,9,90}$	－Other	${ }^{2}$	EL	U	\bigcirc	－	U	－	0	ט	U	U	0	－	U	U	U	U	U	－	U	U	U
$3{ }^{342}$	${ }^{41,02,000}$	Witwoolon	${ }^{20}$	EL	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	U	\bigcirc	\bigcirc	\bigcirc	U	U	U	\bigcirc	U	\bigcirc	－	U	\bigcirc
$3{ }^{343}$	${ }^{41,02,100}$	－Pocked	${ }^{20}$	EL	U	ט	－	ט	－	－	ט	－	U	－	U	U	－	U	U	U	U	U	U	U
$3{ }^{344}$	41，022，910	\cdots Preatamed	${ }^{20}$	EL	U	U	0	\bigcirc	0	0	ט	0	0	0	ט	U	－	U	U	U	U	U	U	U
$3{ }^{345}$	${ }^{41,02,9,90}$	\cdots	${ }^{20}$	EL	\bigcirc	0	\bigcirc	－	U	0	\bigcirc	\bigcirc	\bigcirc	0	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	0	0	\bigcirc	U
$3{ }^{346}$	${ }^{41,032,010}$	Pretamed	${ }^{20}$	EL	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	0	\bigcirc	\bigcirc	\bigcirc	－	ט	U
$3{ }^{347}$	${ }^{41,02,02000}$	－Oner	${ }^{20}$	EL	\bigcirc	\bigcirc	－	0	－	\bigcirc	\bigcirc	\bigcirc	－	\bigcirc	\bigcirc	0	\bigcirc	－	0	－	\bigcirc	\bigcirc	ט	U
${ }^{348}$	${ }^{41,03,000}$	－Ofs sme	${ }^{20}$	EL	U	U	ט	\bigcirc	U	U	U	U	U	U	U	U	U	－	－	U	U	－	－	U
3449	41，03，0，00	－omer	${ }^{20}$	EL	ט	ט	\bigcirc	ט	ט	ט	\bigcirc	0	U	ט	ט		ט	\bigcirc	ט	0	－	\bigcirc	\bigcirc	U
$3{ }^{3} 50$	4，1，041，100	－Ful grans，unsplit gain splis	${ }^{20}$	EL	0	0	0	0	0	0	0	0	0	0	ט	0	0	－	ט	0	0	－	－	\bigcirc
${ }^{3451}$	41，04，，900	－other	20	EL	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	ט	\bigcirc	ט	\bigcirc	\bigcirc	\bigcirc	\bigcirc	ט	ט	\bigcirc	\bigcirc	\bigcirc	\checkmark	\bigcirc
$3{ }^{3452}$	${ }^{4,1,044,100}$	－Fulg grans，unsolit gain splis	${ }^{20}$	EL	U	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	U	\bigcirc	U	0	\bigcirc	0	U	\bigcirc	\bigcirc	0	0	\bigcirc	\bigcirc	\bigcirc
${ }^{3453}$	${ }^{4,1,04,900}$	－oner	${ }^{20}$	EL	ט	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	ט	U	U	－	\bigcirc	U	U	U	U	U	U	\bigcirc	\bigcirc	U
${ }^{3354}$	${ }^{4,1,05,000}$	－Inte welsate（nududing wetbue）	${ }^{20}$	EL	\bigcirc	\bigcirc	\bigcirc	0	\bigcirc	ט	ט	\bigcirc	ט	\bigcirc	\bigcirc	0	U	\bigcirc	\bigcirc	ט	0	\bigcirc	ט	U
$3{ }^{345}$	${ }^{41,05,000}$	－In the dis sate（cuss）	${ }^{20}$	EL	0	\bigcirc	U	0	U	\bigcirc	\bigcirc	\bigcirc	U	\bigcirc	\bigcirc	0	\bigcirc	0	0	U	\checkmark	0	\bigcirc	U
$3{ }^{356}$	${ }^{41,062,100}$	－In the wel state（noulding wetble）	${ }^{20}$	EL	\bigcirc	U	U	\bigcirc	0	\bigcirc	\bigcirc	U	\bigcirc	0	\bigcirc	U	\bigcirc	\bigcirc	0	0	\bigcirc	0	U	U
$3{ }^{347}$	${ }^{41,062,200}$	－ l the dy stateie（cuss）	${ }^{20}$	EL	\bigcirc	\bigcirc	\bigcirc	\bigcirc	－	\bigcirc	\bigcirc	U	\bigcirc	\bigcirc	\bigcirc	U	\bigcirc	\bigcirc	0	ט	\bigcirc	\bigcirc	\bigcirc	U
${ }^{3458}$	${ }^{41,063,100}$		${ }^{20}$	EL	\bigcirc	\bigcirc	\checkmark	\bigcirc	\bigcirc	\bigcirc	U	\bigcirc	U	\bigcirc	\bigcirc	U	U	U	－	U	U	U	－	U
3359	${ }^{41,06,200}$	－Int edy staie（crust）	${ }^{20}$	EL	\bigcirc	\bigcirc	ט	ט	0	\bigcirc	ט	0	U	\bigcirc	ט	ט	U	0	ט	U	U		U	U
$3{ }^{360}$	41，064，010	－Inte wet statel（noulding wetbue）	${ }^{20}$	EL	0	\bigcirc	0	0	0	\bigcirc	ט	O	\bigcirc	0	ט	0	0	U	－	0	\bigcirc	－	O	U
${ }^{3641}$	${ }^{41,064,020}$	－In the diy satele crus）	${ }^{20}$	${ }^{\text {EL }}$	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	¢	U	U	O	\bigcirc	\bigcirc	\checkmark	U
$3{ }^{3462}$	${ }^{41,06,100}$		${ }^{20}$	EL	\bigcirc	U	U	\bigcirc	U	\bigcirc	ט	U	U	0	\bigcirc	U	U	U	U	U	U	ט	\bigcirc	U
${ }^{3463}$	${ }^{41,069,200}$	－In the diy sateie cusst）	${ }^{20}$	EL	－	U	\bigcirc	0	U	\bigcirc	ט	0	U	－	\bigcirc	0	U	\bigcirc	－	U	U	\bigcirc	\bigcirc	U
$3{ }^{364}$	${ }^{4,0,07,100}$	Full gans，usplit	${ }^{20}$	Et	U	\bigcirc	－	U	U	\bigcirc	ט	\bigcirc	U	\bigcirc	\bigcirc	U	U	\bigcirc	ט	U	0	\bigcirc	\bigcirc	U
${ }^{3465}$	41，07，200	Grain splis	${ }^{20}$	EL	U	\bigcirc	U	\bigcirc	U	\bigcirc	\bigcirc	\bigcirc	U	\bigcirc	\bigcirc	U	\bigcirc	－	－	U	\bigcirc	U	U	U
$3{ }^{346}$	44，07，900	－Oner	${ }^{20}$	EL	\bigcirc	\bigcirc	U	\bigcirc	0	\bigcirc	\bigcirc	U	U	0	\bigcirc	U	\bigcirc	\bigcirc	0	U	\bigcirc	\bigcirc	U	U
${ }^{3667}$	${ }^{41,09,0900}$	－Full grans unsplt	${ }^{20}$	EL	0	0	0	0	0	0	0	0	0	0	0	0	\bigcirc	0	0	0	\bigcirc	0	0	U
${ }^{3468}$	${ }^{41,09,2,200}$	－Grain spilis	${ }^{20}$	EL	U	\bigcirc	U	ט	U	U	ט	ט	U	U	\bigcirc	U	\bigcirc	ט	ט	U	ט	ט	ט	U
$3{ }^{346}$	41，07，900	－oner	${ }^{20}$	EL	U	\bigcirc	0	－	\bigcirc	0	U	U	0	0	U	\bigcirc	\bigcirc	U	\bigcirc	\bigcirc	\bigcirc	0	\bigcirc	\bigcirc
$3{ }^{3470}$	44，120，000	Leather further prepared after tanning or crusting，including parchment－dressed leather， of sheep or lamb，without wool on，whether or not split，other than leather of heading 41．14．	${ }^{20}$	EL	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	ט	\checkmark	ט	\checkmark	\checkmark	\checkmark	\checkmark	ט	ט	\checkmark	\checkmark	ט	\cup
$3{ }^{3471}$	${ }^{44,131,000}$	－Of goatso orkds	${ }^{20}$	EL	\bigcirc	\bigcirc	\bigcirc	U	\bigcirc	－	U	\bigcirc	－	\bigcirc	\bigcirc	U	－	\bigcirc	\bigcirc	U	－	U	\bigcirc	U
${ }^{3472}$	${ }^{4,1,12,000}$	－ot swine	${ }^{20}$	EL	\bigcirc	\bigcirc	U	U	0	\bigcirc	\bigcirc	U	U	U	\checkmark	U	U	－	－	U	U	－	\bigcirc	\bigcirc
${ }^{3473}$	${ }^{41,1,3,000}$	－Otreplies	${ }^{20}$	EL	\bigcirc	0	0	0	ט	0	0	0	ט	0	0	0	0	ט	－	U	\bigcirc	0	0	U
$3{ }^{374}$	${ }^{4,1,13,000}$	－Onter	${ }^{20}$	EL	\bigcirc	U	U	\bigcirc	U	－	ט	0	U	－	\bigcirc	U	U	\bigcirc	\bigcirc	U	U	\bigcirc	U	\bigcirc
${ }^{3475}$	${ }^{44,14,1,000}$	Chamos（notulung combinaion chamos）leather	${ }^{20}$	${ }^{\text {EL }}$	\checkmark	\checkmark	U	\checkmark	\checkmark	\checkmark	U	－	\checkmark	\checkmark	U	U	\checkmark	\checkmark	\checkmark	\bigcirc	\checkmark	\bigcirc	\checkmark	\bigcirc
${ }^{3476}$	44，142，000	－Patent leather and patent laminated leather； metallised leather	${ }^{20}$	EL	－	－	ט	U	U	U	U	\bigcirc	U	U	U	U	U	U	U	U	U	U	，	U
${ }^{347}$	${ }^{41,55,000}$	－Composition leather with a basis of leather or Ceaterer fire，in in rolls	${ }^{20}$	EL	\bigcirc	\bigcirc	－	－	－	\bigcirc	－	\bigcirc	${ }^{\circ}$	\bigcirc	\bigcirc	0	U	－	U	\bigcirc	\bigcirc	U	\bigcirc	U
${ }^{3478}$	44，1，52，000	－Parings and other waste of leather or of composition leather，not sutatable for the manuacture compostion leather，not sutable for the manuractur of leather articles；leather dust，powder and flour	${ }^{20}$	EL	\cup	\cup	\checkmark	\cup	\checkmark	\checkmark	\cup	\checkmark	\checkmark	\checkmark	\cup	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\cup	\checkmark	\checkmark	\cup
${ }^{379}$	12，010，000	Saddlery and harness for any animal（including traces，leads，knee pads，muzzles，saddle cloths， saddle bags，dog coats and the like），of any material	${ }^{30}$	el	\cup	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	${ }^{\circ}$	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
3380	$142,021,100$	-- With outer surface of leather or of composition leather	${ }^{10}$	T2	${ }^{9 \%}$	\％	8\％	8\％	6\％	6\％	5\％	5\％	${ }^{4 \%}$	4\％	3\％	3\％	${ }^{2 \%}$	2\％	0\％	0\％	0\％	\％	\％	\％
${ }^{3881}$	${ }^{420212.111}$	With ouer surface of tucansesed tive	10	т2	9\％	\％\％	8%	8\％	6\％	6\％	5\％	5\％	4\％	4%	3\％	3\％	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	0\％	\％	\％	\％
$3{ }^{382}$	${ }^{4202121219}$	\cdots Oner	10	NT2	9\％	9\％	${ }^{8 \%}$	${ }^{8 \%}$	6\％	6\％	5\％	5\％	4%	$4{ }^{4 \%}$	3\％	3\％	${ }^{2 \%}$	${ }^{2 \%}$	0\％	0\％	0\％	0\％	0\％	0\％
${ }^{3883}$	${ }^{42,021,291}$	\cdots Will outer suffece of vicenised five	10	NT2	9\％	9\％	8%	${ }^{8 \%}$	6\％	6\％	5\％	5\％	4%	4%	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	2\％	\％	\％	0\％	\％	\％	0\％
${ }^{384}$	${ }^{42,021,299}$	Other	10	NT2	${ }^{9 \%}$	9\％	${ }^{8} \%$	${ }^{8 \%}$	6\％	${ }^{6}$	5\％	5\％	4\％	$4{ }^{4 \%}$	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	0\％	\％	0\％	\％	\％	\％
3385	${ }^{42,021,920}$	－With outer sutrace of papetoard	10	NT2	${ }^{9}$	9\％	8%	${ }^{8 \%}$	6\％	6\％	5\％	5\％	4\％	4\％	${ }^{3 \%}$	3\％	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％	\％	\％	0\％
${ }^{3886}$	${ }^{42,021,990}$	Onher	10	NT2	${ }^{9 \%}$	9\％	${ }^{8 \%}$	8%	6%	6\％	5\％	${ }^{5 \%}$	4%	4%	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％	\％	\％	\％
${ }^{3887}$	${ }^{24,022,100}$		10	NT2	\％	\％	${ }^{8 \%}$	${ }^{8 \%}$	${ }^{6 \%}$	6\％	5\％	${ }^{5 \%}$	4%	4%	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％	\％	\％	\％
${ }^{3488}$	${ }^{42,022,200}$	－－With outer surface of plasicic sheeting or of texile	10	N2	\％	${ }^{9 \%}$	${ }^{8 \%}$	${ }^{8 \%}$	6\％	6\％	${ }_{5 \%}^{5 \%}$	${ }^{\text {5\％}}$	${ }^{4 \%}$	4%	3\％	3\％	${ }^{2 \%}$	${ }^{2 \%}$	0\％	\％	0\％	\％	\％	0\％
$3{ }^{389}$	$14.02,2,900$	－other	10	T1	${ }^{\text {\％}}$	8\％	6\％	5\％	${ }^{4 \%}$	3\％	2\％	\％	\％\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	0\％
3390	${ }^{42,023,100}$	－－With outer surface of leather or of composition leather	10	т2	9\％	\％$\%$	${ }^{8 \%}$	$8{ }^{8 \%}$	6\％	6\％	5\％	5\％	${ }^{4 \%}$	4\％	3\％	3\％	${ }^{2 \%}$	${ }^{2 \%}$	0\％	\％	\％	\％	\％	\％
349	${ }^{42,023,200}$	- With outer surface of plastic sheeting or of texile materials	10	т2	${ }^{9 \%}$	${ }^{9}$	${ }^{8 \%}$	${ }^{8} \%$	\％	6\％	${ }^{5 \%}$	${ }^{5 \%}$	${ }^{4 \%}$	${ }^{4 \%}$	${ }^{3 \%}$	${ }^{\text {\％}}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％	\％	\％	\％
$3{ }^{392}$	${ }^{\text {22，02，}, \text { ，}}$	－－ot coper	10	NT2	${ }^{9 \%}$	9\％	${ }_{8}^{8 \%}$	${ }^{8 \%}$	${ }^{6 \%}$	6\％	5\％	${ }^{\text {5\％}}$	4%	4\％	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％	\％	\％	\％
$3{ }^{393}$	${ }^{42,02,3,20}$	－－Of nickel	10	NT2	${ }^{9 \%}$	9\％	${ }^{8 \%}$	${ }^{8 \%}$	6%	6\％	5\％	${ }^{5 \%}$	4%	4%	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	2\％	\％	\％	\％	\％	\％	0\％
${ }^{394}$	${ }^{\text {22，02，}, 390}$	Of wood or of zinc or of worked carving material of animal or vegetable or mineral origin	10	N2	${ }^{9 \%}$	\％$\%$	${ }^{8 \%}$	${ }^{8 \%}$	6%	6\％	5\％	5\％	4%	4\％	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	2\％	\％	\％	\％	\％	\％	\％\％
3395	${ }^{42,02,990}$	－omer	10	NT2	9\％	9\％	8\％	8\％	6\％	6\％	5\％	5\％	4\％	4\％	3\％	3\％	2%	2\％	\％	\％	\％	\％	\％	\％
$3{ }^{396}$	${ }^{42,029,111}$	Bowing bags	10	NT2	9\％	9\％	8%	8\％	6\％	6\％	5\％	5\％	4%	4%	3\％	3\％	2\％	2\％	0\％	0\％	0\％	0\％	0\％	0\％
3347	${ }^{42,202,119}$	\cdots	10	NT2	9\％	9\％	8%	8%	6\％	6\％	5\％	5\％	4%	$4{ }^{4 \%}$	3\％	${ }^{3 \%}$	2\％	2\％	0\％	0\％	0\％	0\％	\％	0\％
3398	${ }^{42,02,190}$	\cdots	10	NT2	9\％	9\％	${ }^{8 \%}$	${ }^{8 \%}$	6\％	6\％	5\％	5\％	4%	4%	${ }^{3 \%}$	${ }^{3 \%}$	2\％	2\％	\％	\％	0\％	\％	\％	0\％
3499	${ }^{42,202,210}$	－Toilery basg，of plasitics feeing	10	NT2	9\％	9\％	${ }_{8 \%}$	${ }^{8 \%}$	6\％	${ }^{6 \%}$	5\％	5\％	4%	$4{ }^{4 \%}$	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	0\％	\％	\％	\％	\％	\％
3500	${ }^{42,02,2,20}$	\cdots－Bowing bags	10	NT2	9\％	9\％	8\％	8\％	6\％	6%	5\％	5\％	4\％	4%	3\％	3\％	${ }^{2 \%}$	2\％	\％	\％	0\％	\％	\％	\％
3501	${ }^{42,02,290}$	－Oner	10	NT2	9\％	9\％	8\％	8\％	6\％	6\％	5\％	5\％	4\％	4\％	3\％	3\％	2%	2%	\％	0\％	\％	\％	\％	\％
3302	${ }^{42,02,9,90}$	\cdots With outer surface of vulcanised fibre or	10	NT2	${ }^{9 \%}$	\％\％	8\％	8\％	6\％	6\％	5\％	5\％	4\％	4%	3\％	3\％	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％	\％	\％	${ }^{0 \%}$
${ }^{3503}$	${ }^{42,02,9290}$	－Of ocoper	10	NT2	${ }^{9 \%}$	9\％	8\％	${ }^{8 \%}$	6\％	6\％	5\％	5\％	4\％	4%	3\％	3\％	2\％	${ }^{2 \%}$	\％	0\％	0\％	\％	\％	0\％
3504	${ }^{42,029,930}$	－－ot nickel	10	NT2	${ }^{\text {\％}}$	9\％	${ }^{8 \%}$	8%	6\％	6%	5\％	5\％	4%	4%	3\％	3\％	2\％	${ }^{2 \%}$	0\％	0\％	0\％	\％	\％	\％
3505	${ }^{42,029,940}$	\cdots Of zinc or of worked canving material of animal or vegetable or mineral origin	10	NT2	${ }^{9 \%}$	9\％	8\％	8\％	6\％	6%	5\％	5\％	4\％	4%	3\％	3\％	${ }^{2 \%}$	${ }^{2 \%}$	0\％	\％	\％	\％	\％	\％
3506	${ }^{42,02,990}$	－．－other	10	NT2	${ }^{9}$	9\％	${ }^{8 \%}$	${ }^{8 \%}$	6\％	6\％	5\％	5\％	${ }^{4 \%}$	4\％	3\％	3\％	${ }^{2 \%}$	${ }^{2 \%}$	0\％	\％	0\％	\％	\％	\％
3507	${ }^{42,03,000}$	－Antices of appaeal	${ }^{20}$	EL	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	－	\bigcirc	－	0	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
${ }^{3508}$	${ }^{42,032,100}$	－Specally designe dor tse in inoors	10	HSL	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	0\％	10\％	10\％	10\％	0\％	0\％	10\％
3509	${ }^{42,032,910}$	\cdots－．Protective work glves	10	${ }^{\text {HSL }}$	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％
3510	${ }^{24,0232,990}$	－ －oner	10	HSL	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	\％	10\％	10\％	10\％	\％	0\％	10\％
3511	${ }^{\text {22，03，}, 000}$	－Bels and bandolies	10	NT1	${ }^{9 \%}$	${ }_{8 \%}$	${ }^{6 \%}$	${ }^{5 \%}$	4%	${ }^{3 \%}$	${ }^{2 \%}$	0\％	\％	0\％	\％\％	0\％	0\％	0\％	0\％	0\％	0\％	\％	\％	\％\％
3512	${ }^{42,034,000}$	－Oher coloting accessories	10	NT1	9\％	8%	6\％	5\％	4%	3\％	${ }^{2 \%}$	0\％	0\％	\％	0\％	\％	\％	\％	\％	\％	\％	\％	\％	\％
3513	${ }^{42,050,010}$	－Bootheses：mals	10	NT1	${ }^{9 \%}$	${ }_{8 \%}$	6\％	${ }^{5 \%}$	$4{ }^{4 \%}$	3\％	${ }^{2 \%}$	\％	\％	\％	\％\％	\％	0\％	\％	\％	\％	\％	\％	\％	0\％
3514	${ }^{42,50,0,020}$	－Indisfrial saley belts and hanesses	10	NT1	${ }^{9 \%}$	8\％	6\％	5\％	4%	3\％	${ }^{2 \%}$	0\％	0\％	\％\％	0\％	\％	0\％	0\％	\％	\％	0\％	\％	\％	\％\％
3515	${ }^{42,050,030}$	Leather strings or chords of a kind used for jewellery or articles of personal adornment	10	${ }_{\text {IsL }}$	\％	10\％	10\％	${ }^{10 \%}$	${ }^{10 \%}$	${ }^{10 \%}$	${ }^{10 \%}$	${ }^{10 \%}$	10\％	${ }^{10 \%}$	10\％	${ }^{10 \%}$	\％	10\％	10\％	10\％	0\％	10\％	10\％	10\％
33516	${ }^{42,050,040}$		10	HSL	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	\％\％	10\％	10\％	10\％	\％	\％	10\％
3517	${ }^{22,050,090}$	－Oner	10	NT1	${ }^{\text {\％\％}}$	${ }_{8} 8$	6\％	${ }^{5 \%}$	${ }^{4 \%}$	${ }^{3} \%$	${ }^{2 \%}$	0\％	\％	\％	\％	\％\％	\％	\％	0\％	0\％	\％	0\％	0\％	\％
3518	${ }^{42,060,010}$	－Tobaco pouches	10	HsL	10\％	10\％	10%	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10%	10\％	10%	10\％	10\％	10\％	10\％

香港•ASEAN FTAにかかる調査報告書

別添2－4 原産地品の関税撤廃スケジュール
（ラオス）

5319	${ }^{42,060,900}$	－other	10	｜ssL	10%	10\％	10\％	10\％	10\％	10\％	\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	${ }^{10 \%}$
3320	13，01，000		${ }^{20}$	EL	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	\bigcirc
3521	43，013，000	Of lamb the following：Astrakhan，Broadtail Caracul，Persian and similar lamb，Indian，Chinese， Mongolian or Tibetan lamb，whole，with or without head，tail or paws	${ }^{20}$	el	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	u	\checkmark	u	\checkmark	u	u	u	\cup	u	u	u	\checkmark
335	43，016，000	－Of tox，whole，with or without hea，tail or pavs	${ }^{20}$	${ }^{\text {EL }}$	U	U	U	\bigcirc	U	\checkmark	\bigcirc	\bigcirc	\bigcirc	0	\bigcirc	\bigcirc	\bigcirc	U	U	U	U	U	U	\bigcirc
3323	13，018，000	$\begin{aligned} & \text { - Other furskins, whole, with or without head, tail or } \\ & \text { paws } \end{aligned}$	${ }^{20}$	EL	U	U	U	u	U	U	U	u	U	U	U	U	U	u	U	U	u	U	U	U
3524	${ }^{43,019,000}$	－Heads，tails，paws and other pieces or cuttings， suitable for furriers＇use	${ }^{20}$	EL	0	U	U	0	U	0	U	，	U	0	U	0	0		，	0			，	U
355	${ }^{43,027,100}$	－－ot mink	${ }^{20}$	EL	\bigcirc	U	0	U	U	\bigcirc	ט	－	\bigcirc	－	U	\bigcirc	U	U	U	U	\bigcirc	U	U	\bigcirc
353	${ }^{43,021,900}$	－－omer	${ }^{20}$	EL	U	U	U	\bigcirc	U	U	\bigcirc	0	U	\checkmark	U	U	ט	U	\checkmark	\bigcirc	U	U	U	\bigcirc
3537	\％022，00		${ }^{20}$	EL	\bigcirc	\bigcirc	\bigcirc	0	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	0	0	\bigcirc	\bigcirc	0	\checkmark	\bigcirc
3528	${ }^{43,023,000}$	－Whole skins and pieces or cuttings thereof， assembled	${ }^{20}$	EL	U	u	u	u	U	U	u	0	U	U	u	U	U	0	u	U	U	U	u	\checkmark
35	${ }^{43,031,000}$	－AAtices of appael and doting accossories	${ }^{20}$	EL	U	，	U	U	U	U	U	，	0	O	U	0	，	U	U	0	0	U	U	0
3530	${ }^{43,039,20}$	－AAtices tor industrial uses	${ }^{20}$	EL	U	\bigcirc	ט	U	U	ט	O	ט	ט	U	U	U	ט	U	ט	ט	\bigcirc	ט	U	\bigcirc
3531	43，039，090	－－oner	${ }^{20}$	EL	¢	0	\bigcirc	O	U	0	\bigcirc	－	U	¢	U	U	0	U	U	\bigcirc	U	U	O	\bigcirc
3352	${ }^{43,040,010}$	－Atificialur	${ }^{20}$	EL	\checkmark	ט	\bigcirc	\bigcirc	\checkmark	\bigcirc	\bigcirc	\bigcirc	U	\checkmark	－	0	\bigcirc	U	U	\bigcirc	\bigcirc	U	0	\bigcirc
${ }^{3533}$	${ }^{43,040,200}$	－Aficies tor indussial uses	${ }^{20}$	EL	U	\bigcirc	\bigcirc	\bigcirc	U	\bigcirc	U	\bigcirc	U	U	U	U	U	\bigcirc	U	\bigcirc	\bigcirc	U	\bigcirc	\bigcirc
3534	${ }^{43,040,091}$	－－Sports bas	${ }^{20}$	EL	0	0	\bigcirc	0	\bigcirc	\bigcirc	0	\bigcirc	0	U	U	\bigcirc	\bigcirc	U	U	\bigcirc	\bigcirc	U	U	\bigcirc
3535	${ }^{43,040,099}$	－－omer	${ }^{20}$	EL	U	0	0	U	U	U	U	U	0	U	U	U	U	U	0	U	U	U	0	\bigcirc
3536	44，011，000	－Fuel wood，in logs，in billets，in twigs，in faggots or in similar forms	10	ग2	3\％	9\％	8\％	${ }^{8 \%}$	6\％	6\％	5\％	5\％	4%	4\％	3\％	3\％	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％	\％	\％	0\％
3537	44，012，100	－Contierous	10	NT2	9\％	9\％	${ }^{8 \%}$	${ }^{8 \%}$	6\％	6\％	5\％	${ }^{5 \%}$	4%	4%	3\％	3\％	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	0\％	0\％	0\％	\％
${ }^{3538}$	44，012，200	－－Nom．conifeous	10	NT2	${ }^{9 \%}$	${ }^{9} \%$	${ }^{8 \%}$	${ }^{8 \%}$	6\％	6\％	${ }_{5 \%}^{5 \%}$	${ }^{5 \%}$	4\％	4\％	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	0\％	0\％	\％	\％	\％
3539	44，013，100	－Wood pelless	10	N2	\％\％	9\％	8\％	8%	6\％	6\％	5\％	5\％	4\％	4\％	3\％	3\％	2\％	${ }^{2 \%}$	0\％	\％	\％	\％	\％	\％
3340	44，013，900	－Onmer	10	NT2	\％$\%$	9\％	${ }^{8 \%}$	${ }_{8 \%}^{8 \%}$	6\％	6\％	5\％	5\％	4\％	4\％	3\％	3\％	2\％	${ }^{2 \%}$	\％	\％	0\％	\％	\％	\％
35	44，021，000	－ F famboo	${ }^{20}$	EL	U	\bigcirc	－	ט	\bigcirc	U	ט	ט	U	U	\bigcirc	\bigcirc	\cup	U	\bigcirc	\bigcirc	\bigcirc	U	ט	\bigcirc
3542	${ }^{44,029,010}$	－－ot coconut shell	${ }^{20}$	EL	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	0	\bigcirc	－	\bigcirc	－	\bigcirc	0	0	0	0	\bigcirc	\bigcirc	\bigcirc
3543	44，029，90	－Oner	${ }^{20}$	EL	\bigcirc	\bigcirc	\bigcirc	0	U	U	－	－	U	U	U	0	U	U	U	\bigcirc	\bigcirc	U	U	\bigcirc
3544	${ }^{4003.00 .10}$	－Bauks，sawos and veneer Ios	${ }^{20}$	EL	\bigcirc	0	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	0	U	0	\bigcirc	0	0	0	\bigcirc	U	0	\bigcirc
${ }^{3545}$	${ }^{44,031,090}$	－－omer	${ }^{20}$	EL	\bigcirc	U	\bigcirc	－	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\checkmark	\bigcirc	\bigcirc	\checkmark	\bigcirc	U	U	\bigcirc	\bigcirc	\bigcirc		
${ }^{3546}$	44，032，010	－－Bauks，sawos and veneer logs	${ }^{20}$	EL	0	0	\bigcirc	\bigcirc	\bigcirc	0	\bigcirc	\bigcirc	\bigcirc	0	\bigcirc	0	\bigcirc	0	\bigcirc	\bigcirc	U	U	0	\bigcirc
$3{ }^{3577}$	${ }^{44,032,90}$	－Oner	${ }^{20}$	EL	\bigcirc	U	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	－	\bigcirc	\bigcirc
${ }^{3548}$	44，034，10	－Bauks，savogs and evener Iogs	${ }^{20}$	EL	U	ט	\bigcirc	\checkmark	\bigcirc	\bigcirc	\bigcirc	ט	ט	U	\bigcirc	U	ט	U	－	\bigcirc	\bigcirc	\checkmark	U	\bigcirc
3549	${ }^{44,034,190}$	\cdots	${ }^{20}$	EL	0	\bigcirc	－	\bigcirc	\bigcirc	ט	U	\bigcirc	\bigcirc	ט	U	U	\bigcirc	U	U	U	U	－	\bigcirc	\bigcirc
3550	44，034，910	－Baulk，sawoss and veneer Iogs	${ }^{20}$	EL	0	U	0	0	0	0	O	O	U	U	¢	U	\bigcirc	U	U	O	¢	U	O	\bigcirc
3351	${ }^{44,034,990}$	\cdots	${ }^{20}$	EL	\bigcirc	U	\bigcirc	\bigcirc	\checkmark	U	U	\bigcirc	\bigcirc	U	U	\bigcirc	U	U	U	\bigcirc	\bigcirc	U	\checkmark	\bigcirc
3352	${ }^{44,039,10}$	\cdots－Bauks，samogs and veneer logs	${ }^{20}$	${ }^{\text {EL }}$	\bigcirc	\bigcirc	\bigcirc	\bigcirc	－	－	\checkmark	\bigcirc	\bigcirc	－	－	U	－	U	\bigcirc	\bigcirc	\bigcirc	\bigcirc	U	\bigcirc
3553	44，039， 190	\cdots	${ }^{20}$	EL	0	U	\bigcirc	\bigcirc	0	U	\bigcirc	\bigcirc	ט	U	U	U	\bigcirc	U	U	\bigcirc	U	－	U	\bigcirc
355	${ }^{44,039,210}$	－Bauks，samosg and veneer Iogs	${ }^{20}$	${ }^{\text {EL }}$	\bigcirc	ט	\bigcirc	\bigcirc	\bigcirc	ט	\bigcirc	－	\bigcirc	\bigcirc	－	\bigcirc	\bigcirc	U	\bigcirc	\bigcirc	\checkmark	U		\bigcirc
3555	4，4，039，200	－－Other	${ }^{20}$	EL	0	0	0	0	0	0	0	\bigcirc	\bigcirc	0	\bigcirc	0	\bigcirc	0	U	U	U	U	0	\bigcirc
355	4，4，039，990	－Bauks，sawlogs and veneer Iogs	${ }^{20}$	EL	0	0	0	\bigcirc	\bigcirc	0	0	\bigcirc	\bigcirc	0	\bigcirc	0	\bigcirc	0	0	0	\bigcirc	U	0	0
3557	${ }^{44,039,900}$	－．Oner	${ }^{20}$	EL	\bigcirc	U	－	\bigcirc	\bigcirc	U	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	－	\bigcirc	U	U	\bigcirc	\bigcirc	－	\bigcirc	\bigcirc
3558	44，041，00	Coniferous	${ }^{20}$	Et	U	U	ט	U	ט	U	ט	ט	U	ט	U	U	ט	U	U	ט	U	U	U	－
3559	44，042，010	－Chipood	${ }^{20}$	EL	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	U	U	\bigcirc	U	U	－	－	－	\bigcirc	\bigcirc
3560	${ }^{44,042,090}$	－－Oher	${ }^{20}$	EL	U	ט	－	\checkmark	\bigcirc	U	\checkmark	U	U	U	U	U	ט	U	U	\bigcirc	\bigcirc	U	U	\bigcirc
3361	44，050，010	－Wod mool	${ }^{20}$	EL	\bigcirc	\bigcirc	－	\bigcirc	U	U	0	0	\bigcirc	－	U	U	－	U	O	\bigcirc	\bigcirc	－	O	\bigcirc
3352	${ }^{44,050,20}$	－Woot four	${ }^{20}$	EL	\bigcirc	\bigcirc	\checkmark	\checkmark	\bigcirc	\checkmark	\checkmark	\checkmark	\checkmark	U	U	U	\checkmark	U	0	\bigcirc	\bigcirc	O	－	\bigcirc
3563	${ }^{44,061,000}$	－Notimpregnated	${ }^{20}$	EL	U	U	\bigcirc	\bigcirc	\bigcirc	U	\bigcirc	\bigcirc	\bigcirc	\bigcirc	U	\bigcirc	\bigcirc	U	－	\bigcirc	\bigcirc	ט	U	\bigcirc
356	${ }^{44,098,000}$	－oner	${ }^{20}$	EL	U	U	－	－	\bigcirc	U	\bigcirc	－	\bigcirc	\bigcirc	U	\checkmark	\bigcirc	U	－	\checkmark	\checkmark	O	U	\bigcirc
3565	44，071，000	Coniferus	${ }^{20}$	EL	0	0	\bigcirc	0	0	0	0	\bigcirc	\bigcirc	0	\bigcirc	0	\bigcirc	\bigcirc	U	U	U	U	U	\bigcirc
3566	${ }^{44,0,2,110}$	\cdots Panaed，sanded orencijionied	${ }^{20}$	${ }^{\text {EL }}$	ט	U	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\checkmark	\checkmark	\bigcirc	－	U	\bigcirc
3567	${ }^{44,072,190}$	‥－oner	${ }^{20}$	EL	U	U	\bigcirc	U	\bigcirc	U	U	ט	ט	U	U	U	ט	U		U	U	U	U	\bigcirc
${ }^{3568}$	44，072，210	\cdots－－Paned，sanded ore endijimed	${ }^{20}$	EL	ט	\bigcirc	ט	ט	ט	ט	U	ט	\bigcirc	ט	U	U	\bigcirc	U	U	U	\bigcirc	U	U	\bigcirc
359	44，072，200	－Onter	${ }^{20}$	EL	\bigcirc	\bigcirc	0	\bigcirc	\bigcirc	U	O	\bigcirc	\bigcirc	U	－	O	\bigcirc	\bigcirc	0	－	\bigcirc	\bigcirc	0	\bigcirc
35570	${ }^{44,072,511}$	\cdots Praned，sanded ore endijiniled	${ }^{20}$	EL	\bigcirc	U	\bigcirc	\bigcirc	U	U	\checkmark	0	\bigcirc	U	\checkmark	\checkmark	\checkmark	U	\checkmark	\bigcirc	\bigcirc	U	U	\bigcirc
3557	${ }^{44,072,519}$	－－other	${ }^{20}$	${ }^{\text {EL }}$	\bigcirc	U	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	－	\bigcirc
3572	${ }^{44,072,521}$	\cdots－Paned，sanded orendijioned	${ }^{20}$	EL	U	U	\bigcirc	\bigcirc	0	0	\bigcirc	\bigcirc	\bigcirc	U	U	U	\bigcirc	U	－	\bigcirc	\bigcirc	U	U	\bigcirc
3573	${ }^{44,072,529}$	\cdots Oner	${ }^{20}$	${ }^{\text {EL }}$	\bigcirc	ט	\bigcirc	\bigcirc	\bigcirc	ט	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	－	\bigcirc	\bigcirc	\bigcirc	\bigcirc	U	U	－
3574	${ }^{44,072,6,60}$	－Paneed，sanded or encodijolited	${ }^{20}$	EL	0	0	0	－	\bigcirc	0	0	\bigcirc	\bigcirc	0	\bigcirc	0	\bigcirc	U	U	0	－	U	U	\bigcirc
3575	${ }^{44,072,890}$	－－Onler	${ }^{20}$	EL	0	U	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	U	\bigcirc	\bigcirc	U	U	\bigcirc
3576	${ }^{44,072,710}$	\cdots Planed，sande of erenjijimed	${ }^{20}$	EL	\bigcirc	U	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	ט	\bigcirc	\bigcirc	\bigcirc	\bigcirc	U	\bigcirc	\bigcirc	－	U	\bigcirc
3577	${ }^{44,072,790}$	－－omer	${ }^{20}$	EL	U	U	－	U	U	U	0	ט	ט	0	U	U	U	U	U	U	－	U	U	\bigcirc
3578	44，072，810		${ }^{20}$	EL	\bigcirc	\bigcirc	－	U	\bigcirc	\bigcirc	\bigcirc	ט	ט	\bigcirc	U	U	ט	U	U	ט	U	U	\checkmark	\bigcirc
3579	${ }^{44,072,890}$	－ －oner	${ }^{20}$	${ }_{\text {EL }}$	U	U	－	\bigcirc	\bigcirc	U	U	U	\bigcirc	\bigcirc	U	U	U	U	U	\bigcirc	U	O	U	－
3580	${ }^{44,0,2,9,91}$	${ }^{-P a n e d, ~ s a n d e d ~ o r e m e d i j i o n t e d ~}$	${ }^{20}$	EL	\bigcirc	ט	\bigcirc	\bigcirc	\bigcirc	ט	\checkmark	\bigcirc	\bigcirc	\bigcirc	\checkmark	\bigcirc	\bigcirc	U	－	\bigcirc	\bigcirc	\bigcirc	－	\bigcirc
${ }^{3581}$	44，072，919	\cdots Oner	${ }^{20}$	EL	\bigcirc	U	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	U	\bigcirc	U	U	\bigcirc	－	\bigcirc	U	U	\bigcirc
3582	${ }^{44,072,221}$	\cdots Paneod，sanded ofercijioined	${ }^{20}$	EL	\bigcirc	0	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	＂	\bigcirc	\bigcirc	－	\bigcirc	\bigcirc	U		U	U	U	U	\bigcirc
3583	${ }^{44,072,292}$	\cdots Oner	${ }^{20}$	EL	\bigcirc	U	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	U	\bigcirc	\bigcirc	\bigcirc	U	－	\checkmark	\checkmark	U	U	\bigcirc
3584	${ }^{44,072,931}$	$\cdots \mathrm{Panand}$ sanded orendijioned	${ }^{20}$	EL	0	0	\bigcirc	－	\bigcirc	\bigcirc	\bigcirc	，	\bigcirc	0	\bigcirc	，	\bigcirc	，	U	，	0	U	U	
3565	${ }^{44,072,939}$	－Onher	${ }^{20}$	EL	\bigcirc	U	\bigcirc	\checkmark	\bigcirc	\bigcirc	\bigcirc	\checkmark	\bigcirc	\bigcirc	U	\bigcirc	U	\bigcirc	\checkmark	\checkmark	\bigcirc	U	U	\checkmark
356	${ }^{44,072,941}$	\cdots Planed，sanded orenotijomed	${ }^{20}$	EL	\bigcirc	0	\bigcirc	U	U	0	0	\bigcirc	\bigcirc	U	\bigcirc	－	\bigcirc	－		U	U	U	U	U
3587	44，072，499	\cdots	${ }^{20}$	EL	\bigcirc	U	－	ט	U	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	U	U	\bigcirc	\bigcirc	\checkmark	U	\bigcirc
3588	44，072，951	\cdots ．．．Paned，sandedo orendijinlied	${ }^{20}$	EL	U	0	－	\bigcirc	U	U	U	U	\bigcirc	U	－	0	\bigcirc	－	0	0	\bigcirc	U	\bigcirc	0
3359	${ }^{44,072,959}$	－Oner	${ }^{20}$	EL	\bigcirc	U	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	U	\bigcirc	${ }^{\circ}$	\bigcirc	U	U	\bigcirc
3550	${ }^{44,072,961}$	$\cdots{ }^{-\cdots}$ Planed，sanded orenotiointed	${ }^{20}$	EL	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	U	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc		\bigcirc	\bigcirc	\checkmark	\bigcirc	U	\bigcirc	\bigcirc
3591	${ }^{44,072,969}$	－Onher	${ }^{20}$	EL	0	0	\bigcirc	\bigcirc	\bigcirc	0	\bigcirc	\bigcirc	0	\bigcirc	\bigcirc	－	\bigcirc	－	U	U	U	－	U	\bigcirc
3592	${ }^{44,072,971}$	$\cdots{ }^{-P \text { Paned，sanded of enctijioned }}$	${ }^{20}$	EL		ט	\bigcirc	\checkmark	\checkmark	\bigcirc	\bigcirc	\checkmark	\bigcirc	U	\checkmark	\checkmark		U		\checkmark	\bigcirc	\checkmark	\checkmark	\bigcirc
3593	${ }^{44,072,979}$	－－Oner	${ }^{20}$	EL	U	0	0	\bigcirc	\bigcirc	0	\bigcirc	\bigcirc	\bigcirc	\bigcirc	U	\bigcirc	\bigcirc	\bigcirc	U	U	U	U	U	0
3594	${ }^{44,072,981}$	\cdots－Panand，sanded or endijioined	${ }^{20}$	EL	\bigcirc	0	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	－	\bigcirc	\bigcirc	U	U	\bigcirc	U	U	\bigcirc
3595	${ }^{44,072,989}$	－－Onher	${ }^{20}$	EL	\bigcirc	U	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	－	－	\bigcirc	U	U	\bigcirc	U	U	－
3596	44，072，991	Jongkong（Dactylocladus spp ）and Merbau （Intsia spp ．），planed，sanded or end－jointed	${ }^{20}$	EL	－	－	－	\bigcirc	\bigcirc	\bigcirc	－	\bigcirc	－	\bigcirc	－	－	－	－	－	－	－	－	－	\bigcirc
	${ }^{44,072,992}$	$\underset{\text {－．．．Jongkong（Dactylocladus spp ．）and Merbau }}{\text {（ntsia spp }) \text { ．）other }}$	${ }^{20}$	${ }^{\text {EL }}$	${ }^{\circ}$	${ }^{\circ}$				${ }^{\circ}$	${ }^{\circ}$	${ }^{0}$	${ }^{\circ}$	${ }^{\circ}$	${ }^{\circ}$	${ }^{\circ}$	${ }^{\circ}$	${ }^{\circ}$	${ }^{\circ}$	${ }^{\circ}$	${ }^{\circ}$	\bigcirc	${ }^{\circ}$	${ }^{\circ}$
3598	${ }^{44,072,993}$		${ }^{20}$	${ }^{\text {EL }}$	\bigcirc	0	U	\square_{0}	U	\bigcirc	\bigcirc	U	U	\bigcirc	U	U	${ }^{\circ}$	${ }^{\circ}$	U	${ }^{\sim}$	${ }^{\circ}$	${ }^{\circ}$	U	${ }^{\sim}$
3599	${ }^{44,072,999}$	\cdots	${ }^{20}$	${ }^{\text {EL }}$	\bigcirc	U	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	－	\bigcirc	\bigcirc	－	U	－	U	U	U	U	U	－	－
3300	${ }^{44,079,110}$	－Paneod，sanded or enedijimined	${ }^{20}$	${ }^{\text {EL }}$	U	U	U	U	0	U	U	U	\bigcirc	0	U	U	－	U	U	ט	U	U	U	\bigcirc
3301	${ }^{44,079,190}$	－－omer	${ }^{20}$	EL	\bigcirc	U	0	\bigcirc	0	U	\bigcirc	0	\bigcirc	－	\bigcirc	U	U	U	U	U	U	U	U	\bigcirc
3502	44，079，210	P－Paned，sanded of enedijioined	${ }^{20}$	EL	U	0	\bigcirc	\bigcirc	0	U	0	－	\bigcirc	\bigcirc	U	U	0	ט	U	U	U	U	U	0
3303	4，4，079，200	－－omer	${ }^{20}$	EL	ט	0	\bigcirc	\bigcirc	0	U	U	\bigcirc	\bigcirc	U	ט	ט	U	U	ט	U	U	U	U	ט
3364	44，079，30		${ }^{20}$	EL	U	0	0	\bigcirc	0	0	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	U		U	U	U	U	U	U	－
3805	$140,079,390$	\cdots	${ }^{20}$	EL	U	U	\bigcirc	\bigcirc	U	U	\bigcirc	\bigcirc	\bigcirc	\bigcirc	U	－	U	\bigcirc	\bigcirc	\bigcirc	U	\bigcirc	\bigcirc	\bigcirc

5006	${ }^{44,0,79,410}$	Paneed，sanded orenofijointed	${ }^{20}$	EL	\bigcirc	\bigcirc	0	\bigcirc	\bigcirc	U	0	\bigcirc	U	U	U	U	U	0	U	0	U	U	0	，
3307	${ }^{44,09,9,40}$	Onher	${ }^{20}$	EL	\bigcirc	U	\bigcirc	U	\bigcirc	U	ט	\checkmark	\bigcirc	U	\checkmark	0	ט	U	\checkmark	U	\checkmark	U	\bigcirc	0
3308	${ }^{44,0,9,510}$	－Paneed，santed or endijioined	${ }^{20}$	EL	\bigcirc	\bigcirc	0	\bigcirc		\bigcirc	U	0	0		0	\bigcirc	U	0	U	\bigcirc	0	U	O	U
3309	44，07，590	－other	${ }^{20}$	EL	－	－	0	\bigcirc	，	0	0		0	U	U	U	0	－	U	0	U	0	U	0
3510	${ }^{4,0,09,990}$	Paraed，sanded or endijoinied	${ }^{20}$	EL	－	0	ט	ט	0	0	\bigcirc		ט	－	U	U	，		U	U	U	U	U	U
356	44，07，990	－Oner	${ }^{20}$	EL	U	0	0	0	U	0	U	O	U	0	U	\bigcirc	0	0	，	\bigcirc	U	U	－	\bigcirc
3312	4408.10 .10	－－Cedar wood slats of a kind used for pencil manufacture；radiata pinewood of a kind used for blockboard manufacture	${ }^{40}$	EL	\bigcirc	U	U	U	\bigcirc	\bigcirc	U	ט	U	U	ט	\bigcirc	U	U	－	\bigcirc	U	U	U	\bigcirc
$3{ }^{3613}$	${ }^{4008.10 .30}$	－Face vener sheis	${ }^{40}$	EL	U	0	\bigcirc	\bigcirc	U	U	0	U	U	U	U	U	0	0	U	\bigcirc	U	U	\bigcirc	\bigcirc
336	${ }^{4,08,08,090}$	－omer	40	EL	\bigcirc	\bigcirc	ט	U	\bigcirc	\bigcirc	ט	U	0	0	0	\bigcirc	\bigcirc	0	\bigcirc	\bigcirc	\bigcirc	0	\bigcirc	\bigcirc
3315	${ }^{4,0,08,100}$	Dak Red Merantit Lght Red Merantiand Merant	${ }^{40}$	EL	\bigcirc	\bigcirc	0	U	U	\bigcirc	U	0	U	0	U	U	U	0	U	－	\bigcirc	－	U	U
$3{ }^{316}$	${ }^{44,08,9,90}$	－Jelutong wood slats of a kind used for pencil	${ }^{40}$	${ }^{\text {EL }}$	U	U	0	U	U	U	U	0	U	U	0	0	U	U	－	u	U	U	u	U
336	${ }^{4,08,8,990}$	－－－other	${ }^{40}$	E	U	U	U	U	U	U	U	0	U	U	U	0		0	－	U	U	U	\bigcirc	\bigcirc
3518	44，089，000	－omer	40	EL	¢	0	0	O	¢	0	U	0	U	O	0	0	¢	0	\bigcirc	\bigcirc	0	U	\bigcirc	\bigcirc
3619	44，09，000	－Conifeous	40	EL	U	U	\bigcirc	\bigcirc	U	0	U	\bigcirc	U	0	U	－	U	－	U	\checkmark	\bigcirc	U	－	\cup
3820	44，02，100	－ot bamboo	40	EL	U	U	U	0	O	\bigcirc	U	0	U	O	－	－	，	O	0	－	0	U	O	ט
3321	${ }^{4,0,02,900}$	－Oner	${ }^{40}$	EL	U	ט	－	0	U	－	ט	\bigcirc	U	U	\bigcirc	U	U	U	\bigcirc	\bigcirc	U	U	0	\bigcirc
3362	44，00，100	－Paticie board	40	EL	0	\bigcirc	U	0	U	U	\bigcirc	U	U	\bigcirc	0	0	U	0	0	0	0	U	－	U
$3{ }^{362}$	${ }^{44,010,200}$	－－orienee stand board（ OSB）	${ }^{40}$	EL	U	U	－	\bigcirc	\bigcirc	\bigcirc	U	U	U	U	U	\bigcirc	\bigcirc	U	\bigcirc	\bigcirc	\bigcirc	U	－	\bigcirc
336	${ }^{44,01,900}$	－－Other	${ }^{40}$	EL	0	0	U	0	\bigcirc	0	0	0	\bigcirc	0	\bigcirc	0	0	ט	U	\bigcirc	\bigcirc	U	\bigcirc	\bigcirc
3325	${ }^{44,109,000}$	－Oner	${ }^{40}$	EL	0	\bigcirc	0	U	0	0	0	U	\bigcirc	0	\bigcirc	0	\bigcirc	\bigcirc	\bigcirc	0	\bigcirc	U	\bigcirc	\bigcirc
358	${ }^{4,111,200}$	－－Of tilickess note exceding 5 mm	${ }^{20}$	EL	U	U	ט	U	U	ט	U	U	ט	U	U	U	U	U	ט	U	ט	U	ט	－
3827	${ }^{44,111,300}$	Of atiokness exceeding 5 mm but note exceeding	${ }^{20}$	${ }_{\text {EL }}$	0	0	0	0	U	\bigcirc	U	0	U	U	U	0	U	U	\bigcirc	\bigcirc	\bigcirc	0	0	0
358	44，11，400		${ }^{20}$	EL	\bigcirc	0	0	U	U	U	U	U	U	U	U	U	U	0	U	－	U	ט	U	\cup
3362	44，19，200	－Ota adensis exceoding $0.8 \mathrm{gcm} \mathrm{cm}^{3}$	${ }^{20}$	EL	0	0	0	0	\bigcirc	0	U	U	0	¢	\bigcirc	\bigcirc	U	0	\bigcirc	U	\checkmark	0	0	\bigcirc
3850	44，119，300		${ }^{20}$	EL	0	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\checkmark	\checkmark	\bigcirc	\bigcirc	\checkmark	\checkmark	U	U	\checkmark	U	\bigcirc	\cup
$3{ }^{3631}$	${ }^{44,19,9,400}$		${ }^{20}$	EL	U	0	U	ט	U	U	U	0	U	0	U	ט	U	U	ט	\bigcirc	U	U	ט	\bigcirc
$3{ }^{3632}$	${ }^{44,12,1,000}$	－Or bamboo	${ }^{40}$	EL	U	ט	\checkmark	U	\checkmark	U	U	\bigcirc	ט	U	U	\bigcirc	ט	U	ט	ט	\bigcirc	U	U	O
$3{ }^{3633}$	${ }^{44,12,100}$	－－With at least one outer ply of tropical wood specified in Subheading Note 2 to this Chapter	${ }^{40}$	EL	0	0	0	\bigcirc	0	0	0	0	0	0	\bigcirc	0	U	0	\bigcirc	\bigcirc	\bigcirc	U	\bigcirc	\bigcirc
$3{ }^{3634}$	${ }^{44,123,200}$	－－Other，with at least one outer ply of non－ coniferous wood	${ }^{40}$	EL	\bigcirc	U	U	u	\bigcirc	U	\bigcirc	U	U	U	0	U	0	0	U	u	\bigcirc	－	－	\checkmark
3535	44，12，9，00	－－omer	${ }^{40}$	EL	U	ט	U	\bigcirc	U	ט	U	U	U	U	U	－	U	U	U	\bigcirc	ט	U	U	\bigcirc
$3{ }^{3856}$	${ }^{44,129,400}$	－Blockboar，，aminiboard and batenoward	${ }^{40}$	EL	0	0	O	0	O	0	0	U	0	0	0	0	\bigcirc	0	U	O	－	O	U	U
$3{ }^{367}$	${ }^{44,12,9,900}$	－－other	${ }^{40}$	EL	U	0	0	U	O	0	0	0	\bigcirc	0	U	0	\bigcirc	\bigcirc	U	0	\bigcirc	U	0	O
${ }^{3688}$	44，13，000	Densified wood，in blocks，plates，strips or profile shapes．	${ }^{20}$	EL	0	U	\bigcirc	U	\bigcirc	\bigcirc	0	ט	0	\bigcirc	U	ט	U	0	\bigcirc	U	\bigcirc	0	0	\bigcirc
3369	44，10，000	Wooden frames for paintings，photographs， mirrors or similar objects．	20	${ }^{\text {EL }}$	0	U	\bigcirc	U	\bigcirc	0	U	－	0	U	0	－	U	U	0	0	0	0	0	U
3840	44，51，000		${ }^{30}$	${ }^{\text {EL }}$	0	U	－	U	－	0	U	U	U	U	0	，	U	U	0	，	U	0	0	U
${ }^{3641}$	${ }^{44,152,000}$	－Palests，box paleles and other load boads，pallet collars	${ }^{30}$	${ }^{\text {EL }}$	0	U	0	U	U	U	U	\checkmark	U	U	U	0	U	U	U	0	U	0	U	，
$3{ }^{364}$	${ }^{44,16,0,010}$	－Saves	${ }^{30}$	EL	\bigcirc	－	0	U	U	U	0	\bigcirc	0	0	U	\bigcirc	\bigcirc	0	\bigcirc	\bigcirc	\bigcirc	0	\bigcirc	U
$3{ }^{3643}$	${ }^{44,16,0,90}$	－omer	${ }^{30}$	EL	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	U	U	U	\bigcirc	U	U	－	\bigcirc	U	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
354	${ }^{44,70,010}$	－Bootorstoe lasts	${ }^{30}$	EL	ט	U	U	U	\bigcirc	U	U	U	ט	U	U	U	ט	U	ט	U	ט	U	ט	－
3845	44，70，090	－omer	${ }^{30}$	EL	U	0	U	0	U	0	0	0	U	0	U	0	U	0	0	0	\bigcirc	0	U	\bigcirc
3566	44，18，000	－Windows，Ferenchwindows and ther frames	${ }^{30}$	EL	0	U	\bigcirc	\bigcirc	\checkmark	U	U	－	U	0	U	ט	U	0	\cup	U	\cup	ט	\bigcirc	\bigcirc
3547	${ }^{44,182,000}$	Doors and ther frames and drestodods	${ }^{30}$	EL	0	0	0	\bigcirc	U	0	\bigcirc	0	－	U	－	0	U	0	\bigcirc	－	\bigcirc	\bigcirc	0	\bigcirc
$3{ }^{3648}$	44，18，000	Shutering or conocele constuctiona work	${ }^{30}$	EL	0	U	U	\bigcirc	\bigcirc	U	U	U	U	0	U	U	\bigcirc	U	\bigcirc	\bigcirc	\bigcirc	U	，	\bigcirc
3849	44，18，5000	－Shinges and shakes	${ }^{30}$	EL	0	0	U	0	ט	0	0	U	U	0	0	U	U	0	－	－	ט	U	－	0
3350	${ }^{44,18,8,000}$	－Posstand beans	${ }^{30}$	EL	U	U	U	\bigcirc	－	U	0	U	0	0	U	\bigcirc	\bigcirc	0	\bigcirc	U	\bigcirc	U	\bigcirc	U
3351	${ }^{4,187,100}$	－－For mosicictloors	${ }^{30}$	EL	0	0	U	U	\bigcirc	0	0	0	\bigcirc	0	0	U	\bigcirc	U	0	\bigcirc	\bigcirc	U	0	U
3552	${ }^{44,18,2,200}$	－Other，muliliyer	${ }^{30}$	EL	U	U	\bigcirc	U	\bigcirc	ט	U	ט	\bigcirc	U	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	U	\bigcirc	\bigcirc
353	${ }^{44,18,9,90}$	－－omer	${ }^{30}$	EL	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	ט	U	U	\bigcirc	U	U	－	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	－	\bigcirc	\bigcirc
$3{ }^{3654}$	${ }^{4,18,89,010}$	－－Celluar wood panes	${ }^{30}$	EL	0	\bigcirc	＂	\bigcirc	U	\bigcirc	0	\bigcirc	\bigcirc	\bigcirc	ט	\bigcirc	\bigcirc	\bigcirc	0	\bigcirc	\bigcirc	－	0	0
3655	44，18，9090	－－omer	${ }^{30}$	EL	U	0	U	0	0	0	U	U	0	0	U	O	U	U	－	\bigcirc	U	－	O	\bigcirc
3566	44，10，000	Tableware and kithenemare，of wood．	${ }^{20}$	EL	0	U	\bigcirc	\checkmark	\bigcirc	U	0	0	U	0	\bigcirc	\bigcirc	U	0	\bigcirc	U	\bigcirc	\bigcirc	\bigcirc	\bigcirc
$3{ }^{357}$	${ }^{4,2,20,000}$	－Stauetese and othero omamens，of wod	${ }^{20}$	EL	U	U	\bigcirc	\bigcirc	U	\bigcirc	U	U	U	\bigcirc	\bigcirc	\bigcirc	\checkmark	\bigcirc	\bigcirc	U	－	\checkmark	\bigcirc	\bigcirc
3568	44，20，0010		${ }^{20}$	EL	U	0	U	\checkmark	0	0	0	\checkmark	U	0	U	\checkmark	U	0	\checkmark	\checkmark	\checkmark	\checkmark	U	\checkmark
3569	${ }^{4,2,20,900}$	－－omer	${ }^{20}$	EL	\bigcirc	U	－	U	\bigcirc	U	U	U	U	\bigcirc	－	U	U	U	U	\bigcirc	\bigcirc	－	O	\bigcirc
3660	${ }^{44,21,000}$	－Cotines hangers	${ }^{20}$	EL	U	U	\bigcirc	U	\bigcirc	U	U	－	0	0	－	\bigcirc	\bigcirc	0	\bigcirc	\bigcirc	\bigcirc	－	－	\bigcirc
3361	${ }^{44,219,010}$	－Sools．cops and bobbins，sewing gtread reets	${ }^{20}$	EL	0	0	0	0	0	0	U	0	0	0	＂	\bigcirc	\bigcirc	0	＂	＂	U	U	－	\bigcirc
3662	${ }^{44,219,020}$	－Mach splins	${ }^{20}$	EL	U	0	U	U	0	0	U	U	ט	U	0	ט	ט	ט	\bigcirc	ט	\bigcirc	U	\bigcirc	\bigcirc
3663	${ }^{44,219,030}$	－Wooden pegs or pins or footwear	${ }^{20}$	EL	0	0	0	U	¢	0	0	U	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	0	\bigcirc	\bigcirc	－	0	\bigcirc
3564	${ }^{4,2,219,040}$	Candy－sticks，ice－cream sticks and ice－cream spoons	${ }^{20}$	EL	\bigcirc	－	＂	U	U	\checkmark	U	－	U	\checkmark	\checkmark	\checkmark	－	U	\checkmark	－	\checkmark	\checkmark	\checkmark	\bigcirc
3665	${ }^{44,219,070}$	－－Fans and handscreens，frames and handles therefor，and parts thereof	${ }^{20}$	${ }^{\text {EL }}$	U	U	U	0	\bigcirc	\bigcirc	U	0	\bigcirc	0	\bigcirc	－	${ }^{0}$	U	\square°	，	${ }^{0}$	\bigcirc	${ }^{0}$	${ }_{0}$
3566	${ }^{44,219,080}$	－Toompocks	${ }^{20}$	EL	U	U	\bigcirc	U	\checkmark	U	U	U	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	U	\bigcirc	\bigcirc
3867	${ }^{44,219,093}$	－Prayer beass	${ }^{20}$	EL	U	U	U	U	U	U	U	U	ט	\bigcirc	U	U	ט	ט	U	U	\bigcirc	U	U	\bigcirc
3668	${ }^{44,219,094}$	\ldots Oner beads	${ }^{20}$	EL	\bigcirc	\bigcirc	U	\bigcirc	U	U	U	ט	\bigcirc	\bigcirc	\bigcirc	ט	\bigcirc	ט	\bigcirc	ט	\checkmark	ט	\bigcirc	\bigcirc
3669	44，219，099	‥oner	${ }^{20}$	EL	0	0	U	U	U	0	U	U	U	0	U	O	U	0	，	O	\bigcirc	O	0	0
$3{ }^{3670}$	${ }^{45,01,000}$	－Natural cork，Raw or smply prepared	5	NT1	4%	${ }^{4 \%}$	4%	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％
3367	${ }^{45,019,000}$	－Oner	5	T1	4\％	4\％	4\％	3\％	3\％	${ }^{2 \%}$	2%	\％\％	0\％	0\％	0\％	\％	\％	\％	\％	\％	\％	\％	\％	\％
3372	45，02，000	Natural cork，debacked or roughly squared，or in rectangular（including square）blocks，plates， sheets or strip（including sharp－edged blanks for sheets or strip（inclu corks or stoppers） stoppers）．	5	NT1	4\％	4\％	4\％	3\％	3\％	2%	2%	\％\％	0\％	0\％	0\％	\％	\％	0\％	\％	\％	\％	0\％	0\％	0\％
$3{ }^{3673}$	45，03，000	－Cons and Stopers	10	HSL	0\％	0\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	0\％	10\％	10\％	10\％	0\％	10\％	10\％
3374	${ }^{\text {45，039，000 }}$	－Oner	10	NT1	${ }^{9 \%}$	${ }^{8 \%}$	6\％	${ }^{5 \%}$	4%	3\％	${ }^{2 \%}$	0\％	0\％	0\％	0\％	\％	\％	0\％	\％	\％	\％	\％	\％	\％
3875	45，04，，000	－Blocks，plates，sheets and strip；tiles of any shape； solid cylinders，including discs	10	T1	${ }^{9 \%}$	${ }^{8 \%}$	6\％	${ }^{5 \%}$	4\％	3\％	${ }^{2 \%}$	0\％	0\％	0\％	\％	\％	\％	0\％	\％	\％	\％	\％	\％	\％
$3{ }^{3676}$	${ }^{45,04,09000}$	－Oner	10	NT1	9\％	${ }^{8 \%}$	6\％	5\％	4%	3\％	${ }^{2 \%}$	0\％	0\％	0\％	\％	\％	0\％	0\％	0\％	\％	0\％	0\％	0\％	0\％
3367	${ }^{44,012,100}$	－Of bamboo	${ }^{30}$	${ }^{\text {EL }}$	\bigcirc	0	U	U	0	\bigcirc	0	0	\bigcirc	\bigcirc	0	0	\bigcirc	\bigcirc	0	0	\bigcirc	\bigcirc	0	\bigcirc
3878	${ }^{46,012,200}$	－Otratan	${ }^{30}$	EL	\bigcirc	U	－	U	U	\bigcirc	U	\bigcirc	\bigcirc	\bigcirc	U	\bigcirc	\bigcirc	\bigcirc	－	U	\bigcirc	\bigcirc	\bigcirc	\bigcirc
3879	46．012，900	－－oner	${ }^{30}$	EL	ט	U	－	ט	ט	ט	ט	ט	ט	ט	ט	\checkmark	ט	ט	U	U	\bigcirc	\bigcirc	－	\bigcirc
3880	46，019，210	－－－Plaits and similar products of plaiting materials， whether or not assembled into strips	${ }^{30}$	EL	\bigcirc	＂	＂	＂	${ }^{\circ}$	${ }^{\circ}$	${ }^{\circ}$	${ }^{\circ}$	${ }^{\circ}$	${ }^{\circ}$	${ }^{\circ}$	${ }^{\circ}$	${ }^{\circ}$	${ }^{\circ}$	${ }^{\circ}$	${ }^{\circ}$	\bigcirc	${ }^{\circ}$	${ }^{\circ}$	${ }^{\circ}$
3881	${ }^{44,019,290}$	\cdots	${ }^{30}$	${ }^{\text {EL }}$	U	U	－	U	U	U	U	U	U	\bigcirc	\checkmark	U	\square°	U	\bigcirc	U	${ }^{\circ}$	U	U	\bigcirc
3862	${ }^{46,019,310}$	$\begin{aligned} & \text {-- - Plaits and similar products of plaiting materials, } \\ & \text { whether or not assembled into strips } \end{aligned}$	${ }^{30}$	EL	U	0	0	\bigcirc	¢	U	0	U	－	－	${ }^{\circ}$	－	U	－	ט	U	\checkmark	0	U	－
3863	${ }^{44,019,390}$	\cdots	${ }^{30}$	${ }^{\text {EL }}$	\bigcirc	U	U	${ }^{\circ}$	\bigcirc	\bigcirc	U	${ }^{\circ}$	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	U	\bigcirc	${ }^{\circ}$	\checkmark	－	\bigcirc
386	44，019，410	$\begin{aligned} & \text {-- - Plaits and similar products of plaiting materials, } \\ & \text { whether or not assembled into strips } \end{aligned}$	${ }^{30}$	${ }^{\text {EL }}$	${ }^{\circ}$	\bigcirc	${ }^{\circ}$	\bigcirc	${ }^{\circ}$	\bigcirc	0	－	U	\bigcirc	\bigcirc	\bigcirc	\bigcirc	U	U	U	U	\checkmark	U	\bigcirc
3885	${ }^{44,019,990}$	…oner	${ }^{30}$	${ }^{\text {EL }}$	\bigcirc	U	U	${ }^{\circ}$	U	U	\square	－	\bigcirc	U	U	${ }^{0}$	\bigcirc	U	${ }^{\circ}$	${ }^{0}$	－	${ }^{\circ}$	U	\bigcirc
3866	${ }^{46,019,910}$	－－Mass and mating	${ }^{30}$	EL	U	U	U	U	U	U	U	U	\bigcirc	U	U	\bigcirc	\bigcirc	U	\bigcirc	U	\bigcirc	U	U	\bigcirc
${ }^{3687}$	44，01，920	－－－Plaits and similar products of plaiting materials， whether or not assembled into strips	${ }^{30}$	${ }^{\text {EL }}$	${ }^{\circ}$	${ }^{\circ}$	${ }^{\circ}$	－	－	${ }^{\circ}$	${ }^{\circ}$	\bigcirc	－	0	\bigcirc	－	－	\bigcirc	U	0	U	U	U	\bigcirc
3588	44，019，990	…other	${ }^{30}$	EL	0	0	\bigcirc	\bigcirc	\bigcirc	0	0	0	\bigcirc	0	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
3689	${ }^{46,021,100}$	－Of bamboo	30	EL	0	\bigcirc	U	U	0	U	0	U	\bigcirc	－	\bigcirc	0	\bigcirc	U	0	\bigcirc	0	－	0	0

${ }^{3690}$	14，021，200	Oratan	${ }^{30}$	EL	U	U	U	U	U	－	\bigcirc	U	U	U	U	U	U	U	U	U	0	U	0	U
369	44，02，900	Other	\％	EL	U	U	\bigcirc	U	U	U	U	0	U	U	ט	0	\bigcirc	\checkmark	U	U	\bigcirc	U	U	U
3592	46，02，000	Oher	\％	EL	\bigcirc	0	\bigcirc	\bigcirc	\bigcirc	\bigcirc	0	\bigcirc	\bigcirc	U	U	U	U	U	U	U	0	U	U	U
$3{ }^{393}$	44，01，000	Mechanical wood pulp．	5	st	5\％	5\％	5\％	5\％	5\％	5\％	5\％	5\％	5\％	5\％	5\％	5\％	5\％	5\％	5\％	${ }^{5}$	5\％	5\％	5\％	5\％
${ }^{3694}$	44，02，000	Chemical wood pup，，issolving grades．	5	HL	5\％	5\％	${ }^{5 \%}$	${ }^{5 \%}$	${ }^{5 \%}$	${ }^{5 \%}$	${ }^{5 \%}$	${ }^{5 \%}$	5\％	${ }^{5 \%}$	5\％	${ }^{5 \%}$	5\％	5\％	${ }^{5 \%}$	${ }^{5 \%}$	5\％	${ }^{5 \%}$	${ }^{5 \%}$	${ }^{5 \%}$
3595	47，03，100	Coniferous	5	IsL	5\％	5\％	${ }^{5 \%}$	5\％	5\％	5\％	${ }^{5 \%}$	5\％	5\％	5\％	5\％	${ }^{5 \%}$	5\％	5\％	5\％	5\％	5\％	${ }^{5 \%}$	${ }^{5 \%}$	5\％
${ }^{3696}$	47，03，900	－Nonconifieus	5	HSL	5\％	5\％	5\％	5\％	5\％	5\％	${ }^{5 \%}$	5\％	5\％	5\％	5\％	5\％	5\％	5\％	5\％	5\％	5\％	5\％	5\％	${ }^{5 \%}$
${ }^{3697}$	47，03，100	－Conifeous	5	v1	4\％	4\％	4%	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％
3698	47，032，900	－Nonconiferous	5	NT1	4\％	4\％	$4{ }^{4}$	${ }^{3 \%}$	${ }^{3 \%}$	2%	${ }^{2 \%}$	0\％	\％	\％	0\％	\％	0\％	0\％	\％	\％	0\％	0\％	0\％	\％
3699	47，04，100	－Coniferous	5	${ }^{\text {NT1 }}$	4\％	4\％	${ }^{4 \%}$	${ }^{3 \%}$	3\％	${ }^{2 \%}$	${ }^{2 \%}$	0\％	0\％	0\％	\％	\％	0\％	\％	\％	\％	\％	\％	\％	\％
3700	47，04，，900	－Noncoonierous	5	T1	4\％	4\％	${ }^{4 \%}$	3\％	3\％	${ }^{2 \%}$	${ }^{2 \%}$	0\％	\％	0\％	0\％	0\％	\％	0\％	\％	\％	\％	\％	\％\％	\％
3701	47，02，100	－Coniterous	5	V1	4\％	4\％	4\％	3\％	3\％	2\％	2\％	0\％	0\％	0\％	\％	\％	\％	\％	\％	0\％	0\％	0\％	\％	\％
3702	47，02，2000	－Nonconiterous	5	HL	${ }^{5 \%}$	${ }^{5 \%}$	${ }^{5 \%}$	${ }^{5 \%}$	${ }^{5 \%}$	5\％	${ }^{\text {5\％}}$	${ }^{5 \%}$	5\％	${ }^{5 \%}$	${ }^{5 \%}$	${ }^{5 \%}$	${ }^{5 \%}$	${ }^{5 \%}$	${ }^{5 \%}$	${ }^{5 \%}$	${ }^{5 \%}$	${ }^{5 \%}$	${ }^{5 \%}$	${ }^{5 \%}$
3703	47，05，000	Wood pulp obtained by a combination of mechanical and chemical pulping processes．	5	v1	4\％	4\％	4\％	3\％	3\％	${ }^{2 \%}$	${ }^{2 \%}$	\％	0\％	\％	\％	\％	0\％	\％	\％	\％	\％	\％	\％	\％
3704	47，06，000	－Cotonon iners pup	5	HL	${ }^{5 \%}$	5\％	5\％	${ }^{5 \%}$	${ }^{5 \%}$	${ }^{5 \%}$	${ }^{5 \%}$	${ }^{5 \%}$	${ }^{5 \%}$	5\％	${ }^{5 \%}$	${ }^{5 \%}$	5\％	5\％	5\％	${ }^{5 \%}$	5\％	${ }^{5 \%}$	5\％	5\％
3705	47，02，200	－Pups of fibres derived from recovered（waste and scrap）paper or paperboard	${ }^{5}$	HL	5\％	5\％	${ }^{5 \%}$	5\％	${ }^{5 \%}$	5\％	${ }^{5 \%}$	5\％	5%	5\％	5%	${ }_{5 \%}$	5\％	${ }^{5 \%}$	${ }^{5 \%}$	${ }^{5 \%}$	${ }^{5 \%}$	${ }^{5 \%}$	5\％	${ }^{5 \%}$
3706	47，06，000	－Onere of tamboo	5	HSL	5\％	5\％	${ }^{5 \%}$	5\％	5\％	5\％	${ }^{5 \%}$	5\％	5\％	5\％	5\％	${ }_{5 \%}$	5\％	5\％	5\％	${ }_{5}^{5 \%}$	5\％	${ }^{5 \%}$	5\％	${ }_{5 \%}^{5 \%}$
${ }^{307}$	${ }^{47,099,100}$	－Mectanical	5	HSL	${ }^{5 \%}$	${ }^{5 \%}$	5\％	5\％	5\％	5\％	${ }^{5 \%}$	5\％	${ }^{5 \%}$	5\％	${ }^{5 \%}$	${ }^{5 \%}$	5\％	${ }^{5 \%}$	${ }^{\text {5\％}}$	${ }^{5 \%}$	${ }^{5 \%}$	5\％	${ }^{5 \%}$	${ }^{5 \%}$
${ }^{3708}$	47，09，200	－Chemical	5	HSL	5\％	5\％	5\％	5\％	5\％	5\％	${ }^{5 \%}$	5\％	5\％	5\％	5\％	5\％	5\％	${ }^{5 \%}$	5\％	5\％	5\％	5\％	${ }^{5 \%}$	${ }^{5 \%}$
3709	47，09，300	$\begin{aligned} & - \text { Obtained by a combination of mechanical and } \\ & \hline \text { chemical processes } \end{aligned}$	5	NT1	4\％	4\％	4\％	3\％	3\％	2\％	${ }^{2 \%}$	0\％	\％	0\％	0\％	\％	\％	\％	\％	\％	0\％	\％	\％	\％
${ }^{3710}$	47，07，000	－Unbleached k katt paper or papertooard or corrugated paper or paperboard	5	－st	${ }^{5 \%}$	${ }^{5 \%}$	${ }^{5 \%}$	${ }^{5 \%}$	${ }^{5 \%}$	${ }^{\text {5\％}}$	${ }^{5 \%}$	${ }^{5 \%}$	${ }^{5 \%}$	5\％	${ }^{5 \%}$	${ }^{5 \%}$	5\％	${ }^{5 \%}$	${ }^{5 \%}$	${ }^{5 \%}$	${ }^{5 \%}$	${ }^{5 \%}$	${ }^{5 \%}$	${ }^{5 \%}$
377	47，02，200		5	HSL	${ }^{5 \%}$	${ }^{5 \%}$	${ }^{5 \%}$	${ }^{5 \%}$	${ }^{5 \%}$	${ }^{5 \%}$	${ }^{5 \%}$	${ }^{5 \%}$	${ }^{5 \%}$	${ }^{5 \%}$	${ }^{5 \%}$	${ }^{5 \%}$	${ }^{5 \%}$	${ }^{5 \%}$	${ }^{5 \%}$	${ }^{5 \%}$	${ }^{5 \%}$	${ }^{5 \%}$	${ }^{5 \%}$	${ }^{5 \%}$
3772	44，73，000	Paper or paperboard made mainly of mechanical pulp（for example，newspapers，journals and similar printed matter）	5	HSL	${ }^{5 \%}$	5\％	${ }^{5 \%}$	${ }^{5 \%}$	${ }^{\text {5\％}}$	5\％	5\％	${ }^{5 \%}$	${ }^{5 \%}$	5\％	${ }^{\text {5\％}}$	${ }^{5 \%}$	${ }^{5 \%}$	${ }^{5 \%}$	${ }^{5 \%}$	${ }^{5 \%}$	${ }^{5 \%}$	${ }^{5 \%}$	${ }^{5 \%}$	${ }^{5 \%}$
${ }^{3773}$	47，09，000	－Onter，inculing unsorted wasie and scrap	5	V1	4\％	4\％	4\％	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％	\％	\％	\％\％	0\％	\％	\％	0\％	\％	\％	0\％
3774	48，00，0，010	－Wegining not moe tean 5 gima	5	NT1	4%	4%	4%	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％	0\％	\％	\％	0\％	\％	\％	0\％	\％	\％	\％
3775	48，010，090	－other	5	NT1	4\％	4\％	4%	3\％	3\％	${ }^{2 \%}$	2%	0\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％
3776	48，02，000	－Hand－made paper and paperooard	5	मsL	5\％	5\％	5\％	5\％	5\％	5\％	5\％	5\％	5\％	5\％	5\％	5\％	5\％	5\％	5\％	5\％	5\％	5\％	5\％	5\％
3777	48，02，010	－In rolls of not more than 15 cm in width or in rectangular（including square）sheets of which no side exceeds 36 cm in the unfolded state	5	Hst	5\％	5\％	5\％	5\％	5\％	5\％	5\％	5\％	5\％	5\％	5\％	5\％	5\％	5\％	5\％	5\％	5\％	5\％	5\％	5\％
${ }^{3778}$	48，022，090	－－Other	5	ISL	5\％	5\％	5\％	5\％	5\％	5\％	5\％	5\％	5\％	5\％	5\％	5\％	5\％	5\％	5\％	5\％	5\％	${ }^{5 \%}$	5\％	5\％
3719	48，024，010	In rolls of not more than 15 cm in width or in rectangular（including square）sheets of which no side exceeds 36 cm in the unfolded state side exceeds 36 cm in the unfolded state	${ }_{5}$	IsL	5\％	5\％	5\％	5\％	5\％	5\％	${ }^{5 \%}$	5\％	5\％	5\％	5%	5\％	5\％	5\％	5\％	5\％	5\％	5\％	${ }^{5 \%}$	${ }^{5 \%}$
3720	48，04， 0 ，	－－other	5	－ HL	5\％	5\％	5\％	${ }^{5 \%}$	5%	5\％	5\％	5\％	5\％	5\％	${ }^{5 \%}$	5\％	5\％	5\％	${ }^{5 \%}$	5\％	5\％	5\％	${ }^{5 \%}$	5\％
3721	48，025，411	－In rolls of not more than 15 cm in width or inrectangular（including square）sheets of which no side exceeds 36 cm in the unfolded state	5	HSL	5\％	5\％	5\％	5\％	5\％	5\％	5\％	5\％	5\％	5\％	5\％	5\％	5\％	5\％	5\％	5\％	5\％	5\％	5\％	5\％
372	${ }^{48,05,419}$	Oner	5	HSL	5\％	5\％	5\％	${ }^{5 \%}$	5\％	5\％	5\％	5\％	5\％	${ }_{5 \%}$	5\％	5\％	5\％	5\％	5\％	5\％	5\％	5\％	5\％	5\％
${ }^{3723}$	48，05，421	- －－In rolls of not more than 15 cm in width or in rectangular（including square）sheets of which no side exceeds 36 cm in the unfolded state	5	HSL	5\％	5\％	5\％	5\％	5\％	5\％	5\％	5\％	5\％	5\％	5\％	5\％	5\％	5\％	5\％	5\％	5\％	5\％	5\％	5\％
3724	48，02，429	Other	5	HSL	5\％	5\％	5\％	5\％	5\％	5\％	5\％	5\％	5\％	5\％	5\％	5\％	5\％	5\％	5\％	5\％	5\％	5\％	5\％	5\％
${ }^{3725}$	48，05，4，30	－．．Base paper of a kind used to manutacture	${ }^{5}$	HSL	5\％	5\％	5\％	5\％	5\％	5\％	${ }^{5 \%}$	5\％	5\％	5\％	5\％	5\％	5\％	5\％	5\％	5\％	5\％	5\％	${ }^{5 \%}$	${ }^{5 \%}$
${ }^{3726}$	8，025，490	－－omer	5	${ }^{\text {ISL }}$	5\％	5\％	${ }^{5 \%}$	5\％	5%	5\％	${ }^{\text {5\％}}$	5%	5\％	5\％	5\％	${ }^{5 \%}$	5\％	${ }^{\text {5\％}}$	${ }^{\text {5\％}}$	5\％	5\％	${ }^{\text {5\％}}$	5\％	${ }^{5 \%}$
3372	48，02，520		5	HSL	5\％	5\％	5\％	5\％	5\％	5\％	5\％	5\％	5\％	5\％	5\％	5\％	5\％	5\％	5\％	5\％	5\％	5\％	5\％	5\％
372	48，02，531	－- Of width n te exceeding 150 mm	5	HSL	5\％	5\％	5\％	5\％	5\％	5\％	5\％	5\％	5\％	5\％	5\％	5\％	5\％	5\％	5\％	5\％	5\％	5\％	5\％	5\％
337	${ }^{48,02,539}$	Oner	5	HSL	5\％	5\％	5\％	5\％	5\％	5\％	5\％	5\％	5\％	5\％	5\％	5\％	5\％	5\％	5\％	5\％	5\％	5\％	5\％	5\％
33730	48，02，540	－－－Base paper of a kind used to manufacture aluminium coated paper	${ }^{5}$	HSL	5\％	5\％	5\％	5\％	5\％	5\％	5\％	5\％	5\％	5\％	5\％	5\％	5\％	5\％	5\％	5\％	5\％	5\％	5\％	5\％
${ }^{3731}$	22，550	－－－Base paper of a kind used to manufacture release paper	5	Hst	${ }^{5 \%}$	5\％	${ }^{5 \%}$	${ }^{5 \%}$	${ }^{5 \%}$	${ }^{5 \%}$	${ }^{5 \%}$	${ }^{5 \%}$	${ }^{5 \%}$	5\％	${ }^{5 \%}$	${ }^{5 \%}$	${ }^{5 \%}$	${ }^{5 \%}$	${ }^{5 \%}$	${ }^{5 \%}$	${ }^{5 \%}$	${ }^{5 \%}$	${ }^{5 \%}$	${ }^{5 \%}$
${ }^{3332}$	${ }^{48,025,590}$	－Onter	5	HSL	5\％	5\％	5\％	${ }^{5 \%}$	5\％	5\％	${ }^{5 \%}$	5\％	5\％	5\％	${ }^{5 \%}$	${ }^{5 \%}$	5\％	${ }^{5 \%}$	${ }^{5 \%}$	${ }^{5 \%}$	${ }^{5 \%}$	5\％	${ }^{5 \%}$	5\％
${ }^{3733}$	48，02，620	－－Fancy paper and paperboard including paper and paperboard with watermarks，a granitized felt finish，a fibre finish，a vellum antique finish or a blend finish，a fibre finish，a vellum antique finish or a blend specks	5	HSL	5\％	5\％	5\％	5\％	5\％	5\％	5\％	5\％	5\％	5\％	5\％	5\％	5\％	5\％	5\％	5\％	5\％	5\％	5\％	5\％
$3{ }^{334}$	$48,025,31$		5	HLI	${ }^{5 \%}$	${ }^{\text {5\％}}$	${ }^{5 \%}$	${ }^{\text {5\％}}$	${ }^{\text {5\％}}$	${ }^{5 \%}$	${ }^{5 \%}$	5\％	${ }^{5 \%}$	5\％	${ }^{5 \%}$	${ }^{5 \%}$	5\％	${ }^{5 \%}$	${ }^{5 \%}$	${ }^{5 \%}$	${ }^{5 \%}$	${ }^{5 \%}$	${ }^{\text {5\％}}$	${ }^{5 \%}$
${ }^{3735}$	48，02，6，39	－－oner	5	NT1	4\％	4\％	4\％	3\％	3\％	2\％	2%	0\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％
3736	48，02，590	Onher	5	HSL	5\％	5\％	5\％	5\％	5\％	5\％	5\％	5\％	5\％	5\％	5\％	5\％	5\％	5\％	5\％	5\％	5\％	5\％	5\％	5\％
${ }^{373}$	${ }^{48,025,711}$	With no side exceeding 36 cm in the unfolded	5	${ }_{\text {IsL }}$	${ }^{5 \%}$	5\％	5\％	5\％	${ }^{5 \%}$	5\％	5\％	5\％	5\％	5\％	${ }^{5 \%}$	5\％	${ }^{5 \%}$	${ }^{5 \%}$	5\％	${ }^{5 \%}$	5\％	${ }^{5 \%}$	5\％	5\％
${ }^{3738}$	48，05，719	\cdots	5	IsL	5\％	5\％	${ }^{5 \%}$	5\％	${ }^{5 \%}$	5\％	${ }^{5 \%}$	${ }^{5 \%}$	5\％	${ }^{5 \%}$	${ }^{5 \%}$	${ }^{5 \%}$	${ }_{5 \%}$	${ }^{5 \%}$	5\％	${ }^{5 \%}$	5\％	${ }^{5 \%}$	${ }^{5 \%}$	5\％
${ }^{3339}$	${ }^{48,05,790}$	Other	5	HLL	${ }^{5 \%}$	5\％	5%	5%	${ }^{5 \%}$	5\％	${ }^{5 \%}$	${ }^{5 \%}$	5\％	5\％	5\％	5\％	5\％	5\％	5\％	5\％	${ }^{5 \%}$	5\％	5\％	5\％
3740	48，05，821	－－In rolls of a width of 15 cm or less or in rectangular（including square）sheets with one side 36 cm or less and the other side 15 cm or less in the unfolded stat	5	HSL	5\％	5\％	5\％	5\％	5\％	5\％	5\％	5\％	5\％	5\％	5\％	5\％	5\％	5\％	5\％	5\％	5\％	5\％	5\％	5\％
3741	48，05，829	Other	5	HSL	5\％	5\％	5\％	5\％	5\％	5\％	5\％	5\％	5\％	5\％	5\％	${ }^{5 \%}$	5\％	5\％	5\％	5\％	5\％	5\％	5\％	5\％
${ }^{3742}$	48，025，890	－Other	5	${ }^{\text {HSL }}$	5\％	5\％	5\％	5\％	5\％	5\％	5\％	5\％	${ }^{5 \%}$	5\％	5\％	${ }^{5 \%}$	${ }^{5 \%}$	${ }^{5 \%}$	5\％	${ }^{5 \%}$	${ }^{5 \%}$	${ }^{5 \%}$	${ }^{5 \%}$	${ }^{5 \%}$
${ }^{3773}$	48，026，130		${ }^{5}$	HSL	5\％	5\％	5\％	5\％	5\％	5\％	5\％	5\％	5\％	5\％	5\％	5\％	5\％	5\％	5\％	5\％	5\％	5\％	5\％	5\％
${ }^{3744}$	8，026，140	－－－Base paper of a kind used to manufacture aluminium coated paper	${ }^{5}$	${ }_{\text {ISL }}$	5\％	5\％	5\％	5\％	5\％	5\％	5\％	5\％	5\％	5\％	5\％	${ }^{5 \%}$	${ }^{5 \%}$	5\％	${ }^{5 \%}$	${ }^{5 \%}$	5\％	5\％	${ }^{5 \%}$	5\％
${ }^{3745}$	48，06，190	\cdots	5	HLL	5\％	5\％	5\％	5\％	5\％	5\％	5\％	5\％	5\％	5\％	5\％	5\％	5\％	5\％	${ }^{5 \%}$	5\％	5\％	${ }^{5 \%}$	5\％	5\％
${ }^{3746}$	48，06，210	－－－Fancy paper and paperboard，including paper and paperboard with watermarks，a granitized felt finish，a fibre finish，a vellum antique finish or a blend of specks，in rectangular（including square）sheets with one side 36 cm or less and the other side 15 cm or less in the unfolded state	5	HSL	5\％	5\％	5\％	5\％	5\％	5\％	5\％	5\％	5\％	5\％	5\％	5\％	5\％	5\％	5\％	5\％	5\％	5\％	5\％	5\％
3747	48，026，20		5	HSL	5\％	5\％	5\％	5\％	5\％	5\％	5\％	5\％	5\％	5\％	5\％	5\％	5\％	5\％	5\％	5\％	5\％	5\％	5\％	5\％
${ }^{3778}$	48，026，200	\cdots Other		HSL	5\％	5\％	5\％	5\％	5\％	5\％	5\％	5\％	5\％	5\％	5\％	5\％	5\％	5\％	5\％	5\％	5\％	5\％	5\％	5\％
3749	48，02，900	－Oner	5	HsL	5\％	5\％	5\％	5\％	5\％	5\％	5\％	5\％	5\％	${ }^{5 \%}$	5\％	5\％	5\％	5\％	5\％	5\％	5\％	5\％	5\％	5\％
3750	48，03，030	Of celluse wading of f webs of felluose fibes	5	${ }^{\text {NT1 }}$	4\％	4\％	4\％	${ }^{3 \%}$	3\％	2\％	${ }^{2 \%}$	0\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	0\％
3751	48，03，090	－other	5	${ }^{\text {NT1 }}$	4\％	4\％	4\％	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	0\％	\％	\％	\％	\％	\％	\％	\％	0\％	\％	\％	0\％
${ }^{3752}$	48，04，1，00	Unobeached	5	NT1	4%	4%	4\％	3\％	3\％	2\％	2%	0\％	\％	\％	\％	\％	0\％	\％	\％	\％	0\％	\％	\％	\％
${ }^{3753}$	48，04，，900	－Oner	5	${ }^{\text {NT1 }}$	${ }^{4 \%}$	4%	4%	3\％	${ }^{3 \%}$	2\％	${ }^{2 \%}$	\％	0\％	0\％	\％	\％	0\％	\％	\％	\％	\％	\％	\％	\％
$3{ }^{3754}$	${ }^{48,02,110}$	－－Of akno used for making emener begs	5	${ }^{\text {NT1 }}$	4\％	4\％	4\％	3\％	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％
${ }^{3755}$	${ }^{48,02,190}$	－Other	5	NT1	$4{ }^{4 \%}$	4\％	4%	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％
${ }^{3756}$	48，02，2900	－Oner	5	NT1	4\％	4\％	4\％	3\％	3\％	${ }^{2 \%}$	${ }^{2 \%}$	0\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％
${ }^{3577}$	${ }^{48,08,110}$	－Eloctical grade issulaing K katt paper	5	NT1	4\％	4%	4%	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％	\％	\％	0\％	\％	\％	0\％	0\％	\％	\％	0\％
${ }^{3758}$	8，093，130	－－Of a wet strength of 40 g to 60 g ，of a kind used in the manufacture of plywood adhesive tape	5	NT1	4\％	4\％	4\％	${ }^{3 \%}$	3\％	2\％	${ }^{2 \%}$	\％	\％\％	\％	\％	\％	\％	0\％	\％	\％	\％	\％	\％	\％

香港•ASEAN FTAにかかる調査報告書
 別添2－4 原産地品の関税撤廃スケジュール

（ラオス）

${ }^{3759}$	${ }^{48,04,140}$	Sandioper base peper	5	NT1	4\％	${ }^{4 \%}$	${ }^{4 \%}$	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	0\％	\％	0\％	\％	\％	\％	\％	\％	0\％	\％	0\％	\％\％
3780	${ }^{48,04,150}$	Of a kind Used tor making ememt bags	5	NT1	4%	4\％	4\％	3\％	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％
3761	48，043，190	\cdots Oner	5	NT1	4%	4\％	4\％	3\％	3\％	2%	2%	\％	0\％	0\％	0\％	0\％	0\％	\％	\％	\％	0\％	\％	\％	\％
${ }^{3762}$	${ }^{48,03,9,90}$	－－Of a wet strength of 40 g to 60 g ，of a kind used	5	NT1	4%	4\％	4\％	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％	\％	0\％	\％	\％	\％	\％	\％	\％	\％	\％
${ }^{3763}$	48，043，920	$\stackrel{-}{\text { Foodpaper }}$	5	NT1	4\％	${ }^{4 \%}$	4\％	3\％	3\％	2\％	${ }^{2 \%}$	0\％	0\％	0\％	0\％	\％	0\％	0\％	\％	0\％	0\％	\％\％	0\％	\％
${ }^{3764}$	${ }^{48,04,9,990}$	\cdots Other	5	NT1	$4{ }^{4 \%}$	4\％	${ }^{4 \%}$	${ }^{3}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％	\％	\％\％	\％	0\％	\％	0\％	\％	\％	\％	0\％
${ }^{3765}$	$48.044,110$	－Electrialy frade insulaing kattraper	5	NT1	4%	$4{ }^{4 \%}$	$4{ }^{4 \%}$	3\％	3\％	${ }^{2 \%}$	${ }^{2 \%}$	\％	0\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	0\％
${ }^{3766}$	48，044，190	\cdots	5	NT1	4%	4\％	4\％	3\％	3\％	2\％	2\％	0\％	0\％	0\％	0\％	\％\％	0\％	0\％	0\％	0\％	0\％	0\％	\％	\％
${ }^{3767}$	48，04， 200	－－Bleached uniformly throughout the mass and of which more than 95% by weight of the total fibre content consists of wood fibres obtained by a chemical process	5	NT1	4\％	4\％	4\％	3\％	${ }^{3 \%}$	2\％	2\％	0\％	0\％	0\％	0\％	0\％	\％	\％\％	\％	\％	0\％	\％	0\％	\％
${ }^{3788}$	48，044，910	\cdots Foodoard	5	NT1	4%	4\％	4\％	3\％	3\％	2%	2%	\％	0\％	0\％	0\％	0\％	\％	\％	\％	\％	\％	0\％	0\％	\％
${ }^{3769}$	${ }^{48,044,990}$	－OMer	5	NT1	4%	4\％	${ }^{4 \%}$	3\％	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％\％	\％	\％	\％\％	\％	\％	\％	\％	\％\％	\％	\％	\％
3770	${ }^{48,05,110}$	\cdots Electicala grade insulaing katap paeer	5	NT1	4%	4\％	4\％	3\％	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％	\％	\％	\％	\％	\％	0\％	\％	\％	0\％	\％
3771	${ }^{48,045,120}$	\cdots－Pessonard wiging 600 gm 2or more	5	NT1	$4{ }^{4 \%}$	4\％	4\％	3\％	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	0\％	\％	\％\％	\％	\％	\％	0\％	\％	0\％	0\％	\％
$3{ }^{372}$	48，045，130	－－Of a wet strength of 40 g to 60 g ，of a kind used in the manufacture of plywood adhesive tape	5	NT1	$4{ }^{4 \%}$	4\％	4\％	3\％	3\％	2\％	2\％	\％	\％	0\％	\％	0\％	0\％	\％	\％	\％	\％	\％	\％	\％
${ }^{3773}$	48，045，190	Onher	5	V1	4\％	4\％	4\％	3\％	3\％	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％	0\％	\％	0\％	0\％	\％	0\％	\％\％	0\％	\％\％	0\％
3774	48，045，200	－－Bleached uniformly throughout the mass and of which more than 95% by weight of the total fibre content consists of wood fibres obtained by a chemical process	5	NT1	4\％	4\％	4\％	3\％	${ }^{3 \%}$	2\％	2\％	\％	0\％	0\％	0\％	0\％	\％\％	\％	\％	0\％	\％	\％	0\％	0\％
3775	${ }^{48,045,900}$	－other	5	NT1	$4{ }^{4 \%}$	4\％	4\％	3\％	3\％	${ }^{2 \%}$	${ }^{2 \%}$	0\％	\％	\％	\％	\％	\％	0\％	0\％	\％	\％	\％	\％	\％
${ }^{3776}$	${ }^{48,051,100}$	－Senicichencical luturin paper	5	NT1	$4{ }^{4 \%}$	4\％	4\％	${ }^{3 \%}$	${ }^{3 \%}$	2\％	2%	\％	\％	\％	\％	\％\％	\％	\％\％	\％	\％	\％	0\％	\％\％	\％
3377	4805，12：10		5	NT1	4\％	4\％	4\％	3\％	3\％	2\％	2\％	0\％	0\％	\％	0\％	0\％	\％	\％	0\％	0\％	\％	0\％	0\％	0\％
${ }^{3778}$	${ }^{48,05,230}$	\cdots Onter	5	NT1	$4{ }^{4 \%}$	4\％	4\％	3\％	3\％	${ }^{2 \%}$	2\％	\％	\％	0\％	0\％	${ }^{0}$	0\％	0\％	${ }^{0 \%}$	\％	\％	0\％	\％	0\％
379	48，05，990	－Weighing more than $150 \mathrm{~g} / \mathrm{m}$ mut less than 225	5	NT1	4%	4%	4\％	3\％	3\％	${ }^{2 \%}$	2\％	\％	\％	\％	\％	0\％	\％\％	0\％	\％	\％	\％	\％	\％	\％
3780	48，05，990	－Other	5	NT1	4\％	4\％	4\％	3\％	3\％	2%	${ }^{2 \%}$	\％	\％	0\％	\％	0\％	\％	\％	0\％	0\％	\％	\％	0\％	\％
${ }^{3781}$	${ }^{48,05,400}$	－Weghing 150 gmmor ress	5	N1	$4{ }^{4 \%}$	4\％	${ }^{4 \%}$	3\％	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％	\％	\％\％	\％	\％	\％	\％	\％\％	\％	\％	\％
${ }^{3782}$	${ }^{48,05,520}$	\cdots－Weighing less than 2259 ／m	5	V1	4%	${ }^{4 \%}$	$4{ }^{4 \%}$	${ }^{3 \%}$	${ }^{3 \%}$	2%	${ }^{2 \%}$	\％	\％	\％	\％	\％	0\％	\％	0\％	\％	\％	0\％	\％	0\％
${ }^{3783}$	${ }^{48,052,590}$	－Oner	5	NT1	4%	4\％	4%	3\％	${ }^{3 \%}$	2\％	${ }^{2 \%}$	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％
${ }^{3784}$	${ }^{48,05,010}$	－Macth box wapping paper，coluwed	5	NT1	$4{ }^{4 \%}$	4\％	4\％	3\％	${ }^{3 \%}$	2\％	2%	0\％	0\％	0\％	0\％	\％\％	0\％	\％	\％	\％	\％	\％	0\％	0\％
${ }^{3785}$	48，05，090	－Other	5	NT1	4%	4%	4%	3\％	${ }^{3 \%}$	2\％	2\％	0\％	0\％	0\％	0\％	0\％	0\％	0\％	0\％	\％	\％	0\％	0\％	0\％
${ }^{3786}$	48，054，000	Filler paper and papeetoard	5	NT1	4%	4\％	4\％	3\％	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	0\％	\％	\％
${ }^{3787}$	48，05，．000	－Fetr peper and paperioard	5	NT1	4\％	4\％	4\％	3\％	3\％	2\％	2\％	\％	\％	\％	\％	0\％	\％	\％	\％	0\％	\％	\％	0\％	\％
${ }^{3788}$	48，05，，10	－－－Paper of a kind used as interleaf material for the packing of flat glass products，with a resin content by weight of not more than 0.6%	${ }_{5}$	NT1	4\％	4\％	4\％	${ }^{3}$	${ }^{3 \%}$	2\％	${ }^{2 \%}$	0\％	\％	0\％	\％	0\％	\％	\％	0\％	\％	\％	\％	\％	\％\％
3789	48，059，120	\cdots	5	T1	$4{ }^{4 \%}$	$4{ }^{46}$	4%	3\％	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	0\％	0\％	0\％	0\％	0\％	\％	\％	\％	\％	0\％	\％\％	\％
$3{ }^{3790}$	${ }^{48,059,190}$	－Oner	5	T1	4%	4\％	4%	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％	\％	\％	\％	\％	\％	0\％	${ }^{0 \%}$	\％	\％	\％
${ }^{379}$	${ }^{48,059,210}$	－Mutipip paper and papeetoard	5	NT1	$4{ }^{4 \%}$	4\％	4\％	3\％	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	0\％	0\％	0\％	0\％	\％	0\％	\％	\％	0\％	0\％	\％	0\％	0\％
${ }^{3792}$	${ }^{48,059,230}$	－Oner	5	NT1	4%	4\％	4\％	3\％	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	0\％	\％	\％
${ }^{3793}$	${ }^{48,05,3,30}$	－－Mulifily paper and paperioard	5	NT1	4%	4\％	4\％	3\％	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	0\％	0\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	0\％	0\％
3784	${ }^{48,059,320}$	－－Botitig paper	5	NT1	$4{ }^{4 \%}$	4\％	4\％	3\％	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％
$3{ }^{3795}$	48，059，390	\cdots	5	NT1	4%	4\％	4\％	3\％	3\％	2\％	2\％	0\％	0\％	0\％	0\％	0\％	\％	\％	\％	\％	0\％	0\％	\％	\％
${ }^{3796}$	48，061，000	Vegeababe parcment	5	NT1	4%	4\％	4\％	3\％	${ }^{3 \%}$	2%	2%	\％	\％	\％	\％	0\％	\％	\％	\％	\％	\％	\％	\％	\％
$3{ }^{397}$	48，022，000	Grasespoot papers	5	N1	${ }^{4 \%}$	4\％	4%	${ }^{3 \%}$	3\％	2\％	${ }^{2 \%}$	\％	\％	0\％	0\％	\％	\％	0\％	\％	\％\％	\％	\％	0\％	\％
3798	48，063，000	Tracing papers	5	NT1	4%	4\％	4\％	3\％	${ }^{3 \%}$	2%	2%	\％	\％	\％	0\％	0\％	\％	\％	\％	\％	\％	\％	\％	\％
3799	48，064，000	－Glassine and other glazed transparent or translucent papers	5	NT1	4\％	4\％	4\％	3\％	3\％	2\％	2\％	0\％	\％	0\％	0\％	0\％	\％	\％\％	\％	\％	\％	\％	\％	\％
3300	48，07，000		${ }^{5}$	NT1	4\％	4\％	4\％	${ }^{3 \%}$	${ }^{3 \%}$	2%	2%	0\％	0\％	0\％	\％	0\％	0\％	\％	0\％	0\％	\％	0\％	0\％	0\％
3801	48，081，000	Corruagaed paper and papeetoond，whenere or or ot	5	V1	4\％	4\％	${ }^{4 \%}$	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	0\％	\％	\％	\％	\％	0\％	0\％	\％	\％	\％	${ }^{0 \%}$	\％	0\％
3802	48，084，000	－Kraft paper，creped or crinkled，whether or not embossed or perforated	${ }^{5}$	NT1	${ }^{4 \%}$	4\％	${ }^{4 \%}$	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％	0\％	\％	\％	\％	\％\％	\％	\％	\％	\％	\％
3303	48，08，020	－－Creped of crinimed paper	5	NT1	4%	4\％	4\％	3\％	3\％	${ }^{2 \%}$	2%	\％	\％	\％	\％	\％	\％	\％	0\％	\％	\％	\％	\％	\％
3304	48，089，30	－Emossed paper	5	NT1	4%	4\％	4\％	3\％	3\％	2\％	2\％	\％	0\％	0\％	0\％	0\％	\％	0\％	0\％	\％	\％	\％	\％	\％
3805	${ }^{48,089,990}$	－Oner	5	V1	4%	4\％	4\％	${ }^{3 \%}$	${ }^{3 \%}$	2\％	${ }^{2 \%}$	\％	\％\％	\％	0\％	\％	\％	\％	\％	\％	\％\％	\％	\％	\％
3306	${ }^{48,029,000}$	Seltcopy paper	5	NT1	$4{ }^{4 \%}$	4\％	4\％	3\％	3\％	${ }^{2 \%}$	${ }^{2 \%}$	0\％	\％	\％	0\％	\％	\％	\％	\％	\％	0\％	\％	\％	\％
3807	${ }^{48,09,0,010}$	Catoon paper and simila copying papers	5	NT1	4%	4\％	4\％	3\％	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	0\％	\％	\％	0\％	\％	\％	\％	\％	\％	\％	0\％	0\％	\％
3308	48，09，090	－other	5	NT1	4%	4%	4%	3\％	${ }^{3 \%}$	2\％	2\％	0\％	0\％	0\％	0\％	\％\％	0\％	0\％	0\％	\％	\％	0\％	0\％	\％
3309	48，010，311	$\begin{array}{\|l} \hline- \text { - - Electrocardiograph, ultrasonography, } \\ \text { spirometer, electro- encephalograph and fetal } \\ \text { monitoring papers } \end{array}$	${ }_{5}$	NT1	4\％	4\％	4\％	3\％	3\％	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％	0\％	\％	\％	\％	\％	\％	\％	\％	\％	\％
3310	48，010，319	\cdots Onter	5	NT1	4\％	4\％	4\％	3\％	3\％	2\％	2\％	0\％	0\％	\％	\％	0\％	0\％	\％	0\％	0\％	\％	0\％	\％	\％
3811	48，01，，391	\cdots Of width of 150 mm orless	5	NT1	4%	4\％	4\％	3\％	3\％	2\％	2\％	\％	\％	\％	0\％	0\％	0\％	0\％	\％	\％	\％	\％	\％	\％
3812	${ }^{48,010,399}$	\cdots Onter	5	NT1	$4{ }^{4 \%}$	4\％	4%	3\％	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％	\％	\％\％	\％	\％	\％	\％	\％	\％	\％	\％
${ }^{3813}$	48，01，411	－－－Electrocardiograph，ultrasonography， spirometer，electro－encephalograph and fetal monitoring papers	${ }_{5}$	NT1	4\％	4\％	4\％	3\％	3\％	2\％	2\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	0\％
3814	${ }^{48,010,419}$	\cdots Other	5	NT1	$4{ }^{4 \%}$	4%	4\％	3\％	3\％	2\％	2\％	0\％	0\％	0\％	0\％	0\％	0\％	\％	\％\％	\％	\％\％	\％	0\％	0\％
3315	${ }^{48,010,491}$	\cdots Of which no side exceess 360 mm	5	NT1	4%	4%	4%	3\％	3\％	2\％	2\％	0\％	0\％	0\％	0\％	0\％	0\％	0\％	0\％	\％\％	\％	0\％	0\％	0\％
${ }^{3816}$	${ }^{48,010,499}$	\cdots Onter	5	NT1	$4{ }^{4 \%}$	4\％	4\％	3\％	${ }^{3 \%}$	2\％	2\％	0\％	0\％	0\％	0\％	0\％	0\％	\％	\％	\％	\％\％	\％	0\％	0\％
3817	48，01，911	$\begin{array}{\|l} \hline- \text { - - Electrocardiograph, ultrasonography, } \\ \text { spirometer, electro- encephalograph and fetal } \\ \text { monitoring papers } \end{array}$	5	NT1	4\％	4\％	4\％	3\％	3\％	${ }^{2 \%}$	${ }^{2 \%}$	0\％	\％	0\％	0\％	0\％	0\％	\％	\％	0\％	\％	0\％	\％	0\％
3318	${ }^{48,101,919}$	\cdots	5	NT1	4\％	4\％	4\％	3\％	${ }^{3 \%}$	2%	2\％	0\％	0\％	0\％	0\％	0\％	0\％	\％\％	\％	\％	0\％	0\％	0\％	0\％
3319	${ }^{48,101,991}$	\cdots Of which no side exceeds 560 mm	5	NT1	$4{ }^{4 \%}$	4%	4\％	3\％	${ }^{3 \%}$	2\％	2\％	0\％	0\％	0\％	\％\％	\％\％	0\％	0\％	\％\％	\％	\％	\％	0\％	0\％
3380	${ }^{48,010,999}$	Oher	5	${ }^{\text {NT1 }}$	$4{ }^{4 \%}$	4\％	4\％	3\％	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％\％	0\％	0\％	0\％	\％	\％	\％	\％	\％	\％	0\％	\％
${ }^{3821}$	48，102，211	$\begin{aligned} & \text {--- Electrocardiograph, ultrasonography, } \\ & \text { spirometer, electro- encephalograph and fetal } \\ & \text { monitoring papers } \end{aligned}$	${ }_{5}$	${ }^{\text {NT1 }}$	4\％	4\％	4\％	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	0\％	\％	0\％	\％	\％	0\％	\％	\％	\％	\％	0\％	0\％	0\％
3322	${ }^{48,102,219}$	－Oner	5	NT1	4\％	4%	4\％	3\％	3\％	2%	2%	0\％	0\％	0\％	\％\％	0\％	0\％	0\％	\％\％	\％	\％	0\％	0\％	0\％
3323	48，102，291	--- In rolls of a width of 150 mm or less，or in sheets of which no side exceeds 360 mm in the unfolded state	5	NT1	4\％	4\％	4\％	3\％	3\％	2\％	${ }^{2 \%}$	0\％	\％	\％	\％	0\％	0\％	\％	\％	\％	\％	\％	\％	\％
3324	48，102，299	－oner	5	NT1	$4{ }^{4 \%}$	4\％	4\％	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	0\％	0\％	0\％	\％	0\％	\％	\％	\％	\％	\％	0\％	\％	\％
${ }^{3825}$	48，10，9，91	$\begin{array}{\|l} \hline- \text { - - Electrocardiograph, ultrasonography, } \\ \text { spirometer, electro- encephalograph and fetal } \\ \text { monitoring papers } \end{array}$	${ }_{5}$	NT1	$4{ }^{4 \%}$	4\％	4\％	3\％	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	0\％	\％
3326	48，102，919	－Oner	5	Nr1	4\％	4\％	4%	3\％	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	0\％	\％\％	0\％	0\％	\％	\％	\％	\％	\％	\％	0\％	\％\％	\％\％
${ }^{3227}$	48，102，991	$\begin{aligned} & \text {--- In rolls of a width of } 150 \mathrm{~mm} \text { or less, or in } \\ & \text { sheets of which no side exceeds } 360 \mathrm{~mm} \text { in the } \\ & \text { unfolded state } \end{aligned}$	${ }_{5}$	NT	${ }^{4 \%}$	4\％	4\％	${ }^{3 \%}$	${ }^{3 \%}$	2%	2%	0\％	\％	\％	\％	0\％	\％	\％	0\％	\％	\％	\％	0\％	\％
3328	48，102，999	－Oher	5	NT1	4%	4\％	4\％	3\％	3\％	2\％	2\％	0\％	0\％	0\％	0\％	0\％	\％	\％	\％	0\％	0\％	\％	0\％	\％
3829	18，103，131	Base paper of a kind used to manufacture aluminium coated paper	${ }^{5}$	NT1	4\％	4\％	4\％	3\％	3\％	${ }^{2 \%}$	${ }^{2 \%}$	\％	0\％	0\％	\％	0\％	\％	\％	\％	\％	0\％	\％	\％	\％
3380	${ }^{48,103,139}$	…Other	5	NT1	4%	4\％	4\％	3\％	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	0\％	0\％	0\％	\％\％	\％	\％	\％	\％	0\％	0\％	0\％	0\％
${ }^{3831}$	48，10，，191	Base paper of a kind used to manufacture aluminium coated paper	5	NT1	4／8	$4{ }^{4 \%}$	${ }^{4 \%}$	3\％	3\％	${ }^{2 \%}$	2\％	0\％	0\％	0\％	0\％	0\％	0\％	\％	0\％	\％	\％	0\％	\％	\％
3332	48，103，199	\cdots Onter	5	N1	4\％	${ }^{4 \%}$	${ }^{4 \%}$	${ }^{3 \%}$	3\％	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％\％	\％	0\％	\％	\％	\％	\％	\％	\％\％	0\％	\％	\％

［383	48，103，230	In rolls of not more than 150 mm in width or sheets of which no side exceeds 360 mm in the unfolded state	5	N1	${ }^{4 \%}$	4\％	4%	${ }^{3 \%}$	${ }^{\text {\％}}$	${ }^{2 \%}$	${ }^{2 \%}$	0\％	\％	\％\％	${ }^{\text {o\％}}$	\％\％	\％\％	\％\％	0\％	${ }^{\text {\％}}$	${ }^{0 \%}$	${ }^{0 \%}$	${ }^{\circ}$	0
3834	18，103，200	\cdots Oher	5	NT1	4%	4%	4\％	3\％	3\％	${ }^{2 \%}$	2\％	\％	\％	\％	\％	\％	0\％	0\％	\％	0\％	0\％	0\％	\％	\％
3335	48，00，390		5	NT1	4\％	4%	4%	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％
${ }^{3336}$	${ }^{48,103,990}$	－Oner	5	V1	4%	${ }^{4 \%}$	${ }^{4 \%}$	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	0\％	\％	0\％	0\％	0\％	0\％	0\％	\％\％	0\％	0\％	0\％	\％	\％
337	48，10，240	－In rolls of not more than 150 mm in width or sheets of which no side exceeds 360 mm in the unfolded state	5	NT1	${ }^{\circ}$	4\％	4%	${ }^{\text {3\％}}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	0\％	0\％	\％	\％	0\％	0\％	\％	\％	0\％	\％	\％	${ }^{0 \%}$
3338	48，109，230	．－Other	5	V1	${ }^{4 \%}$	4\％	4\％	3\％	${ }^{3 \%}$	${ }^{2 \%}$	2\％	0\％	0\％	0\％	0\％	0\％	0\％	\％	\％	\％	\％	0\％	\％	\％
3839	48，10，940	\cdots In rolls of not more than 150 mm in width orsheets of which no side exceeds 360 mm in the unfolded state	5	NT1	${ }^{4 \%}$	${ }^{4 \%}$	4%	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％	\％	\％	\％	\％	\％	0\％	\％	\％	\％	\％
3840	48，109，990	－－．other	5	N1	4\％	4\％	4%	3\％	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	0\％	0\％	0\％	0\％	\％	0\％	0\％	0\％	0\％	0\％	0\％	\％	\％\％
${ }^{841}$	${ }^{4811.10 .21}$		${ }^{5}$	NT1	4\％	${ }^{4 \%}$	${ }^{4 \%}$	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	0\％	\％	0\％	0\％	0\％	\％	\％	\％	\％	0\％	\％
3842	${ }^{4811.102,29}$	－${ }^{\text {Ofmer }}$	5	N1	${ }^{4 \%}$	${ }^{4 \%}$	4%	3\％	${ }^{3 \%}$	${ }^{2 \%}$	2\％	0\％	0\％	0\％	0\％	0\％	0\％	0\％	0\％	0\％	\％\％	0\％	0\％	\％
${ }^{3843}$	${ }^{48,111,091}$		${ }^{5}$	NT1	$4{ }^{4}$	4\％	4%	${ }^{3 \%}$	3\％	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％	\％	0\％	\％	\％	\％	\％	\％	\％	\％	\％
384	28，11，099	－－other	5	NT1	${ }_{4}^{4 \%}$	$4{ }^{4 \%}$	$4{ }^{4 \%}$	${ }^{3 \%}$	3\％	${ }^{2 \%}$	2%	0\％	\％	\％\％	0\％	\％	0\％	\％	\％	\％	\％\％	\％	\％	\％
3845	14，122	\cdots In rolls of not more than 15 cm in width or in rectangular（including square）sheets of which no side exceeds 36 cm in the unfolded state side exceeds 36 cm in the unfolded state	5	NT1	${ }^{4 \%}$	4%	4\％	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％
3846	${ }^{48,14,190}$	Onher	5	NT	4\％	$4{ }^{4 \%}$	4\％	${ }^{3 \%}$	3\％	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％	\％	\％	\％\％	\％	0\％	0\％	0\％	\％	\％	\％\％
3847	．114，220	- In rolls of not more than 15 cm in width or in rectangular（including square）sheets of which no side exceeds 36 cm in the unfolded state	5	NT1	4%	4%	4%	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	0\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％
3848	${ }^{48,14,9,90}$	－other	5	NT1	4\％	4\％	4\％	3\％	3\％	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％	\％	0\％	\％	\％	0\％	\％	0\％	0\％	\％	\％
389	${ }^{48,115,131}$	$\underset{\text { paperboard }}{\cdots}$ ．．．．	5	NT1	${ }^{4 \%}$	4\％	4\％	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％	0\％	\％	\％	\％	\％	\％	\％	\％	\％	\％
3350	${ }^{48,15,15,139}$	\cdots－oner	5	NT1	${ }^{\circ}$	4\％	${ }^{4 \%}$	${ }^{3 \%}$	3\％	${ }^{2 \%}$	${ }^{2 \%}$	0\％	\％\％	0\％	0\％	0\％	\％\％	0\％	\％	0\％	0\％	\％	\％	\％
3351	48，115，91	Floor coverings on a base of paper or	5	NT1	4\％	${ }^{4 \%}$	$4{ }^{4 \%}$	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	0\％	0\％	0\％	0\％	0\％	0\％	0\％	\％	0\％	\％	\％	\％
3352	48，15，199	Onter	5	NT1	${ }^{4 \%}$	4%	${ }^{4 \%}$	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	0\％	0\％	0\％	\％	0\％	0\％	0\％	\％	\％	\％	0\％	\％	${ }_{0}$
3353	48，115，920	－Paper and paperboard covered on both faces with transparent sheets of plastics and with a lining of aluminium foil，for the packaging of liquid food products	${ }^{5}$	NT1	4\％	4\％	4\％	3\％	3\％	2\％	2\％	\％	\％	\％\％	\％	\％	0\％	\％	0\％	\％	0\％	\％	\％	\％
3854	$48,115,941$	－．．．Floor coverings on a base of paper or	${ }^{5}$	NT1	${ }^{4 \%}$	${ }^{4 \%}$	${ }^{4 \%}$	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	0\％	0\％	0\％	0\％	0\％	\％	0\％	\％	0\％	0\％	\％	\％
3355	${ }^{48,115,499}$	\cdots－onter	5	NT1	4\％	4%	$4{ }^{4 \%}$	${ }^{3 \%}$	3\％	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	0\％	0\％	\％	\％	\％	\％	\％	\％	0\％	\％	\％
3366	${ }^{48,115,991}$		${ }^{5}$	NT1	4%	4%	${ }^{4 \%}$	3\％	3\％	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％\％	\％	\％	\％	\％	\％	\％	\％\％	\％	\％	\％
3857	${ }^{48,115,999}$	－OMmer	5	V1	4%	4\％	4\％	3\％	3\％	${ }^{2 \%}$	2\％	\％	\％	\％\％	0\％	0\％	\％	\％	\％	\％	\％\％	\％\％	\％	\％
3358	48，116，200	- In rolls of not more than 15 cm in width or in rectangular（including square）sheets of which no side exceeds 36 cm in the unfolded state	${ }_{5}$	NT1	4\％	4\％	4\％	${ }^{3 \%}$	3\％	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％\％	0\％	0\％	\％	\％	\％	\％	\％	\％	\％	${ }^{0 \%}$
3359	48，16，090	－－Other	5	V1	$4{ }^{4 \%}$	4\％	4\％	3\％	3\％	${ }^{2 \%}$	2\％	0\％	0\％	0\％	0\％	0\％	0\％	\％	0\％	\％	0\％	\％	\％	\％
3360	${ }^{48,119,041}$	－．－Floor coverings on a base of paper or	${ }^{5}$	NT1	4\％	${ }^{4 \%}$	4\％	${ }^{3 \%}$	3\％	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％
3861	${ }^{48,119,049}$	－－omer	5	NT1	4\％	4\％	4%	3\％	${ }^{3 \%}$	2\％	${ }^{2 \%}$	\％	\％	0\％	\％	\％	0\％	0\％	\％	\％	0\％	0\％	0\％	\％\％
3862	${ }^{48,119,091}$	－－－Floor coverings on a base of paper or paperboard	5	NT	${ }^{4 \%}$	${ }^{4 \%}$	${ }^{4 \%}$	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	0\％	\％	0\％	0\％	\％	\％	\％	\％	\％		0\％	0\％	
3863	${ }^{48,119,099}$	\cdots Oher	5	NT1	\％	${ }^{4 \%}$	4\％	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	0\％	\％	\％	0\％	0\％	0\％	0\％	\％	0\％	\％	\％\％
${ }^{3864}$	${ }^{48,120,000}$	Filler blocks，slabs and plates，of paper pulp．	5	NT1	4\％	4\％	4\％	${ }^{3 \%}$	3\％	2\％	2\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％
3865	${ }^{48,13,000}$	－In the tom of tookels of ot bes	${ }^{20}$	${ }^{\text {EL }}$	U	U	U	ט	\bigcirc	\bigcirc	U	\bigcirc	\bigcirc	\bigcirc	\bigcirc	－	\bigcirc	\bigcirc	\bigcirc	－	\bigcirc	\bigcirc	\bigcirc	\bigcirc
${ }^{3866}$	${ }^{48,132,000}$	In rols fo w wath notexeeding 5 cm	${ }^{10}$	Hst	\％\％	10\％	\％\％	\％\％	\％	0\％	0\％	10\％	0\％	10\％	10\％	0\％	10\％	10\％	10\％	0\％	10\％	0\％	\％\％	0\％
3867	${ }^{48,13,9010}$	$\cdots \mathrm{hrols}$ sf a wath exeeding 5 mm ，oaled	10	${ }^{\text {HSL }}$	10\％	10\％	0\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10%
3868	${ }^{48,139,990}$	－other	10	HsL	0\％	10\％	0\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	\％	10\％
3869	48，142000	－Wallpaper and similar wall coverings，consisting of paper coated or covered，on the face side，with a grained，embossed，coloured，design－printed or otherwise decorated layer of plastics	10	${ }^{\text {HSL }}$	\％\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％
3870	${ }^{48,14,0,00}$	Onter	10	HsL	10%	10%	10\％	10\％	10%	10\％	10\％	10\％	10%	10\％	10%	10%	10\％	10\％	10%	10\％	10\％	10\％	\％	10\％
${ }^{3877}$	${ }^{48,16,020}$	－－In rolls of a width exceeding 15 cm but not exceeding 36 cm	5	NT1	4%	4%	4\％	${ }^{3 \%}$	3\％	${ }^{2 \%}$	2%	0\％	0\％	0\％	0\％	0\％	0\％	0\％	\％	0\％	0\％	0\％	\％	\％
3872	${ }^{88,162,900}$	－other	5	NT	4\％	4\％	4%	3\％	3\％	${ }^{2 \%}$	2\％	\％$\%$	\％	\％\％	0\％	\％	0\％	0\％	\％	\％	\％	0\％	\％	\％
${ }^{3873}$	${ }^{48,16,9,010}$	－Cataon paper	5	V1	4%	4\％	4%	3\％	${ }^{3 \%}$	${ }^{2 \%}$	2%	\％	\％	\％	0\％	0\％	\％	\％\％	\％	\％	0\％	0\％	\％	\％
3874	${ }^{48,169,020}$	－Otrea coping paper	5	V1	4%	4%	4%	${ }^{3 \%}$	3\％	2\％	2\％	\％	\％	\％	\％\％	\％	\％	\％	\％	\％	\％	\％	\％	\％
3875	${ }^{48,169,030}$	－Ofsed plates	5	NT1	${ }^{4 \%}$	4\％	${ }^{4 \%}$	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％
3876	${ }^{48,16,9040}$	－Heatranser praper		NT1	${ }^{4 \%}$	4%	4%	${ }^{3 \%}$	3\％	${ }^{2 \%}$	${ }^{2 \%}$	\％	0\％	0\％	\％	0\％	\％	0\％	\％	\％	0\％	0\％	\％	\％
387	${ }^{48,169,090}$	Other	5	NT1	${ }^{4 \%}$	${ }^{4 \%}$	4%	3\％	3\％	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％\％	\％\％	\％	\％	\％	\％	\％	\％	\％	\％	\％
3878	${ }^{48,71,000}$	Envelops	${ }^{10}$	${ }^{\text {HsL }}$	0\％	10\％	0\％	10\％	10\％	10\％	10\％	10\％	10\％	${ }^{10 \%}$	${ }^{10 \%}$	10\％	10\％	10\％	${ }^{10 \%}$	10\％	${ }^{10 \%}$	10\％	0\％	10\％
3879	28，72，000		10	HLL	0\％	10\％	10\％	10\％	10\％	\％	\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	\％	10%
3880	173，00		10	HSL	10\％	10\％	0\％	10\％	10\％	0\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	\％\％	10\％	10\％	10\％	10\％
3881	${ }^{48,18,000}$	－Tilet peper	${ }^{20}$	EL	\bigcirc	\bigcirc	U	\bigcirc	\checkmark	U	\bigcirc	\checkmark	\checkmark	\bigcirc	0	\checkmark	\checkmark	\bigcirc	\bigcirc	\checkmark	\checkmark	\checkmark	\bigcirc	\checkmark
3882	48，182，000		${ }^{15}$	HLL	${ }^{5 \%}$	${ }^{5 \%}$	5\％	${ }^{5 \%}$	15\％	\％	${ }^{5 \%}$	5\％	${ }^{15 \%}$	5\％	15\％	15\％	${ }^{15 \%}$	${ }^{5 \%}$	15\％	5\％	${ }^{5 \%}$	${ }^{5 \%}$	${ }^{15 \%}$	15\％
3883	${ }^{48,18,0,010}$	－Taloedolts	${ }^{15}$	HsL	15\％	15\％	15\％	${ }^{15 \%}$	${ }^{15 \%}$	${ }^{15 \%}$	${ }^{15 \%}$	${ }^{15 \%}$	15\％	${ }^{15 \%}$	15\％	15\％	${ }^{15 \%}$	${ }^{15 \%}$	${ }^{15 \%}$	${ }^{15 \%}$	${ }^{15 \%}$	${ }^{15 \%}$	${ }^{15 \%}$	${ }^{15 \%}$
3884	${ }^{48,18,020}$	－Seneietas	${ }^{15}$	HsL	${ }^{15 \%}$	15\％	${ }^{15 \%}$	15\％	${ }^{15 \%}$	${ }^{15 \%}$	${ }^{15 \%}$	${ }^{15 \%}$	${ }^{15 \%}$	${ }^{15 \%}$	15\％	${ }^{15 \%}$	${ }^{15 \%}$	${ }^{15 \%}$	${ }^{15 \%}$	${ }^{15 \%}$	${ }^{15 \%}$	${ }^{15 \%}$	${ }^{15 \%}$	${ }^{15 \%}$
3885	${ }^{48,185,000}$	－Aticose ff papael land doloting accossories	${ }^{15}$	HsL	${ }^{15 \%}$	15\％	${ }^{15 \%}$	15\％	15\％	${ }^{15 \%}$	15\％	15\％	${ }^{15 \%}$	${ }^{15 \%}$	15\％	15\％	${ }^{15 \%}$	${ }^{15 \%}$	${ }^{15 \%}$	${ }^{15 \%}$	15\％	15\％	${ }^{15 \%}$	15\％
3886	${ }^{48,189,000}$	－Oner	${ }^{15}$	${ }^{\text {HsL }}$	${ }^{\text {5\％}}$	15\％	${ }^{5 \%}$	15\％	15\％	${ }^{15 \%}$	${ }^{15 \%}$	15\％	${ }^{15 \%}$	${ }^{15 \%}$	${ }^{\text {15\％}}$	${ }^{5 \%}$	${ }^{15 \%}$	${ }^{5 \%}$	${ }^{5 \%}$	${ }^{5 \%}$	5\％	5\％	\％	15\％
3887	48，99，000	－Cartons，boxes and cases，of corrugated paper or paperboard	${ }^{10}$	sL	0\％	10\％	\％\％	\％	10\％	10\％	\％	10\％	8\％	${ }^{7 \%}$	6\％	${ }^{5 \%}$	4\％	3\％	${ }^{2 \%}$	1\％	\％	\％	\％	\％
3888	22，000	－Folding cartons，boxes and cases，of non－ corugated paper or paperboard	${ }^{10}$	T2	${ }^{9 \%}$	${ }^{9 \%}$	${ }^{8 \%}$	8%	${ }^{6 \%}$	${ }^{6 \%}$	${ }^{5 \%}$	${ }^{5 \%}$	${ }^{4 / 8}$	${ }^{4 \%}$	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	0\％	\％	\％	\％\％
3889	48，13，000	－Sacks and bags，having a base of a width of 40 cm or more	${ }^{10}$	T2	\％	${ }^{9 \%}$	${ }^{8 \%}$	8%	6\％	${ }^{6 \%}$	${ }^{5 \%}$	${ }^{5 \%}$	${ }^{4 \%}$	${ }^{4 \%}$	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％	\％	\％	\％\％
3890	${ }^{48,194,000}$	－Othe sacks and bass，inculding cones	10	NT2	\％	9\％	8\％	8%	6\％	6\％	5\％	5\％	4%	4\％	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	0\％	\％\％	\％	\％
3891	48，19，000	Onher packing conniness，induluing record steve	10	${ }^{\text {NT2 }}$	\％${ }^{\text {\％}}$	\％	${ }^{8} \%$	${ }^{8 \%}$	${ }^{6 \%}$	6\％	5\％	5\％	4\％	4\％	3\％	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％	\％	\％	\％
932	88，196，000		10	NT2	\％	9\％	${ }_{8 \%}$	${ }^{8} \%$	6\％	6\％	5\％	5\％	4\％	4\％	3\％	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％	\％	\％	\％
${ }^{3993}$	48，201，000	Registers，account books，note books，order books， receipt books，letter pads，memorandum pads， diaries and similar articles	${ }^{5}$	NT1	${ }^{4 \%}$	${ }^{4 \%}$	4\％	3\％	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	0\％	\％	\％\％	0\％	0\％	\％	\％	0\％	\％	\％	\％	\％	\％
3894	${ }^{48,2020000}$	Exericse books	5	NT1	4%	$4{ }^{4 \%}$	4%	3\％	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	0\％	0\％	\％\％	\％\％	\％	\％	\％	0\％	0\％	\％	\％\％	\％\％	\％\％
3895	18，23，000	－Binders（other than book covers），folders and file covers	${ }^{5}$	NT1	4%	4\％	4\％	${ }^{3 \%}$	${ }^{3} \%$	${ }^{2 \%}$	2\％	\％	\％	\％	\％	\％	0\％	\％	\％	\％	\％	\％	\％	\％
3896	8，204，000		${ }^{5}$	V1	${ }^{4 / 0}$	${ }^{4 \%}$	${ }^{4 / 8}$	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	0\％	\％	\％	\％	\％	0\％	0\％	\％	0\％	${ }^{0 \%}$	0\％	\％	\％
${ }^{3987}$	${ }^{48,205,000}$	－Abums tor sampes of tor coleceions	5	NT1	4%	4%	$4{ }^{4 \%}$	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2} \%$	${ }^{2 \%}$	\％	0\％	0\％	\％	\％	\％	\％	\％	\％	0\％	\％	\％	\％
3898	48，290，000	－Oner	5	NT1	4%	4\％	4%	3\％	3\％	2\％	${ }^{2 \%}$	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％
999	4882.10 .10	－Labels of a aind used for jewellery，including objects of personal adormment or articles of personal use normally caried in the pocket，in the handbag or on the person	10	HSL	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	0\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％
3900	${ }^{48,211,090}$	－Other	${ }^{10}$	${ }^{\text {HsL }}$	\％ 0	10\％	10%	0\％	10\％	0\％	0\％	0\％	10\％	10\％	0\％	10\％	10\％	10\％	0\％	\％ 0	10\％	0\％	\％\％	\％\％
3301	48，219，010	－Labels of a kind used for jewellery，inclucing objects of personal ado formment or articles of personal use normally caried in the pocket，in the handbag or on the person	10	HSL	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	\％\％	10\％

香港•ASEAN FTAにかかる調査報告書
 別添2－4 原産地品の関税撤廃スケジュール

（ラオス）

${ }^{302}$	48，29，090	－－other	${ }^{10}$	${ }^{\text {ISL }}$	\％\％	${ }^{10 \%}$	$1{ }^{10 \%}$	${ }^{10 \%}$	10\％	${ }^{10 \%}$	${ }^{10 \%}$	${ }^{10 \%}$	${ }^{10 \%}$	${ }^{10 \%}$	10%	10%	10%	10%	10%	${ }^{10 \%}$	10\％	10%	10%	10%
3303	4822：10：10	Cones	5	NT1	4\％	${ }^{4 \%}$	4\％	3\％	3\％	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％	\％	\％	\％	0\％	\％	0\％	\％	\％	\％	\％
${ }^{3904}$	48，22，090	－Oner	5	V1	4%	4%	4%	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％\％
${ }^{3905}$	48，29，010	Cones	5	T1	4%	4%	${ }^{4 \%}$	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％	${ }^{0} \%$	\％	\％	\％	\％	\％	0\％	\％	\％	\％
${ }^{3006}$	48，29，930	－other	5	T1	${ }^{4 \%}$	4%	4%	${ }^{\circ}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％	\％	\％	0\％	\％	\％	\％	0\％	\％	\％	\％
3907	48，23，010		10	NT2	9\％	${ }^{9 \%}$	${ }^{8 \%}$	8%	${ }^{6 \%}$	6\％	5\％	5\％	$4{ }^{4 \%}$	4\％	${ }^{3 \%}$	उन	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％	\％	0	\％\％
${ }^{3008}$	48，23，290	Other	10	N2	\％	${ }^{9 \%}$	${ }^{8 \%}$	${ }^{8 \%}$	${ }^{6 \%}$	6\％	${ }^{5 \%}$	${ }^{5 \%}$	${ }^{4 \%}$	$4{ }^{4 \%}$	${ }^{\text {3\％}}$	${ }^{3 \%}$	2\％	${ }^{2 \%}$	\％	0\％	0\％	0\％	\％	0\％
3309	48，24，021	－Cariograph recoring paper	10	NT2	\％	9\％	${ }^{8 \%}$	${ }^{8 \%}$	6\％	6\％	5\％	5\％	4%	4%	${ }^{3 \%}$	3\％	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％	\％	0\％	\％
33910	48，24，029	－－Other	10	NT2	9\％	9%	${ }^{8 \%}$	${ }_{8}^{8 \%}$	6\％	6\％	5\％	5%	4%	4%	${ }^{3 \%}$	${ }^{3}$	${ }^{2 \%}$	${ }^{2 \%}$	0\％	0\％	\％	\％	\％	\％
${ }^{3911}$	48，23，090	－other	10	NT2	9\％	9%	${ }^{8 \%}$	\％	6\％	6\％	5\％	5\％	4%	4%	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％	\％	\％	\％\％
3312	48，23，100	Otbamboo	10	${ }^{\text {NT2 }}$	9\％	9\％	${ }^{8 \%}$	8%	\％	6\％	5\％	5\％	4%	$4{ }^{4 \%}$	${ }^{3 \%}$	3\％	${ }^{2 \%}$	${ }^{2 \%}$	\％\％	\％	\％	\％	\％	\％
3313	48，23，900	－oner	10	NT2	9\％	\％$\%$	8\％	\％	6\％	6\％	5\％	5\％	4%	4\％	${ }^{3 \%}$	3\％	2%	2%	\％	\％	\％	\％	\％	\％
3914	48，27，000		10	T2	9\％	9\％	8%	8\％	6\％	6\％	5\％	5\％	4\％	$4{ }^{4 \%}$	3\％	3\％	2\％	${ }^{2 \%}$	\％	\％	\％	\％	\％	\％\％
33915	48，39，010	－Cocoooning fames for siliwoms	10	N2	${ }^{9 \%}$	9\％	${ }^{8 \%}$	8\％	\％	6\％	5\％	${ }^{5 \%}$	4%	$4{ }^{4 \%}$	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	0\％	0\％	\％	0\％	0\％	0\％
3916	48，29，020	Display cards of a kind used of ofiewleny，	10	T2	9\％	\％\％	8%	${ }^{8 \%}$	6\％	6\％	5\％	${ }^{5 \%}$	4%	${ }_{4 \%}$	3\％	3\％	2\％	${ }^{2 \%}$	\％	\％	0\％	0\％	\％	0\％
397	48，29，030	－－Die－cut polyethylene coated paperboard of a kind used for the manutacture of paper cups	${ }^{10}$	${ }^{\text {NT1 }}$	${ }^{9 \%}$	${ }^{8} \%$	6\％	${ }^{5 \%}$	4\％	${ }^{3} \%$	${ }^{2 \%}$	\％\％	0\％	0\％	\％	0\％	\％	\％\％	\％	\％	\％	\％	\％	\％
${ }^{3918}$	48，39，040	－Paper（ube sest of a kin used tor he	10	NT1	${ }^{9 \%}$	${ }^{8 \%}$	6\％	${ }^{5 \%}$	${ }^{4 \%}$	${ }^{3}$	${ }^{2 \%}$	0\％	\％	\％	0\％	0\％	\％	0\％	0\％	\％\％	\％	0\％	\％	
$\sqrt{3919}$	$4{ }^{4823,9,051}$	\cdots Wegthing 150 gmeor Iess	10	T2	\％	9\％	${ }^{8 \%}$	8\％	6\％	6\％	5\％	${ }^{5 \%}$	${ }^{4 \%}$	4%	3\％	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	0\％	\％	0\％	0\％	\％\％
3320	48，29，059	－．Onher	10	NT2	9\％	9\％	${ }^{8 \%}$	8%	6\％	6\％	5\％	5\％	4%	4\％	3\％	3\％	2%	${ }^{2 \%}$	\％	\％	\％	\％	\％	\％
3321	48，29，060	－Puncoed jequald caras	10	${ }^{\text {HSL }}$	0\％	\％\％	0\％	10\％	\％	\％\％	0\％	0\％	10\％	0\％	0\％	0\％	\％	0\％	0\％	0\％	0\％	0\％	0\％	\％
3322	48，239，070	－Fans and handscreens	10	NT1	9\％	${ }^{8 \%}$	6\％	5\％	4%	3\％	${ }^{2 \%}$	0\％	0\％	0\％	0\％	\％	0\％	0\％	0\％	0\％	\％\％	0\％	\％	\％\％
3323	48，39，992	－Joss paper	10	NT1	${ }^{9 \%}$	8%	6\％	5\％	4%	3\％	2%	0\％	0\％	0\％	\％\％	0\％	0\％	0\％	0\％	0\％	0\％	\％	\％\％	\％\％
3324	48，29，094	$\begin{aligned} & \text { - Cellulose wadding and webs of cellulose fibers, } \\ & \text { coloured or marbled throughout the mass } \end{aligned}$	10	HSL	10\％	\％	10\％	10\％	0\％	\％	\％\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	\％\％	0\％	\％	\％	\％	0\％
3925	$48.23,095$	\cdots Floor coverings on a base of paper or	10	Hst	10\％	10\％	10\％	10\％	${ }^{10 \%}$	${ }^{10 \%}$	10\％	10\％	10\％	10\％	10\％	${ }^{10 \%}$	10\％	10\％	10\％	10\％	0\％	10\％	10\％	10\％
3926	48，23，096	\cdots Other，cut to shape other than rectangular or	10	HSL	0\％	10\％	10\％	10\％	${ }^{10 \%}$	10%	10\％	10\％	10%	10\％	\％\％	10\％	10\％	0\％	0\％	0\％	0\％	10\％	0\％	10\％
3327	48，39，099	－－other	10	Ist	\％	\％	0\％	0\％	\％	0\％	0\％	10\％	10\％	\％	\％	10\％	\％\％	\％	\％	\％\％	\％	\％	\％	\％
${ }^{328}$	49，001，000	－In single sheess，whenere or no tooted	5	NT1	4\％	${ }^{4 \%}$	4\％	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％
$\sqrt{329}$	49，099，100	－Dictionaries and encyclopaedias，and serial stalments thereof	5	NT1	4\％	4\％	4%	3\％	3\％	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％\％	\％	\％	\％	\％	\％	\％	\％	\％\％	\％	\％	\％
${ }^{3330}$	49，019，910	- Educational，technical，scientific，historical or cullural books	5	NT1	${ }^{4 \%}$	${ }^{4 \%}$	${ }^{4 \%}$	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	0\％	0\％	\％	0\％	0\％	\％	0\％	0\％	\％	0\％	\％	\％	\％\％
${ }^{3391}$	49，09，990	\cdots	5	NT1	4\％	4\％	4\％	3\％	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％\％	\％	0\％	\％	\％	0\％	\％	\％	\％\％	\％	\％	\％
3392	49，021，000	${ }^{\text {Appeaing a teast tout times a week }}$	5	NT1	4\％	4\％	${ }_{4 \%}^{4 \%}$	${ }^{3 \%}$	3\％	2%	${ }^{2 \%}$	\％	0\％	\％\％	\％	\％	\％\％	0\％	\％	0\％	\％\％	\％	\％\％	\％\％
${ }^{3933}$	49，02，0，10	Educational，technical，scientific，historical or	5	T1	4\％	4%	4\％	3\％	${ }^{3 \%}$	${ }^{2 \%}$	2%	\％	0\％	0\％	\％	0\％	\％\％	\％	\％	\％	\％	\％	\％	\％
${ }^{393}$	49，29，090	－Other	5	T1	4\％	4\％	4\％	3\％	3\％	2\％	2\％	\％	0\％	\％\％	\％\％	\％	\％	0\％	\％	0\％	\％\％	0\％	0\％	\％\％
3935	40，30，000	Children＇s picture，drawing or colouring books．	5	N1	$4{ }^{4 \%}$	4\％	4\％	3\％	${ }^{3 \%}$	2\％	${ }^{2 \%}$	\％	\％	0\％	\％	\％	\％	\％	\％	0\％	0\％	\％	\％	\％$\%$
${ }^{3336}$	49，04，000	Music，printed or in manuscript，whether or not bound or illustrated．	5	NT1	${ }^{4 / 8}$	${ }^{4 \%}$	${ }^{4 \%}$	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	0\％	\％	\％	0\％	\％	\％\％	\％	\％	\％	0\％	\％
3937	49，55，000	－Gibes	5	NT	${ }^{4 \%}$	$4{ }^{4 \%}$	4%	${ }^{3 \%}$	${ }^{3 \%}$	2\％	${ }^{2 \%}$	\％	\％	\％	\％	\％	\％	0\％	\％	\％	0\％	\％	\％	\％
3398	49，59， 100	－Inbookiom	5	NT1	4\％	4\％	4\％	3\％	3\％	${ }^{2 \%}$	2\％	\％	\％	0\％	\％	0\％	\％	0\％	\％	0\％	\％	0\％	0\％	0\％
3393	49，59，900	－Oner	5	${ }^{\text {NT1 }}$	4\％	4\％	4\％	${ }^{3} \%$	3\％	${ }^{2 \%}$	${ }^{2 \%}$	0\％	\％	\％	\％	\％	0\％	\％	\％	\％	\％	\％	\％	\％\％
3940	49，60，010	－Plans and drawings，including photographic reproductions on sensitised paper	${ }^{5}$	NT1	4\％	4%	4\％	3\％	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％
${ }^{3941}$	49，060，900	－Oner	5	N1	4\％	4\％	4\％	3\％	3\％	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％\％	\％\％	\％\％	\％	\％	0\％	\％	\％	\％\％	\％	\％\％	\％
3392	49，07，010	－Barknoes，bining legal emener	5	NT1	4\％	4%	4\％	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％	\％	\％	\％	0\％	\％	\％	\％	\％	\％	${ }^{0 \%}$
$3{ }^{393}$	49，070，021	－Postage stamps	5	NT1	4%	4%	4%	3\％	${ }^{3 \%}$	2%	${ }^{2 \%}$	0\％	0\％	0\％	\％	0\％	\％	0\％	0\％	0\％	\％	0\％	0\％	\％
3394	49，070，029	－－Other	5	NT1	4%	$4{ }^{4}$	4\％	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％
3945	49，07，040	Stock share or bend certificates and similar documents of title；cheque forms	5	NT1	4\％	4\％	4\％	${ }^{3 \%}$	3\％	2\％	${ }^{2 \%}$	\％	0\％	0\％	0\％	\％	0\％	\％	\％	\％	0\％	\％	\％	\％
${ }^{3946}$	490，70，090	－Other	5	NT1	4%	4\％	4\％	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％	0\％	\％	0\％	\％	\％	\％	\％	\％	0\％	\％
${ }^{3977}$	49，08，000	－Tansers Steactomaniss，virifiabe	5	${ }^{\text {NT1 }}$	4\％	4\％	4\％	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	0\％	\％\％	\％	\％	0\％	\％	\％	\％	\％	\％	\％	\％	\％
${ }^{3948}$	49，09，000	－other	5	NT1	4\％	4\％	4\％	3\％	3\％	2\％	2\％	\％	0\％	0\％	0\％	\％	0\％	\％	\％	0\％	0\％	\％	\％	\％
${ }^{3949}$	49，090，000	Printed or illustrated postcards；printed cards bearing personal greetings，messages or announcements，whether or not illustrated，with or without envelopes or trimmings．	${ }_{10}^{15}$	NT2	\％	9\％	${ }^{8 \%}$	8\％	6\％	6\％	5\％	5\％	4\％	4\％	3\％	3\％	2\％	${ }^{2 \%}$	0\％	\％	\％\％	\％	\％	\％
3350	49，100，00	$\begin{array}{\|l} \hline \begin{array}{l} \text { Calendars of any kind, printed, including } \\ \text { calendar blocks. } \end{array} \\ \hline \end{array}$	${ }^{15}$	${ }^{\text {HSL }}$	${ }^{5 \%}$	\％	${ }^{5 \%}$	${ }^{\text {\％}}$	${ }^{5 \%}$	${ }^{5 \%}$	${ }^{5 \%}$	${ }^{5 \%}$	${ }^{15 \%}$	${ }^{5 \%}$	${ }^{5 \%}$	${ }^{15 \%}$	${ }^{15 \%}$	${ }^{15 \%}$	${ }^{5 \%}$	\％\％	${ }^{5 \%}$	${ }^{5}$	5\％	${ }^{5 \%}$
3351	4911．10．10	Catalogues listing only educational，technical， scientific，historical or cultural books and publications	5	NT1	4\％	4\％	4\％	3\％	${ }^{3 \%}$	2\％	${ }^{2 \%}$	\％	\％	0\％	\％	\％	\％	0\％	\％	\％	\％	\％	\％	\％
1392	49，11，090	－Onter	5	NT	4\％	4\％	4\％	${ }^{3 \%}$	${ }^{3 \%}$	2\％	${ }^{2 \%}$	0\％	\％	0\％	0\％	0\％	\％	\％\％	0\％	0\％	\％	0\％	0\％	\％
${ }^{3953}$	49，191，121		5	N1	${ }^{4 \%}$	$4{ }^{46}$	$4{ }^{4 \%}$	3\％	3\％	${ }^{2 \%}$	${ }^{2 \%}$	0\％	\％	\％\％	\％	\％	0\％	\％	\％	\％	\％	\％	0\％	0\％
3354	${ }^{49,191,129}$	\cdots Other	5	NT1	${ }^{4 \%}$	$4{ }^{4 \%}$	${ }_{4}^{4 \%}$	3\％	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	0\％	\％\％	\％$\%$	\％	\％	\％	\％	\％	0\％	\％	0\％	\％
${ }^{3955}$	9，131	\cdots Anaiomical ofolanical digagms and chars	5	NT	${ }^{4 \%}$	4\％	4\％	${ }^{3 \%}$	3\％	${ }^{2 \%}$	${ }^{2 \%}$	\％	0\％	0\％	\％	\％	0\％	\％	\％	\％	\％	\％	${ }^{0 \%}$	
${ }^{3956}$	${ }^{49,19,139}$	Other	5	T1	$4{ }^{4 \%}$	$4{ }^{4 \%}$	${ }^{4 \%}$	${ }^{3}$	3\％	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％	0\％	\％	0\％	0\％	0\％	\％	0\％	0\％	\％	\％
${ }^{3957}$	49，119，190	－．．other	5	NT1	4\％	4\％	4\％	3\％	3\％	2\％	2%	0\％	0\％	0\％	0\％	0\％	0\％	0\％	0\％	0\％	0\％	\％	0\％	\％\％
3958	49，119，910	－－Printed cards for jewellery or for small objects of personal adornment or articles of personal use normally carried in the pocket，handbag or on the person	5	NT1	4\％	4\％	4\％	3\％	3\％	2\％	2\％	\％	0\％	0\％	0\％	\％	0\％	0\％	0\％	0\％	0\％	\％	0\％	0\％
3359	49，199，920	－Pinimed labes tor ereposives	${ }^{5}$	NT1	4\％	4%	4\％	3\％	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％\％	\％	\％	\％	0\％	\％	\％	\％	\％\％	\％	\％	\％
950	49，19，930	．．．Educational，technical，scientific，，historical or	5	NT1	4\％	4\％	4\％	${ }^{3} \%$	${ }^{3 \%}$	2%	${ }^{2 \%}$	\％	\％	\％	0\％	\％	0\％	\％	\％	\％	0\％	\％	\％	\％
${ }^{3961}$	49，19，990	Onter	5	NT1	4\％	4\％	4\％	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％\％	\％\％	\％	\％\％	\％	\％	0\％	0\％	0\％	0\％	\％	\％	\％
3392	50，00，000	Silkworm cocoons suitabie tor reeing．	${ }^{20}$	${ }^{\text {EL }}$	\bigcirc	，	－	\bigcirc	\bigcirc	，	－	U	0	0	U	－	0	U	\bigcirc	\bigcirc	U	\bigcirc	\bigcirc	－
3393	50，020，000	Raw silk（not throw）．	5	NT1	4\％	4\％	4\％	${ }^{3 \%}$	${ }^{3 \%}$	2\％	${ }^{2 \%}$	\％\％	\％	\％	\％	\％	0\％	\％	\％	\％	\％\％	\％	\％	\％
3384	50，030，000		5	NT1	4\％	4\％	4\％	${ }^{3 \%}$	3\％	2\％	2\％	\％	0\％	\％	\％	\％	0\％	0\％	\％	0\％	\％\％	\％	\％	\％
${ }^{3865}$	50，04，000	Silk yarn（other than yarn spun from silk waste） not put up for retail sale．	5	NT1	4%	${ }^{4 \%}$	${ }^{4 \%}$	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	0\％	0\％	\％	0\％	0\％	0\％	0\％	\％	0\％	0\％	\％	\％	\％
3396	55，05，000	Yarn spun from silk waste，not put up for retail sale．	5	NT1	${ }^{4 \%}$	${ }^{4 \%}$	${ }^{4 \%}$	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	0\％	0\％	0\％	0\％	0\％	0\％	0\％	\％	0\％	0\％	0\％	0\％	\％
339	50，06，000	Silk yarn and yarn spun from silk waste，put up for retail sale；silk－worm gut．	5	NT1	${ }^{4 \%}$	${ }^{4 / 8}$	${ }^{4 \%}$	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	0\％	0\％	0\％	0\％	0\％	0\％	0\％	\％	0\％	\％	0\％	${ }^{0 \%}$	${ }^{\circ}$
${ }^{3968}$	5007．10．10	\cdots－Prinied by the tasaitona baik process		${ }^{\text {NT1 }}$	4\％	4\％	${ }^{4 \%}$	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％
339	50，07，090	－other	5	${ }^{\text {NT1 }}$	4\％	4\％	${ }^{4 \%}$	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	0\％	\％\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％
3390	$50.072,010$	－Pinted by He trational baikr pocoss	5	NT1	4\％	4\％	4\％	${ }^{3 \%}$	3\％	2%	2%	\％	\％\％	\％\％	\％\％	\％	\％	0\％	\％	0\％	\％\％	\％	0\％	\％
${ }^{3971}$	50，072，090	－omer	5	NT	4%	$4{ }^{4 \%}$	4\％	3\％	3\％	2%	${ }^{2 \%}$	\％	\％\％	0\％	\％\％	0\％	\％	\％	\％	0\％	0\％	\％	\％	\％
3372	55，07，010	\cdots－Pineed by herataiomal baik process	5	${ }^{\text {NT1 }}$	4\％	4\％	4\％	${ }^{3} \%$	${ }^{3 \%}$	${ }^{2 \%}$	2%	\％	\％\％	\％	\％\％	\％	0\％	\％	\％	\％	\％	\％	\％	\％
3973	50，79，090	－other	5	${ }^{\text {NT1 }}$	4\％	$4{ }^{4 \%}$	4%	3\％	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	0\％	\％	\％
3374	$51.01,100$	－Shorn wool	5	${ }^{\text {NT1 }}$	4\％	4\％	4\％	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	0\％	0\％	\％	\％	0\％	0\％	\％	\％	\％	\％	\％	\％	\％
3375	51，01，900	－Oner	5	NT1	4\％	$4{ }^{4 \%}$	4\％	3\％	${ }^{3 \%}$	2%	${ }^{2 \%}$	\％\％	\％\％	\％\％	\％\％	\％\％	\％\％	0\％	\％	0\％	\％\％	0\％	\％	\％\％
3376	${ }^{51,02,100}$	－Shor wool	5	NT1	4%	4%	4\％	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％
3377	51，012，900	－Other	5	NT1	4\％	4\％	4\％	3\％	${ }^{3 \%}$	2%	${ }^{2 \%}$	0\％	0\％	0\％	0\％	0\％	0\％	0\％	\％	0\％	0\％	\％	\％	\％\％
3978	51，013，000	－Catoonisad	5	NT1	4%	$4{ }^{4 \%}$	4\％	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	0\％	0\％	0\％	\％\％	0\％	\％	0\％	\％	\％	\％	\％	\％	\％
3397	51，02，100	－Of Kastini（ castmeee）goats	5	${ }^{\text {NT1 }}$	4\％	4%	4\％	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％
3380	51，02，，000	－Oner	5	${ }^{\text {NT1 }}$	4\％	4\％	4\％	${ }^{3} \%$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％\％	\％	\％\％	\％	0\％	\％	\％	\％	\％	\％	\％	\％
3381	51，02，200	－Coase animal har	5	NT1	4\％	4\％	4\％	3\％	3\％	2\％	${ }^{2 \%}$	0\％	\％	\％	0\％	\％	0\％	\％	\％	\％	0\％	\％	\％	\％
${ }^{3982}$	51，03，000	－Nois of wool oro fi fine anima hair	5	NT1	4\％	4\％	4\％	3\％	3\％	2\％	2\％	\％	\％	0\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％

${ }^{3983}$	51，022，000	－Oner waste of wool or of tine anima hair	5	NT1	${ }^{4 \%}$	${ }^{4 \%}$	${ }^{4 \%}$	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％\％	\％	0\％	0\％	0\％	\％	0\％	\％	\％\％	\％\％	\％	\％	\％
3384	51，03，000	Waste of coasse animal hair	5	NT1	$4{ }^{4 \%}$	4\％	4\％	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	0\％	0\％	\％\％	\％	0\％	\％	0\％	0\％	0\％	0\％	0\％	0\％	0\％
3985	，004，000	Garnetted stock of wool or of fine or coarse animal hair．	5	NT1	${ }^{4 \%}$	${ }^{4 \%}$	${ }^{4 \%}$	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	0\％	\％	\％	0\％	0\％	\％	0\％	\％	\％	\％	\％	${ }^{0 \%}$	0\％
3986	51，05，000	－Carded wool	5	V1	$4{ }^{4 \%}$	4%	4%	3\％	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	0\％	0\％	0\％	\％	0\％	0\％	0\％	0\％	0\％	\％	0\％	\％	0\％
3387	51，052，100	Combed wool in fragmens	5	NT1	4%	4\％	4\％	3\％	3\％	${ }^{2 \%}$	2\％	0\％	0\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	0\％
3398	51，052，900	－Other	5	NT1	$4{ }^{4 \%}$	4\％	4%	${ }^{3 \%}$	3\％	${ }^{2 \%}$	${ }^{2 \%}$	0\％	\％	\％	\％	0\％	0\％	\％	\％	\％\％	0\％	0\％	0\％	0\％
3389	51，05，100	－Of Kashmir（castmeie）goals	5	NT1	4%	4%	4%	3\％	3\％	${ }^{2 \%}$	${ }^{2 \%}$	0\％	\％	\％	\％	\％	\％	\％	0\％	\％	\％	\％	0\％	\％
3390	51，53，900	－Oner	5	NT1	4\％	4\％	4\％	3\％	3\％	${ }^{2 \%}$	${ }^{2 \%}$	0\％	\％	\％	\％	\％	\％	\％	0\％	\％	\％	\％	0\％	\％
${ }^{391}$	51，04，000	－Coasse anima lair，carded or combed	5	NT1	4\％	4\％	4\％	3\％	${ }^{3 \%}$	${ }^{2 \%}$	2\％	0\％	\％\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％
3992	51，06，000	－Conaining 85% or ororeb by wight of wool	5	T1	4%	4\％	4%	3\％	3\％	2\％	2\％	0\％	\％	\％	\％	\％	0\％	\％	\％	0\％	\％\％	\％	\％	0\％
393	51，02，000	Conaining less tha 85% by weght of wool	5	NT1	4%	4\％	4%	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	2\％	\％	\％	0\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	0\％
399	51，7，7，000	Conaining 85% or more by weigh of wool	5	NT1	$4{ }^{4 \%}$	4\％	4\％	${ }^{3 \%}$	3\％	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	0\％	\％	\％	\％	\％	\％	0\％	\％\％	\％	\％	0\％
3995	51，072，000	－Conalining ess than 85\％by weght of wol	5	NT1	4%	4\％	4\％	3\％	3\％	2\％	2\％	0\％	0\％	\％	\％	\％	\％	\％	\％	0\％	\％	\％	\％	\％
${ }^{3996}$	51，08，000	－Carded	5	NT1	$4{ }^{4 \%}$	4\％	4\％	${ }^{3} \%$	3\％	${ }^{2 \%}$	${ }^{2 \%}$	0\％	\％	\％	0\％	\％	\％	\％	0\％	\％	\％	0\％	\％	\％
3397	51，02，200	－Combed	5	NT1	4%	4\％	4%	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	0\％	\％	0\％	\％	\％	\％	\％	\％	\％	\％	\％
3998	51，09，000	Containing 85\％or more by weight of wool or of fine animal hair	5	NT1	$4{ }^{4 \%}$	4\％	4%	3\％	3\％	${ }^{2 \%}$	2\％	0\％	0\％	\％	\％	\％	0\％	\％	0\％	\％	0\％	0\％	0\％	0\％
399	51，09，000	－other	5	NT1	4%	4\％	4\％	3\％	3\％	2\％	2\％	\％	0\％	\％	0\％	\％	0\％	\％	0\％	\％	\％	0\％	0\％	\％
400	51，100，000	Yarn of coarse animal hair or of horsehair （including gimped horsehair yarn），whether or not put up for retail sale．	${ }_{5}$	NT1	4%	4\％	4\％	3\％	3\％	2\％	2\％	0\％	0\％	0\％	\％	\％	\％	\％	0\％	0\％	0\％	\％	\％	0\％
4001	5111．11．10	\cdots－Pinined by the trational batik pocoss	10	т2	9\％	9\％	${ }^{8 \%}$	${ }_{8 \%}$	${ }^{6 \%}$	6\％	5\％	5\％	${ }^{4 \%}$	4\％	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％	\％	\％	\％
4002	55，111，190	－－other	10	т2	9\％	9\％	${ }^{8 \%}$	${ }^{8}$	6\％	6\％	5\％	${ }^{5 \%}$	${ }^{4 \%}$	4\％	3\％	${ }^{3 \%}$	2\％	${ }^{2 \%}$	\％	0\％	\％	\％	0\％	\％
4003	55，11，910	\cdots－－Pinted by me tradioliona baik process	10	NT2	9\％	9\％	8%	8\％	6\％	6\％	5\％	5\％	4\％	4%	3\％	3\％	2%	2%	\％	${ }^{0} 8$	0\％	\％	\％	0\％
4004	51，11，990	－other	10	NT2	9\％	9\％	8\％	${ }^{8 \%}$	${ }^{6 \%}$	6\％	5\％	5\％	4%	4\％	${ }^{3 \%}$	3\％	2\％	2\％	0\％	\％	\％	\％	\％	\％
4005	51，12，000	－Other，mixed mainly or solely with man－made filaments	${ }^{10}$	NT2	9\％	${ }^{9} \%$	8\％	8\％	6\％	6\％	5\％	5\％	4\％	4\％	3\％	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	0\％	\％	\％	\％	0\％	\％
4006	13，000	－Other，mixed mainly or solely with man－made staple fibres	10	NT2	9\％	\％	${ }^{8 \%}$	${ }^{8}$	\％	6\％	${ }^{5 \%}$	${ }^{5 \%}$	${ }^{4 \%}$	${ }^{4 \%}$	${ }^{\text {3\％}}$	${ }^{\text {3\％}}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	0\％	\％	0\％	0\％	0\％
4007	55，19，000	－other	10	N2	9\％	9\％	${ }^{8 \%}$	${ }^{8}$	${ }^{6 \%}$	${ }^{6 \%}$	5\％	5\％	${ }^{4 \%}$	${ }^{4 \%}$	${ }^{3}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％	\％	\％	\％
4008	511211．10	\cdots Pepled by me tr trationa baik process	10	${ }^{N+2}$	9\％	\％\％	${ }_{8}^{8 \%}$	${ }_{8 \%}$	6\％	6\％	5\％	${ }_{5 \%}$	4\％	4%	${ }^{3 \%}$	3\％	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％	\％	\％	0\％
4009	55，12，190	－other	10	v2	9\％	9\％	${ }^{8 \%}$	8%	${ }^{6 \%}$	6\％	5\％	5\％	4\％	4\％	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％	0\％	\％	\％
4010	51，12，910	\cdots－Pinine by the trational baikr process	${ }^{10}$	т2	9\％	9\％	${ }^{8 \%}$	${ }^{8 \%}$	6\％	6\％	5\％	${ }^{5 \%}$	${ }^{4 \%}$	${ }^{4 \%}$	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	0\％	\％	\％	\％	\％	0\％
4001	51，121，990	－Other	${ }^{10}$	NT2	9\％	9\％	${ }^{8 \%}$	8\％	6\％	${ }^{6 \%}$	5\％	${ }^{5 \%}$	${ }^{4 \%}$	${ }^{4 \%}$	${ }^{3 \%}$	${ }^{3 \%}$	2\％	${ }^{2 \%}$	\％	\％	\％	0\％	\％	\％
4012	51，122，000	$\begin{array}{\|l} \begin{array}{l} \text {-other, mixed mainly or solely with man-made } \\ \text { filaments } \end{array} \\ \hline \end{array}$	${ }^{10}$	NT2	9\％	9\％	8\％	${ }^{8 \%}$	${ }^{6 \%}$	6\％	5\％	5\％	4%	4\％	${ }^{3 \%}$	${ }^{3 \%}$	2\％	2\％	\％	\％	\％	0\％	\％	\％
4013	51，123，000	$\begin{aligned} & \text {-other, mixed mainly or solely with man-made } \\ & \text { stapel fibese } \end{aligned}$	10	N2	9\％	9\％	${ }^{8 \%}$	8%	${ }^{6 \%}$	6\％	5\％	5\％	$4{ }^{4 \%}$	4\％	3\％	${ }^{3 \%}$	${ }^{2 \%}$	2\％	0\％	0\％	\％	0\％	\％	0\％
4014	51，129，000	－Oner	10	N2	9\％	9\％	8\％	8\％	6\％	6\％	5\％	5\％	4%	4%	${ }^{3 \%}$	3\％	2\％	2\％	0\％	0\％	，	0\％	0\％	\％
4015	55，13，000	Woven fabrics of coarse animal hair or of horsehair．	10	NT2	9\％	9\％	8\％	8\％	6\％	6\％	5\％	5\％	4\％	4\％	3\％	3\％	${ }^{2 \%}$	2\％	0\％	\％	0\％	\％	\％	\％
4016	52，01，000	Cotor，not carded o coombed．	${ }^{20}$	HSL	\％	20\％	20\％		20\％	20\％	20\％	20\％	0\％	0\％	20\％	\％	\％	00\％	0\％	20\％	20\％	0\％	20\％	0\％
4017	52，02，，000	－Van wase（ineluding thead wase）	5	NT1	$4{ }^{4 \%}$	4\％	4\％	${ }^{3 \%}$	${ }^{3 \%}$	2%	${ }^{2 \%}$	0\％	\％	\％	0\％	\％	\％	0\％	0\％	\％	0\％	\％	\％	\％
4018	52，29，100	－Gameted stock	5	NT1	4%	4\％	4%	3\％	3\％	2\％	2\％	\％	\％	\％	0\％	\％	\％	\％	\％	\％	\％	0\％	\％	0\％
4019	52，029，900	－other	5	T1	4%	4%	4%	3\％	3\％	2\％	2\％	0\％	0\％	\％	\％	\％	0\％	\％	0\％	\％	\％	0\％	\％	\％
4020	52，30，000	Cotor，carded of combed．	5		${ }^{4 \%}$	$4{ }^{4 \%}$	${ }^{4 \%}$	${ }^{3 \%}$	3\％	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％	\％	\％	\％	0\％	\％\％	${ }^{0 \%}$	\％	\％	\％	\％
4291	$52.041,100$	－Conaingig 85% or more by wegh fof ofoton	5	NT1	4\％	4\％	4\％	3\％	3\％	2%	2\％	0\％	\％	\％	0\％	0\％	0\％	\％	\％	\％	\％	0\％	\％	\％
4022	52，04，1900	－other	5	NT1	4%	4%	4%	3\％	3\％	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％\％
4023	$52.02,2000$	－Put up for reatal sale	5	NT1	$4{ }^{4 \%}$	4\％	$4{ }^{4 \%}$	${ }^{3 \%}$	3\％	${ }^{2 \%}$	${ }^{2 \%}$	0\％	0\％	0\％	0\％	0\％	0\％	0\％	0\％	0\％	0\％	0\％	0\％	0\％
4024	52，05，100	－－Measuring 714.29 decitex or more（not exceeding 14 metric number）	5	NT1	4%	4\％	4%	3\％	3\％	2%	2%	0\％	\％	\％	\％	0\％	0\％	\％	0\％	0\％	\％	0\％	\％	\％\％
4025	52．05，200	Measuring less than 714.29 decitex but not less than 232.56 decitex（exceeding 14 metric number but not exceeding 43 metric number）	5	${ }^{\text {NT1 }}$	4\％	4\％	4\％	3\％	3\％	2\％	2\％	0\％	\％	\％	0\％	\％	0\％	0\％	0%	0\％	0\％	0\％	\％	\％
$4{ }^{402}$	52，05， 300	－－Measuring less than 232.56 decitex but not less than 192.31 decitex（exceeding 43 metric number but not exceeding 52 metric number）	5	${ }^{\text {NT1 }}$	4\％	4\％	4\％	${ }^{3 \%}$	${ }^{3 \%}$	2\％	2\％	0\％	0\％	\％	\％	0\％	0\％	\％	\％	0\％	\％	0\％	0%	\％\％
4027	52，55，400	Measuring less than 192.31 decitex but not less than 125 decitex（exceeding 52 metric number but not exceeding 80 metric number）	${ }^{5}$	${ }^{\text {NT1 }}$	4\％	4\％	4\％	3\％	3\％	2\％	2\％	\％	\％	\％	\％	\％	\％	0\％	\％	\％	\％	\％	\％	0\％
4028	52，05，500	$\begin{array}{\|l} \hline- \text { Measuring less than } 125 \text { decitex (exceeding } 80 \\ \text { metric number) } \\ \hline \end{array}$	${ }^{5}$	T1	4%	4%	$4{ }^{4 \%}$	${ }^{3 \%}$	3\％	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	0\％	\％	\％
402	52，05，100	$\begin{array}{\|l\|} \hline- \text { Measuring } 714.29 \text { decitex or more (not exceeding } \\ 14 \text { metric number) } \\ \hline \end{array}$	5	V1	${ }^{4 \%}$	${ }^{4 \%}$	4\％	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	0\％	0\％	\％	\％	\％	\％	\％	\％	0\％	\％\％	0\％	0\％
4030	52．052，200	－Measuring less than 714.29 decitex but not less than 232.56 decitex（exceeding 14 metric number but not exceeding 43 metric number）	5	T1	${ }^{4 / 6}$	4%	4\％	${ }^{3 \%}$	${ }^{\text {3\％}}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％	\％	\％	\％	\％	\％\％	\％	\％	0\％	\％	0\％
4031	52．05，300	Measuring less than 232.56 decitex but not less than 192.31 decitex（exceeding 43 metric number but not exceeding 52 metric number）	5	V1	${ }^{4 \%}$	4\％	4\％	3\％	${ }^{3 \%}$	${ }^{2 \%}$	2\％	0\％	\％	\％	\％\％	\％	\％	\％	\％	\％\％	\％	\％\％	\％\％	${ }^{0 \%}$
4032	52.052400	$\begin{aligned} & \text { - - Measuring less than } 192.31 \text { decitex but not less } \\ & \text { than } 125 \text { decitex (exceeding } 52 \text { metric number but } \\ & \text { not exceeding } 80 \text { metric number) } \end{aligned}$	5	${ }^{\text {NT1 }}$	4\％	4\％	4\％	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	0\％	0\％	\％	0\％	\％	\％	0\％	\％	\％	\％	0\％	${ }^{0 \%}$	\％\％
403	52，05，600	－Measuring less than 125 decitex but not less than 106.38 decitex（exceeding 80 metric number but not exceeding 94 metric number）	5	${ }^{\text {NT1 }}$	4\％	4\％	4\％	3\％	3\％	2\％	2\％	\％	0\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％
$4{ }^{4034}$	2052，700	$\begin{aligned} & \text { - - Measuring less than } 106.38 \text { decitex but not less } \\ & \text { than } 83.33 \text { decitex (exceeding } 94 \text { metric number but } \\ & \text { not exceeding } 120 \text { metric number) } \end{aligned}$	5	NT1	4\％	4\％	4\％	3\％	3\％	2\％	2\％	\％	\％	\％	\％	0\％	\％	0\％	\％	\％	0\％	\％	0\％	\％
4035	52，052，800	－－Measuring less than 83.33 decitex（exceeding 120 metric number）	${ }^{5}$	NT1	${ }^{4 \%}$	${ }^{4 \%}$	${ }^{4 \%}$	${ }^{3 \%}$	${ }^{\text {3\％}}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	0\％	\％	\％	\％	\％	\％\％	${ }^{0 \%}$	\％	0\％	\％	${ }_{0}$
4036	52，53，100	Measuring per single yarn 714.29 decitex or more （not exceeding 14 metric number per single yarn）	5	NT1	${ }^{4 \%}$	${ }^{4 \%}$	${ }^{4 \%}$	${ }^{3 \%}$	${ }^{3}$	${ }^{2 \%}$	${ }^{2 \%}$	0\％	${ }_{0}$	${ }^{0 \%}$	0\％	${ }^{0 \%}$	0\％	0\％	\％	\％	${ }_{0}^{0}$	\％	\％	\％
4037	52，05，200	Measuring per single yarn less than 714.29 decitex but not less than 232.56 decitex （exceeding 14 metric number but not exceeding 43 metric number per single yarn）	5	NT1	4\％	4\％	4\％	3\％	3\％	2\％	2\％	0\％	0\％	\％	0\％	0\％	\％	\％\％	\％	0\％	\％	0\％	0\％	\％
4038	52．05，300	－Measuring per single yarn less than 232．56 decitex but not less than 192.31 decitex （exceeding 44 metric number but not exceeding 52 metric number per single yarn）	5	NT1	4\％	4\％	4\％	3\％	3\％	2\％	2\％	\％	0\％	\％\％	\％	\％	0\％	\％	\％	\％	\％	0\％	\％	\％
4039	52，05，400	－Measuring per single yarn less than 192．31 decitex but not less than 125 decitex （exceeding 5 2 metric number but not exceeding 80 metric number per single yarn）	${ }^{5}$	NT1	4\％	4\％	4\％	3\％	${ }^{3 \%}$	2\％	2\％	\％	0\％	\％\％	\％\％	\％	\％	0\％	0\％	0\％	\％\％	0\％	0\％	\％
4040	52，05，500	$\begin{aligned} & \text { - - Measuring per single yarn less than } 125 \text { decitex } \\ & \text { (exceeding } 80 \text { metric number per single yarn) } \end{aligned}$	5	NT1	4%	4\％	4%	${ }^{3 \%}$	3\％	${ }^{2 \%}$	${ }^{2 \%}$	\％	0\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％
4041	52，04，100	－－Measuring per single yarn 714.29 decitex or more （not exceeding 14 metric number per single yarn）	5	NT1	4\％	4\％	${ }^{4 \%}$	3\％	${ }^{\text {3\％}}$	${ }^{2 \%}$	2%	0\％	\％\％	\％	\％	0\％	0\％	\％	\％	0\％	\％\％	0\％	\％	\％
4042	52．05，200		5	NT1	4\％	4\％	4\％	3\％	${ }^{3 \%}$	2\％	2\％	\％	0\％	\％	\％	0\％	0\％	\％\％	0\％	0\％	0\％	0\％	0\％	\％
403	52．54，300		5	NT1	4\％	4\％	4\％	3\％	${ }^{3 \%}$	2\％	2\％	\％	0\％	0\％	\％\％	0\％	0\％	0\％	\％	0\％	\％	0\％	0\％	0\％
4044	52，54，400	- －Measuring per single yarn less than 192.31 （excectitex but not less than 125 decitex （exceding 52 metric number but not exceeding 80 metric number per single yarn）	5	NT1	4\％	4\％	4\％	3\％	3\％	2\％	${ }^{2 \%}$	0\％	0\％	\％	0\％	0\％	\％	0\％	0\％	\％	\％	0\％	0\％	\％
2045	52，54，600	－Measuring per single yarn less than 125 decitex but not less than 106.38 decitex（exceeding 80 metric number but not exceeding 94 metric number －	5	NT1	4\％	4\％	4\％	3\％	3\％	2\％	2\％	\％	0\％	\％	\％\％	0\％	0\％	\％	0\％	\％	\％	0\％	0\％	\％
4046	52，04，700		5	NT1	4\％	4\％	4\％	3\％	3\％	2%	2\％	0\％	0\％	\％	0\％	0\％	0\％	0\％	0\％	0\％	0\％	0\％	0\％	\％

4047	［5，054，800	－－Measuring per single yarn less than 83.33 decitex（exceeding 120 metric number per single yarn）	5	NT1	${ }^{4 \%}$	${ }^{4 \%}$	${ }^{4 \%}$	${ }^{\text {3\％}}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	0\％	0\％	0\％	\％\％	\％	0\％	\％\％	\％	\％	${ }^{\circ}$	\％	${ }^{\circ}$
4048	2．061，100		5	NT1	${ }^{4 \%}$	4\％	${ }^{4 \%}$	3\％	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	0\％	\％	0\％	\％	0\％	\％	\％	\％	\％	\％	\％	\％\％
4049	52，061，200	－－Measuring less than 714.29 decitex but not less than 232.56 decitex（exceeding 14 metric number but not exceeding 43 metric number）	5	NT1	4\％	4%	${ }^{4 \%}$	${ }^{\text {\％}}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％	\％	\％	\％	0\％	0\％	\％	\％	0\％	\％	\％\％
4050	52，06，300	Measuring less than 232.56 decitex but not less than 192.31 decitex（exceeding 43 metric number but not exceeding 52 metric number）	5	NT1	4\％	4\％	${ }^{4 \%}$	3\％	${ }^{3 \%}$	${ }^{2 \%}$	2%	\％	0\％	\％	\％\％	0\％	0\％	\％	\％	\％	0\％	\％	\％	\％\％
4051	52，06，400	Measuring less than 192.31 decitex but not less than 125 decitex（exceeding 52 metric number but not exceeding 80 metric number）	${ }^{5}$	V1	4\％	4\％	4\％	3\％	${ }^{3 \%}$	2\％	2\％	\％	0\％	\％	0\％	\％	\％	\％	\％\％	\％	\％	\％	\％	\％
4052	52，061，500		${ }^{5}$	NT1	4\％	${ }^{4 \%}$	4\％	3\％	3\％	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％	\％	0\％	\％	0\％	0%	\％	0\％	0\％	0\％	\％
4053	52，062，100		5	${ }^{\text {T1 }}$	${ }^{4 \%}$	${ }^{4 \%}$	${ }^{4 \%}$	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％	\％	\％	\％	\％	${ }^{0 \%}$	${ }^{0 \%}$	\％	${ }^{0 \%}$	\％	\％\％
2054	52，062，200	－Measuring less than 714.29 decitex but not less than 232.56 decitex（exceeding 14 metric number but not exceeding 43 metric number）	5	N1	4%	4\％	4\％	3\％	3\％	${ }^{2 \%}$	${ }^{2 \%}$	\％	${ }^{0 \%}$	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％
1055	52，06，300	－Measuring less than 232.56 decitex but not less than 192.31 decitex（exceeding 43 metric number but not exceeding 52 metric number）	5	V1	4\％	4\％	${ }^{4 \%}$	3\％	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％
1056	52，06，400	－Measuring less than 192.31 decitex but not less than 125 decitex（exceeding 52 metric number but not exceeding 80 metric number）	5	V1	4\％	${ }^{4 \%}$	${ }^{4 \%}$	3\％	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％	\％	0\％	\％	\％	\％	\％	\％	\％	\％	0\％
4057	2，062，500	- Measuring less than 125 decitex（exceeding 80 metric number）	${ }^{5}$	T1	${ }^{4 \%}$	${ }^{4 \%}$	${ }^{4 \%}$	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％\％	\％	\％	\％	\％	\％	\％	${ }^{\text {\％}}$	\％	\％	0\％	\％	\％\％
058	52，06， 100	- Measuring per single yarn 714.29 decitex or more （not exceeding 14 metric number per single yarn）	5	V1	4%	${ }^{4 \%}$	${ }^{4 \%}$	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％	0\％	\％	\％	\％	\％	\％	\％	0\％	\％	\％
4059	52，063．200		5	NT1	4%	4\％	4\％	${ }^{3 \%}$	3\％	2\％	${ }^{2 \%}$	0\％	0\％	\％	\％	0\％	0\％	\％	\％	0\％	0\％	\％	\％	\％
4060	52，06，300		5	NT1	4\％	4\％	4\％	3\％	3\％	2\％	2\％	0\％	\％\％	\％	\％	0\％	0\％	\％	\％\％	0\％	0\％	\％	0\％	\％\％
4061	52，06，400	- Measuring per single yarn less than 192．31 decitex but gno tess than 125 decitex （exceeding 52 metric number but not exceeding 80 metric number per single eyarn）	${ }^{5}$	NT1	4\％	4\％	4\％	3\％	3\％	2\％	2\％	0\％	0\％	0\％	0\％	\％\％	0\％	\％	\％\％	0\％	0\％	\％	\％	\％
4062	2，063，500	$\begin{array}{\|l\|} \hline- \text { Measuring per single yarn less than } 125 \text { decitex } \\ \text { (exceeding } 80 \text { metric number per single yarn) } \end{array}$	5	N1	4\％	4\％	4\％	${ }^{3 \%}$	3\％	2\％	${ }^{2 \%}$	0\％	\％	\％	\％	\％	0\％	\％	\％	0\％	0\％	\％	\％	\％
${ }^{4063}$	52，064，100		5	NT1	4\％	4\％	4\％	3\％	3\％	${ }^{2 \%}$	2\％	0\％	\％	\％	0\％	\％	0\％	\％	\％	\％	0\％	\％	\％	\％
	52，064，200		5	NT1	4\％	4\％	4\％	3\％	3\％	2\％	2\％	0\％	0\％	0\％	\％\％	\％\％	0\％	\％	0\％	\％\％	\％\％	\％\％	0\％	\％\％
2006	52，06，300		5	NT1	4%	4\％	4\％	3\％	3\％	2\％	2\％	0\％	\％\％	0\％	\％	\％	0\％	\％\％	0\％	\％	0\％	0\％	0\％	\％
2066	52，06，400	- Measuring per single yarn less than 192．31 decitex but gno tess than 125 decitex （exceeding 52 metric number but not exceeding 80 metric number per single yarn）	${ }^{5}$	NT1	4\％	4\％	4\％	3\％	3\％	2\％	2\％	0\％	0\％	\％	\％	\％	\％	\％	\％	0\％	\％	\％	\％	\％
2007	52，06，500		5	NT1	4%	4\％	${ }^{4 \%}$	3\％	3\％	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％	\％	0\％	0\％	\％	\％	0\％	\％	\％	\％	\％
4088	$55.2071,000$	－Conaining 85% or more by weighto fotoon	5	NT1	4\％	${ }^{4 \%}$	$4{ }^{4 \%}$	3\％	${ }^{3} \%$	${ }^{2 \%}$	2%	\％	\％	\％	0\％	0\％	0\％	\％	\％	\％	\％	0\％	\％	\％\％
4089	52，07，900	－Onter	5	NT1	4\％	4\％	${ }^{4 \%}$	${ }^{3 \%}$	${ }^{3 \%}$	2\％	2\％	\％	\％	\％	\％	\％	0\％	0\％	\％	\％	\％	\％	0\％	\％
4070	${ }^{52,08,1,100}$	－Plain weave，wegining not more than $100 \mathrm{~g} / \mathrm{m}$ 2	10	NT2	9\％	9\％	${ }^{8 \%}$	8\％	6\％	6\％	5\％	5\％	$4{ }^{4 \%}$	4\％	${ }^{3 \%}$	3\％	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％	0\％	\％	\％
4071	52，08，200	－Pain weeve，weighing moee than $100 \mathrm{~g} / \mathrm{m}$ 2	10	N2	\％	\％	${ }_{8} 8$	${ }^{8 \%}$	6\％	6\％	5\％	5\％	$4{ }^{4 \%}$	$4{ }^{4}$	${ }^{3 \%}$	3\％	2\％	${ }^{2 \%}$	\％	\％\％	0\％	0\％	0\％	\％
4072	${ }^{52,081,300}$	$\cdots 3$－tread or 4 thread will in oluling cosos will	10	NT2	9\％	9\％	${ }^{\text {8\％}}$	${ }^{8 \%}$	6\％	6%	${ }^{5 \%}$	${ }^{5 \%}$	4\％	${ }^{4 \%}$	3\％	3\％	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	0\％	\％	\％	\％
4073	52，08，900	－Omer fabics	10	NT2	9\％	9\％	\％	${ }^{8 \%}$	6\％	6\％	5\％	5\％	4\％	$4{ }^{4 \%}$	3\％	3\％	${ }^{2 \%}$	${ }^{2 \%}$	\％\％	\％	\％	0\％	0\％	\％\％
40074	$5^{52,082,100}$	－－Palin weave，wegiting not moer than 100 gm m	10	NT2	9\％	\％${ }^{\text {\％}}$	${ }^{8 \%}$	${ }^{8 \%}$	6\％	6\％	${ }^{5 \%}$	${ }^{5 \%}$	4\％	${ }^{4 / 6}$	${ }^{3 \%}$	${ }^{3 \%}$	2%	${ }^{2 \%}$	\％\％	0\％	0\％	\％	0\％	0\％
4075	$55^{5,082,200}$	－－Plain weave，weighing more than $100 \mathrm{~g} / \mathrm{m}$ 2	10	N2	${ }^{9 \%}$	${ }^{9 \%}$	${ }^{8 \%}$	${ }^{8 \%}$	${ }^{6 \%}$	6\％	5\％	${ }^{5 \%}$	4\％	${ }^{4 \%}$	${ }^{3 \%}$	${ }^{3}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％\％	\％	\％	0\％	0\％
4076	${ }^{52,082,300}$	${ }^{-3 . t h r e a d ~ o r ~} 4$ Alimead will incluing cosos will	${ }^{10}$	NT2	${ }^{9 \%}$	\％	${ }^{\text {8\％}}$	${ }^{8 \%}$	6\％	6%	5\％	${ }^{5 \%}$	4%	${ }^{4 \%}$	3\％	3\％	${ }^{2 \%}$	${ }^{2 \%}$	0\％	0\％	0\％	\％	\％	\％
4077	$5{ }^{5,082,900}$	－Omer fabics	10	N2	9\％	3\％	${ }^{8 \%}$	8\％	6\％	6\％	5\％	${ }^{5 \%}$	${ }^{4 \%}$	${ }^{4 \%}$	3\％	3\％	${ }^{2 \%}$	2%	\％	\％	0\％	\％	\％	0\％
4078	52，08，100	－－Pain weve，weghing not moer tran 100 gm ／	10	NT2	9\％	9\％	${ }^{8 \%}$	${ }^{8 \%}$	6%	6\％	5\％	${ }^{5 \%}$	4\％	${ }^{4 \%}$	3\％	3\％	2%	2\％	0\％	\％	0\％	0\％	\％	\％
4079	52，083，200	－－Pain weave，weighing more tran 100 gm m	10	N2	9\％	\％	8\％	8%	6\％	6\％	5\％	${ }^{5 \%}$	4\％	${ }^{4 \%}$	3\％	3\％	2\％	2\％	\％	\％	\％	0\％	\％	0\％
4080	52，08，300		10	NT2	9\％	9\％	${ }^{8 \%}$	${ }^{8 \%}$	6\％	6\％	5\％	5\％	4\％	${ }^{4 \%}$	3\％	3\％	2\％	2\％	\％\％	\％	\％	\％	0\％	0%
4081	52，083，900	－omer fabics	10	NT2	9\％	\％	${ }^{8 \%}$	8\％	6\％	6\％	5\％	5\％	4\％	4\％	3\％	3\％	2\％	2%	0\％	\％	0\％	\％	\％	\％
2082	${ }^{52,084,100}$	－－PPain weave，weigh hin not more thar $100 \mathrm{~g} / \mathrm{m}$ 2	10	NT2	9%	${ }^{\text {\％}}$	${ }^{8 \%}$	${ }^{8 \%}$	6\％	${ }^{6 \%}$	5\％	${ }^{5 \%}$	4\％	4\％	3\％	3\％	${ }^{2 \%}$	${ }^{2 \%}$	\％\％	0\％	0\％	\％	\％	\％\％
4083	52，084，200	－－Plain weave，weighing more thar 100 $\mathrm{m}^{\text {m } 2}$	10	NT2	9\％	\％	${ }^{8 \%}$	8\％	6\％	6\％	5\％	5\％	${ }^{4 \%}$	${ }^{4 \%}$	3\％	3\％	2\％	2\％	\％	\％\％	\％	\％	0\％	\％
4084	4，300	3．thread or 4 4tread will in inuling cosos wil	10	T2	9\％	${ }^{9 \%}$	8\％	${ }^{8 \%}$	6\％	6\％	${ }^{5 \%}$	${ }^{5 \%}$	${ }^{4 \%}$	${ }^{4 \%}$	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％	\％	\％	\％
4085	52，08，9，00	Onter fabics	10	NT2	9\％	\％	${ }^{8 \%}$	${ }_{8}^{8 \%}$	6\％	6\％	5\％	${ }^{5 \%}$	4%	${ }^{4 \%}$	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％	\％	0\％	\％
4086	52，05，110	－Pinted by He traditiona baikr process	10	N2	9\％	${ }^{9 \%}$	8\％	8\％	6\％	6\％	5\％	${ }^{5 \%}$	4%	$4{ }^{4}$	${ }^{3 \%}$	3\％	${ }^{2 \%}$	${ }^{2 \%}$	0\％	\％	\％	\％	\％	\％
4087	${ }^{52,085,190}$	－omer	10	NT2	9%	9\％	${ }^{8 \%}$	${ }^{8 \%}$	6\％	6\％	5\％	${ }^{5 \%}$	4\％	${ }^{4 \%}$	3\％	3\％	2%	${ }^{2 \%}$	0\％	0\％	0\％	\％	\％	0\％
4088	${ }^{52,05,5,210}$	\cdots Prined by the tasational baik process	10	NT2	9\％	9\％	8\％	8\％	6\％	6\％	5\％	5\％	4\％	4\％	3\％	3\％	2\％	2\％	\％	0\％	0\％	0\％	\％	0\％
4089	52，08，290	－－Other	10	NT2	9\％	9\％	${ }^{8 \%}$	8\％	6\％	6\％	5\％	5\％	4%	4%	3\％	3\％	${ }^{2 \%}$	2\％	0\％	0\％	0\％	0\％	\％	\％\％
4090	52，085，910	\cdots－－Pinled by the traditiona baik process	10	NT2	9\％	9\％	${ }^{8}$	${ }^{8 \%}$	6\％	6\％	5\％	5\％	4\％	4\％	3\％	3\％	2\％	2\％	\％	\％	\％	\％	\％	\％
4091	52，08，990	－omer	10	NT2	9\％	\％	8\％	$8{ }^{8}$	6\％	6\％	5\％	5\％	4\％	4\％	3\％	3\％	2\％	2\％	0\％	\％	0\％	\％	\％	0\％
4092	52，09，100	－Plan weave	10	NT2	9\％	\％	${ }^{8} \%$	${ }^{8 \%}$	6\％	6\％	${ }^{5 \%}$	${ }^{5 \%}$	4\％	${ }^{4 \%}$	3\％	3\％	2\％	${ }^{2 \%}$	\％	\％	\％	\％	\％	\％
4093	52，09，200	－3．tread of 4．tread mili，inculing cosos wil	10	NT2	9%	9\％	8\％	${ }^{8 \%}$	6\％	6\％	${ }^{5 \%}$	5\％	${ }^{4 \%}$	${ }^{4 \%}$	3\％	3\％	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％	\％	\％	0\％
4094	52，09，900	Other fabicis	10	NT2	9\％	${ }^{9}$	${ }^{8 \%}$	${ }^{8 \%}$	6\％	6\％	5\％	5\％	4%	$4{ }^{4 \%}$	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	0\％	0\％	0\％	0\％	0\％	\％
4005	55，092，100	－Plan weave	10	N2	9\％	${ }^{9 \%}$	8\％	8\％	6\％	6\％	5\％	${ }^{5 \%}$	4\％	4\％	3\％	3\％	${ }^{2 \%}$	2\％	0\％	0\％	0\％	\％	0\％	0\％
4096	$5{ }^{52,02,200}$		10	NT2	9\％	9\％	${ }^{8 \%}$	${ }^{8 \%}$	6\％	6\％	5\％	${ }^{5 \%}$	4\％	${ }^{4 \%}$	${ }^{3 \%}$	3\％	${ }^{2 \%}$	${ }^{2 \%}$	0\％	\％	0\％	0\％	\％	0\％
4097	52，02，900	－Other fabicis	10	NT2	9\％	${ }^{9 \%}$	${ }^{8 \%}$	${ }^{8 \%}$	6%	6\％	5\％	${ }^{5 \%}$	4%	${ }^{4 \%}$	${ }^{3 \%}$	3\％	${ }^{2 \%}$	2\％	0\％	\％	\％	\％	\％	\％
4098	55，093，100	－Plin weave	10	NT2	9\％	9\％	8\％	8\％	6\％	6\％	5\％	5\％	4\％	4\％	3\％	3\％	${ }^{2 \%}$	2\％	\％	0\％	0\％	0\％	0\％	\％
4099	52，03，200	－3．tread or 4 thread will inculing cosos swill	10	NT2	9\％	9\％	${ }^{8 \%}$	${ }^{8 \%}$	6%	6\％	5\％	${ }^{5 \%}$	${ }^{4 \%}$	${ }^{4 \%}$	3\％	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％	\％	\％	0\％
4100	52，09，900	－other fabics	10	st	0\％	10%	10%	10\％	10\％	0\％	10\％	10\％	8\％	${ }^{7 \%}$	6\％	5\％	4%	3\％	${ }^{2 \%}$	1\％	\％	\％	\％	0\％
4101	52，094，100	－Plan weave	10	${ }^{\text {NT2 }}$	9\％	9\％	${ }^{8 \%}$	${ }^{8 \%}$	6\％	6\％	5\％	${ }^{5 \%}$	4\％	4\％	3\％	3\％	${ }^{2 \%}$	2\％	\％	\％	\％	\％	\％	\％
4102	55，04，200	－Denim	10	NT2	9\％	\％	8\％	8\％	6\％	6\％	${ }^{5 \%}$	${ }^{5 \%}$	4\％	4\％	3\％	3\％	${ }^{2 \%}$	${ }^{2 \%}$	\％	0\％	0\％	0\％	0\％	0\％
$4{ }^{403}$	52，04，300	－Other fabrics of 3－thread or 4－thread twill， including cross twill	10	N2	${ }^{9 \%}$	${ }_{9 \%}$	8\％	8\％	6\％	6\％	${ }^{5 \%}$	5\％	${ }^{4 \%}$	4\％	3\％	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％	\％	0\％	0\％
4104	55，04，900	－Other faticics	${ }^{10}$	NT2	9\％	${ }^{9 \%}$	${ }^{8 \%}$	8\％	6\％	6\％	${ }^{5 \%}$	${ }^{5 \%}$	$4{ }^{4 \%}$	4\％	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	0\％	0\％	0\％	\％	0\％	0\％
4	${ }^{52,095,110}$	\cdots P Pinte by the trationa baik process	${ }^{10}$	N2	9\％	${ }^{9 \%}$	8\％	${ }^{8 \%}$	6\％	6\％	5\％	${ }^{5 \%}$	4\％	4\％	3\％	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	0\％	0\％	0\％	\％	\％\％	0\％
4106	${ }^{52,095,190}$	－Other	10	${ }^{\text {NT2 }}$	9\％	9\％	${ }^{8 \%}$	${ }^{8 \%}$	6\％	6\％	${ }^{5 \%}$	${ }^{5 \%}$	4\％	${ }^{4 \%}$	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	0\％	0\％	0\％	0\％	0\％	0\％
4107	${ }^{55,095,210}$	－－P Pinted by the trational baik pocoss	10	NT2	9\％	9\％	8\％	${ }^{8 \%}$	6\％	6\％	5\％	${ }^{5 \%}$	4\％	${ }^{4 \%}$	3\％	3\％	${ }^{2 \%}$	${ }^{2 \%}$	0\％	0\％	0\％	\％	\％	0\％
4108	55，09，290	\cdots	10	NT2	9\％	9\％	8\％	8\％	6\％	6\％	5\％	${ }^{5 \%}$	4\％	4\％	3\％	3\％	${ }^{2 \%}$	2\％	\％	0\％	\％	\％	\％	\％
4109	52，09，910		10	NT2	9\％	${ }^{9 \%}$	${ }^{8 \%}$	${ }^{8 \%}$	6%	6\％	5\％	${ }^{5 \%}$	4\％	${ }^{4 \%}$	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	0\％	0\％	0\％	0\％	0\％
4110	52，05，990	－omer	10	${ }^{\text {NT2 }}$	9\％	9\％	${ }^{8 \%}$	${ }^{8 \%}$	6\％	6\％	${ }^{5 \%}$	${ }^{5 \%}$	4\％	4\％	3\％	3\％	${ }^{2 \%}$	2%	\％	\％	\％	0\％	\％	\％
411	52，01，100	Plain weave	10	N2	9\％	9\％	8%	${ }^{8 \%}$	6\％	6\％	5\％	5\％	${ }^{4 \%}$	4\％	${ }^{3 \%}$	3\％	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％	\％	\％	\％
4112	${ }^{52,101,900}$	Other fabics	10	N2	9\％	9\％	${ }^{8 \%}$	8\％	6\％	6\％	${ }^{5 \%}$	${ }^{5 \%}$	4\％	4\％	3\％	3\％	${ }^{2 \%}$	${ }^{2 \%}$	0\％	0\％	0\％	\％	0\％	0\％
${ }^{4113}$	52，102，100	－Pain	${ }^{10}$	${ }^{\text {NT2 }}$	${ }^{9}$	9\％	8\％	8\％	6\％	6\％	5\％	5\％	4\％	4%	3\％	3\％	2\％	2\％	\％	\％	\％	\％	\％	\％

香港•ASEAN FTAにかかる調査報告書

香港•ASEAN FTAにかかる調査報告書

香港•ASEAN FTAにかかる調査報告書

1290	［5，08，090	－Oner	5	NT1	4\％	${ }^{4 \%}$	${ }^{4 \%}$	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	0\％	\％	\％	0\％	\％\％	\％	\％	\％\％	\％	0\％	\％
429	55，02，010	－Put up for realal sale	5	NT1	4%	4%	4%	${ }^{3 \%}$	3\％	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％	\％	\％	\％	\％	\％\％	\％	\％	0\％	\％	0\％
${ }^{2292}$	55，02，290	－other	5	NT1	4%	4%	4%	${ }^{3 \%}$	${ }^{3} \%$	2\％	${ }^{2 \%}$	\％	\％	\％	\％	\％	\％	0\％	\％	\％	\％	\％	0\％	\％
${ }^{93}$	55，09，100	Single van	5	NT1	4\％	${ }^{4 \%}$	4\％	${ }^{3} \%$	3\％	${ }^{2 \%}$	2\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％
429	55，09，200	－Mutipe（fobed）of cabed yam	5	V1	4%	${ }^{4 \%}$	$4{ }^{4 \%}$	${ }^{3 \%}$	3\％	2\％	${ }^{2 \%}$	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％
4295	55，92，100	Singl eam	5	V1	${ }^{4 \%}$	4\％	${ }^{4 \%}$	${ }^{3 \%}$	${ }^{3}$	${ }^{2 \%}$	${ }^{2 \%}$	0\％	0\％	0\％	0\％	0\％	0\％	0\％	\％	0\％	0\％	0\％	\％	\％\％
4296	55，022，200	Mutipe（tobed） ra cabed yam	5	N1	4\％	4%	4%	${ }^{3 \%}$	${ }^{3}$	${ }^{2 \%}$	${ }^{2 \%}$	0\％	0\％	0\％	0\％	0\％	0\％	0\％	\％	\％	\％	0\％	\％	\％
${ }^{2297}$	55，03，100	Single ean	5	N1	4\％	4%	$4{ }^{4 \%}$	${ }^{3 \%}$	3\％	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％	\％	0\％	\％	\％	\％	\％	\％	\％	\％	\％
$4{ }^{4298}$	55，93，200	－Mulipel（tobed）or cabled yam	5	V1	4%	4\％	4%	${ }^{3 \%}$	3\％	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％	\％	\％	\％	0\％	\％	\％	\％	\％	0\％	\％
429	55，94，100	－Singe eam	5	NT1	4%	4%	4%	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％\％	\％	0\％	\％	0\％	\％	\％	\％	\％	0\％	\％
4300	55，04，200	－Mutipel（tobees）or cabed yam	5	NT1	4%	$4{ }^{4 \%}$	4%	${ }^{3 \%}$	3\％	${ }^{2 \%}$	${ }^{2 \%}$	0\％	\％	0\％	0\％	0\％	\％	\％	0\％	\％	0\％	0\％	0\％	\％\％
4301	55，05，100	－Mxeded maniy or solely wit ariticials sape tibes	5	NT1	4%	4%	4\％	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％	\％	\％	\％	0\％	\％	\％	\％	\％	\％	\％
4302	55，09，210	Single yan	5	NT1	${ }_{4}^{4 \%}$	${ }^{4 \%}$	4\％	3\％	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	0\％	0\％	0\％	0\％	0\％	0\％	0\％	\％	\％	0\％	0\％	0\％	\％
4303	55，95，200	－－omer	5	NT1	4\％	4\％	4\％	3\％	${ }^{3} \%$	${ }^{2 \%}$	${ }^{2 \%}$	0\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％
4304	55，09，300	uned many orsoley wit cotoon	5	NT1	$4{ }^{4 \%}$	4%	$4{ }^{4}$	3\％	3\％	2\％	${ }^{2 \%}$	\％	0\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	0\％	0\％
${ }^{4305}$	55，95，900	－Other	5	v1	4%	$4{ }^{4 \%}$	4%	3\％	3\％	${ }^{2 \%}$	2\％	\％	\％	0\％	0\％	\％	\％	0\％	0\％	\％	0\％	0\％	0\％	\％
4306	55，99，100	$\begin{aligned} & \text { - - Mixed mainly or solely with wool or fine animal } \\ & \text { hair } \\ & \hline \end{aligned}$	5	N1	${ }^{4 \%}$	${ }^{4 \%}$	${ }^{4 \%}$	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％	\％	0\％	0\％	0\％	\％	\％	\％	0\％	\％	\％
4307	55，96，200	－－Mred many o osoley wit coton	5	V1	${ }^{4 \%}$	${ }_{4}{ }^{4}$	${ }^{4 \%}$	${ }^{3 \%}$	${ }^{\text {3\％}}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	0\％	\％	\％	0\％	0\％	0\％	\％	0\％	\％	\％	\％
4308	55，96，900	－－omer	5	NT1	4%	4%	4%	3\％	3\％	2%	${ }^{2 \%}$	\％	\％	0\％	\％	0\％	\％	\％	\％	\％	\％	\％	\％	\％
4309	55，09，100	Hair Mired mainy or solely with woo or fine aimal	5	NT1	4\％	4\％	4%	3\％	3\％	2\％	2\％	0\％	\％	\％	\％	\％	0\％	\％	\％	\％	\％	\％	\％	\％
4	55，99，200	－Mixed maniny orsoley wit cotoon	5	NT1	4%	${ }^{4 \%}$	$4{ }^{4 \%}$	${ }^{3 \%}$	3\％	2\％	${ }^{2 \%}$	0\％	\％	0\％	\％	0\％	\％	0\％	0\％	\％	\％	\％	0\％	\％
${ }^{4311}$	55，09，900	－Other	5	NT1	4%	4\％	4\％	${ }^{3 \%}$	3\％	2\％	2\％	0\％	0\％	0\％	0\％	0\％	0\％	0\％	0\％	\％	0\％	\％	0\％	\％
$4{ }^{4312}$	55，01，100	Singl evan	5	NT1	4%	4%	4%	3\％	3\％	2%	2%	0\％	0\％	\％	0\％	0\％	0\％	\％	\％	\％\％	0\％	\％	0\％	0\％
${ }^{2313}$	55，01，200	Mulipel（lodeed）or cabled yam	5	NT1	4%	${ }^{4 \%}$	4\％	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％	0\％	0\％	\％	\％	0\％	0\％	\％	\％	0\％	\％
4314	55，12，200	－Other yarn，mixed mainly or solely with wool or fine animal hair	5	NT1	4\％	4\％	4\％	3\％	3\％	${ }^{2 \%}$	2%	0\％	\％	\％	\％	0\％	\％	\％	\％	0\％	0\％	\％	0\％	\％
4315	55，103，000	－Oner yam，mixed manily orsoly with ofton	5	NT1	4\％	4\％	4\％	3\％	3\％	2%	${ }^{2 \%}$	\％	\％	\％	0\％	\％	\％	\％	\％	\％	0\％	0\％	\％	\％
${ }^{2316}$	55，109，000	－Oner yam	5	NT1	4%	4\％	4%	${ }^{3 \%}$	3\％	2%	2\％	\％	0\％	\％	\％	\％	\％	\％	\％	\％	0\％	\％	\％	\％
4317	551.10 .10	Knitting yarn，crochet thread and embroidery	5	NT1	4%	4%	4%	${ }^{3 \%}$	3\％	2%	${ }^{2 \%}$	0\％	\％	\％	\％	\％	0\％	\％	\％	\％	\％	0\％	\％	\％
${ }^{2318}$	55，111，090	${ }^{- \text {－other }}$	${ }^{5}$	T1	${ }^{4 \%}$	$4{ }^{4 \%}$	${ }^{46 \%}$	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	0\％	\％	0\％	\％	0\％	0\％	0\％	\％	0\％	0\％	0\％	0\％	0\％
$4{ }^{4319}$	55，12，010	- －Kititng yarn，crochet thread and embroidery thread	${ }^{5}$	V1	4\％	${ }^{4 \%}$	4\％	3\％	3\％	2%	${ }^{2 \%}$	\％	\％	0\％	\％	\％	\％	0\％	\％	\％	\％	\％	\％	\％
20	55，12，090	－－other	5	V1	4\％	${ }^{4 \%}$	${ }^{4 \%}$	${ }^{3 \%}$	${ }^{3}$	2\％	2\％	\％	\％	0\％	0\％	\％	0\％	0\％	\％\％	\％	0\％	0\％	0\％	0\％
4321	55，113，000	Of atitical sapel fibes	5	N1	4\％	4%	4%	${ }^{3 \%}$	3\％	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％	\％	\％	0\％	\％	\％	\％	0\％	\％	\％	\％
4322	55，12，100	Unbleadeded of beached	10	NT2	9\％	9\％	${ }_{8 \%}$	8\％	6\％	6\％	5\％	5\％	4\％	4\％	3\％	3\％	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％	\％	\％	\％
${ }^{4323}$	55，12，900	－other	${ }^{10}$	NT2	${ }^{9}$	${ }^{9 \%}$	${ }^{8 \%}$	${ }^{8 \%}$	6\％	${ }^{6}$	${ }^{5 \%}$	${ }^{5 \%}$	4\％	4%	${ }^{3}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	0\％	\％	\％	\％
$4{ }^{4324}$	55，122，100	Unobeached or beacthed	10	NT2	9\％	9\％	${ }^{8 \%}$	${ }^{8 \%}$	6\％	6\％	5\％	5\％	4\％	4\％	3\％	3\％	2\％	${ }^{2 \%}$	\％	\％	0\％	\％	0\％	0\％
${ }^{4325}$	55，12，2900	－other	10	NT2	9\％	\％	${ }_{8 \%}$	${ }^{8 \%}$	6%	6\％	5\％	${ }^{5 \%}$	4%	4%	3\％	3\％	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	0\％	\％	\％	\％
${ }^{4326}$	55，12，100	－Unbleached of rleached	10	NT2	9\％	\％$\%$	${ }^{8 \%}$	${ }^{8 \%}$	6%	6\％	5\％	${ }^{5 \%}$	4\％	4\％	3\％	${ }^{3}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	0\％	\％	\％	\％	\％\％
${ }_{4327}$	55，12，900	Other	10	NT2	9\％	9\％	${ }_{8}^{8 \%}$	8\％	6\％	6\％	5\％	5\％	4\％	4\％	3\％	3\％	2\％	${ }^{2 \%}$	\％	\％	\％	\％	\％	\％
${ }^{4328}$	55，131，100	－Of poyseserestape fives，plan weave	10	N2	${ }^{9 \%}$	9\％	8%	${ }^{8 \%}$	6\％	6\％	5\％	${ }^{5 \%}$	4\％	4\％	3\％	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	0\％	\％	\％\％	\％	\％	\％
4339	55，13，200	3－thread or 4－thread twill，including cross twill，of polyester staple fibres	10	NT2	9\％	9\％	${ }_{8} 8$	8\％	6\％	6\％	5\％	${ }^{5 \%}$	4%	${ }^{4 \%}$	3\％	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％	\％	\％	\％
4330	55，13，300	\cdots Other woven fabicis of poyyseserstapel fives	10	NT2	9\％	\％	${ }_{8 \%}$	8%	6\％	6\％	5\％	${ }^{5 \%}$	4\％	4\％	3\％	3\％	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％	0\％	\％	\％
${ }^{4331}$	55，13，900	－Onter woven fabicis	10	NT2	\％$\%$	9\％	8\％	8\％	6\％	6\％	5\％	${ }^{5 \%}$	4\％	4\％	3\％	3\％	2\％	${ }^{2 \%}$	\％	\％	0\％	\％	\％	0\％
${ }^{4332}$	55，132，100	－Of poyeseserstape itoses，plan weave	10	N2	9\％	9\％	${ }_{8 \%}$	${ }^{8 \%}$	6\％	6\％	5\％	${ }^{5 \%}$	4%	$4{ }^{4 \%}$	3\％	3\％	2\％	${ }^{2 \%}$	\％	\％	\％	\％	\％	\％
${ }^{2333}$	${ }^{55,132,300}$		${ }^{10}$	${ }^{\text {NT2 }}$	${ }^{9 \%}$	9\％	8%	${ }^{8 \%}$	6\％	6\％	5\％	${ }^{5 \%}$	4\％	4\％	3\％	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％	\％	\％	\％
${ }_{4}^{434}$	55，13，2900	Ofter woven fabics	10	N2	9\％	9\％	${ }_{8} 8$	${ }_{8 \%}$	6\％	6\％	5\％	${ }^{5 \%}$	${ }^{4 \%}$	4\％	${ }^{3} \%$	3\％	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	0\％	\％	\％	\％
${ }_{4}^{2335}$	55，13，100	－Of poyeseserstapel fioses，plain weave	10	NT2	9\％	9\％	${ }_{8} \%$	${ }^{8 \%}$	6\％	6\％	5\％	5\％	4\％	4%	3\％	3\％	${ }^{2 \%}$	2%	0\％	0\％	0\％	\％	0\％	\％
${ }^{4336}$	55，13，300	Oner woven fabicis	10	N2	${ }^{9}$	9\％	${ }^{8}$	${ }^{8 \%}$	6%	6\％	5\％	${ }^{5 \%}$	4\％	4%	${ }^{3}$	${ }^{3}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％	\％	\％	\％\％
${ }_{4}^{4337}$	55，134，100	－Of polveseres sapel flves，plain weave	10	NT2	9\％	\％$\%$	${ }^{8 \%}$	${ }^{8 \%}$	6%	6%	5\％	${ }^{5 \%}$	4%	4%	3\％	${ }^{3 \%}$	2\％	${ }^{2 \%}$	\％	\％	0\％	\％	\％	\％
${ }^{4338}$	55，13，4，90	－Onere woven fabicis	10	NT2	9\％	\％	${ }^{8 \%}$	${ }^{8 \%}$	6\％	6\％	5\％	${ }^{5 \%}$	4%	4%	3\％	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％	0\％	\％	\％
${ }^{4339}$	55，44，100	－Of poyeseser Stapel tioses，plan weave	10	NT2	9\％	${ }^{\text {\％}}$	${ }^{8 \%}$	${ }^{8 \%}$	6%	6\％	5\％	${ }^{5 \%}$	4\％	4\％	3\％	3\％	2\％	2\％	\％	\％	0\％	\％	\％	0\％
${ }^{4340}$	55，44，200	－3－thread or 4－thread twill，including cross twill，of polyester staple fibres	10	N2	9\％	9\％	8\％	8\％	6\％	6\％	5\％	${ }^{5 \%}$	4\％	${ }^{4 \%}$	3\％	3\％	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％	\％	\％	\％
${ }^{2341}$	5141，900	－Other woven fibicics	${ }^{10}$	ง2	9\％	9\％	8%	8\％	6\％	\％	5\％	${ }^{5 \%}$	4%	4%	${ }^{3 \%}$	3\％	${ }^{2 \%}$	${ }^{2 \%}$	\％	0\％	\％	\％	\％	\％
${ }^{2342}$	$55,142,100$	\cdots	10	NT2	9\％	\％\％	8%	${ }^{8 \%}$	6\％	6%	5\％	${ }^{5 \%}$	$4{ }^{4 \%}$	4%	3\％	3\％	${ }^{2 \%}$	2%	\％	\％	\％	\％	\％	\％
${ }^{2343}$	55，122，200	3－thread or 4－thread twill，including cross twill，of polyester staple fibres	10	N2	\％	9\％	8\％	${ }^{8 \%}$	6\％	6\％	5\％	5\％	${ }^{4 \%}$	${ }^{4 \%}$	3\％	3\％	${ }^{2 \%}$	${ }^{2 \%}$	\％	0\％	\％	\％	0\％	\％
43	2，300	Ohter woven fabics of poveseser stape fibles	10	т2	${ }^{9 \%}$	${ }_{9}{ }^{\circ}$	${ }^{8 \%}$	${ }^{8 \%}$	6\％	6\％	${ }^{5 \%}$	${ }^{5 \%}$	${ }^{4 \%}$	${ }^{4 \%}$	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％	\％	\％	${ }^{\circ}$
${ }^{2345}$	55，142，200	Oher woventabics	10	NT2	9\％	${ }^{9 \%}$	8%	${ }^{8 \%}$	\％	6\％	${ }^{5 \%}$	${ }^{5 \%}$	4%	${ }^{4 \%}$	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％	0\％	0\％	0\％
${ }^{1346}$	55，14，000	－ot yans of offierent colurs	10	N2	9\％	9\％	${ }^{8}$	${ }^{8 \%}$	6%	6\％	5\％	${ }^{5 \%}$	4%	4%	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％	\％	\％	\％
${ }^{3347}$	55，14，100	Of polvesese stapel fibes，plain weave	10	NT2	9\％	\％	${ }_{8 \%}$	8%	6\％	6\％	5\％	${ }^{5 \%}$	4%	4%	3\％	3\％	2\％	2\％	\％	\％	\％	\％	\％	\％
${ }^{4338}$	55，14，200	-3 ．thread or 4 －thread twill，including cross twill，of polyester stapl fibres	10	N2	9\％	9\％	${ }^{8}$	${ }^{8 \%}$	6%	6%	5\％	5\％	4\％	4%	3\％	3\％	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％	\％	\％	\％
349	$55,144,300$		10	NT2	9\％	9\％	${ }^{8 \%}$	${ }^{8 \%}$	6\％	6\％	5\％	${ }^{5 \%}$	4\％	4\％	3\％	3\％	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％\％	\％\％	\％	0\％
4350	55，14，900	－Onter woven fabicis	10	NT2	9\％	9\％	8\％	8\％	6\％	6\％	5\％	5\％	4\％	4\％	3\％	${ }^{3 \%}$	${ }^{2 \%}$	2\％	\％	\％	\％	\％	\％	\％
	55，15，100		10	N2	9\％	\％	${ }_{8} 8$	8\％	6\％	6%	5\％	5\％	4\％	4%	${ }^{3}$	3\％	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	－	\％	\％	\％
${ }^{4352}$	51，200		10	N2	${ }^{9 \%}$	\％	${ }_{8 \%}$	${ }^{8 \%}$	${ }^{6 \%}$	${ }^{6 \%}$	${ }^{5 \%}$	${ }^{5 \%}$	${ }^{4 \%}$	4%	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％ 0	\％	0\％	0\％	\％	\％
${ }^{1453}$	55，15，300	－Mived mainy or solely with woo or fin e animal	10	NT2	${ }^{9 \%}$	${ }^{9 \%}$	${ }^{8 \%}$	${ }^{8 \%}$	6\％	${ }^{6 \%}$	${ }^{5 \%}$	${ }^{5 \%}$	${ }^{4 \%}$	$4{ }^{4 \%}$	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2}$	${ }^{2 \%}$	\％	\％	\％	0\％	${ }^{0 \%}$	${ }^{\circ} \%$
${ }_{4}^{4354}$	55，15，900	－oner	10	NT2	9\％	9\％	${ }_{8 \%}$	${ }^{8 \%}$	6%	6\％	5\％	${ }^{5 \%}$	4%	4%	3\％	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％	0\％	\％	\％
${ }^{4355}$	55，15，100	Mixed mainly orsolely with mar－made flaments	10	NT2	9\％	9\％	${ }^{8 \%}$	${ }^{8 \%}$	6\％	6\％	5\％	5\％	4\％	4%	3\％	3\％	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％	0\％	\％	\％
${ }^{4356}$	$2{ }^{20}$	－M M Mred maniny or soley ywit wool of fire animal	10	NT2	9\％	${ }^{9}$	${ }^{8 \%}$	${ }^{8 \%}$	6\％	6\％	${ }^{\text {5\％}}$	${ }^{5 \%}$	${ }^{4 \%}$	${ }^{4 \%}$	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％	0\％	\％	0\％
${ }^{4357}$	55，15，900	\cdots	10	NT1	9\％	${ }_{8 \%}$	6\％	5\％	4\％	3\％	${ }^{2 \%}$	\％	0\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％
${ }^{4358}$	55，159，100	Mixed mañy or solely with mar－made flilments	${ }^{10}$	${ }^{\text {NT2 }}$	${ }^{9 \%}$	9\％	8%	${ }^{8 \%}$	6\％	6\％	5\％	5\％	4\％	4%	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	0\％	\％	\％\％	\％	\％	\％
4359	55，159，910		10	т2	\％	${ }^{9 \%}$	${ }^{8 \%}$	${ }^{8 \%}$	6\％	\％	${ }^{5 \%}$	${ }^{5 \%}$	${ }^{4 \%}$	${ }^{4 \%}$	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％	0\％	\％	\％
4380	55，15，990	\cdots Oner	10	${ }_{\text {N2 }}$	\％\％	9\％	8\％	8\％	${ }^{6 \%}$	6\％	5\％	${ }^{5 \%}$	4\％	4\％	3\％	3\％	${ }^{2 \%}$	${ }^{2 \%}$	0\％	\％	0\％	0\％	\％	0\％
${ }_{4}^{4361}$	55，16，100	Unibeached of bleached	${ }^{10}$	NT2	9\％	9\％	${ }^{8 \%}$	${ }^{8 \%}$	6\％	6\％	5\％	5\％	4%	4%	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％	\％	\％	\％
${ }^{4362}$	55，66，200	－Dyed	${ }^{10}$	NT2	9\％	${ }^{9 \%}$	${ }_{8 \%}$	${ }^{8 \%}$	6\％	${ }^{6 \%}$	${ }^{5 \%}$	${ }^{5 \%}$	${ }^{4 \%}$	4%	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％	0\％	\％	\％
${ }^{4363}$	55，61，300	－－O Yams of idferen colour	10	N2	9\％	9\％	${ }^{8} \%$	${ }^{8 \%}$	6\％	6\％	5\％	5\％	4\％	4%	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	0\％	0\％	\％	\％	0\％
4384	55，66，400	Pinted	10	NT2	9\％	\％	8\％	8%	6\％	6%	5\％	5\％	4%	4%	3\％	3\％	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％	\％	\％	\％
${ }^{4365}$	55，162，100	－Unbeachere or bleached	10	N2	9\％	9\％	8\％	${ }^{8 \%}$	6\％	6\％	5\％	5\％	4\％	4\％	3\％	3\％	2\％	2\％	0\％	\％	\％\％	\％	\％	0\％
${ }_{4}^{4366}$	55，162，200	－Dyed	10	NT2	9\％	9\％	${ }^{8 \%}$	8\％	6\％	6\％	5\％	5\％	4%	4\％	3\％	3\％	2\％	${ }^{2 \%}$	0\％	\％	0\％	\％	0\％	\％
${ }_{4}^{4367}$	55，162，300	－Of yams of difteren colour	10	NT2	9\％	\％	${ }^{8 \%}$	${ }^{8 \%}$	6%	6\％	${ }^{5 \%}$	${ }^{5 \%}$	${ }^{4 \%}$	4%	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％	\％	\％	\％
${ }^{2388}$	$55.162,400$	－Pimed	${ }^{10}$	${ }^{\text {NT2 }}$	${ }^{9}$	${ }^{\text {\％}}$	${ }^{8 \%}$	${ }^{8 \%}$	6%	${ }^{6 \%}$	${ }^{5 \%}$	${ }^{5 \%}$	4%	4%	${ }^{3}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％	\％	\％	\％
4369	55，16，100	Unfleached or bleached	10	NT2	9\％	\％	8\％	${ }^{8 \%}$	6%	6\％	5\％	5\％	4%	4%	3\％	3\％	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	0\％	\％	\％	\％
${ }_{4}^{4370}$	55，163，200	Djed	${ }^{10}$	NT2	9\％	9\％	${ }^{8 \%}$	8\％	${ }^{6 \%}$	6\％	5\％	5\％	4%	4%	3\％	3\％	${ }^{2 \%}$	2%	0\％	\％	\％\％	\％	\％	\％
${ }^{4371}$	55，16，300	－Of yams of different colours	10	${ }^{\text {NT2 }}$	9\％	9\％	${ }_{8 \%}$	${ }^{8 \%}$	6\％	6\％	5\％	5\％	4\％	4\％	3\％	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	0\％	\％	\％	\％	\％	\％
${ }^{4372}$	55，16，400	Prined	${ }^{10}$	NT2	9\％	${ }^{9}$	${ }^{8 \%}$	${ }^{8 \%}$	6%	6%	${ }^{5 \%}$	${ }^{5 \%}$	4%	4%	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	0\％	\％	\％	\％	\％	\％
${ }_{4}^{473}$	55，164，100	Unbleacheod of beached	10	NT2	9\％	9\％	8\％	${ }^{8 \%}$	6\％	6\％	5\％	5\％	4\％	4%	3\％	3\％	2\％	${ }^{2 \%}$	0\％	\％	\％\％	\％	\％	0\％
${ }^{4374}$	55，164，200	Dyed	10	NT2	9\％	\％	${ }_{8 \%}$	${ }^{8 \%}$	6%	6\％	5\％	5\％	4%	4%	3\％	3\％	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％	\％	\％	\％
${ }_{4}^{4735}$	55，64，300	Of yans of different colurs	10	NT2	9\％	\％	8\％	8\％	6\％	6\％	5\％	5\％	4%	4%	3\％	3\％	${ }^{2 \%}$	${ }^{2 \%}$	0\％	\％	\％	\％	\％	\％

香港•ASEAN FTAにかかる調査報告書

別添2－4 原産地品の関税撤廃スケジュール
（ラオス）

4376	${ }^{55,164,400}$	Pinted	10	NT2	${ }^{9 \%}$	9\％	${ }^{8 \%}$	${ }^{8 \%}$	${ }^{6 \%}$	6\％	5\％	${ }^{5 \%}$	${ }^{4 \%}$	4\％	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％\％	0\％	0\％	0\％	\％	0\％
4387	55，169，100	Unoleacred of bleached	10	N2	\％	9\％	${ }_{8 \%}$	\％	${ }^{6 \%}$	6%	${ }^{5 \%}$	${ }^{5 \%}$	4%	4%	${ }^{3 \%}$	3\％	${ }^{2 \%}$	2\％	\％	0\％	0\％	\％	\％	0\％
4378	55，16，200	－Dyed	10	NT2	${ }^{9}$	9\％	${ }^{8 \%}$	8%	6\％	6\％	5\％	${ }^{5 \%}$	4%	4%	3\％	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％	\％	\％	\％
4379	55，69，300	Of yans of differen coluus	10	T2	${ }^{9 \%}$	\％	8\％	8%	6\％	6\％	5\％	${ }^{5 \%}$	${ }^{4 \%}$	4\％	3\％	${ }^{\text {3\％}}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％	\％	\％	\％
4380	55，169，000	Pinimed	10	N2	9\％	${ }^{9}$	${ }^{8 \%}$	\％	6\％	6\％	5\％	${ }^{5 \%}$	4%	4%	${ }^{3 \%}$	${ }^{\text {3\％}}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％	\％	\％	\％
4881	56，012，100	Of coton	${ }^{20}$	EL	U	\bigcirc	\bigcirc	0	${ }^{0}$	\bigcirc	\bigcirc	\bigcirc	0	0	U	U	${ }^{\circ}$	0	U	U	U	\bigcirc	U	0
3382	56，012，200	Of manmadefities	${ }^{20}$	${ }^{\text {EL }}$	U	U	U	\bigcirc	U	U	ט	ט	\bigcirc	U	U	U	ט	\checkmark	\bigcirc	\bigcirc	\bigcirc	U	U	\bigcirc
4838	56，012，900	Other	${ }^{20}$	${ }^{\text {EL }}$	U	\bigcirc	\bigcirc	－	\bigcirc	\bigcirc	\bigcirc	\bigcirc	U	\bigcirc	\bigcirc	U	U	U	\bigcirc	U	U	0	U	\bigcirc
4838	56，013，010	Povamide fibe fock	${ }^{20}$	EL	\bigcirc	\bigcirc	\bigcirc	\bigcirc	U	\bigcirc	\bigcirc	\bigcirc	U	U	U	U	U	U	U	U	U	\bigcirc	U	U
4835	56，013，020	－Potypopyene five fock	${ }^{20}$	EL	ט	0	\bigcirc	ט	U	\bigcirc	－	\bigcirc	U	0	ט	U	U	\bigcirc	U	U	U	ט	U	\bigcirc
${ }^{4386}$	56，013，090	Other	20	EL	U	0	\bigcirc	\bigcirc	\bigcirc	U	U	\bigcirc	U	0	O	U	U	0	0	U	U	0	0	U
4887	56，02，000		5	V1	4%	4%	4\％	3\％	3\％	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％	\％	\％	0\％	\％	\％	0\％	0\％	\％	\％	\％
4388	56，02，100	Of wool of fine anima hair	10	NT2	${ }^{9 \%}$	9\％	${ }_{8 \%}$	${ }^{8 \%}$	${ }^{6 \%}$	6\％	5\％	${ }^{5 \%}$	${ }^{4 \%}$	4%	${ }^{3 \%}$	3\％	${ }^{2 \%}$	2\％	\％	\％	0\％	\％	\％	0\％
4389	56，02，200	Of other exiexie maeierias	10	NT2	${ }^{9 \%}$	${ }^{9 \%}$	${ }^{8 \%}$	${ }^{8 \%}$	${ }^{6 \%}$	6\％	5\％	${ }^{5 \%}$	4%	4%	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％	\％	\％	\％
4390	56，29，000	Oner	10	NT2	9\％	9\％	8\％	${ }_{8} 8$	6\％	6\％	5\％	${ }^{5 \%}$	4%	4\％	3\％	${ }^{3 \%}$	2\％	2\％	0\％	0\％	\％	0\％	0\％	\％
4391	56，03，100	Weighing not moxe tha 25 g ／m2	10	N2	${ }^{9 \%}$	${ }^{9 \%}$	${ }^{8 \%}$	${ }^{8 \%}$	${ }^{6 \%}$	6\％	${ }_{5 \%}$	${ }^{5 \%}$	$4{ }^{4 \%}$	4%	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	0\％	\％\％	\％	\％
${ }^{4392}$	56，03，200	－Wegating more than 259 gm but not more than	10	т2	${ }^{9 \%}$	\％	8%	8%	\％\％	6%	5\％	5\％	${ }^{4 \%}$	4%	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	0\％	0\％	\％	\％
${ }^{4393}$	56，03， 300	Weighing more than $70 \mathrm{~g} / \mathrm{m} 2$ but not more than	10	NT2	\％	${ }^{9 \%}$	${ }^{8 \%}$	${ }^{8 \%}$	6\％	6\％	${ }^{5 \%}$	${ }^{5 \%}$	${ }^{4 \%}$	4\％	${ }^{3 \%}$	3\％	${ }^{2 \%}$	${ }^{2 \%}$	0\％	0\％	0\％	\％	\％\％	0\％
$4{ }^{4394}$	56，03，400	\cdots Weighing morethan 150 g m 2	10	N2	9\％	9\％	8\％	8\％	6\％	6\％	5\％	5\％	4\％	4\％	3\％	3\％	2\％	2\％	0\％	0\％	0\％	\％	0\％	0\％
4395	56，03，100	Weghing not moet tan 25 gm m	10	N2	${ }^{9 \%}$	9\％	${ }^{8 \%}$	\％	6\％	6%	5\％	${ }^{5 \%}$	${ }^{4 \%}$	4%	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	0\％	\％	\％	0\％
4396	56，39，200	－－Weighing more than $25 \mathrm{~g} / \mathrm{m} 2$ but not more than $70 \mathrm{~g} / \mathrm{m} 2$	${ }^{10}$	NT2	${ }^{9 \%}$	9\％	8\％	${ }^{8 \%}$	${ }^{6 \%}$	6\％	5\％	5\％	${ }^{4 \%}$	4%	${ }^{3 \%}$	3\％	2\％	${ }^{2 \%}$	\％	\％	0\％	\％	${ }^{0 \%}$	0\％
$4{ }^{4397}$	56，09，300	－－Weighing more than $70 \mathrm{~g} / \mathrm{m} 2$ but not more than $150 \mathrm{~g} / \mathrm{m} 2$	10	N2	\％	${ }^{9 \%}$	${ }^{8 \%}$	${ }^{8 \%}$	\％	6\％	${ }_{5 \%}$	${ }^{5 \%}$	${ }^{4 \%}$	4%	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	0\％	\％	\％	\％	\％	\％
4338	56，03，400	\cdots Weighig more tran $150 \mathrm{~g} / \mathrm{m}$ 2	10	T2	\％	9\％	8\％	${ }^{8 \%}$	6\％	6\％	5\％	${ }^{5 \%}$	4%	4\％	3\％	3\％	${ }^{2 \%}$	2\％	\％	\％	\％	0\％	\％	\％
4399	56，04，000	－Rubber tread and cord，exixile covered	5	NT1	4\％	4\％	4%	3\％	3\％	${ }^{2 \%}$	2\％	0\％	\％	0\％	\％	0\％	0\％	0\％	0\％	0\％	0\％	0\％	0\％	\％\％
4400	55，94，010	－Imatiolo calaut，ofilikyan	5	${ }^{\text {NT1 }}$	${ }^{4 \%}$	4\％	4%	${ }^{3 \%}$	${ }^{3}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％\％	\％	\％
4	56，049，020	－Rubber inpegenated texile thead yam	5	NT1	4\％	4\％	4%	3\％	3\％	2\％	${ }^{2 \%}$	0\％	0\％	0\％	0\％	0\％	\％	0\％	0\％	0\％	\％\％	\％	0\％	0\％
4402	56，04，030	－－High tenacity yarn of polyesters，of nylon or other polyamides or of viscose rayon	5	NT1	4%	4\％	4%	3\％	3\％	2\％	2\％	\％	\％	0\％	\％	\％	\％	0\％	0\％	\％	\％	0\％	\％	0\％
4	56，09，990	－－omer	5	NT1	$4{ }^{4 \%}$	4%	4\％	${ }^{3 \%}$	3\％	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％	\％	\％	\％	\％	\％	\％	0\％	\％	\％	0\％
4	$55.050,000$	Metallised yarn，whether or not gimped，being textile yarn，or strip or the like of heading 54.04 thread，strip or powder or covered with metal	5	NT1	4\％	4\％	4\％	3\％	3\％	2\％	2\％	\％	\％	\％	\％	0\％	\％	\％	\％	0\％	0\％	\％	\％	\％
$4{ }^{405}$	56，06，000	wale－yarn．	5	NT1	4\％	4\％	4\％	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	0\％	\％	0\％	\％\％	\％	\％	0\％	0\％	0\％	\％	0\％	\％\％	0\％
4006	$55,02,100$	－－Bnode or baler wive	10	NT2	${ }^{\text {\％}}$	\％	8\％	8%	6\％	6\％	5\％	${ }^{5 \%}$	4\％	4\％	3\％	${ }^{3 \%}$	2\％	${ }^{2 \%}$	0\％	\％	\％	\％	\％	\％
4407	56，07，200	Oner	10	NT1	9%	8%	6\％	5\％	4%	3\％	2\％	0\％	0\％	0\％	\％	0\％	0\％	\％	\％	0\％	\％	\％	\％	0\％
4408	56，04， 100	－Binder orbaer wive	10	NT2	9\％	9\％	8%	8\％	6\％	6\％	5\％	5\％	4\％	4\％	3\％	3\％	${ }^{2 \%}$	2\％	0\％	0\％	\％	\％	\％	\％
$4{ }^{409}$	56，74，900	Other	${ }^{10}$	N2	${ }^{9}$	9\％	${ }^{8 \%}$	\％	6\％	6\％	5\％	${ }^{5 \%}$	4%	4%	${ }^{3} \%$	3\％	2\％	${ }^{2 \%}$	\％	\％	0\％	\％\％	\％	\％
4410	56，75，010		${ }^{10}$	Nт2	9\％	9\％	8\％	${ }^{8 \%}$	6\％	6\％	5\％	5\％	4\％	4\％	3\％	3\％	2\％	2\％	\％\％	\％\％	\％	\％\％	\％\％	0\％
$4{ }^{4411}$	56，75，909	－－other	10	NT2	${ }^{9 \%}$	9\％	${ }_{8 \%}$	8\％	6\％	6\％	5\％	${ }^{5 \%}$	4%	4%	${ }^{3 \%}$	3\％	${ }^{2 \%}$	${ }^{2 \%}$	\％	0\％	0\％	\％	\％	\％\％
${ }^{4412}$	56，79，010	－Oaraficial fibes	10	NT2	9\％	9\％	8\％	8%	6\％	6\％	5\％	5\％	4%	4%	${ }^{3 \%}$	3\％	${ }^{2 \%}$	${ }^{2 \%}$	\％	0\％	\％\％	\％\％	\％	\％
$4{ }^{413}$	56，79，020	Of abaca（Manila hemp or Musa textilis Nee）or other hard（leaf）fibres	${ }^{10}$	NT2	9\％	9\％	${ }^{8 \%}$	${ }^{8}$	${ }^{6 \%}$	6\％	5\％	5\％	4%	4\％	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％	\％	\％	${ }^{0 \%}$
${ }^{4144}$	56，79，030		10	NT2	9\％	\％	8\％	8%	${ }^{6 \%}$	6\％	5\％	${ }^{5 \%}$	${ }^{4 \%}$	${ }^{4 \%}$	3\％	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	0\％	\％\％	\％	0\％	\％	\％
4415	56，79，090	Other	10	NT2	\％$\%$	9\％	8\％	8\％	6\％	6\％	5\％	5\％	4\％	4\％	3\％	3\％	2\％	2\％	0\％	0\％	0\％	0\％	\％	0\％
${ }^{4416}$	56，08，100	－Made up fisting nets	10	NT2	9\％	9\％	${ }^{8 \%}$	8%	6\％	6\％	5\％	5\％	4\％	4\％	${ }^{3 \%}$	3\％	2%	${ }^{2 \%}$	0\％	0\％	0\％	0\％	0\％	0\％
4417	56，08，1920	\cdots－Netbags	10	NT2	${ }^{9} \%$	9\％	${ }^{8 \%}$	${ }_{8 \%}$	6\％	6%	5\％	5\％	4%	4%	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	0\％	\％	0\％	\％	\％	\％
${ }^{4418}$	56，08，990	－Onter	10	NT2	${ }^{9} \%$	9\％	${ }^{8 \%}$	8%	6\％	6\％	5%	${ }^{5 \%}$	4%	4\％	${ }^{3 \%}$	3\％	${ }^{2 \%}$	${ }^{2 \%}$	0\％	\％	\％	\％	\％	${ }^{\circ} \mathrm{O}$
4419	55，09，010	－－Netbags	10	NT2	\％	\％	${ }^{8 \%}$	${ }_{8} 8$	6\％	6\％	5\％	5\％	4\％	4\％	${ }^{3} \%$	${ }^{3} \%$	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％	\％	\％	0\％
4420	56，09，090	－omer	10	NT2	9\％	9\％	8%	8\％	6\％	6\％	5\％	5\％	4\％	4\％	3\％	3\％	2\％	2\％	\％	\％	0\％	0\％	\％	\％
$4{ }^{4221}$	56，090，00	Articles of yarn，strip or the like of heading 54.04 elsewhere specified or included．	10	NT2	\％	9\％	${ }_{8}^{8}$	${ }^{8 \%}$	6\％	6\％	5\％	5\％	4\％	4\％	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	0\％	\％	${ }^{0}$	\％
$4{ }^{422}$	5501.10 .10	－－Prayer rus	10	NT2	9\％	9\％	8\％	8%	6\％	6\％	5\％	${ }^{\text {5\％}}$	4\％	4\％	${ }^{3 \%}$	${ }^{3 \%}$	2\％	2\％	\％\％	0\％	0\％	0\％	\％\％	0\％
4	57，01，090	－Other	10	NT2	${ }^{9}$	9\％	${ }^{8 \%}$	${ }^{8 \%}$	6\％	6\％	5\％	${ }^{5 \%}$	$4{ }^{4 \%}$	4%	${ }^{3 \%}$	${ }^{3 \%}$	2%	${ }^{2 \%}$	\％	\％	\％	\％	\％	\％
${ }^{424}$	55，09，011	${ }^{-- \text {Prayer rus }}$	10	NT2	${ }^{9}$	${ }^{9 \%}$	${ }^{8 \%}$	${ }^{8 \%}$	${ }^{6 \%}$	6\％	5\％	${ }^{5 \%}$	$4{ }^{4 \%}$	4%	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％	\％	\％	\％
$4{ }^{425}$	$55,09,019$	－．omer	10	NT2	9\％	${ }^{9 \%}$	${ }^{8 \%}$	8%	6%	6\％	5\％	5\％	4%	4%	3\％	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％	\％	\％	\％
$4{ }^{4226}$	55，09，091	－．－Prayer rugs	10	NT2	${ }^{9} \%$	9\％	${ }^{8 \%}$	${ }^{8 \%}$	${ }^{6 \%}$	6\％	5\％	5\％	4%	4%	${ }^{3 \%}$	3\％	${ }^{2 \%}$	${ }^{2 \%}$	0\％	\％	\％\％	0\％	0\％	0\％
$4{ }^{427}$	55，09，099	\cdots	10	NT2	${ }^{9 \%}$	9\％	${ }^{8 \%}$	${ }^{8}$	6\％	6\％	5\％	5\％	4\％	4\％	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	0\％	0\％	0\％	0\％	0\％	0\％
$4{ }^{428}$	57，01，000	－＂Kelem＂，＂Schumacks＂，＂Karamanie＂ and similar hand－woven rugs	10	NT2	\％	9\％	8\％	${ }^{8 \%}$	6\％	6\％	5\％	5\％	4%	4\％	3\％	3\％	${ }^{2 \%}$	${ }^{2 \%}$	0\％	\％	0\％	\％	\％	0\％
4	57，02，000	－Fbor coveings of coomont fibes（cori）	10	NT2	9\％	9\％	${ }^{8 \%}$	${ }_{8 \%}$	6\％	6\％	5\％	5\％	4%	4%	${ }^{3} \%$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	0\％	\％	0\％	\％	\％	0\％
4330	55，03，100	－－Of woolof fine animal hair	10	NT2	${ }^{9 \%}$	9\％	${ }_{8 \%}$	${ }^{8 \%}$	${ }^{6 \%}$	${ }^{6 \%}$	${ }^{5 \%}$	5\％	4\％	4\％	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	0\％	\％	\％\％	\％	\％	\％
$4{ }^{431}$	57，02，200	－－ot man－mate texile materials	10	NT2	\％	9\％	8\％	8%	6\％	6\％	5\％	5\％	4\％	4\％	3\％	${ }^{3} \%$	2\％	${ }^{2 \%}$	\％	\％	\％	\％	\％	\％
$4{ }^{432}$	57，02，910	$\cdots \mathrm{Oc}$ coton	10	N2	\％	9\％	${ }^{8 \%}$	${ }_{8 \%}$	6\％	6\％	5\％	5\％	4\％	4\％	${ }^{3 \%}$	3\％	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％	0\％	\％	0\％
$4{ }^{433}$	57，02，920	－of ifueflies	10	NT2	\％$\%$	9\％	8\％	8%	6\％	6\％	5\％	5\％	4\％	4\％	3\％	3\％	2\％	2\％	\％	0\％	0\％	\％	\％	0\％
${ }_{4}^{434}$	55，03，990	－Oner	10	N2	${ }^{9 \%}$	9\％	${ }^{8 \%}$	${ }_{8 \%}$	6\％	6\％	5\％	${ }^{5 \%}$	4%	4%	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％	\％	\％	\％
$4{ }^{435}$	57，24，110	－－PPayer rus	10	NT2	${ }^{9}$	9\％	${ }^{8 \%}$	${ }^{8 \%}$	${ }^{6 \%}$	6\％	5\％	${ }^{5 \%}$	4%	4%	${ }^{3 \%}$	3\％	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％	\％	\％	\％
${ }^{4336}$	57，24，190	Ohner	10	NT2	9\％	9\％	${ }^{8 \%}$	${ }^{8 \%}$	6\％	6\％	5\％	5\％	4\％	4%	${ }^{3 \%}$	3\％	2\％	${ }^{2 \%}$	\％\％	0\％	\％\％	\％	0\％	0\％
$4{ }^{437}$	57，04，210	Prayerus	10	NT2	9\％	9\％	${ }^{8 \%}$	8%	6\％	6%	5\％	5\％	4%	4%	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	0\％	0\％	\％	\％	\％	0\％
$4{ }^{4388}$	55，04，290	Other	10	N2	${ }^{9} \%$	9\％	${ }^{8 \%}$	${ }^{8 \%}$	6\％	6\％	5\％	5\％	$4{ }^{4 \%}$	4\％	${ }^{3 \%}$	3\％	${ }^{2 \%}$	${ }^{2 \%}$	0\％	\％	0\％	\％	\％	0\％
$4{ }^{439}$	5，024，911	\ldots Prayerves	10	NT2	9\％	9\％	8\％	8\％	6\％	6\％	5\％	5\％	4%	4%	3\％	3\％	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	0\％	\％\％	0\％	0\％
4440	57，04，9，99	… Oner	10	NT2	${ }^{9 \%}$	${ }^{9 \%}$	${ }_{8}^{8 \%}$	${ }^{8 \%}$	${ }^{6 \%}$	6\％	${ }^{5 \%}$	${ }^{5 \%}$	4\％	4\％	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	0\％	\％	0\％	\％	\％	\％
4	57，24，920	－Of	10	NT2	${ }^{9 \%}$	9\％	${ }_{8}^{8 \%}$	${ }^{8 \%}$	${ }^{6 \%}$	6\％	${ }^{5 \%}$	5\％	4\％	4\％	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	0\％	\％	\％	\％	\％	\％
4442	57，24，990	－other	10	NT2	\％	9\％	$8{ }^{8}$	8\％	6\％	6\％	5\％	5\％	4\％	4\％	3\％	3\％	2\％	2\％	0\％	\％	0\％	0\％	\％	\％
4443	57，02，010	－Ofotoon	10	NT2	\％$\%$	9\％	8\％	8\％	6\％	6\％	5\％	5\％	4\％	4\％	3\％	3\％	2%	2\％	\％	0\％	0\％	\％	\％	\％
${ }^{4444}$	55，05，020	－Ofiue fives	10	N2	${ }^{9 \%}$	${ }^{9 \%}$	${ }^{8 \%}$	8\％	6\％	6\％	5\％	${ }^{5 \%}$	4%	4%	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％$\%$	\％	\％	0\％
4445	57，05，990	Other	10	NT2	${ }^{9 \%}$	9\％	${ }^{8 \%}$	${ }^{8 \%}$	6\％	6\％	5\％	5\％	$4{ }^{4 \%}$	4%	${ }^{3 \%}$	3\％	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％	\％	\％	\％
${ }^{4446}$	57，29，110	Prayer rus	10	NT2	${ }^{9 \%}$	9\％	8\％	8\％	6\％	6%	5\％	5\％	4%	4%	${ }^{3 \%}$	3\％	2%	${ }^{2 \%}$	0\％	0\％	\％\％	0\％	0\％	0\％
${ }^{4447}$	55，29，190	Other	10	NT2	9\％	9\％	8\％	8\％	6\％	6\％	5\％	5\％	${ }^{4 \%}$	4%	${ }^{3 \%}$	3\％	2\％	${ }^{2 \%}$	\％	0\％	\％	0\％	\％	\％
${ }^{4448}$	57，092，210	Prajer uns		NT2	9\％	9\％	8\％	8\％	\％\％	6\％	5\％	5\％	4\％	4\％	${ }^{3 \%}$	3\％	${ }^{2 \%}$	${ }^{2 \%}$	0\％	0\％	\％	\％	\％	0\％
$4{ }^{449}$	55，29，290	\cdots	10	NT2	9\％	9\％	8\％	8\％	6\％	6\％	5\％	5\％	4%	4%	${ }^{3 \%}$	3\％	${ }^{2 \%}$	${ }^{2 \%}$	0\％	0\％	0\％	\％	0\％	0\％
4450	55，029，911	－．－Praer russ	10	NT2	9\％	9\％	${ }^{8 \%}$	8%	6\％	6\％	5\％	5\％	4%	4\％	3\％	3\％	${ }^{2 \%}$	2\％	\％	\％	0\％	\％	0\％	0\％
$4{ }^{4511}$	57，02，919	－other	10	NT2	${ }^{9} \%$	${ }^{\text {\％}}$	${ }_{8}^{8 \%}$	${ }^{8}$	${ }^{6 \%}$	6\％	${ }_{5 \%}$	5\％	4%	4%	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	0\％	\％	\％	\％	\％	\％
4452	57，29，920	Ofilief fios	10	NT2	${ }^{9}$	${ }^{9 \%}$	${ }^{8 \%}$	${ }^{8 \%}$	6\％	6\％	${ }_{5 \%}$	5\％	${ }^{4 \%}$	4%	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％	\％	\％	\％
4	57，29，990	Oner	10	NT2	${ }^{9 \%}$	9\％	${ }^{8 \%}$	${ }^{8 \%}$	6\％	6\％	${ }^{5 \%}$	${ }^{\text {5\％}}$	4\％	4\％	${ }^{3 \%}$	${ }^{3 \%}$	2%	2%	\％\％	0\％	\％	\％	0\％	0\％
${ }^{4454}$	5503.10 .10	－－Floor mats，of a kind used for motor vehicles of heading $87.02,87.03$ or 87.04	${ }^{10}$	N2	${ }^{9 \%}$	\％	${ }^{8 \%}$	${ }^{8}$	${ }^{6}$	6\％	${ }^{5 \%}$	${ }^{5 \%}$	4\％	4%	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	0\％	\％	0\％	0\％	\％	\％
4455	5703.1020	－－Prayer rus	10	NT2	9\％	9\％	8\％	8\％	6\％	6\％	5\％	5\％	4%	4%	3\％	3\％	${ }^{2 \%}$	${ }^{2 \%}$	\％	0\％	0\％	0\％	0\％	0\％
${ }^{4456}$	57，03，090	－－omer	10	NT2		9\％			6\％	6\％	5\％		4\％	4%	3\％	3\％	2\％	${ }^{2 \%}$	\％	\％	\％	\％	\％	\％

香港•ASEAN FTAにかかる調査報告書

別添2－4 原産地品の関税撤廃スケジュール
（ラオス）

4457	，032，010	Prayer rus	10	${ }^{\text {NT2 }}$	9\％	${ }^{\text {9\％}}$	${ }^{8}$	${ }^{8}$	${ }^{6 \%}$	${ }^{6}$	${ }^{5 \%}$	${ }^{5 \%}$	${ }^{4 \%}$	${ }^{4 \%}$	${ }^{3 \%}$	${ }^{\text {3\％}}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％	\％	\％\％	\％
4458	7，032，090	Other	10	NT2	${ }^{9 \%}$	9\％	${ }^{8 \%}$	${ }^{8 \%}$	6\％	6\％	${ }^{5 \%}$	5\％	4\％	4\％	3\％	${ }^{3 \%}$	${ }^{2 \%}$	${ }_{2 \%}^{2 \%}$	\％	\％	\％	\％	\％	0\％
4459	57，03，010	－－Praer rus	10	NT2	9\％	\％	8\％	${ }^{8 \%}$	6\％	6\％	5\％	5\％	${ }^{4 \%}$	4\％	3\％	3\％	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％	\％	\％	\％
4460	57，03，090	－Other	10	N2	\％	${ }^{9 \%}$	8\％	${ }^{8 \%}$	${ }^{6 \%}$	6\％	${ }^{\text {5\％}}$	${ }_{5 \%}^{5 \%}$	${ }_{4}^{4 \%}$	${ }^{4 \%}$	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	0\％	\％	0\％	\％	\％
4461	57，03，011	－Payer rug	10	NT2	9\％	9\％	\％	${ }^{8 \%}$	6\％	6\％	5\％	${ }^{5 \%}$	4\％	4\％	3\％	3\％	${ }^{2 \%}$	2\％	\％	\％	\％	\％	\％	\％
4462	57，03，019	Ohner	10	N2	9\％	9\％	${ }^{8 \%}$	\％\％	6\％	${ }^{6 \%}$	5\％	${ }^{5 \%}$	${ }^{4 \%}$	${ }^{4 \%}$	3\％	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	0\％	0\％	0\％	0\％
4463	57，03，021	$\begin{aligned} & \text {-- Floor mats, of a kind used for motor vehicles of } \\ & \text { heading } 87.02,87.03 \text { or } \\ & 87.04 \end{aligned}$	10	N2	9\％	9\％	${ }^{8 \%}$	${ }^{8 \%}$	6\％	6\％	5\％	5\％	4%	4%	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％	\％	\％	0\％
4464	57，03，029	－Other	10	NT2	\％	9\％	\％	8\％	6\％	6\％	5\％	5\％	4%	4%	3\％	3\％	${ }^{2 \%}$	2\％	\％	\％	0\％	\％	\％	0\％
4465	57，03，091		10	N2	9\％	${ }^{9 \%}$	${ }^{8 \%}$	${ }^{8} \%$	6\％	6\％	5\％	5\％	4%	4\％	3\％	${ }^{3 \%}$	2\％	${ }^{2 \%}$	\％	0\％	\％	\％	\％	\％
4466	57，03，099	－－oner	10	NT2	${ }^{9 \%}$	9\％	8\％	8\％	6\％	6\％	5\％	5\％	4%	4\％	3\％	3\％	2\％	${ }^{2 \%}$	0\％	\％	0\％	\％	\％	0\％
4467	55，04，000	－Ties，having a maximum suriace afeao 0． 0 ．m2	10	N2	9\％	\％$\%$	8\％	8\％	6\％	6\％	5\％	5\％	4\％	4\％	3\％	3\％	${ }^{2 \%}$	2\％	\％	\％	\％	\％	\％	\％
4468	55，04，000	－Oner	10	NT2	${ }^{9}$	\％	\％	\％	\％	${ }^{6}$	${ }_{5 \%}$	${ }^{5 \%}$	4%	4%	3\％	3\％	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％\％	\％	\％	\％	\％
4469	57，05，011	－－Praer rus	10	NT2	\％	\％	${ }^{8 \%}$	${ }^{8 \%}$	${ }^{6 \%}$	${ }^{6 \%}$	${ }^{5 \%}$	${ }^{5 \%}$	${ }^{4 \%}$	${ }^{4 \%}$	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	0\％	0\％	\％	0\％	0\％
4470	57，05，019	－－other	10	NT2	9\％	9\％	${ }_{8} \%$	8\％	6\％	6\％	5\％	${ }^{5 \%}$	4\％	4%	3\％	3\％	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％	\％	\％	0\％
	8，05，021	- －Non－woven floor coverings，of a kind used for motor vehicles of heading $87.02,87.03$ or 87.04	10	NT2	${ }^{\text {\％}}$	${ }^{9 \%}$	${ }^{8 \%}$	${ }^{8 \%}$	6\％	6%	5\％	${ }^{5 \%}$	$4{ }^{4 \%}$	4\％	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％	\％	\％	\％
4472	57，05，029	－other	10	NT2	${ }^{9 \%}$	9\％	${ }^{8 \%}$	8%	6\％	6\％	5\％	5\％	4\％	4\％	3\％	${ }^{3 \%}$	2\％	2\％	\％	\％	\％	\％	\％	\％
4473	57，05，091	－－Payer rus	10	NT2	9\％	9\％	${ }^{8 \%}$	8\％	6\％	6\％	5\％	5\％	4%	4\％	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	0\％	0\％	0\％	0\％	0\％
4474	57，05，092	－－Non－woven floor coverings，of a kind used for motor vehicles of heading 87．02， 87.03 or 87.04	10	N2	9\％	9\％	8\％	${ }^{8 \%}$	6\％	6\％	5\％	5\％	4%	4\％	3\％	3\％	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％	\％	\％	\％
4475	57，05，099	－other	10	NT2	${ }^{9 \%}$	9\％	${ }^{8 \%}$	8%	6\％	6\％	5\％	5\％	4\％	4\％	3\％	3\％	2\％	${ }^{2 \%}$	\％	0\％	\％	\％	\％	\％
4476	5501．10．10	－Impregnate，coaled，covered orlaminialed	10	NT2	9\％	\％	8\％	8%	\％	6\％	5\％	5\％	4%	4\％	3\％	3\％	${ }^{2 \%}$	2\％	\％	\％	\％	\％	\％	\％
4477	58，01，090	－Onter	10	N2	${ }^{9 \%}$	\％	${ }^{8 \%}$	${ }^{8 \%}$	6\％	${ }^{6 \%}$	5\％	5\％	$4{ }^{4 \%}$	4\％	3\％	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	0\％	\％	\％	\％	\％	\％
4478	58，02，110	－Impregrated，coated，covered of raniniated	10	N2	\％	9\％	${ }^{8 \%}$	${ }^{8 \%}$	6\％	${ }^{6 \%}$	${ }^{5 \%}$	5\％	4%	4\％	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	0\％	0\％	\％	\％	0\％
4479	$55.012,190$	\cdots Oner	10	NT2	${ }^{9 \%}$	9\％	8\％	8\％	6\％	6\％	5\％	5\％	${ }^{4 \%}$	4%	3\％	3\％	${ }^{2 \%}$	2%	\％	\％	\％	\％	\％	\％
4880	${ }^{58,012,210}$	－Impregrated，coaled，covered of raminated	10	N2	9\％	9\％	${ }^{8 \%}$	${ }^{8 \%}$	6%	6\％	5\％	5\％	$4{ }^{4 \%}$	4%	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	2\％	\％	\％	\％	\％	\％	\％
4881	58，012，290	－OMher	10	N2	9\％	9\％	${ }^{8 \%}$	${ }_{8 \%}$	6\％	6\％	5\％	5\％	${ }_{4}{ }^{4}$	4%	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	2\％	0\％	\％	\％	\％	\％	0\％
4482	${ }^{58,012,310}$	－Impregnaled，coaled，covered or raminialed	10	NT2	9\％	9\％	${ }^{8 \%}$	${ }^{8 \%}$	6\％	6\％	5\％	5\％	4%	4%	3\％	${ }^{3} \%$	2\％	2\％	0\％	0\％	\％	\％	0\％	\％
483	55，012，390	\cdots	10	NT2	${ }^{9 \%}$	\％\％	8\％	${ }_{8 \%}$	6\％	6\％	5\％	5\％	${ }^{4 \%}$	4\％	3\％	3\％	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％	\％	\％	0\％
4884	58，012，610	－Impregraled，coaled，covered or raminialed	10	NT2	9\％	\％\％	8\％	8\％	6\％	6\％	5\％	5\％	4\％	4\％	3\％	3\％	${ }^{2 \%}$	2\％	\％	\％	\％	\％	\％	\％
4485	58，012，690	－Onter	10	N2	\％	9\％	8\％	${ }^{8} \%$	6\％	6\％	5\％	5\％	4\％	4%	3\％	3\％	${ }^{2 \%}$	${ }^{2 \%}$	\％	0\％	0\％	\％	0\％	0\％
4886	${ }^{58,012,710}$	－Impregnaled，coaled，covered of raminiated	10	N2	9\％	9\％	${ }^{8} \%$	${ }^{8 \%}$	6\％	6\％	5\％	${ }^{5 \%}$	4%	4\％	3\％	3\％	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	0\％	\％	\％	0\％
4487	58，012，790	－．omer	10	NT2	9\％	\％	${ }_{8} 8$	${ }^{8 \%}$	6\％	6\％	5\％	5\％	${ }^{4 \%}$	4\％	3\％	3\％	${ }^{2 \%}$	2%	\％	0\％	\％	\％	\％	0\％
4488	${ }^{58,013,110}$	－Impegenaleo，coated，covered or raminialed	10	N2	9\％	9\％	${ }^{8 \%}$	8\％	6\％	6\％	5\％	${ }^{5 \%}$	4%	4%	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	0\％	0\％	\％	\％	0\％	\％
4489	58，013，190	－－Other	10	NT2	9\％	9\％	${ }^{8 \%}$	${ }_{8 \%}$	6\％	6\％	5\％	5\％	4%	4\％	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	0\％	0\％	0\％	\％	0\％	\％
4490	58，013，210	－Impegegnaed，coaled，covered or raminated	10	N2	9\％	9\％	${ }^{8 \%}$	8%	6%	6\％	5\％	${ }^{5 \%}$	4\％	$4{ }^{4 \%}$	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	0\％	0\％	\％	\％	0\％	\％
449	58，013，200	－other	10	NT2	${ }^{\text {\％}}$	${ }^{\text {\％}}$	8\％	8\％	6\％	6\％	5\％	5\％	${ }^{4 \%}$	4%	3\％	3\％	${ }^{2 \%}$	2%	\％	0\％	\％	\％	\％	\％
4492	58，01，310	－Impregraled，coaled，coveredo oraminiated	10	NT2	9\％	9\％	8\％	8\％	6\％	6\％	5\％	5\％	4\％	4\％	3\％	3\％	${ }^{2 \%}$	2\％	\％	\％	\％	\％	\％	\％
4493	${ }^{58,13,390}$	－－Oner	10	N2	${ }^{9}$	${ }^{9 \%}$	${ }^{8 \%}$	${ }^{8 \%}$	${ }^{6 \%}$	${ }^{6 \%}$	${ }^{5 \%}$	${ }^{5 \%}$	${ }^{4 \%}$	${ }^{4 \%}$	${ }^{3 \%}$	${ }^{3} \%$	${ }^{2 \%}$	${ }^{2 \%}$	0\％	\％	0\％	\％	\％	0\％
4494	58，013，610	－Impregraeded，coaled，covered or reminialed	10	NT2	9\％	\％	${ }^{8 \%}$	${ }^{8 \%}$	6\％	6\％	5\％	5\％	$4{ }^{4 \%}$	4%	3\％	3\％	${ }^{2 \%}$	2\％	\％	0\％	0\％	\％	\％	0\％
4995		－other	10	NT2	9\％	\％\％	8\％	${ }_{8 \%}$	6\％	6\％	5\％	5\％	${ }^{4 \%}$	4\％	3\％	3\％	${ }^{2 \%}$	2\％	\％	0\％	\％	\％	\％	0\％
$4{ }^{4996}$	58，013，710	－Impregnaled，coaled，covered of raminated	10	N2	9\％	9\％	8\％	8\％	6\％	6\％	5\％	5\％	4%	$4{ }^{4 \%}$	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	0\％	0\％	0\％	0\％	0\％	0\％
4497	58，013，790	－－Oher	10	N2	\％	9\％	${ }^{8 \%}$	${ }^{8 \%}$	6%	6\％	5\％	5%	4%	4%	${ }^{\text {3\％}}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％	\％	\％	0\％
4498	58，09，011	－Impregralee，coaled，covered or raminiaed	10	N2	${ }^{9 \%}$	9\％	8%	8\％	6\％	6\％	5\％	${ }^{5 \%}$	4\％	4\％	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	0\％	0\％	\％	\％	\％	\％
449	58，01，0，19	\cdots	10	NT2	${ }^{9 \%}$	9\％	${ }_{8 \%}$	${ }_{8 \%}$	6\％	6\％	5\％	5\％	4\％	4\％	3\％	3\％	${ }^{2 \%}$	2%	0\％	0\％	\％	\％	\％	\％
4500	58，019，091	\cdots Impeganaed，coaled，covered of raminated	10	N2	9\％	9\％	8\％	8\％	6\％	6\％	5\％	5\％	4\％	4\％	3\％	3\％	${ }^{2 \%}$	2\％	\％	\％	\％	\％	\％	\％
4501	${ }^{58,019,099}$	－other	10	N2	${ }^{9 \%}$	\％	${ }_{8 \%}$	${ }^{8 \%}$	6\％	${ }^{6 \%}$	5\％	${ }^{5 \%}$	${ }^{4 \%}$	4\％	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％	0\％	\％	\％
4502	58，021，100	Unobached	10	N2	9\％	\％$\%$	${ }^{8 \%}$	${ }_{8} \%$	6\％	6\％	5\％	5\％	${ }^{4 \%}$	4%	3\％	3\％	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％	\％	\％	\％
4503	55，02，900	Other	10	N2	9\％	${ }^{9 \%}$	${ }^{8 \%}$	8\％	6\％	6\％	5\％	5\％	$4{ }^{4 \%}$	4\％	${ }^{3 \%}$	${ }^{3 \%}$	2\％	2\％	\％	\％	0\％	\％	\％	\％
4504	8，022，000	－Terry towelling and similar woven terry fabrics，of other textile materials	10	NT2	9\％	9\％	${ }^{8 \%}$	8%	6%	6\％	5\％	5\％	4%	4\％	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	2\％	\％	\％	\％	\％	\％	\％
4505	58，02，010	－Impregnated，coaled o covered	10	NT2	9\％	${ }^{9 \%}$	${ }_{8 \%}$	${ }_{8 \%}$	6\％	6\％	5\％	5\％	${ }^{4 \%}$	4%	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	0\％	0\％	0\％	0\％	0\％	\％
4506	58，02，020	－Woven，of cototo oro f manmade fibes	10	N2	9\％	${ }^{9 \%}$	${ }^{8 \%}$	8\％	6\％	6\％	5\％	5\％	4%	4%	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％	\％	\％	\％\％
4507	${ }^{58,02,030}$	\cdots Woven，ot other materials	10	NT2	${ }^{9 \%}$	${ }^{9}$	${ }^{8 \%}$	${ }^{8 \%}$	${ }^{6 \%}$	6\％	5\％	5\％	4\％	$4{ }^{4 \%}$	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	0\％	0\％	\％	\％	\％	\％
4508	58，02，090	－ooner	10	NT2	9\％	\％\％	8\％	8%	6\％	6\％	5\％	5\％	4\％	4\％	3\％	3\％	${ }^{2 \%}$	2\％	\％	\％	\％	0\％	\％	\％
4509	55，03，010	Ot coton	10	N2	${ }^{9 \%}$	9\％	${ }^{8 \%}$	${ }^{8 \%}$	${ }^{6 \%}$	${ }^{6 \%}$	5\％	5\％	${ }^{4 \%}$	4\％	3\％	3\％	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％	\％	\％	\％
4510	55，03，020	－Of marmade itios	10	N2	\％	\％	${ }^{8 \%}$	\％	6\％	${ }^{6 \%}$	5\％	${ }^{5 \%}$	4%	4\％	3\％	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％	\％	\％	\％
4511	88，030，091	－Of a knd Usedt 0 cover crops	10	N2	9\％	9\％	${ }^{8 \%}$	${ }^{8} \%$	6\％	6\％	5\％	5\％	4\％	4%	3\％	3\％	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％	\％	\％	\％
4512	8，030，099	－Oner	10	N2	9\％	9\％	${ }^{8 \%}$	${ }^{8 \%}$	6%	${ }^{6 \%}$	5\％	5\％	4%	4%	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	0\％	\％	\％	\％	\％\％
4513	580，0．0．11		10	N2	9\％	9\％	${ }^{8 \%}$	8\％	6%	6\％	5\％	5\％	4%	$4{ }^{4 \%}$	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	0\％	\％	\％	0\％	\％	0\％
4514	${ }^{5084.10 .19}$	－－Onter		N2	9\％	\％	${ }^{8 \%}$	${ }^{8 \%}$	6%	6\％	5\％	5\％	${ }^{4 \%}$	4%	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	2\％	\％	\％	\％	\％	\％	\％
4515	$5{ }^{504.10,21}$	\cdots Impegnaled，coaled，covered of raminaled	10	NT2	${ }^{9 \%}$	9\％	8\％	8\％	6\％	6\％	5\％	5\％	4\％	4%	3\％	3\％	${ }^{2 \%}$	2%	\％	0\％	\％	\％	\％	\％
4516	1504.1029	－omer	10	NT2	9\％	9\％	8\％	8\％	6\％	6\％	5\％	5\％	4\％	4\％	3\％	3\％	${ }^{2 \%}$	2\％	\％	\％	\％	\％	\％	\％
4517	${ }^{58,04,091}$	\cdots	${ }^{10}$	NT2	${ }^{9 \%}$	${ }^{9 \%}$	${ }^{8 \%}$	${ }^{8 \%}$	${ }^{6 \%}$	${ }^{6 \%}$	5\％	5\％	$4{ }^{4 \%}$	${ }^{4 \%}$	3\％	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	0\％	0\％	\％	0\％	\％	0\％
4518	55，04，099	－other	10	NT2	\％	9\％	${ }^{8 \%}$	${ }^{8 \%}$	6\％	${ }^{6 \%}$	5\％	5\％	$4{ }^{4 \%}$	4\％	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％	\％	\％	0\％
4519	${ }^{58,02,110}$	\cdots－mpregenalee，coaled，covered of raminated	10	N2	9\％	9\％	${ }^{8 \%}$	${ }^{8 \%}$	6\％	6\％	5\％	5\％	$4{ }^{4 \%}$	${ }^{4 \%}$	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	0\％	0\％	0\％	\％	\％
4520	88．042，190	Other	10	N2	9\％	9\％	8\％	8\％	6\％	6\％	5\％	${ }^{5 \%}$	4\％	4%	${ }^{3} \%$	3\％	${ }^{2 \%}$	2\％	0\％	0\％	0\％	0\％	0\％	0\％
453	${ }^{58,02,9,90}$	－Impregenated，coaled，covered of raminated	10	N2	9\％	9\％	${ }^{8 \%}$	${ }^{8 \%}$	6\％	6\％	5\％	${ }^{5 \%}$	${ }^{4 \%}$	$4{ }^{4 \%}$	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	0\％	\％	\％	\％
4522	55，02，9900	－－Onter	10	NT2	9\％	9\％	${ }^{8 \%}$	8\％	6\％	6\％	5\％	5\％	4\％	4%	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	0\％	\％	\％	\％	0\％	\％
45	55，04，．000	Hand．made lice	10	NT2	9\％	${ }^{9}$	8%	${ }^{8 \%}$	6\％	6\％	5\％	5\％	4\％	$4{ }^{4 \%}$	${ }^{3 \%}$	${ }^{3} \%$	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％	\％	\％	\％
45	58，050，010	Of coton	10	NT2	${ }^{9 \%}$	9\％	8\％	8\％	6\％	6\％	5\％	5\％	4\％	$4{ }^{4 \%}$	3\％	3\％	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％	\％	\％	0\％
4525	55，05，090	Onher	${ }^{10}$	NT2	${ }^{\text {\％}}$	9\％	${ }^{8 \%}$	${ }^{8 \%}$	6\％	6\％	5\％	5\％	4%	$4{ }^{4 \%}$	3\％	${ }^{3 \%}$	2\％	${ }^{2 \%}$	\％	0\％	\％	0\％	\％	0\％
4536	$5{ }^{500.10 .10}$	－ot sik	${ }^{10}$	NT2	${ }^{9 \%}$	9\％	${ }^{8 \%}$	${ }^{8 \%}$	${ }^{6 \%}$	${ }^{6 \%}$	5\％	${ }^{5 \%}$	${ }^{4 \%}$	4%	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％	\％	\％	\％
4537	5500．10．20	－Of cotoon	10	NT2	9\％	9\％	8\％	8\％	6\％	6\％	5\％	5\％	4%	4%	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	0\％	0\％	0\％	\％	\％	\％
4528	88，061，090	－Other	10	NT2	9\％	9\％	8\％	8\％	6%	6\％	5\％	5\％	4\％	4%	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	0\％	0\％	0\％	\％	0\％	0\％
4529	8，062，0010	－－Sports tape of a kind used to wrap sports equipment grips	10	NT2	9\％	9\％	8\％	8\％	6\％	6\％	5\％	5\％	4%	4\％	3\％	3\％	${ }^{2 \%}$	${ }^{2 \%}$	\％	0\％	\％	\％	\％	0\％
4530	55，06，9090	－－other	10	NT2	9\％	9\％	${ }^{8 \%}$	8\％	6\％	6\％	5\％	5\％	$4{ }^{4 \%}$	$4{ }^{4 \%}$	3\％	3\％	${ }^{2 \%}$	${ }^{2 \%}$	0\％	\％	0\％	\％	\％	0\％
	55，063，10	$\begin{aligned} & \text {-- Narrow woven fabrics suitable for the } \\ & \text { manufacture of inked ribbons for typewriters or } \\ & \text { similar machines } \end{aligned}$	10	NT2	${ }^{9 \%}$	${ }^{9 \%}$	8%	${ }^{8 \%}$	6\％	6\％	5\％	5\％	4\％	4\％	3\％	3\％	${ }^{2 \%}$	${ }^{2 \%}$	0\％	0\％	\％	\％	0\％	\％
	8，063，120	－－Backing of a kind used for electrical insulating	${ }^{10}$	N2	${ }^{9 \%}$	9\％	8\％	${ }^{8 \%}$	${ }^{6 \%}$	6\％	5\％	5\％	4\％	${ }^{4 \%}$	${ }^{3 \%}$	3\％	${ }^{2 \%}$	2\％	0\％	0\％	\％\％	\％	\％	\％
4533	88，06， 190	Oher	10	NT2	\％\％	${ }^{9 \%}$	8%	8%	6\％	6\％	5\％	5\％	4\％	4%	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	0\％	0\％	\％\％	\％	\％	\％\％
4534	58，06，210	－－－Narrow woven fabrics suitable for the manufacture of inked ribbons for typewriters or similar machines；safety seat belt fabrics	10	NT2	${ }^{9 \%}$	${ }^{9 \%}$	${ }^{8 \%}$	${ }^{8 \%}$	${ }^{6 \%}$	6\％	5\％	5\％	4\％	4\％	3\％	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	0\％	\％	\％	\％	0\％
	8，063，240	… Backing of a kind used tor erecterical insulating	10	NT2	${ }^{9 \%}$	${ }^{9 \%}$	\％	${ }^{8 \%}$	6\％	${ }^{6 \%}$	5\％	${ }^{5 \%}$	${ }^{4 \%}$	${ }^{4 \%}$	${ }^{\text {3\％}}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	0\％	\％	\％	\％	\％	0\％
4536	${ }^{55,08,2,290}$	\cdots－Oner	10	NT2	\％\％	9\％	8%	${ }^{8 \%}$	\％	6\％	5\％	5\％	4%	4%	${ }^{3 \%}$	3\％	${ }^{2 \%}$	${ }^{2 \%}$	\％\％	0\％	\％	\％	\％	0\％
4537	${ }^{58,063,910}$	\ldots	${ }^{10}$	NT2	${ }^{\text {\％}}$	${ }_{9 \%}$	${ }^{8 \%}$	${ }^{8 \%}$	${ }^{6 \%}$	6\％	${ }^{5 \%}$	${ }^{5 \%}$	4\％	${ }^{4 \%}$	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	0\％	0\％	\％	0\％	\％	0\％
	963，91		10	N2	${ }^{\text {\％}}$	\％	${ }^{8 \%}$	${ }^{8 \%}$	\％\％	${ }^{6 \%}$	${ }^{5 \%}$	${ }^{5 \%}$	${ }^{4 \%}$	$4{ }^{4 \%}$	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	0\％	\％	\％	0\％
4453	8，063，999	Onher	10	NT2	8\％	\％\％	8%	8%	6\％	6\％	5\％	5\％	4\％	4\％	3\％	${ }^{3 \%}$	2\％	${ }^{2 \%}$	0\％	0\％	0\％	0\％	0\％	0\％
4^{4540}	8，064，000	－Fabrics consisting of warp without weft assembled by means of an adhesive（bolducs）	10	NT2	\％	\％$\%$	${ }^{8 \%}$	8\％	${ }^{6}$	6\％	5\％	5\％	${ }^{4 \%}$	${ }^{4 \%}$	3\％	3\％	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％	\％	\％	\％

香港•ASEAN FTAにかかる調査報告書
 別添2－4 原産地品の関税撤廃スケジュール

（ラオス）

［4541	${ }^{55,071,000}$	Woven	10	N2	9\％	${ }^{9 \%}$	${ }^{8 \%}$	${ }^{8 \%}$	6\％	\％	5\％	5\％	${ }^{49}$	${ }^{49}$	3\％	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％	0\％	\％	${ }^{\circ}$
542	8，079，000	Other	10	N2	\％	${ }^{9 \%}$	${ }^{8 \%}$	${ }^{8 \%}$	6\％	6\％	${ }^{5 \%}$	${ }_{5 \%}^{5 \%}$	$4{ }^{4 \%}$	${ }^{4 \%}$	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％\％	\％	0\％	\％\％	0\％
1543	5500．10．10	Combined withuber trread	10	N2	\％	\％	8%	${ }^{8 \%}$	6\％	6\％	5\％	5\％	4%	4%	3\％	3\％	${ }^{2 \%}$	2\％	\％	\％	\％	0\％	\％	0\％
4544	55，08，0，90	－Oner	10	N2	9\％	${ }^{9 \%}$	${ }^{8 \%}$	${ }^{8 \%}$	${ }^{6 \%}$	${ }^{6 \%}$	${ }^{5 \%}$	${ }^{5 \%}$	${ }^{4 \%}$	${ }^{4 \%}$	3\％	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％	0\％	0\％	0\％
4545	55，08，0，010	－combined with ubeer tread	10	N2	\％	\％	8\％	${ }^{8}$	6\％	6\％	5\％	5\％	4\％	4\％	3\％	3\％	${ }^{2 \%}$	2\％	\％	\％	\％	\％	\％	0\％
$4{ }^{4546}$	55，09，900	－Oner	10	N2	\％	\％	${ }^{8 \%}$	${ }_{8} 8$	6%	6\％	5\％	5\％	4%	4%	3\％	3\％	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％	\％	\％	\％
${ }^{4547}$	55，00，000		10	NT2	\％	\％	8\％	8\％	6\％	6\％	5\％	5\％	4\％	4\％	3\％	3\％	2\％	2\％	\％	\％\％	0\％	\％	0\％	\％
$\underline{458}$	000	－Emborder w whout \mathbf{S} Slle ground	10	T2	9\％	${ }^{9 \%}$	${ }^{8 \%}$	${ }^{8 \%}$	6\％	6\％	${ }^{5 \%}$	${ }^{5 \%}$	4%	4%	3\％	${ }^{3 \%}$	2\％	2\％	0\％	0\％	\％\％	0\％	\％	\％\％
4549	58，109，100	－Ot coton	10	NT2	\％$\%$	9\％	${ }_{8} \%$	8\％	6\％	6\％	5\％	5\％	4\％	4\％	3\％	${ }^{3 \%}$	${ }^{2 \%}$	2\％	0\％	\％	\％	0\％	0\％	0\％
4550	58，10，200	－Ot man－madefties	10	Hst	10\％	\％	0\％	10\％	\％	\％\％	\％	0\％	0\％	\％	\％	0\％	0\％	0\％	\％	\％	\％	\％	\％\％	\％
4551	58，10，900	－Of otere texile maerials	10	NT2	\％	9\％	${ }^{8 \%}$	${ }^{8 \%}$	6\％	6\％	5\％	5\％	${ }^{4 \%}$	${ }^{4 \%}$	${ }^{3 \%}$	${ }^{3} \%$	${ }^{2 \%}$	${ }^{2 \%}$	0\％	\％	0\％	\％	\％	\％
4552	58，110，010	Ot woolof fine or coasse anma har	10	NT1	9%	${ }^{8 \%}$	6\％	5\％	4%	3\％	${ }^{2 \%}$	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％\％	\％	\％\％	\％
4453	55，110，090	Other	10	Hst	10\％	10\％	\％	0\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	0\％	10\％	0\％	0\％	10\％	0\％	10\％	0\％
455	59，011，000	－Textile fabrics coated with gum or amylaceous substances，of a kind used for the outer covers of books or the like	10	N2	${ }^{9 \%}$	9\％	${ }^{8 \%}$	${ }_{8 \%}$	6\％	6\％	5\％	${ }^{5 \%}$	${ }^{4 \%}$	4\％	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％	\％	\％	\％
4555	59，019，010	－－Taing dolth	10	N2	\％	9\％	8\％	${ }^{8 \%}$	6\％	6\％	5\％	5\％	4\％	4\％	3\％	${ }^{3}$	${ }^{2 \%}$	${ }^{2 \%}$	0\％	0\％	0\％	\％\％	0\％	0\％
4556	59，01，020	－Prepaed parining canvas	10	N2	\％	\％	8\％	${ }^{8 \%}$	6\％	6\％	5\％	5\％	4\％	4\％	3\％	3\％	${ }^{2 \%}$	2\％	0\％	\％	0\％	\％	\％	\％
4557	59，019，090	－other	10	NT2	\％	\％	8\％	8%	6\％	6\％	5\％	5\％	${ }^{4 \%}$	4\％	3\％	3\％	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	0\％	\％	\％	0\％
4458	${ }^{5002} 10.11$	\cdots	${ }^{10}$	ग2	\％	\％ 9	${ }^{8 \%}$	8%	6\％	6\％	5%	${ }^{5 \%}$	${ }^{4 \%}$	${ }^{4 \%}$	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％	0\％	\％	0\％
4559	5902：10．19	\cdots	10	N2	${ }^{9 \%}$	${ }^{9 \%}$	${ }^{8 \%}$	${ }_{8 \%}$	6\％	6\％	${ }^{5 \%}$	${ }^{5 \%}$	${ }^{4 \%}$	${ }^{4 \%}$	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	0\％	0\％	\％	\％	\％	0\％
4560	59，02，，091	－ot myon．y yan	10	N2	9\％	9\％	8\％	${ }^{8 \%}$	6\％	6\％	5\％	5\％	4\％	4\％	${ }^{3 \%}$	${ }^{3 \%}$	2\％	2\％	\％	\％\％	\％	0\％	\％	\％
4561	55，021，099	－－Oner	10	N2	9\％	9\％	8\％	8\％	6\％	6\％	5\％	5\％	4\％	4\％	3\％	3\％	2\％	${ }^{2 \%}$	0\％	0\％	0\％	0\％	0\％	0\％
4452	55，02，020	Chaier fabic，ruberised	10	N2	9\％	9\％	8\％	8%	6\％	6\％	5\％	5\％	4\％	4\％	3\％	3\％	2\％	2\％	0\％	0\％	0\％	0\％	0\％	0\％
4563	59，02，0，91	Conaining coton	10	N2	\％	9\％	${ }^{8 \%}$	${ }^{8 \%}$	6%	6\％	${ }^{5 \%}$	5\％	4%	4%	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％	\％	0\％	0\％
4564	55，02，0，99	－Oher	10	N2	\％	${ }^{9 \%}$	${ }^{8 \%}$	${ }^{8 \%}$	6\％	6\％	${ }^{5 \%}$	5\％	4\％	4\％	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％\％	\％	\％	\％	\％	\％
4565	59，02，0010	Chaier fabicic rubeisised	10	NT2	9\％	9\％	${ }_{8}^{8 \%}$	8%	6\％	6\％	5\％	5\％	${ }^{4 \%}$	4\％	3\％	3\％	2\％	${ }^{2 \%}$	0\％	0\％	\％	0\％	\％	0\％
4566	${ }^{59,02,090}$	－Oner	${ }^{10}$	NT2	\％	\％$\%$	${ }^{8 \%}$	8%	${ }^{6 \%}$	6\％	${ }^{5 \%}$	${ }^{5 \%}$	${ }^{4 \%}$	${ }^{4 \%}$	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％\％	\％	\％	\％	\％	\％
567	55，03，000	With polv（iny Choride）	10	т2	${ }^{9 \%}$	${ }^{9 \%}$	${ }^{8 \%}$	${ }_{8 \%}$	6\％	${ }^{6 \%}$	${ }^{5 \%}$	${ }^{5 \%}$	4%	4%	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	0\％	0\％	\％	0\％
4568	55，03，2000	Winpoluremane	10	N2	9\％	9\％	${ }_{8}^{8 \%}$	${ }^{8 \%}$	6\％	${ }^{6 \%}$	5\％	5\％	4%	4%	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	2\％	\％	\％\％	\％	\％	\％	\％
4569	55，03，000	Onter	10	N2	\％	${ }^{\text {\％}}$	${ }^{8 \%}$	${ }^{8 \%}$	6%	${ }^{6 \%}$	5\％	5\％	4%	4%	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	2\％	\％	\％	\％	\％	\％	\％
44570	55，04，000	Linoum	10	N2	\％	9\％	8\％	8\％	6\％	6\％	5\％	5\％	4\％	4\％	3\％	3\％	2%	2\％	0\％	\％\％	\％\％	\％	\％	\％
4571	55，09，000	Other	10	N2	\％	${ }^{9 \%}$	${ }^{8 \%}$	${ }^{8 \%}$	6\％	\％\％	5\％	5\％	4%	4%	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％\％	\％\％	\％\％	\％	\％	\％
4572	55，05，010	Ot woolor fine or coasse aimal hair	${ }^{10}$	N2	\％	${ }^{9 \%}$	${ }^{8 \%}$	${ }^{8 \%}$	6\％	${ }^{6 \%}$	5\％	${ }^{5 \%}$	4\％	4\％	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％	\％	\％	0\％
4573	59，05，090	Other	10	N2	\％	9\％	8%	8%	6\％	6\％	5\％	5\％	4\％	4%	3\％	3\％	${ }^{2 \%}$	2\％	0\％	0\％	0\％	\％	\％	\％
$4{ }^{4574}$	59，06，000	－Adhesive tape of a width notexceeding 20 cm	10	N2	\％	9\％	${ }^{8 \%}$	8%	6\％	6\％	5\％	5\％	4\％	4\％	3\％	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％\％	0\％	\％	\％	0\％	0\％
4575	55，06，100	－Kinted or croconeed	10	NT2	${ }^{9 \%}$	${ }^{9 \%}$	${ }^{8 \%}$	8%	\％\％	${ }^{6 \%}$	5\％	${ }^{5 \%}$	${ }^{4 \%}$	${ }^{4 \%}$	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	0\％	0\％	0\％	0\％	\％\％	0\％
45	59，06，910	－Ru	10	NT2	${ }^{9 \%}$	${ }^{9 \%}$	${ }^{8 \%}$	${ }^{8 \%}$	6\％	6\％	5\％	5\％	${ }^{4 \%}$	$4{ }^{4 \%}$	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％	\％	\％	\％
4577	55，06，990	－Onher	10	N2	${ }^{9 \%}$	${ }^{9 \%}$	${ }^{8 \%}$	${ }^{8 \%}$	6\％	6\％	${ }^{5 \%}$	${ }^{5 \%}$	4%	$4{ }^{4 \%}$	3\％	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	0\％	\％	\％	0\％	\％	\％\％
4478	59，07，010	－Fabrics impregnated，coated or covered with oil or oil－based preparations	10	N2	\％	9\％	${ }^{8 \%}$	${ }^{8 \%}$	6\％	6\％	${ }^{5 \%}$	${ }^{5 \%}$	4%	4\％	3\％	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％	\％	\％	\％
4479	59，00，030	－Fabrics impregnated，coated or covered with fire resistant substances	10	ง2	\％	9\％	8%	8\％	6\％	6\％	5\％	5\％	4%	4%	3\％	${ }^{3} \%$	${ }^{2 \%}$	2\％	\％	\％	\％	0\％	0\％	\％
4580	55，07，040	－Fabrics impregnated，coated or covered with flock velvet，the entire surface of which is covered with textile flock	10	N2	\％	9\％	8\％	${ }^{8 \%}$	6\％	6\％	${ }^{5 \%}$	5\％	${ }^{4 \%}$	4%	3\％	${ }^{3 \%}$	${ }^{2 \%}$	2\％	\％	\％\％	\％	0\％	\％	\％
458	700，050		${ }^{10}$	N2	${ }^{9 \%}$	9\％	8\％	8%	6\％	6\％	5\％	${ }^{5 \%}$	$4{ }^{4 \%}$	${ }^{4 \%}$	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	0\％	\％	\％	0\％
4582	9，0，70，000	－Fabrics impregnated，coated or covered with other substances	10	N2	${ }^{9}$	${ }^{9}$	${ }^{8 \%}$	8\％	6\％	6\％	5\％	${ }^{5 \%}$	${ }^{4 / 6}$	${ }^{4 \%}$	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％	\％	\％	\％
458	59，00，090	－Oher	10	N2	9\％	9\％	8%	8\％	6\％	6\％	5\％	5\％	4\％	4\％	3\％	3\％	2\％	2\％	0\％	0\％	0\％	0\％	0\％	0\％
4584	55，08，010	Wicks inandescent gas mantes	10	N2	9\％	9\％	${ }^{8 \%}$	${ }^{8 \%}$	6%	6\％	5\％	5\％	4%	4%	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％\％	\％\％	\％\％	\％	\％	0\％
4535	59，08，090	－other	10	N2	\％	9\％	${ }^{8 \%}$	${ }^{8 \%}$	6\％	${ }^{6 \%}$	5\％	${ }^{5 \%}$	4\％	4\％	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％	\％	\％	0\％
4586	59，00，010	－Frie hoses	10	N2	\％	9\％	8%	${ }^{8 \%}$	6\％	6\％	5\％	5\％	4\％	4%	3\％	3\％	${ }^{2 \%}$	2\％	0\％	\％	0\％	\％	\％	\％
4587	59，00，090	Other	10	V1	\％	${ }^{8 \%}$	6\％	5\％	4\％	3\％	${ }^{2 \%}$	0\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％
${ }^{4588}$	59，100，00		10	NT2	\％	9\％	${ }^{8 \%}$	${ }^{8 \%}$	6\％	6\％	5\％	5\％	4\％	4\％	3\％	3\％	2\％	2%	0\％	0\％	0\％	\％	0\％	\％
4459	55，11，000		10	NT2	\％	9\％	8\％	8\％	6\％	6\％	5\％	5\％	4\％	4\％	3\％	3\％	2\％	2\％	\％	0\％	0\％	\％	0\％	0\％
4590	55，12，000	Boting coth，weenter or orot made up	10	N2	9\％	${ }^{9 \%}$	8%	${ }^{8 \%}$	6\％	${ }^{6 \%}$	5\％	5\％	4\％	4\％	3\％	${ }^{3 \%}$	2\％	2\％	\％	\％\％	\％	\％	\％	0\％
459	59，113，100	Weighigl ess hana 650 g m 2	10	N2	9\％	9\％	${ }^{8 \%}$	${ }^{8 \%}$	6\％	6\％	5\％	5\％	4%	4%	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％\％	\％\％	\％	\％	\％
4592	55，13，200	－Weighing 650 gm mor more	10	N2	\％	${ }^{9 \%}$	${ }^{8 \%}$	${ }^{8 \%}$	6\％	6\％	5\％	5\％	4%	4%	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％	\％	\％	\％
4593	59，14，000	－Straining cloth of a kind used in oil presses or the like，including that of human hair	10	N2	\％	9\％	${ }^{8 \%}$	8\％	6\％	6\％	5\％	5\％	4\％	4\％	3\％	${ }^{3 \%}$	2\％	${ }^{2 \%}$	0\％	\％	\％	${ }^{0 \%}$	\％	\％
4554	59，19，010	－－Gasteles and seals	${ }^{10}$	N2	9\％	\％\％	${ }^{8 \%}$	8%	6\％	${ }^{6 \%}$	5\％	5\％	4\％	4\％	${ }^{3 \%}$	${ }^{3 \%}$	2\％	${ }^{2 \%}$	\％\％	\％\％	\％\％	\％	\％\％	0\％
4595	55，119，090	－other	${ }^{10}$	NT2	\％	9\％	8\％	8\％	6\％	6\％	5\％	5\％	4\％	4%	3\％	3\％	2\％	${ }^{2 \%}$	0\％	\％	0\％	\％	\％	0\％
4596	${ }^{50,011,000}$	${ }^{2}$ Oong pief tabics	${ }^{10}$	NT2	${ }^{9 \%}$	${ }^{9 \%}$	${ }^{8 \%}$	8%	6\％	6\％	5\％	5\％	${ }^{4 \%}$	4%	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％\％	\％\％	\％\％	\％	\％	0\％
4597	80，012，100	－Of Coton	10	N2	${ }^{9 \%}$	9\％	${ }_{8}^{8 \%}$	${ }_{8 \%}$	6\％	6\％	${ }^{5 \%}$	5\％	4%	4\％	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	0\％	0\％	\％	\％	\％
4598	80，012，200	－Of marmade itios	10	NT2	${ }^{9 \%}$	9\％	${ }^{8 \%}$	${ }^{8 \%}$	6\％	${ }^{6 \%}$	5\％	5\％	4%	4%	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	2\％	\％	\％\％	\％	\％	\％	\％
4599	${ }^{\text {80，012，900 }}$	－Of otere textie maeierils	10	NT2	${ }^{9 \%}$	${ }^{\text {\％}}$	${ }^{8 \%}$	${ }^{8 \%}$	${ }^{6 \%}$	${ }^{6 \%}$	5\％	5\％	4%	4%	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2}$	\％	\％	\％	0\％	\％	\％
4600	${ }^{80,019,100}$	Of coton	10	NT2	9\％	9\％	8\％	8\％	6\％	6\％	5\％	5\％	4%	4%	3\％	3\％	${ }^{2 \%}$	${ }^{2 \%}$	0\％	0\％	0\％	\％	\％	0\％
4601	80，019，220		10	NT2	9\％	\％	${ }^{8 \%}$	8\％	6\％	6\％	5\％	5\％	4\％	4%	3\％	${ }^{3}$	2\％	2\％	\％\％	\％	\％\％	\％	0\％	\％
4602	${ }^{80,019,230}$	\cdots Conalinge elasomenicicam or ruber tread	10	NT2	9\％	9\％	${ }^{8 \%}$	${ }^{8 \%}$	${ }^{6 \%}$	${ }^{6 \%}$	5\％	5\％	4\％	4\％	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	0\％	0\％	0\％	0\％	\％	0\％
$4{ }^{4003}$	${ }^{80,019,290}$	\cdots	10	NT2	${ }^{9 \%}$	9\％	${ }^{8 \%}$	${ }^{8 \%}$	6\％	${ }^{6 \%}$	5\％	5\％	4\％	4\％	${ }^{3 \%}$	3\％	${ }^{2 \%}$	${ }^{2 \%}$	\％\％	0\％	\％	0\％	\％	0\％
，	${ }^{\text {60，019，911 }}$		10	N2	\％	\％\％	8%	8\％	\％\％	6\％	${ }^{5 \%}$	5\％	4\％	4\％	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％	\％	\％	\％
4605	${ }^{80,019,919}$	\cdots	10	NT2	9\％	9\％	${ }^{8 \%}$	8\％	6\％	6\％	5\％	5\％	${ }^{4 \%}$	4\％	3\％	3\％	${ }^{2 \%}$	${ }^{2 \%}$	0\％	0\％	\％	0\％	\％\％	0\％
4406	${ }^{80,019,991}$	Aic yemotruber thear	10	N2	9\％	9\％	${ }^{8 \%}$	${ }^{8 \%}$	${ }^{6 \%}$	\％\％	5\％	5\％	4%	4%	${ }^{3 \%}$	3\％	${ }^{2 \%}$	${ }^{2 \%}$	\％\％	0\％	\％	\％	0\％	\％
4607	80，019，999	－Onter	10	N2	9\％	9\％	${ }^{8 \%}$	${ }^{8 \%}$	6\％	6\％	5\％	5\％	4\％	4%	3\％	3\％	2\％	2\％	0\％	0\％	0\％	\％	\％	\％
4608	80，024，000	－Containing by weight 5\％or more of elastomeric yarn but not containing rubber thread	10	N2	\％	9\％	${ }^{8 \%}$	${ }^{8 \%}$	6\％	6\％	5\％	5\％	4\％	4\％	3\％	3\％	${ }^{2 \%}$	${ }^{2 \%}$	0\％	0\％	0\％	${ }^{0 \%}$	0\％	\％\％
4409	80，02，000	Other	10	NT2	9\％	9\％	${ }_{8 \%}$	${ }^{8 \%}$	6\％	6\％	5\％	5\％	4\％	4%	3\％	3\％	2\％	2\％	0\％	0\％	0\％	\％	0\％	0\％
446	${ }^{80,031,000}$	Of woolo f fine animat hair	10	NT2	\％	9\％	8\％	8\％	6\％	6\％	5\％	5\％	4\％	4\％	${ }^{3 \%}$	3\％	2%	${ }^{2 \%}$	\％	\％	\％	\％	0\％	0\％
4611	80，032，000	Of coton	10	NT2	\％	9\％	8\％	8\％	6\％	6\％	5\％	5\％	4\％	4\％	3\％	3\％	2\％	2\％	0\％	0\％	\％\％	\％	0\％	0\％
4612	80，03，000	Ofsymbicictiones	10	NT2	\％	9\％	${ }^{8 \%}$	${ }^{8 \%}$	6%	6\％	${ }^{5 \%}$	5\％	4%	4%	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％	\％	\％	\％
$4{ }^{4613}$	86，034，000	－Ofatitical ilios	10	NT2	${ }^{9 \%}$	9\％	${ }^{8 \%}$	${ }^{8 \%}$	6\％	${ }^{6 \%}$	5\％	5\％	4\％	4\％	${ }^{3 \%}$	3\％	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％	\％	0\％	0\％
4614	${ }^{80,039,000}$	－other	${ }^{10}$	${ }^{\text {NT2 }}$	\％	9\％	${ }^{8 \%}$	8\％	6\％	\％\％	5\％	${ }^{5 \%}$	${ }^{4 \%}$	4\％	3\％	3\％	2\％	${ }^{2 \%}$	\％	\％	\％	\％	\％\％	\％
486	${ }^{6004.10,10}$	－Containing by weight not more than 20\％of elastomeric yarn	10	N2	\％	9\％	8\％	${ }^{8 \%}$	6\％	6\％	5\％	5\％	4\％	4\％	3\％	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％	\％	\％	0\％
4	${ }^{80,041,090}$	－－omer	10		\％	9\％	8%	${ }^{8 \%}$	${ }^{6 \%}$	${ }^{6 \%}$	5\％	5\％	4%	4%	${ }^{3 \%}$	${ }^{3 \%}$	2%	2\％	\％	0\％	\％	\％\％	\％	\％

香港•ASEAN FTAにかかる調査報告書

別添2－4 原産地品の関税撤廃スケジュール
（ラオス）

香港•ASEAN FTAにかかる調査報告書

4	［1，061，000	Ofotoon	10	Hst	10\％	10\％	${ }^{10 \%}$	10\％	10%	${ }^{10 \%}$	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10%	10\％	${ }^{10 \%}$	10%	${ }^{10 \%}$	${ }^{10 \%}$	${ }^{100}$
4706	61，02，200	Ot manmade fibes	10	HsL	10\％	10\％	\％	0\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	\％\％	10\％	10\％	10\％	10\％9
4707	61，06，000	－Ot onere rexile maerials	10	HSL	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％
4708	61，07，100	Of coton	10	HSL	10\％	10\％	\％	0\％	10\％	10\％	10\％	10\％	10\％	0\％	10\％	10\％	10\％	10\％	10\％	0\％	10\％	10\％	10\％	10\％
4709	61，07，200	－－Ot man－made fibes	10	ist	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％
4710	61，07，900	－－Of ofner exilie materials	10	HsL	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％
4711	61，02，100	－Ofoton	10	HSL	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	${ }^{10 \%}$	0\％	10\％
4712	81，02，200	－Of marmade tibes	10	HSL	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	${ }^{10 \%}$	10\％	10\％8
4773	61，07，2000	Of ofter exexilie materias	10	Hst	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％
4774	61，07，100	－or cotoon	10	ist	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％
4775	61，09，900	Ofotere texilie maeieris	10	Hst	10\％	10\％	0\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10%
4776	［1，08，100	－Ot manmadeftives	10	ISL	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％8
477	81，08，920	－Of wool of fine anima lair	10	Hst	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％
4778	61，08，930	Of coton	10	${ }^{\text {HSL }}$	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10%	10\％	10\％
477	61，08，990	Onter	10	HSL	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％
4720	81，08， 100	coton	10	Ist	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	${ }^{10 \%}$	10\％	10\％
4721	81，022，200	－－Ot marmade fibes	10	HsL	10\％	10%	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10%	10\％	10\％
4722	61，08，200	Ofother exexile materials	10	HsL	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％
$4{ }^{4723}$	81，08，100	Ofoctoon	10	Ist	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％
$4{ }^{424}$	61，08，200	－ot marmade flies	10	ist	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％
$4{ }^{425}$	61，08，900	－Oothere texile maierals	10	1st	0\％	10\％	0\％	0\％	10\％	10\％	10\％	10\％	0\％	10\％	10\％	10\％	0\％	10\％	10\％	10\％	10\％	10\％	0\％	10\％
4726	61，09， 100	－－Otocoton	10	HSL	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	${ }^{10 \%}$	10\％	10\％
$4{ }^{4727}$	61，09，200	－－Of marmade fives	10	Hst	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	${ }^{10 \%}$	10%	${ }^{10 \%}$	${ }^{10 \%}$	${ }^{10 \%}$	${ }^{10 \%}$	${ }^{10 \%}$
$4{ }^{4728}$	61，09，900	－－Ot other extie materials	10	HSL	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％
4729	6109：10．10	－Formeno orbos	10	HsL	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10%	10\％	10\％
4730	6109：1020	－Forwomenorg girs	10	HsL	\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％
$4{ }^{4731}$	61，09，010	－For men or boys，of rame，ineno or sik	10	Hst	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	${ }^{10 \%}$	10\％	10\％
4732	61，09，020	－For menor boos，ot oterer fexile maerais	10	ist	0\％	10\％	10\％	0\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	\％	10\％	10\％	10\％	10\％	0\％	\％
$4{ }^{4733}$	61，09，0，30	－－For womenor ogirs	10	Ist	\％	10\％	0\％	0\％	0\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	0\％	0\％	0\％	0\％	\％	0\％	0\％
$4{ }^{4734}$	61，01，100	－otwool	10	N2	9\％	\％	${ }^{8 \%}$	8\％	6\％	6\％	5\％	5\％	4%	4\％	${ }^{3 \%}$	${ }^{3 \%}$	2\％	${ }^{2 \%}$	\％	\％\％	\％	0\％	\％	\％
4735	61，01，200	Of Kasmir（castmee）goats	10	N2	9\％	9\％	${ }_{8} \%$	${ }_{8} 8$	6\％	\％	5\％	5\％	${ }^{4 \%}$	${ }^{4 \%}$	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	0\％	0\％	0\％	0\％
4736	60，01，900	－－Oher	1	N2	\％	9\％	${ }^{8}$	${ }^{8}$	6\％	6\％	5\％	5\％	4\％	4%	3\％	3\％	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％\％	\％	\％	0\％	\％
$4{ }^{4737}$	61，102，000	－or coton	10	N2	${ }^{9 \%}$	9\％	${ }^{8 \%}$	${ }^{8 \%}$	6%	6\％	5\％	5\％	4%	$4{ }^{4 \%}$	3\％	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％	\％	\％	\％
$4{ }^{4738}$	61，103，000	－Of mar－madeftibes	10	NT2	9\％	9\％	8\％	8\％	6\％	6\％	5\％	5\％	4%	4\％	3\％	3\％	${ }^{2 \%}$	2%	\％	0\％	0\％	\％	0\％	0\％
4739	61，109，000	Of other（exile maierals	10	NT2	\％	${ }^{9 \%}$	${ }_{8 \%}$	${ }^{8 \%}$	6%	6%	5\％	${ }^{5 \%}$	4%	$4{ }^{4 \%}$	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	2\％	0\％	\％	0\％	\％	0\％	0\％
4740	61，12，000	－Ofotoon	10	NT2	9\％	\％	${ }_{8} 8$	${ }^{8 \%}$	6\％	6\％	5\％	5\％	${ }^{4 \%}$	$4{ }^{4}$	3\％	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％	0\％	\％	\％
4741	61，113，000	－Oisymbieicitibes	10	NT2	9\％	9\％	${ }^{8}$	${ }^{8}$	6\％	6\％	5\％	5\％	4\％	4%	3\％	3\％	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％	\％	\％	\％
4742	61，19，000	－or otererexile maierais	10	NT2	9\％	9\％	8\％	8%	6\％	6\％	5\％	5\％	4%	4%	3\％	3\％	${ }^{2 \%}$	2\％	\％	0\％	0\％	\％	\％	\％
4743	6，121，100	－Otooton	10	ज2	9\％	\％	8%	8%	6\％	6\％	5\％	5\％	4\％	4\％	3\％	3\％	2\％	2\％	\％	0\％	\％	0\％	\％	\％
${ }_{474}^{474}$	${ }^{61,121,200}$	Ot ssmmeicictues	10	N2	${ }^{9 \%}$	${ }^{9}$	${ }_{8 \%}$	${ }^{8 \%}$	\％\％	6\％	5\％	${ }^{5 \%}$	${ }^{4 \%}$	4%	${ }^{3 \%}$	3\％	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％	\％	\％	\％
4745	66，12，．900	Ofo therexexile maeierals	10	NT2	9\％	9\％	8\％	8\％	6\％	6\％	5\％	5\％	4\％	4%	${ }^{3 \%}$	3\％	${ }^{2 \%}$	2\％	\％	\％	\％	\％	\％	\％
4746	61，122，000	－Sks silis	10	NT2	9\％	9\％	${ }^{8} \%$	8%	6\％	6\％	5\％	5\％	4\％	4%	${ }^{3 \%}$	3\％	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％\％	\％	\％	\％	\％
4747	60，123，100	Ofsymbilictures	10	NT2	${ }^{9 \%}$	\％	${ }^{8 \%}$	${ }_{8 \%}$	6\％	6\％	5\％	${ }^{5 \%}$	${ }^{4 \%}$	$4{ }^{4 \%}$	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％	\％	\％	\％
478	61，123，900	－Oo other exitile mateials	10	NT2	9\％	9\％	${ }^{8 \%}$	${ }^{8 \%}$	6\％	6\％	5\％	5\％	4%	4%	3\％	3\％	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％	\％	0\％	\％
4749	61，124，100	－Of saminieicitibes	${ }^{10}$	N2	9\％	\％\％	${ }^{8} \%$	${ }^{8 \%}$	6\％	6\％	${ }_{5 \%}^{5 \%}$	${ }^{5 \%}$	4\％	$4{ }^{4 \%}$	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	0\％	\％	\％	\％	\％
4750	61，124，900	－－Of ofere cexile mateials	10	NT2	9\％	9\％	${ }^{8 \%}$	8\％	6\％	6\％	5\％	${ }^{5 \%}$	4\％	4\％	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	2\％	\％	\％	\％	\％	\％	\％
4751	61，18，010	－Divers suis（mestuis）	10	NT2	\％	\％\％	${ }_{8 \%}$	8\％	6\％	6\％	5\％	5\％	4%	4\％	3\％	3\％	2%	${ }^{2 \%}$	0\％	\％	\％	\％	0\％	\％
$4{ }^{4} 75$	${ }^{61,180,030}$	－Gamens sseded or protection foom fie	${ }^{10}$	N2	9\％	${ }^{\text {\％}}$	${ }^{8 \%}$	${ }^{8 \%}$	6%	6\％	${ }^{5 \%}$	5\％	4%	$4{ }^{4 \%}$	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	2%	0\％	0\％	\％	0\％	0\％	\％
$4{ }^{4753}$	61，130，040	－Ohere prolecive wok gamenis	10	N2	9\％	\％	8%	${ }^{8 \%}$	6\％	6%	5\％	5\％	4%	4%	3\％	3\％	${ }^{2 \%}$	2\％	\％	0\％	\％	\％	\％	0\％
$4{ }^{4754}$	81，130，090	－Oner	10	N2	9\％	\％	${ }^{8}$	${ }^{8}$	6%	6\％	5\％	5\％	${ }^{4 \%}$	4%	${ }^{3} \%$	3\％	${ }^{2 \%}$	${ }^{2 \%}$	0\％	\％	\％	\％	\％	\％
4755	61，142，000	－or cotoo	10	N2	\％	9\％	${ }^{8}$	8\％	6\％	6\％	5\％	5\％	4\％	4\％	3\％	3\％	${ }^{2 \%}$	2\％	\％	\％\％	\％	\％	\％	\％
$4{ }^{4766}$	60，143，020	Gammens seed for polectiof foom fie	10	N2	9%	9\％	${ }_{8 \%}$	${ }^{8 \%}$	6%	6%	5\％	5\％	4%	$4{ }^{4 \%}$	3\％	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％	0\％	\％	\％
$4{ }^{457}$	61，143，990	－－Oher	10	NT2	9\％	9\％	8\％	${ }^{8 \%}$	6\％	6\％	5\％	5\％	4%	4\％	${ }^{3 \%}$	3\％	${ }^{2 \%}$	${ }^{2 \%}$	\％	0\％	\％	\％	0\％	0\％
$4{ }^{4758}$	61，49，000	－ot onere rexile malerals	10	NT2	9\％	9\％	${ }_{8}^{8 \%}$	${ }^{8 \%}$	6%	6%	5\％	${ }^{5 \%}$	4%	4%	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％	0\％	\％	${ }^{0 \%}$
4759	${ }^{\text {6115．10．10 }}$		10	N2	9\％	${ }^{\text {\％\％}}$	${ }^{8 \%}$	${ }^{8 \%}$	6\％	6\％	5\％	${ }^{5 \%}$	4%	4\％	3\％	${ }^{3 \%}$	${ }^{2 \%}$	$2{ }^{2 \%}$	\％	\％	\％	0\％	0\％	0\％
4760	61，15，090	－－oner	10	NT2	${ }^{9 \%}$	9\％	8%	8\％	6\％	6\％	${ }_{5 \%}^{5 \%}$	${ }_{5 \%}$	4\％	4\％	${ }_{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	0\％	0\％	0\％	0\％	\％	\％\％
4781	61，15，100		10	it2	9\％	9\％	8\％	8\％	6\％	6\％	5\％	5\％	4\％	${ }^{4 \%}$	3\％	3\％	2\％	2\％	0\％	0\％	\％	0\％	0\％	\％
$4{ }^{4762}$	${ }^{61,1}$	－Of synthetic fibres，measuring per single yarn 67	10	т2	${ }_{9} \%$	${ }^{9 \%}$	${ }^{8 \%}$	8%	6\％	6\％	${ }^{5 \%}$	${ }^{5 \%}$	${ }_{4}^{4 \%}$	${ }^{4 \%}$	${ }^{3}$	${ }^{\text {3\％}}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	0\％	0\％	\％	${ }^{0 \%}$
478	61，15，9，90	‥ of coton	10	N2	\％	9\％	8\％	8\％	6\％	6\％	5\％	5\％	4%	4\％	3\％	3\％	${ }^{2 \%}$	2\％	\％	\％\％	\％	\％	\％	\％\％
$4{ }^{4764}$	66，15，290	－Oner	10	NT2	9\％	\％$\%$	8\％	${ }_{8 \%}$	6\％	6\％	5\％	5\％	4\％	4\％	3\％	3\％	2\％	2\％	\％	\％	\％	\％	\％	\％
4785	61，153，010	Of cotoon	10	N2	9\％	9\％	${ }^{8 \%}$	${ }^{8 \%}$	6\％	6\％	5\％	5\％	4\％	${ }^{4 \%}$	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％\％	\％	\％	\％	0\％
4786	61，15，3，90	Onter	10	NT2	9\％	\％	${ }^{8}$	${ }^{8}$	6	6\％	5\％	5\％	4%	4%	${ }^{3} \%$	${ }^{3}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％	\％	\％	\％
${ }^{4787}$	61，159，400	－of woolor fine a aima hair	${ }^{10}$	NT2	9\％	\％\％	8%	${ }^{8 \%}$	6\％	6\％	5\％	5\％	4%	$4{ }^{4}$	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	2\％	\％	\％	0\％	0\％	\％	0\％
4788	60，159，500	－ Oc coton	10	N2	${ }^{9 \%}$	9\％	${ }^{8 \%}$	${ }^{8 \%}$	6%	6%	5\％	5\％	4%	$4{ }^{4 \%}$	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％	0\％	\％	\％
$4{ }^{489}$	61，159，600	－Ot symblieif flies	10	NT2	9\％	9\％	8\％	${ }^{8 \%}$	6\％	6\％	5\％	5\％	4\％	4\％	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	0\％	0\％	\％	0\％	0\％	0\％
4770	61，159，900	Ofoter Itexilie materials	10	N2	9\％	${ }^{9 \%}$	${ }^{8 \%}$	${ }^{8 \%}$	6%	6%	${ }_{5 \%}$	${ }^{5 \%}$	${ }^{4 \%}$	$4{ }^{4 \%}$	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％	0\％	0\％	\％
4771	6116．10．10	－Divest gloves	10	${ }^{\text {NT2 }}$	\％	9\％	${ }^{8 \%}$	8%	6\％	6\％	5\％	5\％	4\％	4\％	3\％	3\％	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％	\％	\％	\％
4772	61，61，090	－other	10	N2	9\％	9\％	${ }_{8 \%}$	${ }^{8 \%}$	6\％	6\％	5\％	5\％	4%	$4{ }^{4}$	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	0\％	\％	\％	\％	\％	\％
${ }^{4773}$	${ }^{60,169,100}$	－Of woolor fine anima hair	${ }^{10}$	N2	9\％	${ }^{9 \%}$	8\％	8\％	6\％	6\％	5\％	5\％	4\％	4\％	3\％	${ }^{3 \%}$	${ }^{2 \%}$	2\％	0\％	\％\％	0\％	\％	0\％	0\％
4774	61，169，200	－Ofotoon	10	N2	9\％	9\％	8\％	8\％	6\％	6\％	5\％	5\％	4\％	4\％	3\％	3\％	2\％	2\％	\％	\％	\％	\％\％	\％	\％
4775	61，69，300	Ofsymbicic flues	10	N2	9\％	9\％	${ }^{8 \%}$	${ }^{8 \%}$	6\％	\％	5\％	5\％	${ }^{4}$	$4{ }^{4 \%}$	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％	0\％	\％	\％
4776	61，16，900	－－Of ofere rexile maleials	10	NT2	9\％	9\％	${ }^{8}$	8%	6\％	6\％	5\％	5\％	4\％	4%	3\％	3\％	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％	\％	\％	\％
477	6117．10．10	Of coton	10	NT2	${ }^{9 \%}$	9\％	${ }^{8 \%}$	${ }^{8 \%}$	${ }^{6 \%}$	6%	${ }_{5 \%}$	${ }^{5 \%}$	${ }^{4 \%}$	$4{ }^{4 \%}$	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％	0\％	0\％	\％
478	61，71，090	－－Oher	10	NT2	9\％	9\％	8%	8\％	6\％	6\％	5\％	5\％	4\％	4\％	3\％	${ }^{3 \%}$	${ }^{2 \%}$	2\％	0\％	0\％	\％	0\％	\％	0\％
4779	60，78，011	－Of wool of fine anima lair	10	NT2	\％$\%$	9\％	${ }^{8 \%}$	${ }^{8 \%}$	6\％	6\％	5\％	5\％	4%	4%	${ }^{3 \%}$	3\％	${ }^{2 \%}$	${ }^{2 \%}$	0\％	0\％	\％	\％	\％	0\％
4880	61，78，019	－Oher	10	N2	${ }^{9 \%}$	\％$\%$	${ }^{8 \%}$	${ }^{8 \%}$	${ }^{6 \%}$	6\％	5\％	${ }^{5 \%}$	${ }^{4 \%}$	4\％	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％	0\％	0\％	\％
4781	60，178，020	Wist bands，kne bands orankke bands	10	${ }^{\text {NT2 }}$	9\％	${ }^{\text {\％}}$	${ }^{8 \%}$	8\％	6\％	6\％	5\％	${ }^{5 \%}$	4\％	4\％	3\％	3\％	${ }^{2 \%}$	2%	\％	\％	\％	\％	\％	\％
4782	61，77，090	Other	10	N2	9\％	${ }^{9 \%}$	8%	8%	6\％	6\％	5\％	5\％	4\％	4\％	3\％	${ }^{3 \%}$	${ }^{2 \%}$	2\％	0\％	0\％	\％	\％	\％	\％
$4{ }^{4783}$	61，79，000	－Pats	10	${ }^{\text {NT2 }}$	9\％	9\％	${ }^{8 \%}$	${ }^{8 \%}$	6\％	6\％	5\％	5\％	4\％	4\％	3\％	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％	\％	\％	\％
$4{ }^{4884}$	62，01，100	Of wool of fine anima hair	10	N2	9\％	9\％	${ }_{8 \%}$	${ }^{8 \%}$	6\％	6\％	5\％	5\％	${ }^{4 \%}$	4%	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	0\％	\％	\％	\％	\％	\％
4785	62，01，200	－Ofotoron	10	NT2	9\％	\％	${ }_{8} 8$	${ }^{8 \%}$	6\％	6\％	5\％	5\％	4\％	4%	3\％	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％	\％	\％	\％
4886	${ }^{62,011,300}$	Of manmade flbes	10	NT2	9\％	9\％	${ }_{8 \%}$	${ }^{8 \%}$	6%	6%	5\％	5\％	4%	4%	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％	\％	\％	\％
4787	62，011，900	Ofo oner exexile materials	10	N2	9\％	${ }^{\text {\％}}$	8\％	8\％	6\％	6\％	5\％	5\％	4\％	4\％	3\％	${ }^{3} \%$	${ }^{2 \%}$	${ }^{2 \%}$	0\％	0\％	\％	0\％	\％	\％
4788	62019， 100	－Of wool of in a animal hair	10	NT2	9\％	9\％	${ }^{8 \%}$	${ }^{8 \%}$	6\％	6\％	5\％	5\％	4%	4%	3\％	3\％	${ }^{2 \%}$	${ }^{2 \%}$	0\％	\％\％	\％	\％	0\％	\％
4789	62，019，200	Of coton	10	NT2	${ }^{9 \%}$	\％$\%$	${ }_{8}^{8 \%}$	${ }^{8 \%}$	6\％	6%	5\％	5\％	4%	4%	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％	0\％	\％	\％
4790	62，019，300	－of mar－madeftres	10	NT2	9\％	9\％	8\％	8\％	6\％	6\％	${ }^{5 \%}$	5\％	4\％	4\％	3\％	3\％	${ }^{2 \%}$	2\％	0\％	0\％	0\％	0\％	0\％	\％\％
4791	62，019，900	Ofother exitie materials	10	N2	9\％	\％\％	${ }_{8 \%}$	${ }^{8 \%}$	6\％	6\％	5\％	5\％	4%	4%	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％	\％	\％	\％
4792	62，02，100	－－of voolor fine animal hair	10	NT2	9\％	9\％	8\％	8%	6\％	6\％	5\％	5\％	4%	4\％	3\％	3\％	2%	2%	\％	0\％	0\％	\％	\％	\％
4793	82，021，200	－Ofototon	10	N2	\％\％	${ }^{9 \%}$	${ }_{8 \%}$	${ }_{8}^{8 \%}$	6\％	6\％	5\％	${ }^{5 \%}$	4\％	4%	3\％	${ }^{3 \%}$	${ }^{2 \%}$	2%	\％	\％	\％	0\％	\％	\％\％
4794	62021，300	－Ot marmade flues	10	NT2	\％	${ }_{9} 9$	${ }_{8} 8$	${ }^{8 \%}$	${ }^{6 \%}$	6\％	5\％	5\％	4\％	${ }^{4 \%}$	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％	0\％	0\％	\％
4	［2，021，900	Of ofer erexile maeveras	10	${ }^{\text {NT2 }}$	\％	\％	${ }^{8 \%}$	${ }^{8 \%}$	6\％	6\％	5\％	5\％	4\％	${ }^{4 \%}$	3\％	3\％	2\％	2%	\％	\％\％	\％	\％\％	\％	\％

香港•ASEAN FTAにかかる調査報告書

$4{ }^{4796}$	${ }^{62,029,100}$	Ot woolo fin	10	NT2	\％	${ }^{9 \%}$	${ }^{8 \%}$	${ }^{8 \%}$	6\％	6\％	${ }^{5 \%}$	${ }^{5 \%}$	${ }^{4 \%}$	4\％	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％\％	\％	\％	0\％	0\％	
4797	${ }^{62,202,200}$	－Of coton	10	N2	9\％	9\％	${ }^{8 \%}$	${ }^{8 \%}$	6%	6%	5\％	5\％	4\％	4\％	${ }^{3}$	3\％	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％	\％	\％	\％
4798	${ }^{62,029,300}$	－of marmade tibes	10	NT2	9\％	\％	${ }^{8 \%}$	8%	6%	6%	${ }^{5 \%}$	5\％	4\％	4\％	${ }^{3 \%}$	3\％	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	0\％	\％	\％	0\％
4799	${ }^{62,029,900}$	Ofotere texilie maerials	10	N2	${ }^{\text {\％}}$	${ }^{9 \%}$	${ }^{8}$	${ }^{8 \%}$	6\％	6\％	${ }^{5 \%}$	5\％	4\％	$4{ }^{4 \%}$	3\％	3\％	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％	\％	\％	\％
4800	${ }^{82,031,100}$	－ot woolor fine anima hair	10	${ }^{\text {NT2 }}$	\％	\％	${ }_{8 \%}$	${ }_{8 \%}$	${ }^{6 \%}$	6\％	${ }^{5 \%}$	5\％	${ }^{4 \%}$	4%	3\％	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％	\％	\％	\％
4801	82，031，200	Of symbeicitiones	10	NT2	${ }^{9 \%}$	\％	8\％	8%	\％	6\％	5\％	5\％	4%	4\％	3\％	3\％	${ }^{2 \%}$	2\％	\％	\％	\％	0\％	0\％	\％
4802	${ }^{62,031,990}$	－Ot ofoton	10	NT2	${ }^{9 \%}$	9\％	${ }^{8 \%}$	${ }^{8 \%}$	\％	${ }^{6 \%}$	${ }^{5 \%}$	${ }^{5 \%}$	${ }^{4 \%}$	4%	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	0\％	\％	0\％	\％
4803	${ }^{62,031,900}$	－Oher	10	N2	9\％	9\％	${ }^{8 \%}$	${ }^{8 \%}$	\％	${ }^{6 \%}$	${ }^{5 \%}$	5\％	4\％	4%	${ }^{3 \%}$	3\％	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％\％	\％	\％	\％\％	\％\％
4804	${ }^{62,032,200}$	－ O ofoton	10	N2	\％	9\％	${ }^{8 \%}$	8%	6\％	6\％	5\％	5\％	4\％	4\％	${ }^{3 \%}$	3\％	${ }^{2 \%}$	2\％	\％	\％	\％	\％	\％	\％
4805	${ }^{62,032,300}$	Of smmuticictures	10	N2	\％	${ }^{9 \%}$	${ }^{8 \%}$	${ }^{8 \%}$	${ }^{6 \%}$	6\％	${ }^{5 \%}$	${ }^{5 \%}$	${ }^{4 \%}$	$4{ }^{4 \%}$	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％	\％	\％	0\％
4806	${ }^{62,032,9910}$	－－Ot woolor fine anima hair	10	NT2	9\％	9\％	${ }^{8 \%}$	8%	6\％	6\％	5\％	5\％	4\％	4%	3\％	3\％	2\％	2\％	\％\％	\％	0\％	\％\％	\％	\％
4807	${ }^{62,032,990}$	－Oner	10	NT2	\％	9\％	${ }_{8 \%}$	${ }^{8 \%}$	6%	6%	${ }^{5 \%}$	5\％	${ }^{4 \%}$	4%	${ }^{3 \%}$	3\％	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％	\％	\％	0\％
4808	${ }^{62,033,100}$	Of woolo fin e a aina hair	10	${ }^{\text {NT2 }}$	\％	\％	${ }^{8 \%}$	${ }_{8} \%$	6\％	6\％	5\％	5\％	4\％	$4{ }^{4 \%}$	${ }^{3 \%}$	3\％	${ }^{2 \%}$	2%	\％	\％	\％	\％	\％	\％
4809	${ }^{62,033,200}$	Ofototon	10	N2	\％	\％	8\％	8\％	6\％	6\％	5\％	5\％	4\％	4\％	3\％	3\％	2\％	2\％	0\％	\％	0\％	\％	\％	0\％
4810	${ }^{62,033,300}$	Of smmbieicitiores	10	N2	\％	\％	8\％	8%	6\％	6\％	5\％	5\％	4\％	4%	3\％	3\％	2\％	2%	\％	\％	0\％	\％	\％	0\％
4811	${ }^{62,033,900}$	Ofoter texile materials	10	NT2	9\％	9\％	${ }^{8 \%}$	${ }^{8 \%}$	${ }^{6 \%}$	6\％	${ }^{5 \%}$	${ }^{5 \%}$	${ }^{4 \%}$	4%	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	0\％	\％	0\％	0\％
4812	${ }^{62,034,100}$	Of woolo fin e a aima hair	10	N2	9\％	\％	${ }^{8 \%}$	${ }^{8}$	6\％	6\％	${ }^{5 \%}$	5\％	${ }^{4 \%}$	${ }^{4 \%}$	${ }^{3 \%}$	3\％	2%	${ }^{2 \%}$	\％	\％	\％	\％\％	0\％	\％
4813	${ }^{62,034,210}$	－Biband brace veralls	10	HsL	0\％	0\％	0\％	0\％	0\％	10\％	10\％	0\％	0\％	0\％	10\％	10\％	10\％	10\％	10\％	10\％	0\％	0\％	10\％	\％
${ }^{2814}$	${ }^{62,034,290}$	－oner	10	HSL	10\％	${ }^{10 \%}$	10\％	10\％	${ }^{10 \%}$	${ }^{10 \%}$	10\％	${ }^{10 \%}$	10\％	10\％	10\％	10\％	${ }^{10 \%}$	10\％	10\％	10\％	10\％	0\％	10\％	\％
4815	${ }^{62,034,300}$	Of spmeteictiones	10	Hst	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％
4816	${ }^{62,034,900}$	Of otere textie maierials	10	HsL	0\％	10\％	0\％	10\％	10\％	10\％	10\％	0\％	0\％	${ }^{10 \%}$	10\％	10\％	10\％	\％	10\％	10\％	10\％	0\％	10\％	\％
4817	${ }^{62,041,100}$	－Of woolor frine anima hair	10	NT2	9\％	9\％	8\％	${ }_{8 \%}$	6\％	6\％	5\％	5\％	4%	4\％	${ }^{3 \%}$	3\％	2\％	${ }^{2 \%}$	\％	\％	\％	\％	\％	\％
4818	${ }^{62,041,200}$	Ofototon	10	Hst	0\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％
4819	${ }^{62,041,300}$		10	HsL	10\％	10\％	\％\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	\％\％	10\％	10\％
4820	82，041，900	－ofother exilie maierals	10	HsL	\％\％	10\％	\％	10\％	${ }^{10 \%}$	10\％	10\％	10\％	10\％	10\％	10\％	${ }^{10 \%}$	\％	\％	10\％	10%	${ }^{10 \%}$	\％	${ }^{10 \%}$	\％
4821	${ }^{62,042,100}$	Of woolo fine a aima har	10	N2	\％	\％	${ }_{8 \%}$	${ }_{8} 8$	6\％	6\％	5\％	5\％	4%	4\％	${ }^{3 \%}$	3\％	2\％	${ }^{2 \%}$	\％	\％	\％	\％	0%	0\％
4822	${ }^{62,042,200}$	－ O cotoon	10	HsL	0\％	10\％	0\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％
${ }^{4823}$	${ }^{62,042,300}$	－Of smmeiticition	10	HsL	10\％	${ }^{10 \%}$	10\％	10\％	${ }^{10 \%}$	10\％	10\％	10\％	10\％	10\％	10\％	10\％	${ }^{10 \%}$	10\％	10\％	10\％	10\％	${ }^{10 \%}$	${ }^{10 \%}$	${ }^{10 \%}$
4882	${ }^{62,042,900}$	Ofoter texilie materials	10	HSL	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％
4825	${ }^{62,043,100}$	Of woolo f fine a anmal hair	10	N2	9\％	9\％	${ }^{8 \%}$	${ }^{8}$	6\％	6\％	5\％	5\％	4%	4\％	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％	\％	\％	\％
4826	${ }^{62,043,200}$	－Of coton	10	HSL	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％
4827	${ }^{62,043,300}$	Of symbeicictions	10	Hst	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	${ }^{10 \%}$	10\％
4888	${ }^{62,043,900}$	Ofother texilie materials	${ }^{10}$	Hst	10%	10\％	\％\％	${ }^{10 \%}$	${ }^{10 \%}$	10\％	10\％	10\％	10\％	10\％	10\％	${ }^{10 \%}$	${ }^{10 \%}$	10\％	10\％	10\％	10\％	10\％	10\％	${ }^{10 \%}$
4829	${ }^{62,044,100}$	Of wool of fine ainal hair	10	IsL	0\％	10\％	\％\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	0\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％
4830	${ }^{62,044,200}$	Ofototon	10	нst	0\％	10\％	0\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％
4831	${ }^{62,044,300}$	Ot sthntieicituras	${ }^{10}$	HsL	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	${ }^{10 \%}$	10\％	${ }^{10 \%}$	10\％	${ }^{10 \%}$	${ }^{10 \%}$	${ }^{10 \%}$
4832	${ }^{62,044,40}$	－Otatificalitues	10	Hst	10\％	${ }^{10 \%}$	10\％	10\％	${ }^{10 \%}$	${ }^{10 \%}$	10\％	${ }^{10 \%}$	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	${ }^{10 \%}$	10\％	10\％
4833	${ }^{62,044,900}$	Ofoter texile materials	10	Hs	10\％	${ }^{10 \%}$	10\％	10\％	10\％	10\％	10\％	10\％	${ }^{10 \%}$	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	${ }^{10 \%}$	${ }^{10 \%}$	10\％
4834	${ }^{82,045,100}$	Of woolo fine a anman hair	10	N22	9\％	9\％	${ }^{8 \%}$	${ }^{8 \%}$	6\％	6\％	${ }^{5 \%}$	${ }^{5 \%}$	$4{ }^{4 \%}$	4%	${ }^{\text {3\％}}$	${ }^{\text {3\％}}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％	\％	\％	\％
4835	${ }^{62,045,200}$	－ O cotoon	10	HsL	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％
4836	82，44，5，300	Of symbeicictiones	10	HsL	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	${ }^{10 \%}$	10\％
4837	62，045，900	－ofotere texile maeials	10	HsL	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％
4838	${ }^{62,046,100}$	Of wool of fine a inmal hair	10	NT2	${ }^{9}$	${ }^{\text {\％}}$	${ }^{8 \%}$	${ }^{8 \%}$	6%	6\％	${ }^{5 \%}$	5\％	4\％	4%	${ }^{3 \%}$	3\％	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％\％	\％	\％	\％
4839	${ }^{62,246,200}$	Ofototon	10	Hst	0\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	0\％	10\％	0\％
4880	${ }^{62,046,300}$	Of symbeicictores	10	Hst	10\％	10\％	0\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％
${ }^{4841}$	${ }^{62,246,900}$	－Of othe erexile mateials	10	Hst	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％
4882	${ }^{62,052,000}$	－of cotoon	10	${ }^{\text {HSL }}$	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％
4843	${ }^{82,053,000}$	－Of marmade tibes	10	NT2	${ }^{9 \%}$	${ }^{9 \%}$	${ }^{8 \%}$	${ }^{8 \%}$	6%	6%	${ }^{5 \%}$	5\％	$4{ }^{4 \%}$	${ }^{4 \%}$	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	2%	0\％	\％	0\％	\％	0\％	0\％
1884	${ }^{62,059,010}$	－Of woolor fine animal har	10	${ }^{\text {NT2 }}$	\％	\％	${ }_{8 \%}$	8%	6\％	6\％	5\％	5\％	4\％	4\％	${ }^{3}$	${ }^{3}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％	\％	\％	\％
4845	${ }^{62,059,090}$	－omer	10	NT2	\％	\％	8\％	8\％	6\％	6\％	5\％	5\％	4%	4\％	3\％	3\％	2\％	${ }^{2 \%}$	0\％	\％	\％	\％	\％	\％\％
${ }^{4846}$	${ }^{62,061,000}$	Or sikforsik waste	10	${ }^{\text {NT2 }}$	${ }^{9 \%}$	9\％	8\％	8%	6\％	6\％	${ }^{5 \%}$	5\％	4%	$4{ }^{4 \%}$	${ }^{3 \%}$	${ }^{3 \%}$	2\％	2%	0\％	\％	0\％	\％	\％	\％\％
4887	${ }^{62,082,000}$	－or woo or frine anima lair	10	N2	${ }^{9 \%}$	9\％	${ }^{8 \%}$	${ }^{8 \%}$	${ }^{6 \%}$	6\％	${ }^{5 \%}$	5\％	4%	$4{ }^{4 \%}$	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％	0\％	0\％	\％
4888	${ }^{62,083,000}$	－Of coton	10	NT2	\％	\％	8\％	${ }_{8} \%$	6\％	6\％	5\％	5\％	4\％	4\％	${ }^{3} \%$	3\％	2\％	2\％	\％	\％	\％	\％	\％	\％
4849	${ }^{62,064,000}$	－Of marmade fitres	10	N2	\％	9\％	${ }^{8 \%}$	${ }^{8 \%}$	6\％	6%	${ }^{5 \%}$	5\％	4\％	${ }^{4 \%}$	${ }^{3 \%}$	${ }^{\text {3\％}}$	2\％	${ }^{2 \%}$	0\％	\％	0\％	\％\％	\％	\％
4850	${ }^{62,069,000}$	－ot onere exitie maieralas	10	N2	9\％	\％\％	8\％	8%	6\％	6\％	5\％	5\％	4%	4\％	3\％	3\％	2%	${ }^{2 \%}$	0\％	\％	0\％	0\％	0\％	0\％
4851	${ }^{62,077,100}$	－Of cotor	10	NT2	9\％	9\％	${ }^{8 \%}$	8%	6\％	6\％	5\％	5\％	4%	4%	${ }^{3 \%}$	3\％	${ }^{2 \%}$	2\％	\％	\％	\％	\％\％	\％	\％
4852	${ }^{62,077,900}$	－Of other rexile materais	10	N2	${ }^{3} \%$	${ }^{9}$	${ }^{8 \%}$	${ }^{8 \%}$	6%	6\％	5\％	5\％	$4{ }^{4 \%}$	4\％	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	0\％	\％	0\％	0\％
4833	${ }^{62,072,100}$	－ O coton	10	N2	9\％	\％	8\％	8\％	6\％	6\％	${ }^{5}$	5\％	4\％	4\％	3\％	3\％	2\％	${ }^{2 \%}$	\％	\％	\％	\％	0\％	\％
4884	${ }^{62,072,200}$	Of man－madef tives	10	N2	\％	\％	8\％	8\％	6\％	6\％	5\％	5\％	4%	4\％	3\％	3\％	2\％	2\％	\％\％	\％	0\％	\％	\％\％	0\％
4855	${ }^{62,072,900}$	－ Of other（exilie mateerals	${ }^{10}$	NT2	9\％	${ }^{9 \%}$	${ }^{8 \%}$	${ }^{8 \%}$	6\％	6\％	${ }^{5 \%}$	5\％	4\％	4%	${ }^{3 \%}$	${ }^{3 \%}$	2%	${ }^{2 \%}$	0\％	\％	\％	\％	0\％	\％\％
4856	${ }^{62,079,100}$	Of coton	10	N2	${ }^{9}$	${ }^{9 \%}$	${ }_{8 \%}$	${ }^{8 \%}$	6\％	6\％	${ }^{5 \%}$	${ }^{5 \%}$	4%	${ }^{4 \%}$	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	0\％	\％	0\％	0\％	0\％	0\％
4887	${ }^{62,079,910}$	－Of marmade fibes	10	N2	9\％	${ }^{9 \%}$	${ }^{8 \%}$	${ }^{8 \%}$	6%	6%	${ }^{5 \%}$	5\％	4\％	4%	3\％	3\％	${ }^{2 \%}$	${ }^{2 \%}$	0\％	\％	\％	\％	\％	\％
4858	${ }^{62,079,980}$	－Other	10	N2	9\％	9\％	8%	${ }^{8 \%}$	6\％	6\％	${ }^{5 \%}$	5\％	4\％	4\％	${ }^{3}$	3\％	${ }^{2 \%}$	${ }^{2 \%}$	0\％	\％	\％	\％	\％	\％
4859	${ }^{82,089,100}$	Of man－madefibes	${ }^{10}$	N2	9\％	9\％	8\％	8%	6\％	6\％	5\％	5\％	4%	4%	${ }^{3 \%}$	${ }^{3 \%}$	2%	2\％	0\％	\％	0\％	0\％	\％	0\％
4880	${ }^{62,081,900}$	Of ohere rexile maierais	10	NT2	9\％	9\％	8%	${ }^{8 \%}$	6\％	6\％	5\％	5\％	4%	4%	3\％	3\％	2%	2\％	0\％	\％	0\％	\％	0\％	\％
4881	${ }^{62,082,100}$	－ coroton	10	N2	9\％	9\％	${ }^{8 \%}$	${ }^{8 \%}$	6%	6\％	5\％	5\％	4%	4\％	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	2%	\％	\％	\％	\％	\％	\％
4862	${ }^{62,082200}$	－Of man－madef tives	10	NT2	\％	\％	8\％	${ }_{8} \%$	6\％	6\％	5\％	5\％	$4{ }^{4 \%}$	4\％	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％	\％	\％	\％
4863	${ }^{62,082,900}$	Of onher exitiemaiealas	${ }^{10}$	${ }^{\text {NT2 }}$	\％	9\％	8\％	8\％	6\％	6\％	${ }^{5 \%}$	5\％	4\％	4\％	3\％	3\％	2\％	2\％	\％\％	\％	0\％	\％\％	\％\％	\％\％
4884	${ }^{62,089,100}$	Of coton	10	N2	${ }^{9 \%}$	\％	${ }_{8}^{8 \%}$	8%	6\％	\％	${ }^{5 \%}$	5\％	4\％	4\％	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	0\％	\％\％	\％	\％	\％
4865	${ }^{62,089,200}$	－Ot man－madefitres	10	NT2	9\％	${ }^{\text {\％}}$	${ }_{8 \%}$	${ }_{8 \%}$	6%	6%	${ }^{5 \%}$	5\％	4%	4%	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	0\％	\％	\％	\％	\％	0\％
4866	${ }^{62,089,990}$	Ot wool of fine anima hair	10	NT2	9\％	9\％	8\％	8%	6\％	6\％	${ }^{5 \%}$	5\％	4\％	$4{ }^{4 \%}$	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	0\％	0\％	0\％	0\％
4887	${ }^{62,089,900}$	－－Other	10	N2	\％	${ }^{\text {\％}}$	${ }^{8 \%}$	${ }^{8 \%}$	6%	6\％	5\％	5\％	4\％	4\％	${ }^{3}$	${ }^{3}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％	\％	\％	\％
4868	${ }^{62,092,30}$	－T－stifis，shints，pyamas and similaraticos	10	N2	9\％	\％\％	8\％	8\％	6\％	6\％	5\％	5\％	4%	4%	3\％	3\％	2%	2\％	0\％	\％	0\％	0\％	\％	0\％
4889	${ }^{\text {e2，092，090 }}$	Other	10	NT2	9\％	9\％	${ }^{8 \%}$	${ }^{8 \%}$	6%	6\％	5\％	5\％	4%	4\％	${ }^{3 \%}$	3\％	${ }^{2 \%}$	2%	\％	\％	0\％	\％	\％	\％
4870	${ }^{62,093,10}$	－Suis ，pans and similiaratices	10	${ }^{\text {NT2 }}$	\％	9\％	8%	${ }_{8} \%$	6\％	6\％	5\％	5\％	4\％	4\％	${ }^{3 \%}$	${ }^{3}$	2\％	2\％	\％	\％	\％	\％	\％	\％
4871	${ }^{62,093,300}$		10	${ }^{\text {NT2 }}$	${ }^{9 \%}$	9\％	8%	8%	6\％	6\％	5\％	5\％	4\％	4\％	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％\％	\％\％	\％	0\％
4872	${ }^{62,093,40}$	Clothing accossories	10	${ }^{\text {NT2 }}$	${ }^{9 \%}$	\％	8\％	8\％	6\％	6\％	${ }^{5 \%}$	5\％	4%	4\％	${ }^{3 \%}$	${ }^{3 \%}$	2\％	${ }^{2 \%}$	0\％	\％	0\％	\％\％	0\％	0\％
4873	${ }^{62,093,000}$	Other	10	${ }^{\text {NT2 }}$	9\％	${ }^{9 \%}$	8%	8%	6\％	6%	${ }^{5 \%}$	5\％	${ }^{4 \%}$	4%	${ }^{3 \%}$	${ }^{3 \%}$	2%	${ }^{2 \%}$	0\％	\％	0\％	\％	0\％	0\％
4874	${ }^{62,099,000}$	－ot onere rexile maierais	10	N2	${ }_{9} \%$	${ }_{9} 9$	${ }^{8 \%}$	${ }^{8 \%}$	6\％	6\％	${ }^{5 \%}$	5\％	4\％	$4{ }^{4 \%}$	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	0\％	\％	0\％	0\％
4875	${ }^{6200.00 .11}$	$\begin{aligned} & \text {-- Garments used for protection from chemical } \\ & \text { substances, radiation or fire } \end{aligned}$	10	N2	\％	\％	8%	${ }^{8 \%}$	6%	6%	${ }^{5 \%}$	5\％	4\％	4\％	${ }^{3}$	3\％	2%	${ }^{2 \%}$	\％	0\％	\％	\％	\％	0\％
4876	${ }^{6210.00 .19}$	－－omer	10	NT2	9\％	9\％	${ }^{8 \%}$	8%	6\％	6\％	5\％	5\％	4\％	4%	3\％	3\％	${ }^{2 \%}$	${ }^{2 \%}$	0\％	\％	0\％	\％	\％	\％
4887	${ }^{62,101,000}$	－other	10	Hst	10\％	10\％	10\％	10\％	${ }^{10 \%}$	${ }^{10 \%}$	10\％	${ }^{10 \%}$	10\％	${ }^{10 \%}$	10\％	10\％	${ }^{10 \%}$	10\％	10\％	10\％	${ }^{10 \%}$	10\％	10\％	10\％
4878	${ }^{62,102,2020}$	－Gamenis used tor protecion fom fie	10	HsL	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％
4879	${ }^{62,102,30}$	－Garments used for protection from chemical substances or radiation	10	HSL	\％\％	${ }^{\text {0\％}}$	\％	10\％	10\％	10\％	${ }^{10 \%}$	\％	\％	10\％	10\％	10\％	10\％	10\％	${ }^{10 \%}$	10\％	10\％	0\％	10\％	${ }^{10 \%}$
4880	${ }^{62,102,040}$	－Onter poiective wok gaments	10	${ }^{\text {HSL }}$	0\％	${ }^{10 \%}$	0\％	10\％	10%	10\％	10\％	${ }^{10 \%}$	${ }^{10 \%}$	10\％	10\％	10\％	${ }^{10 \%}$	10\％	${ }^{10 \%}$	10\％	10\％	10\％	10\％	\％
4881	${ }^{82,102,090}$	－omer	10	${ }^{\text {NT2 }}$	${ }^{9 \%}$	${ }^{9 \%}$	${ }^{8 \%}$	${ }^{8 \%}$	6%	6\％	${ }^{5 \%}$	${ }^{5 \%}$	4\％	4\％	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％	\％	\％	\％
4882	${ }^{62,103,200}$	Gammens sused tor polection foom fire	${ }^{10}$	NT2	${ }^{9 \%}$	${ }^{9 \%}$	8%	8\％	6\％	6\％	${ }^{5 \%}$	5\％	4\％	4\％	${ }^{\text {3\％}}$	${ }^{3 \%}$	2\％	${ }^{2 \%}$	\％	\％	0\％	\％\％	\％	0\％
4888	${ }^{62,103,30}$	－Garments used for protection from chemical substances or radiation	10	NT2	9\％	\％\％	${ }_{8 \%}$	8\％	6\％	6\％	5\％	5\％	4\％	${ }^{4 \%}$	3\％	3\％	${ }^{2 \%}$	2\％	\％	\％	0\％	0\％	\％	0\％
4884	82，103，40	－Other protective wok gaments	10	NT2	9\％	\％	${ }_{8 \%}$	8%	6\％	6\％	5\％	5\％	4\％	4%	3\％	3\％	2\％	${ }^{2 \%}$	\％	\％	0\％	\％	0\％	\％
4885	${ }^{62,103,90}$	－other	10	NT2	\％	${ }_{9} 9$	${ }_{8 \%}$	8%	6%	6\％	${ }^{5 \%}$	5\％	4\％	4%	3\％	3\％	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％	\％	\％	\％
4886	$\int^{62,104,010}$	Gamens sused for forececiof fiom fie	10	NT2	9\％	\％	8\％	8\％	6\％	6\％	5\％	5\％	4%	4%	3\％	3\％	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％	\％	\％	\％

香港•ASEAN FTAにかかる調査報告書

${ }^{1887}$	［82，04，020	－Garments sused for protection from chemical	10	NT2	${ }^{9 \%}$	${ }^{9 \%}$	${ }^{8 \%}$	${ }^{8 \%}$	${ }^{6 \%}$	6\％	${ }^{5 \%}$	${ }^{\text {5\％／}}$	${ }^{4 \%}$	${ }^{4 \%}$	${ }^{3 \%}$	${ }^{\text {3\％}}$	${ }^{2 \%}$	${ }^{2 \%}$	O\％	\％				\％
4888	82，104，900	－－Other	10	T2	\％	\％	8%	${ }_{8}$	6\％	6\％	5\％	${ }_{5 \%}$	4\％	4%	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	0\％	\％	\％\％	\％	\％	0\％
889	82，05，010	Gamens ssad tor protecion fom fire	10	sL	\％	\％\％	${ }^{10 \%}$	10\％	10\％	\％\％	0\％	0\％	${ }_{8}^{8 \%}$	${ }^{7} \%$	6\％	${ }_{5 \%}$	${ }_{4}^{4 \%}$	${ }^{3 \%}$	2\％	\％	\％	\％	\％	\％
4890	62，05，020	- Garments used for protection from chemical	10	st	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	${ }^{8 \%}$	${ }^{\text {\％}}$	6\％	${ }^{5 \%}$	${ }^{4 \%}$	${ }^{3} \%$	${ }^{2 \%}$	${ }^{1 \%}$	\％	\％	\％	0\％
4891	82，105，00	－－omer	10	s	10\％	10\％	10\％	10\％	10\％	0\％	10\％	10\％	${ }_{8}^{8 \%}$	${ }^{7} \%$	6\％	${ }_{5 \%}^{5 \%}$	4\％	${ }^{3 \%}$	${ }_{2}^{2 \%}$	\％	0\％	\％	\％	\％
4892	82，11，100	－Men＇s or boss	10	T2	9\％	9\％	8%	${ }^{8 \%}$	${ }^{6 \%}$	6\％	5\％	${ }^{5 \%}$	$4{ }^{4 \%}$	${ }^{4 \%}$	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％	\％	\％	0\％
889	82，11，200	Women＇s orgirs	10	N2	${ }_{9}{ }^{\text {\％}}$	\％	${ }^{\text {8\％}}$	${ }^{8 \%}$	${ }^{6 \%}$	${ }^{6 \%}$	${ }^{5 \%}$	${ }^{5 \%}$	${ }^{4 \%}$	${ }^{4 \%}$	${ }^{3 \%}$	${ }^{\text {\％}}$	${ }^{2 \%}$	${ }^{2 \%}$	0\％	\％	${ }^{0 \%}$	0\％	\％	\％
4894	82，12，000	Skisulis	10	N2	9\％	9\％	8\％	${ }^{8 \%}$	6\％	6\％	5\％	5\％	4%	4\％	3\％	3\％	${ }^{2 \%}$	2\％	\％	\％	\％	0\％	\％	0\％
4895	82，113，210	Gamens tor fencoing or westing	10	N2	${ }^{9 \%}$	9\％	8%	8%	6\％	6\％	5\％	5\％	49	4\％	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	0\％	\％	\％	\％
${ }^{4896}$	${ }^{\text {82，113，20 }}$	Pligimage obes（eham）	10	st	0\％	${ }^{10 \%}$	10\％	10\％	10\％	0\％	10\％	10\％	8%	${ }^{7 \%}$	6\％	${ }^{5 \%}$	4\％	${ }^{3 \%}$	2\％	1\％	\％	\％	\％	\％
4897	82，113，290	－Other	10	st	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	8\％	7\％	6\％	5\％	4\％	3\％	2\％	1\％	0\％	\％	\％\％	\％
4898	82，13，310	－Gamens or ferening orwesting	10	sL	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	${ }^{8 \%}$	${ }^{7} \%$	6\％	5\％	$4{ }^{4 \%}$	${ }^{3} \%$	${ }^{2 \%}$	${ }^{1 \%}$	\％	\％	\％	\％\％
4899	${ }^{82,11,320}$		10	st	0\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	${ }^{8} \%$	7%	6\％	5\％	4%	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{1 \%}$	\％	\％	\％	\％
4900	${ }^{82,113,330}$	$\begin{aligned} & \text {-- - Garments used for protection from chemical } \\ & \text { substances or radiation } \end{aligned}$	10	sL	10\％	${ }^{10 \%}$	10\％	10\％	\％	10\％	${ }^{10 \%}$	\％	8%	7\％	6\％	${ }^{5 \%}$	${ }^{4 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{1 \%}$	\％	\％	\％\％	\％
4901	82，11，390	－－－other	10	sL	10\％	0\％	10\％	10\％	10\％	10\％	10\％	10\％	${ }^{8 \%}$	7\％	6\％	${ }^{\text {5\％}}$	${ }^{4 \%}$	${ }^{3}$	${ }^{2 \%}$	${ }^{1 \%}$	0\％	\％	\％	\％
4902	${ }^{82,11,910}$	Gamens tor fencong of rwesting	10	T2	${ }^{\text {\％}}$	${ }^{9 \%}$	${ }_{8}^{8 \%}$	${ }^{8 \%}$	6\％	6\％	5\％	${ }^{5 \%}$	$4{ }^{4 \%}$	${ }^{4 \%}$	${ }^{3 \%}$	3\％	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	0\％	\％	\％	\％
4093	82，11， 2 ，20	－Garmens s sed of roprotecion foom fite	10	st	0\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	8%	${ }^{7 \%}$	6\％	5\％	4%	3\％	2\％	${ }^{1 \%}$	0\％	\％	\％	0\％
4904	82，11，930	$\begin{array}{\|l} \hline- \text { - Garments used for protection from chemical } \\ \text { substances or radiation } \\ \hline \end{array}$	10	sL	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	${ }^{8 \%}$	${ }^{7 \%}$	6\％	${ }^{5 \%}$	${ }^{4 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{1 \%}$	\％	\％	\％\％	\％\％
4905	${ }^{82,113,990}$	－．－other	10	sL	0\％	0\％	${ }^{10 \%}$	\％	0\％	0\％	0\％	0\％	${ }^{8}$	${ }^{7} \%$	6\％	${ }^{5 \%}$	${ }_{4}^{4}$	${ }^{3} \%$	${ }^{2 \%}$	${ }^{1 \%}$	0\％	\％\％	\％	0\％
4906	82，14，210	－Gamensis or ferening or westing	10	N2	9\％	9%	${ }^{8}$	${ }^{8} \%$	6\％	6\％	5\％	5\％	4%	4\％	${ }^{3} \%$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％	\％	0\％	\％
4907	${ }^{82,1414,20}$	－Prayer coaks	10	st	10\％	${ }^{10 \%}$	10\％	10\％	10\％	0\％	10\％	10\％	8\％	${ }^{7 \%}$	6\％	5\％	4\％	${ }^{3 \%}$	${ }^{2 \%}$	1\％	0\％	\％	\％	\％
4908	82，14，290	－omer	10	st	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	8\％	${ }_{7}^{7 \%}$	6\％	5\％	4\％	3\％	2\％	1\％	\％	\％\％	\％\％	\％
4909	62，14，310	－Susical gowns	${ }^{10}$	st	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	${ }^{8 \%}$	${ }^{7} \%$	6\％	5\％	4\％	3\％	2\％	1\％	0\％	\％\％	0\％	0\％
4910	${ }^{82,14,320}$	Prayer coaks	10	st	10\％	10\％	10\％	10\％	${ }^{10 \%}$	10\％	10\％	10\％	${ }^{8 \%}$	${ }^{7}$	6\％	${ }^{5 \%}$	4%	3\％	${ }^{2 \%}$	1\％	0\％	\％\％	\％	\％
4911	${ }^{82,14,3,30}$	Aniexplosive poopecive sulis	10	sL	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	${ }^{8} \%$	${ }^{7} \%$	6\％	${ }^{5 \%}$	4%	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{1 \%}$	\％	\％	\％	\％
499	${ }^{82,114,340}$	Gammens oro fencing of rwesting	${ }^{10}$	sL	10\％	10\％	10\％	10\％	10%	10\％	${ }^{10 \%}$	10\％	8\％	${ }^{7 \%}$	6\％	${ }^{5 \%}$	4\％	3\％	${ }^{2 \%}$	1\％	\％	\％\％	\％	\％
${ }^{2913}$	${ }^{\text {82，14，} 3 \text { ，}}$	Garments used for protection from chemical	10	sL	\％\％	10\％	10\％	${ }^{10 \%}$	\％	\％\％	0\％	\％\％	8\％	7\％	6\％	5\％	$4{ }^{4 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	1\％	\％	\％	\％	\％
4914	82，14，390	‥other	10	st	0\％	0\％	0\％	\％\％	0\％	0\％	0\％	0\％	8\％	\％	6\％	${ }^{5 \%}$	4%	3\％	${ }^{2 \%}$	\％	\％	\％	0\％	\％
4915	82，14，910	－Gamens ofor fencing orwesting	10	T2	${ }^{9 \%}$	9\％	${ }_{8 \%}$	${ }^{8 \%}$	6%	6%	5\％	5\％	${ }^{4 \%}$	$4{ }^{4 \%}$	3\％	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	0\％	0\％	\％	\％
4916	82，14，920	- －Garments used for protection from chemical substances，radiation or fire	10	sL	\％	0\％	10\％	10\％	10\％	0\％	\％	10\％	${ }^{8 \%}$	${ }^{\text {\％}}$	6\％	${ }^{5 \%}$	${ }^{4 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{1 \%}$	\％	\％	\％	\％
49	${ }^{\text {82，14，930 }}$	\cdots－Prayer coaks	10	st	10\％	10\％	10\％	0\％	0\％	10\％	0\％	10\％	${ }^{8 \%}$	\％$\%$	6\％	${ }^{5 \%}$	${ }^{4 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	1\％	\％	\％	0\％	\％
4918	82，14，990	－Other，of wool of fine anima hair	10	st	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	8%	7\％	6\％	5\％	4%	3\％	${ }^{2 \%}$	1\％	0\％	\％	\％	\％
4919	${ }^{\text {82，14，990 }}$	－other	10	st	10\％	${ }^{10 \%}$	${ }^{10 \%}$	10\％	10\％	0\％	${ }^{10 \%}$	${ }^{10 \%}$	8%	${ }^{7 \%}$	6\％	${ }^{5 \%}$	4\％	${ }^{3 \%}$	${ }^{2 \%}$	1\％	0\％	\％\％	\％	\％\％
4920	${ }^{821210.10,10}$	Of coton	10	st	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	8\％	${ }_{7}{ }^{7}$	6\％	5\％	4\％	3\％	2\％	1\％	0\％	\％\％	0\％	0\％
4921	82，21，090	－－Ootener exexile materials	10	，${ }^{2}$	9\％	9\％	8\％	8\％	6\％	6\％	5\％	5\％	4\％	4%	3\％	3\％	2%	${ }^{2 \%}$	\％	0\％	0\％	0\％	0\％	\％\％
4922	82，12，010	Of coton	10	N2	${ }^{\text {\％}}$	${ }^{9 \%}$	${ }_{8 \%}$	${ }_{8}^{8 \%}$	6\％	6\％	5\％	5\％	4%	4%	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	0\％	\％	0\％	\％	\％	\％
4293	82，12，2，90	－ototerer exiliematerials	10	st	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	${ }^{8 \%}$	${ }^{7} \%$	6\％	${ }^{5 \%}$	4\％	${ }^{3 \%}$	2\％	1\％	0\％	\％	\％	\％
4924	82，12，0，10	－1toton	10	sL	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	8\％	${ }^{7} \%$	6\％	5\％	4%	3\％	${ }^{2 \%}$	${ }^{1 \%}$	\％	\％	\％	\％
4925	${ }^{82,123,090}$	－Of onere rexile materials	${ }^{10}$	ज2	${ }^{9 \%}$	9\％	8%	8%	6%	6\％	5\％	5\％	${ }^{4 \%}$	4%	3\％	3\％	2%	${ }^{2 \%}$	\％	\％	0\％	\％	\％	\％
4926	82，12，0，01	$\begin{aligned} & \text { - Compression garments of a kind used for the } \\ & \text { treatment of scar tissue and skin grafts } \end{aligned}$	${ }^{10}$	${ }^{\text {sL }}$	0\％	10\％	10\％	10\％	10\％	\％	10\％	10\％	${ }^{8 \%}$	${ }^{7 \%}$	6\％	${ }^{\text {5\％}}$	${ }^{4 \%}$	3\％	${ }^{2 \%}$	${ }^{1 \%}$	\％	\％	\％	\％
4927	82，129，012	\cdots Afleicicsuporaters	10	sL	0\％	0\％	10\％	10\％	10\％	10\％	10\％	10\％	${ }^{8 \%}$	${ }^{7 \%}$	6\％	5\％	${ }^{4 \%}$	3\％	${ }^{2 \%}$	${ }^{1 \%}$	0\％	0\％	0\％	\％\％
4928	${ }^{82,129,019}$	－－Oner	10	sL	\％\％	0\％	${ }^{10 \%}$	\％	10\％	0\％	${ }^{10 \%}$	\％	${ }^{8 \%}$	${ }^{7 \%}$	6\％	${ }^{5 \%}$	${ }^{4 \%}$	${ }^{3 \%}$	2\％	${ }^{1 \%}$	\％\％	0\％	\％	0\％
4929	82，12，991	－－－Compression garment of a kind used for the treatment of scar tissue and skin grafts	${ }^{10}$	T2	${ }^{9}$	9\％	${ }^{8 \%}$	${ }^{8 \%}$	6%	6\％	5\％	5\％	${ }^{4 \%}$	4\％	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	${ }^{0 \%}$	0\％	\％	\％	\％\％
4930	82，12， 2,92	\cdots Atheicicsuporetes	${ }^{10}$	st	10\％	10\％	${ }^{10 \%}$	${ }^{10 \%}$	10\％	10\％	10\％	10\％	${ }^{8 \%}$	7\％	6\％	5\％	$4{ }^{4 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{1 \%}$	0\％	\％	0\％	\％
4931	82，12，0999	Oher	10	st	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	${ }^{8 \%}$	${ }^{7 \%}$	6\％	5\％	4%	${ }^{3 \%}$	${ }^{2 \%}$	1\％	0\％	\％	0\％	\％
4932	${ }^{82,132010}$	－Pinted by we trationala baik process	10	st	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	8%	${ }^{7} \%$	6\％	5\％	4\％	3\％	2\％	1\％	0\％	\％\％	\％	\％
4933	82，132，090	－Oher	10	st	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	${ }^{8 \%}$	${ }^{7} \%$	6\％	5\％	${ }^{4 \%}$	3\％	2\％	1\％	\％\％	\％$\%$	\％	\％
4934	82，13，0，11	\cdots－Prined by the taditiona batik process	10	N2	9\％	9\％	${ }_{8 \%}$	${ }^{8 \%}$	6\％	6\％	5\％	5\％	4%	4%	${ }^{3 \%}$	3\％	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％	\％	\％	\％
4935	${ }^{82,13,0,19}$	－－－other	10	st	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	${ }^{8 \%}$	7\％	6\％	5\％	4\％	3\％	2\％	1\％	\％	\％	\％	\％
4936	82，13，991	－Pinted by the tradiotona baik procoss	10	sL	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	${ }_{8 \%}$	7%	6\％	5\％	4%	3\％	2\％	1\％	\％	\％	\％	\％
${ }^{4937}$	${ }^{82,13,0999}$	－Oner	10	st	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	8%	7%	6\％	5\％	${ }^{4 \%}$	3\％	${ }^{2 \%}$	${ }^{1 \%}$	\％	\％	\％	\％\％
4938	8214，0，10	－－Pinited by the traditiona baik process	10	st	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	8%	${ }^{7 \%}$	6\％	5\％	4%	3\％	2\％	1\％	\％	\％	\％	\％
4939	82，14，，090	Oner	10	st	\％	0\％	0\％	0\％	0\％	0\％	0\％	10\％	${ }^{8 \%}$	${ }^{7} \%$	6\％	${ }^{5 \%}$	${ }^{4 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{1 \%}$	\％	\％\％	\％	\％\％
4940	82，142，000	－Of wol of fine arima hair	10	sL	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	${ }^{8 \%}$	${ }^{7} \%$	6\％	${ }^{5 \%}$	$4{ }^{4 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{1 \%}$	0\％	\％	0\％	\％
${ }^{4941}$	82，14， 0^{1010}	－Pinile dy the trational baik process	10	N2	9\％	${ }^{9 \%}$	8%	8%	6%	6\％	5\％	5\％	$4{ }^{4 \%}$	4\％	${ }^{3 \%}$	${ }^{3 \%}$	2\％	${ }^{2 \%}$	\％	\％	0\％	\％	\％	\％
${ }^{4942}$	82，14，，900	－other	10	st	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	8\％	${ }^{7} \%$	6\％	5\％	4\％	3\％	2\％	1\％	0\％	\％	\％	\％
${ }^{2943}$	82，14，0，010	－Prinede by the tarationa baik process	10	N2	9\％	9\％	8%	8\％	6\％	6\％	5\％	5\％	4%	4%	${ }^{3 \%}$	3\％	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％\％	\％	\％	\％
${ }^{4944}$	82，14，0，90	Onter	10	st	0\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	8\％	${ }^{7}$	6\％	${ }^{5 \%}$	4%	${ }^{3 \%}$	2\％	1\％	\％	\％	\％	\％
${ }^{2945}$	${ }^{82,14,0,10}$	－Pinied by the trational baikr poocess	10	N2	9\％	9\％	8%	${ }^{8 \%}$	6\％	6%	5\％	5\％	4\％	4\％	${ }^{3 \%}$	3\％	2\％	${ }^{2 \%}$	\％	\％	\％	\％	\％	\％
${ }^{2946}$	82，49，090	－other	10	st	0\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	${ }_{8} 8$	${ }^{7} \%$	6\％	5\％	4%	3\％	2\％	${ }^{1 \%}$	\％	\％	\％	\％
${ }^{4947}$	${ }^{8215.10,10}$	－Pinede by He tradional baikr pocoss	10	T2	${ }^{\text {\％}}$	\％\％	8%	8%	6%	6%	5\％	5\％	4%	4\％	3\％	3\％	2\％	${ }^{2 \%}$	\％	\％	\％	\％	\％	\％
${ }^{2948}$	82，51，090	－Other	10	sL	0\％	10\％	10\％	10\％	10\％	10\％	10\％	0\％	8%	${ }^{7} \%$	6\％	5\％	4%	${ }^{3} \%$	${ }^{2 \%}$	1\％	\％	\％	\％	\％
4949	${ }^{\text {82，15，} 210}$		10	N2	${ }^{9 \%}$	9\％	${ }^{8 \%}$	8\％	6\％	6%	5\％	5\％	4%	${ }^{4 \%}$	${ }^{3 \%}$	${ }^{3 \%}$	2\％	${ }^{2 \%}$	\％	\％	0\％	\％	\％	\％
4950	82，152，090	－Other	10	sL	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	8%	${ }^{7 \%}$	6\％	5\％	4%	${ }^{3 \%}$	${ }^{2 \%}$	1\％	0\％	\％	0\％	\％
4951	82，15，9010	－Pinted by the trational baikr process	10	N2	9\％	9\％	${ }^{8 \%}$	${ }^{8 \%}$	6%	6\％	5\％	5\％	$4{ }^{4 \%}$	4\％	${ }^{3 \%}$	${ }^{3 \%}$	2\％	${ }^{2 \%}$	0\％	\％\％	0\％	\％	0\％	\％
4952	82，15，9090	Onher	10	st	10\％	${ }^{10 \%}$	10\％	10\％	10\％	${ }^{10 \%}$	10\％	10\％	8\％	${ }^{7} \%$	6\％	5\％	4\％	3\％	2\％	1\％	\％	\％	\％	\％
4953	82， 66,010	－Proective wor govos，mitens and mits	10	sL	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	${ }^{8 \%}$	${ }^{7} \%$	6\％	5\％	${ }^{4 \%}$	3\％	2\％	1\％	\％	\％$\%$	\％	\％
4954	82，16，091	－Ot Wool of fine animal hair	10	N2	9\％	9%	8%	${ }^{8 \%}$	6\％	6\％	5\％	5\％	4%	4%	${ }^{3 \%}$	3\％	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％	\％	\％	\％
4955	82，16，092	－ot coton	10	st	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	${ }^{8 \%}$	${ }^{7} \%$	6\％	${ }^{5 \%}$	4\％	${ }^{3 \%}$	2\％	1\％	0\％	\％	\％	\％
${ }^{4956}$	82，16，0，99	Onmer	10	T2	${ }^{\text {\％}}$	${ }^{9}$	8%	${ }^{8 \%}$	6%	6\％	5\％	5\％	4\％	4\％	3\％	3\％	2\％	${ }^{2 \%}$	\％	0\％	0\％	\％\％	\％	\％
$4{ }^{4957}$	${ }^{8277.10,10}$	Judo bels	${ }^{10}$	st	\％\％	10\％	${ }^{10 \%}$	${ }^{10 \%}$	10\％	10\％	${ }^{10 \%}$	10\％	8%	${ }^{7 \%}$	6\％	5\％	4%	${ }^{3 \%}$	${ }^{2 \%}$	1\％	\％	\％\％	\％	\％
4958	82，77，090	－Other	10	sL	0\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	8%	${ }^{7} \%$	6\％	${ }^{5 \%}$	4%	3\％	${ }^{2 \%}$	${ }^{1 \%}$	\％	\％	\％	\％
4959	82，77，．000	－Pars	10	N2	9\％	9\％	${ }_{8 \%}$	${ }^{8 \%}$	6\％	6\％	5\％	5\％	4\％	4\％	3\％	3\％	2\％	${ }^{2 \%}$	\％$\%$	\％	0\％	0\％	\％	\％
4960	${ }^{68,01,000}$	－Electic blakels	10	sL	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	${ }^{8 \%}$	${ }^{7 \%}$	6\％	${ }^{5 \%}$	4%	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{1 \%}$	0\％	\％	\％	\％\％
4961	63，02，000	－Blankets（other than electric blankets）and travelling rugs，of wool or of fine animal hair	${ }^{10}$	sL	${ }^{10 \%}$	10\％	10\％	10\％	${ }^{10 \%}$	10\％	10\％	－	${ }^{8 \%}$	${ }^{7} \%$	6\％	${ }^{5 \%}$	4%	${ }^{3 \%}$	2\％	${ }^{1 \%}$	0\％	\％	\％	\％
4962	13，000	－Blankets（Other than electric blankets）and travelling rugs，of cotton	${ }^{10}$	sL	10\％	0\％	10\％	10\％	10\％	0\％	10\％	10\％	8%	${ }^{7 \%}$	6\％	5\％	4%	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{1 \%}$	0\％	\％	\％	\％
${ }^{4963}$	4,000	－Blankets（other than electric blankets）and travelling rugs，of synthetic fibres	10	st	10\％	10\％	10\％	10\％	${ }^{10 \%}$	10\％	10\％	10\％	${ }^{8 \%}$	${ }^{7 \%}$	6\％	${ }^{5 \%}$	4%	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{1 \%}$	0\％	\％	\％	\％
4984	68，019，000	－Oner blamkesis and taveling rus	10	st	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	${ }^{8 \%}$	${ }^{7} \%$	6\％	5\％	4%	3\％	${ }^{2 \%}$	${ }^{1 \%}$	0\％	\％	0\％	\％
4965	68，02，000	－Bed inen，，kitted or crochered	10	sL	10\％	10\％	10\％	10\％	10\％	${ }^{10 \%}$	10\％	10\％	8\％	${ }^{7 \%}$	6\％	5\％	4%	3\％	2\％	1\％	0\％	\％	0\％	\％\％
4966	${ }^{68,022,100}$	－ O cotoon	10	NT2	9\％	9\％	8%	${ }^{8 \%}$	6%	6\％	5\％	5\％	4%	4%	3\％	3\％	${ }^{2 \%}$	${ }^{2 \%}$	0\％	\％	0\％	\％	0\％	\％
4987	${ }^{83,02,210}$	－Ot momoven fataics	10	N2	${ }^{9}$	${ }^{9 \%}$	${ }_{8}{ }^{\text {\％}}$	${ }_{8}^{8 \%}$	6%	${ }^{6 \%}$	5\％	5\％	${ }^{4 \%}$	4%	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	0\％	\％	0\％	\％	\％	\％
4988	68，022，230	－Omer	10	${ }^{\text {sL }}$	${ }^{10 \%}$	${ }^{10 \%}$	${ }^{10 \%}$	${ }^{10 \%}$	${ }^{10 \%}$	${ }^{10 \%}$	${ }^{10 \%}$	${ }^{10 \%}$	${ }_{8 \%}$	${ }^{7 \%}$	6\％	${ }^{5 \%}$	4\％	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{1 \%}$	\％	\％	\％	\％
4969	68，02，900	Of otere texilie materials	10	st	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	${ }^{8 \%}$	${ }^{7} \%$	6\％	5\％	4%	${ }^{3 \%}$	2\％	${ }^{1 \%}$	0\％	\％	\％	\％
4970	${ }^{88,023,100}$	Of coton	10	sL	0\％	10\％	10\％	10\％	${ }^{10 \%}$	10\％	10\％	10\％	${ }^{8 \%}$	${ }^{7} \%$	6\％	5\％	4%	3\％	2\％	1\％	\％	\％	0\％	\％
4971	${ }^{68,03,2,210}$	Of momuven fabics	10	sL	10\％	${ }^{10 \%}$	10\％	${ }^{10 \%}$	10\％	${ }^{10 \%}$	10\％	10\％	${ }^{8 \%}$	${ }^{\text {7\％}}$	${ }^{6 \%}$	5\％	${ }^{4 \%}$	3\％	${ }^{2 \%}$	1\％	\％	\％	0\％	\％
4972	${ }^{68,03,290}$	－Other	10	T2	${ }^{9 \%}$	\％	${ }_{8 \%}$	${ }^{8 \%}$	6\％	6\％	5\％	${ }^{5 \%}$	4%	4\％	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	0\％	\％	0\％	\％
4973	68，02，900	－Of other exexile maieials	10	st	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	${ }^{8 \%}$	${ }^{7 \%}$	6\％	5\％	4%	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{1 \%}$	0\％	\％	\％\％	\％
4974	88，024，000	－Tabei inen，knited or crochened	10	st	10\％	${ }^{10 \%}$	10\％	10\％	10\％	10\％	10\％	10\％	8\％	${ }^{7 \%}$	6\％	${ }^{5 \%}$	4\％	3\％	2\％	1\％	\％	\％	\％	\％
4975	025，100	of coton	10	NT2	${ }^{\text {\％}}$	\％	8\％	8%	${ }^{6 \%}$	6\％	5\％	5\％	4\％	4\％	3\％	3\％	${ }^{2 \%}$	2\％	\％	\％	0\％	\％	\％	\％

香港•ASEAN FTAにかかる調査報告書

別添2－4 原産地品の関税撤廃スケジュール
（ラオス）

${ }^{4976}$	${ }^{68,025,300}$	－of marmade itores	10	st	${ }^{10 \%}$	10\％	10\％	${ }^{10 \%}$	10\％	10\％	10\％	10\％	${ }^{8 \%}$	${ }^{7 \%}$	${ }^{6 \%}$	${ }^{5 \%}$	${ }^{4 \%}$	${ }^{3 \%}$	2\％	1\％	\％	\％\％	\％	\％
4977	68，05，900	Ofother texiliematerials	10	st	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	${ }_{8 \%}$	${ }^{7} \%$	6\％	${ }^{5 \%}$	4%	${ }^{3} \%$	${ }^{2 \%}$	1\％	\％	\％	\％	\％
4978	3，028，000	－Toilet linen and kitchen linen，of terry towelling or similar terry fabrics，of cotton	10	sL	\％\％	\％	10\％	\％	\％	\％	10\％	10\％	${ }^{8 \%}$	${ }^{7 \%}$	${ }^{6 \%}$	${ }^{5 \%}$	${ }^{4 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{1 \%}$	0\％	\％	\％	\％
4979	68，02， 100	－Of ototon	10	N2	9\％	9\％	${ }^{8 \%}$	${ }^{8 \%}$	6\％	6\％	5\％	5\％	4\％	4\％	3\％	3\％	2\％	2\％	0\％	0\％	0\％	\％	\％	\％
4988	68，02，300	Of mar－madeftibes	10	st	0\％	10\％	10\％	10\％	0\％	，	10\％	10\％	8%	7\％	6\％	${ }^{5 \%}$	${ }^{4 \%}$	${ }^{3 \%}$	2%	1\％	\％\％	\％\％	0\％	0\％
${ }^{4981}$	68，02，900	－Oo other exexile mateials	10	N2	${ }^{9}$	9\％	${ }_{8} 8$	${ }^{8 \%}$	${ }^{6}$	${ }^{6}$	5\％	5\％	4\％	4\％	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％	\％	\％	\％
4982	${ }^{68,03,2,200}$	Of symplicictives	10	N2	\％$\%$	9\％	${ }^{8 \%}$	${ }^{8 \%}$	6\％	6\％	5\％	${ }^{5 \%}$	$4{ }^{4 \%}$	$4{ }^{4 \%}$	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％\％	0\％	0\％	0\％	\％\％	\％\％
4983	68，03，910	－or ofoton	10	N2	${ }^{9} \%$	\％	${ }^{8}$	${ }^{8 \%}$	${ }^{6 \%}$	${ }^{6 \%}$	5\％	${ }^{5 \%}$	4\％	4%	${ }^{3 \%}$	3\％	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	0\％	0\％	\％	\％
4884	68，03，1，990	－．Oner	10	N2	9\％	${ }^{9 \%}$	8%	8%	6\％	6\％	5\％	5\％	${ }^{4 \%}$	4%	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	2\％	0\％	\％\％	0\％	0\％	\％\％	0\％
2985	68，39，100	－Of coton	10	N2	\％	9\％	\％	${ }^{8 \%}$	6\％	${ }^{6 \%}$	5\％	5\％	4\％	4\％	${ }^{3 \%}$	3\％	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	0\％	\％	\％	0\％
4986	68，39，200	－ot symbeicit flues	10	NT2	\％	9\％	8\％	8\％	6\％	6\％	5\％	5\％	4\％	4\％	3\％	3\％	2\％	${ }^{2 \%}$	0\％	\％	\％	0\％	0\％	\％
${ }^{4987}$	68，33，900	－ot otere texilie maeerals	10	st	10\％	0\％	10\％	10\％	10\％	10\％	10\％	10\％	8\％	${ }^{7 \%}$	6\％	5\％	4\％	${ }^{\text {3\％}}$	2\％	${ }^{1 \%}$	\％	\％	\％	\％
4988	68，041，100	－Kinted or crochened	10	N2	9\％	9\％	8%	${ }^{8 \%}$	6\％	6\％	5\％	5\％	4%	4\％	3\％	3\％	${ }^{2 \%}$	2\％	\％	\％\％	0\％	\％	\％	\％
4989	68，04，910	Of ototon	10	N2	9\％	\％	${ }^{8 \%}$	${ }^{8 \%}$	6\％	6\％	5\％	${ }^{5 \%}$	4%	${ }^{4 \%}$	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	0\％	\％	0\％	\％	\％
4990	66，04， 292	－Onere，nomoven	10	st	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	${ }^{8 \%}$	${ }^{7} \%$	6\％	5\％	4\％	3\％	${ }^{2 \%}$	${ }^{1 \%}$	0\％	0\％	\％	\％
4991	68，041，990	Other	10	N2	9\％	9\％	8\％	8\％	6\％	6\％	5\％	5\％	4\％	4\％	3\％	3\％	2\％	2\％	\％	0\％	0\％	\％	\％	\％
4992	${ }^{68,099,110}$	－－Mosuluto nets	10	N2	9\％	\％\％	8%	8\％	6\％	6\％	5\％	5\％	4%	4\％	3\％	3\％	2\％	2\％	0\％	\％\％	0\％	\％	0\％	0\％
4993	68，04， 190	Other	10	st	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	${ }_{8 \%}$	${ }^{7} \%$	6\％	5\％	4%	${ }^{3 \%}$	2%	${ }^{1 \%}$	0\％	\％	\％	0\％
${ }^{2994}$	68，04，200	Not krinted or crochenede，ot ototon	10	st	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	${ }^{8 \%}$	${ }^{7} \%$	6\％	5\％	4\％	3\％	${ }^{2 \%}$	${ }^{1 \%}$	\％	\％	\％\％	\％
4995	66，04，300	Not kntite or croconeied，of spmbeicicitives	10	st	0\％	0\％	10\％	0\％	10\％	10\％	10\％	10\％	8\％	${ }^{7 \%}$	6\％	5\％	4\％	3\％	${ }^{2 \%}$	1\％	\％	0\％	0\％	0\％
4996	${ }^{63,49,9,900}$		10	NT2	${ }^{9 \%}$	9\％	8\％	${ }^{8 \%}$	${ }^{6 \%}$	6\％	5\％	${ }^{5 \%}$	${ }^{4 \%}$	4\％	3\％	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％\％	\％\％	\％\％	0\％	\％\％	0\％
4997	305．50．11	－of jue	5	V1	${ }^{4 \%}$	${ }^{4 \%}$	${ }^{4 \%}$	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	0\％	\％	\％	0\％	0\％	\％\％	0\％	0\％	\％	0\％	0\％	0\％	\％
4998	${ }^{63055.10,19}$	Other	5	V1	4%	${ }^{4 \%}$	$4{ }^{4 \%}$	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	0\％	0\％	0\％	\％	0\％	0\％	0\％	\％	\％	\％	0\％	0\％	0\％
4999	6805．10．21	－of jue	5	NT1	4\％	4\％	4\％	3\％	3\％	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	0\％	\％	\％	\％	\％	\％	\％	0\％	0\％	\％	\％
5000	${ }^{68051.1029}$	Onher	5	NT	${ }^{4 \%}$	4\％	4%	${ }^{3}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	0\％	\％	\％
5001	68，05，000	Ofoctoon	${ }^{30}$	EL	0	0	U	U	0	0	0	0	U	0	0	0	0	U	U	U	U	－	ט	\bigcirc
5002	68，05，210	Nomvoren	${ }^{30}$	EL	\bigcirc	\bigcirc	－	\bigcirc	\bigcirc	\bigcirc	\bigcirc	0	U	\bigcirc	\bigcirc	\bigcirc	U	0	0	\bigcirc	U	\bigcirc	－	\bigcirc
5003	68，05，220	Knited of crocheled	${ }^{30}$	EL	\bigcirc	\bigcirc	－	ט	\bigcirc	\bigcirc	\bigcirc	\bigcirc	U	0	\bigcirc	U	U	U	U	－	U	－	U	\bigcirc
5004	68，05，230	Oner	${ }^{30}$	EL	0	－	O	U	0	0	0	O	0	0	－	U	0	0	U	U	\bigcirc	U	U	\bigcirc
5005	68，05，310	－Kntite of croconeed	${ }^{30}$	EL	\bigcirc	\bigcirc	\bigcirc	0	\bigcirc	\checkmark	U	\bigcirc	0	0	U	0	\bigcirc	0	U	\bigcirc	U	U	U	\bigcirc
5006	68，05，3，20	Ot woven fabicis of stip or the lie	${ }^{30}$	EL	O	O	，	－	－	－	U	\bigcirc	O	\bigcirc	O	0	－	O	－	O	0	¢	U	－
5007	68，05，390	－other	${ }^{30}$	EL	ט	\bigcirc	U	U	U	U	\bigcirc	U	U	U	ט	0	\bigcirc	U	U	\bigcirc	U	\bigcirc	U	\bigcirc
5008	053，910	Nonwoven	${ }^{30}$	EL	\bigcirc	\bigcirc	O	0	ט	O	0	0	O	\bigcirc	\bigcirc	O	\bigcirc	0	U	ט	0	O	U	0
5009	${ }^{68,55,9,20}$	－Kinted of crochered	${ }^{30}$	EL	0	0	0	O	0	0	ט	0	0	0	0	0	0	0	0	\bigcirc	U	U	－	\bigcirc
5010	68，05，990	－Other	${ }^{30}$	${ }^{\text {EL }}$	0	0	0	0	0	0	0	0	0	0	0	0	U	0	0	0	U	0	－	\bigcirc
5011	68，05，0910	Of hempo f heading 5.05	${ }^{30}$	EL	－	0	\bigcirc	－	－	\bigcirc	0	\bigcirc	－	0	－	0	U	－	ט	－	0	0	ט	\bigcirc
5012	68，05，020	Of coconut（cirin of heading 5.05	${ }^{30}$	EL	ט	\bigcirc	U	U	0	0	U	U	U	0	ט	U	U	U	U	U	U	U	U	\bigcirc
5013	${ }^{68,55,0,900}$	Other	${ }^{30}$	${ }^{\text {EL }}$	\bigcirc	\bigcirc	\bigcirc	\bigcirc	0	\bigcirc	U	\bigcirc	\bigcirc	\bigcirc	U	U	U	\bigcirc	\bigcirc	\bigcirc	ט	U	U	\bigcirc
5014	${ }^{68,06,200}$	Of smmeitic fives	${ }^{10}$	st	\％	\％	\％\％	0\％	\％\％	\％\％	\％\％	10\％	${ }^{8 \%}$	${ }^{7 \%}$	6\％	${ }^{5 \%}$	${ }^{4 \%}$	3\％	${ }^{2 \%}$	1\％	\％	\％	\％	－
5015	${ }^{68,06,910}$	－Of vegeatale exxile firese of heading 53.05	10	N2	9\％	${ }^{\text {9\％}}$	8\％	${ }^{8 \%}$	${ }^{6 \%}$	${ }^{6 \%}$	${ }^{5 \%}$	${ }^{5 \%}$	4\％	4%	${ }^{3 \%}$	3\％	${ }^{2 \%}$	${ }^{2 \%}$	\％\％	\％\％	\％	0\％	\％	\％
5016	68，061，920	Of coton	10	N2	${ }^{9}$	9\％	${ }^{8}$	${ }^{8} \%$	6\％	6\％	5\％	5\％	4\％	4\％	${ }^{3}$	3\％	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％	\％	\％	\％
5017	68，061，990	Oner	10	N2	${ }^{9} \%$	9\％	${ }^{8 \%}$	${ }^{8} \%$	${ }^{6 \%}$	6\％	5\％	5\％	4\％	4\％	${ }^{3 \%}$	3\％	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	0\％	\％	\％	0\％
5018	${ }^{63,062,200}$	－OO symbuticitures	10	N2	9\％	${ }^{9 \%}$	8\％	${ }^{8 \%}$	6\％	6\％	5\％	5\％	4%	4%	3\％	3\％	${ }^{2 \%}$	2\％	0\％	\％\％	0\％	\％	0\％	0\％
5019	${ }^{68,02,910}$	－Of ofoton	10	st	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	8\％	${ }^{7 \%}$	6\％	5\％	4\％	3\％	${ }^{2 \%}$	${ }^{1 \%}$	\％	\％	0\％	0\％
5020	${ }^{63,02,9990}$	－．Oner	10	st	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	${ }^{8 \%}$	${ }^{7 \%}$	6\％	5\％	4\％	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{1 \%}$	\％	\％	\％\％	0\％
5021	68，06，．000	－Sals	10	st	0\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	8\％	${ }^{7 \%}$	6\％	5\％	4\％	3\％	2%	1\％	\％	0\％	\％	\％
5022	68，064，010	－or coton	10	st	10\％	0\％	10\％	10\％	10\％	10\％	10\％	10\％	8\％	${ }^{7 \%}$	6\％	5\％	4\％	3\％	2%	1\％	\％	\％	\％	0\％
5023	68，064，900	Oner	10	N2	9%	\％	${ }^{8 \%}$	${ }^{\text {\％}}$	6\％	6\％	5\％	5\％	${ }^{4 \%}$	4%	${ }^{3 \%}$	${ }^{\text {3\％}}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％	\％	\％\％	0\％
5024	68，06，000	Other	10	NT2	${ }^{9} \%$	9\％	8\％	8\％	6\％	6\％	5\％	5\％	${ }^{4 \%}$	4\％	${ }^{3 \%}$	3\％	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％	\％	\％	\％
5025	307．70．10	Nomwoen oferer than tet	10	st	10\％	10\％	10\％	10\％	10\％	\％\％	10\％	10\％	${ }^{8 \%}$	${ }^{7 \%}$	6\％	${ }^{5 \%}$	4%	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{1 \%}$	0\％	\％	\％	\％
5026	${ }^{6007.1020}$	－－Ot et	10	N2	9\％	9\％	8\％	8\％	6\％	6\％	5\％	5\％	4\％	4\％	3\％	3\％	2\％	2\％	\％\％	0\％	0\％	\％	0\％	0\％
5027	68，07，，090	－other	10	st	10\％	10\％	10\％	10\％	${ }^{10 \%}$	${ }^{10 \%}$	10\％	10\％	8\％	${ }^{7} \%$	6\％	5\％	${ }^{4 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{1 \%}$	0\％	\％\％	\％	${ }_{0}$
5028	68，02，200	－Liejeackeles and lifebelis	10	N2	9\％	9\％	${ }^{8 \%}$	${ }^{8 \%}$	6\％	6\％	${ }_{5 \%}$	5\％	4\％	4\％	${ }^{3 \%}$	3\％	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	0\％	\％	\％	0\％
5029	68，09，030	－Umberla covers in preatutranuuar form	10	st	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	${ }^{8 \%}$	${ }^{7} \%$	6\％	5\％	4\％	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{1 \%}$	0\％	\％	0\％	0\％
5030	68，07，940	－Sugical masts	10	st	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	8\％	${ }^{7 \%}$	6\％	5\％	4\％	3\％	${ }^{2 \%}$	1\％	0\％	\％	\％	\％\％
5031	${ }^{68,079,061}$	－Sulable tor industrial se	10	st	10\％	\％\％	10\％	0\％	10\％	\％\％	${ }^{10 \%}$	10\％	${ }^{8 \%}$	${ }^{7 \%}$	6\％	5\％	${ }^{4 \%}$	${ }^{3}$	${ }^{2 \%}$	1\％	\％	\％	\％	\％
5032	68，79，969	Onher	10	st	10\％	10\％	10\％	10\％	0\％	10\％	10\％	10\％	${ }^{8 \%}$	${ }^{7} \%$	6\％	5\％	4%	3\％	${ }^{2 \%}$	${ }^{1 \%}$	\％	0\％	\％	\％
5033	68，07，0070	－Fans and handscreens	10	st	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	8\％	${ }^{7 \%}$	6\％	5\％	4\％	3\％	${ }^{2 \%}$	1\％	\％	\％	\％	0\％
5034	68，79，090	－other	10	st	10\％	10\％	10\％	10\％	0\％	10\％	10\％	10\％	${ }^{8 \%}$	${ }^{7 \%}$	6\％	5\％	${ }^{4 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{1 \%}$	\％	\％	\％	0\％
${ }^{5035}$	63，00，000		${ }^{10}$	N2	${ }^{9 \%}$	\％	${ }^{8 \%}$	${ }^{8 \%}$	${ }^{6 \%}$	${ }^{6 \%}$	5\％	5\％	${ }^{4 \%}$	4\％	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％	\％	\％	\％
5036	68，00，000	Worm clothing and other wom aricics．	10	st	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	8\％	${ }^{7} \%$	6\％	5\％	4\％	3\％	${ }^{2 \%}$	1\％	0\％	\％	0\％	0\％
${ }^{5037}$	${ }^{6890.00 \cdot 10}$	－Usedo or new rags	${ }^{10}$	N2	9\％	9\％	${ }^{8 \%}$	${ }^{8 \%}$	6\％	6\％	5\％	5\％	4\％	4%	3\％	3\％	2\％	${ }^{2 \%}$	\％	\％	\％\％	\％	\％	0\％
5038	${ }^{68,101,090}$	－Oner	${ }^{10}$	${ }^{\text {sL }}$	10\％	10\％	10\％	10\％	10\％	${ }^{10 \%}$	${ }^{10 \%}$	10\％	8\％	${ }^{7 \%}$	6\％	${ }^{5 \%}$	4\％	${ }^{3 \%}$	2\％	${ }^{1 \%}$	0\％	0\％	0\％	0\％
5039	68，10，0，10	－Usedo or rew rass	10	st	10\％	0\％	10\％	10\％	10\％	10\％	10\％	10\％	${ }_{8 \%}$	${ }^{7 \%}$	6\％	5\％	${ }^{4 \%}$	${ }^{3}$	2\％	${ }^{1 \%}$	\％\％	\％	\％	\％
5040	68，109，990	－other	${ }^{10}$	N2	${ }^{9 \%}$	${ }^{9 \%}$	${ }^{8 \%}$	${ }^{8 \%}$	6\％	${ }^{6 \%}$	5\％	${ }^{5 \%}$	4%	4%	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％	\％	\％	\％
5041	84，01，000	－Foomear incoropating a protective mealitocecap	10	${ }^{\text {sL }}$	10\％	10\％	10\％	${ }^{10 \%}$	0\％	10\％	${ }^{10 \%}$	10\％	${ }^{8 \%}$	${ }^{7 \%}$	6\％	5\％	4%	3\％	${ }^{2 \%}$	1\％	\％\％	\％	\％\％	\％\％
5042	64，0，9，200	－Covering the anke but rot covering the knee	10	NT2	9\％	\％	8\％	8\％	6\％	6\％	5\％	5\％	4\％	4\％	3\％	3\％	2\％	2\％	0\％	0\％	\％	0\％	0\％	0\％
5043	84，019，900	－Oner	10	st	10\％	${ }^{10 \%}$	10%	10\％	10\％	${ }^{10 \%}$	${ }^{10 \%}$	10\％	8\％	${ }^{7 \%}$	6\％	5\％	4\％	3\％	${ }^{2 \%}$	1\％	0\％	\％	0\％	0\％
5004	84，02，200		10	sL	10\％	0\％	10\％	10\％	10\％	10\％	10\％	10\％	${ }^{8}$	7\％	6\％	${ }^{5 \%}$	${ }^{4 \%}$	${ }^{3} \%$	${ }^{2 \%}$	1\％	\％	\％	\％	\％
5045	84，01，910	－Wresting foomear	10	st	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	8\％	${ }^{7 \%}$	6\％	5\％	4%	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{1 \%}$	0\％	\％\％	0\％	\％
5046	86，02，，990	－．－other	10	st	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	${ }^{8 \%}$	${ }^{7 \%}$	6\％	5\％	4%	3\％	${ }^{2 \%}$	${ }^{1 \%}$	0\％	\％	\％	0\％
504	84，02，200	－Footwear with upper straps or thongs assembled to the sole by means of plugs	10	sL	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	${ }^{8 \%}$	${ }^{7 \%}$	6\％	5\％	4%	3\％	${ }^{2 \%}$	1\％	${ }^{0}$	${ }^{0 \%}$	\％	${ }^{0}$
5048	84，02，110	－Diving bools	10	st	10\％	10\％	10\％	10\％	${ }^{10 \%}$	10\％	${ }^{10 \%}$	10\％	8\％	${ }^{7 \%}$	6\％	5\％	4\％	${ }^{3 \%}$	2%	1\％	0\％	0\％	0\％	0\％
5049	${ }^{84,029,191}$	$\cdots{ }^{-T}$ nocoporaing a provective meal loe cap	${ }^{10}$	N2	${ }^{9 \%}$	9\％	8\％	${ }^{8 \%}$	6\％	6\％	5\％	${ }^{5 \%}$	4%	4%	3\％	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	0\％	\％\％	\％	0\％	0\％	0\％
550	88，02，199	Ohter	10	st	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	${ }^{8 \%}$	${ }^{7 \%}$	6\％	5\％	$4{ }^{4 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{1 \%}$	\％	\％	\％	0\％
5051	84，02，9，90	\cdots Incoporaing apoloective meat loe cap	10	st	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	${ }^{8}$	${ }^{7} \%$	6\％	5\％	4\％	${ }^{3 \%}$	${ }^{2 \%}$	1\％	\％	\％	\％	\％
5052	88，02，990	Onter	10	st	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	${ }^{8 \%}$	${ }^{7 \%}$	6\％	5\％	4%	3\％	${ }^{2 \%}$	${ }^{1 \%}$	0\％	0\％	0\％	0\％
5053	84，03，200	－Ski－boots，cross－country ski footwear and snowboard boots	10	sL	10\％	0\％	10\％	10\％	10\％	\％\％	10\％	10\％	${ }^{8 \%}$	${ }^{7 \%}$	6\％	5\％	4\％	3\％	2\％	1\％	\％	\％	\％	\％
5054	84，03，9，90		10	N2	9\％	9\％	8\％	8%	6\％	6\％	5\％	5\％	4%	4\％	3\％	3\％	${ }^{2 \%}$	2\％	0\％	\％\％	0\％	0\％	0\％	0\％
5055	84，03， 292	－Riding bools or bowing shoes	10	st	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	8\％	${ }^{7 \%}$	6\％	5\％	4%	3\％	${ }^{2 \%}$	1\％	0\％	\％\％	0\％	\％
505	86，03，，930	．．．Foomear Tor westing，weignt：Hifing or	${ }^{10}$	sL	10\％	10\％	10\％	10\％	${ }^{10 \%}$	10\％	10\％	10\％	8%	${ }^{7 \%}$	6\％	${ }^{5 \%}$	${ }^{4 \%}$	${ }^{3 \%}$	2\％	\％	\％	\％	\％	0\％
5057	84，03，，990	\cdots	10	sL	10\％	10\％	10\％	${ }^{10 \%}$	${ }^{10 \%}$	${ }^{10 \%}$	10%	10\％	8%	${ }^{7 \%}$	6\％	5\％	4\％	3\％	2%	1\％	\％\％	\％	\％	0\％
5058	88，032，000		10	st	10\％	10\％	10\％	\％\％	10\％	10\％	10\％	10\％	8\％	${ }^{7 \%}$	6\％	5\％	4\％	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{1 \%}$	\％	\％	\％	\％
505	8，0，34，000	－Other footwear，incorporating a protective metal toe－cap	10	s	10\％	10\％	10\％	${ }^{10 \%}$	${ }^{10 \%}$	${ }^{10 \%}$	${ }^{10 \%}$	${ }^{10 \%}$	${ }^{\text {8\％}}$	${ }^{7 \%}$	6\％	${ }^{5 \%}$	${ }^{4 \%}$	${ }^{\text {3\％}}$	${ }^{2 \%}$	${ }^{1 \%}$	\％\％	\％\％	\％	\％\％
5060	64，05，，00	－Covering the anke	10	st	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	8\％	${ }^{7 \%}$	6\％	5\％	4%	3\％	${ }^{2 \%}$	${ }^{1 \%}$	0\％	0\％	0\％	\％
5001	${ }^{84,03,5000}$				10%	10%	$1{ }^{10 \%}$	$1{ }^{10 \%}$	10\％	10\％	10%	10\％	8%	${ }^{7} \%$	6\％	5\％	$4{ }^{4 \%}$	3\％	${ }^{2 \%}$	1\％	0\％	0\％	0\％	\％\％

5062	64，39， 100	Covering the anke	10	sL	10\％	10\％	10\％	${ }^{10 \%}$	10%	10\％	${ }^{10 \%}$	10\％	${ }^{8 \%}$	${ }^{7 \%}$	6\％	5\％	${ }^{4 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{1 \%}$	\％\％	\％	\％	0\％
5063	64，09，900	Oher	10	sL	\％	\％	10\％	\％	0\％	0\％	0\％	10\％	8%	${ }^{7 \%}$	${ }^{6 \%}$	${ }^{5 \%}$	${ }^{4 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	1\％	0\％	0\％	0\％	0\％
5064	6804．11．10	－Fited wilts spies，cleals of rie ike	10	т2	9\％	9\％	${ }_{8}^{8}$	${ }^{8 \%}$	6\％	6\％	5\％	5\％	4%	4%	\％\％	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％	\％	\％	0%
5065	4.1120	－．．Footwear for westing，weight－lifing or	10	sL	10\％	10\％	${ }^{10 \%}$	10\％	${ }^{10 \%}$	10\％	10\％	10\％	${ }^{8 \%}$	${ }^{\text {7\％}}$	6\％	${ }^{5 \%}$	${ }^{4 \%}$	3\％	${ }^{2 \%}$	1\％	\％	\％	\％	0\％
5066	64，04，190	－Other	10	st	10\％	0\％	10\％	10\％	10\％	10\％	10\％	10\％	${ }^{8 \%}$	7\％	6\％	5\％	${ }_{4}^{4 \%}$	3\％	${ }^{2 \%}$	1\％	0\％	\％	\％	\％\％
5067	64，04，900	－－Other	10	st	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	$8{ }^{8 \%}$	7\％	6\％	5\％	4\％	3\％	2\％	1\％	0\％	0\％	0\％	0\％
5088	84，02，200	－Footwear with outer soles of leather or composition leather	10	st	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	8\％	${ }^{7} \%$	6\％	5\％	4\％	3\％	${ }^{2 \%}$	1\％	0\％	0\％	\％	\％
5069	84，05，000	－With uperes of feather o composition leather	10	sL	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	${ }^{8}$	\％	6\％	${ }_{5}^{5}$	4%	3\％	${ }^{2 \%}$	1\％	0\％	0\％	0\％	0\％
5070	84，052，000	－Wilu upers of texile materials	10	sL	10\％	10\％	10\％	10\％	10\％	10\％	10\％	${ }^{10 \%}$	${ }^{8 \%}$	${ }^{7} \%$	6\％	5\％	$4{ }^{4 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{1 \%}$	\％\％	\％	\％	\％
5071	84，55，000	Other	10	st	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	8\％	${ }^{7} \%$	6\％	5\％	4\％	3\％	\％	1\％	\％	0\％	\％	0\％
5072	8406．10．10	－Meatiocecaps	10	sL	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	8\％	${ }^{7 \%}$	6\％	5\％	4%	3\％	2\％	1\％	0\％	\％	\％	\％
5073	84，06，090	－Other	10	12	9\％	${ }^{\text {9\％}}$	8\％	8%	6\％	6\％	5\％	${ }_{5 \%}$	4%	4%	3\％	${ }^{3 \%}$	${ }^{2 \%}$	2\％	0\％	0\％	\％\％	\％\％	\％	\％\％
5074	84，02，200	Oule s soles and heels，of fuberor oplasits	0	st	10\％	\％	10\％	\％	\％	\％	\％	10\％	8%	${ }^{7 \%}$	\％	${ }^{5 \%}$	${ }^{4 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	1\％	0\％	\％	\％	\％
5075	64，69，010	－ot wood	10	st	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	$8{ }^{8}$	${ }^{7} \%$	6\％	5\％	4%	3\％	${ }^{2 \%}$	1\％	0\％	\％	\％	\％
5076	84，09，021	－Otiroor or seel	10	st	10\％	10\％	10\％	10\％	10\％	10\％	10%	10\％	${ }^{8 \%}$	${ }^{7 \%}$	${ }^{6 \%}$	${ }^{5 \%}$	${ }^{4 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{1 \%}$	\％\％	\％	\％	\％\％
5077	64，69，029	－－Other	10	st	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	8%	7\％	6\％	5\％	4%	3\％	${ }^{2 \%}$	1\％	\％	\％	0\％	\％
5078	64，69，031	－Insoles	10	N2	\％	\％	8\％	${ }^{8 \%}$	${ }^{6 \%}$	6\％	5\％	5\％	4%	$4{ }^{4}$	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2} \%$	\％	0\％	\％	\％	\％	0\％
5079	84，69，032	\cdots Compleies soles	0	NT2	9\％	9\％	8\％	${ }^{8 \%}$	6\％	6\％	5\％	5\％	4\％	$4{ }^{4 \%}$	3\％	3\％	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％	\％	\％	\％
55080	64，690，039	Other	${ }^{10}$	sL	${ }^{10 \%}$	${ }^{10 \%}$	10\％	${ }^{10 \%}$	${ }^{10 \%}$	${ }^{10 \%}$	${ }^{10 \%}$	${ }^{10 \%}$	${ }^{8 \%}$	7\％	6\％	5\％	${ }^{4 \%}$	3\％	2\％	${ }^{1 \%}$	\％	\％\％	\％	0\％
5081	84，09，091	$\begin{array}{\|l\|} \hline \cdots \text { Gaiters, leggings and similar aricles and parts } \\ \hline \text { thereoof } \end{array}$	10	sL	10\％	0\％	10\％	10\％	10\％	0\％	10\％	10\％	8%	${ }^{7 \%}$	6\％	5\％	${ }^{4 \%}$	3\％	${ }^{2 \%}$	1\％	\％	\％	\％	\％
5582	64，69，099	－－Other	10	sL	10\％	10\％	10\％	10\％	0\％	\％	10\％	10\％	8\％	${ }^{7} \%$	6\％	${ }^{5 \%}$	4%	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{1 \%}$	0\％	\％	0\％	\％
5083	65，00，000	Hat－forms，hat bodies and hoods of felt，neither blocked to shape nor with made brims；plateaux and manchons（including slit manchons），of felt．	${ }^{20}$	EL	\checkmark	\checkmark	u	u	u	\checkmark	\checkmark	\checkmark	u	\cup	u	\cup	\checkmark	\checkmark	\checkmark	\cup	\checkmark	\checkmark	\checkmark	u
5584	65，02，000	Hat－shapes，plaited or made by assembling strips of any material，neither blocked to shape， nor with made brims，nor lined，nor trimmed	${ }^{20}$	EL	\checkmark	\cup	\checkmark	u	u	\checkmark	\checkmark	\checkmark	u	u	\cup	\cup	u	u	\checkmark	\cup	\checkmark	\checkmark	\checkmark	\checkmark
5085	65，04，000	Hats and other headgear，plaited or made by assembling strips of any material，whether or not lined or trimmed．	${ }^{20}$	EL	ט	ט	U	ט	U	\bigcirc	\bigcirc	U	ט	ט	\bigcirc	\bigcirc	\bigcirc	U	\bigcirc	\bigcirc	－	\bigcirc	\bigcirc	\bigcirc
5508	65，50，010	－Headgearo fa kind used for religios puroses	${ }^{20}$	${ }^{\text {EL }}$	\bigcirc	\checkmark	\bigcirc	0	U	u	\bigcirc	u	\bigcirc	\checkmark	\checkmark	\bigcirc	u	U	U	\bigcirc	\checkmark	\checkmark	\bigcirc	u
5087	65．55，020	－Halr－mals	${ }^{20}$	EL	\bigcirc	－	0	0	U	－	\bigcirc	ט	\bigcirc	－	U	U	U	ט	ט	U	\bigcirc	U	U	\bigcirc
5088	65，50，090	－Oner	${ }^{20}$	EL	\bigcirc	\bigcirc	U	\bigcirc	ט	\bigcirc	\bigcirc	U	ט	\bigcirc	U	\bigcirc	ט	\bigcirc	U	U	\bigcirc		ט	\bigcirc
5089	6506．0．10	－Helmest tor motocyciliss	5	T1	4%	4%	4\％	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％
5090	6506．1020	－Industrial safety helmets and firefighters＇helmets， excluding steel helmets	5	V1	4\％	4\％	4\％	3\％	3\％	${ }^{2 \%}$	${ }^{2 \%}$	\％	0\％	0\％	\％	\％	\％	0\％	0\％	\％	\％	\％	\％	0\％
5091	${ }^{6506.10 .30}$	－－Steelnemels	5	V1	4\％	4\％	${ }^{4 \%}$	3\％	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％\％	\％	\％	0\％
5092	65，06，040	－Waierolol headgear	5	NT1	4%	4\％	${ }^{4 \%}$	3\％	3\％	${ }^{2 \%}$	${ }^{2 \%}$	0\％	\％	\％	\％	0\％	\％	\％	\％	0\％	\％	\％	\％	0\％
55093	65，06，，900	－Onter	5	V1	$4{ }^{4 \%}$	4\％	4\％	3\％	3\％	2\％	${ }^{2 \%}$	\％\％	\％	\％	\％	\％\％	0\％	\％\％	0\％	0\％	\％\％	\％\％	\％	\％
5509	65，69，100	－－Of rubere orof plasics	5	T1	$4{ }^{4 \%}$	$4{ }^{4 \%}$	4\％	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％
5095	65，69，910	－Ooturskin	5	T1	$4{ }^{4 \%}$	${ }^{4 \%}$	4%	${ }^{3 \%}$	${ }^{3 \%}$	2\％	${ }^{2 \%}$	\％	\％	0\％	0\％	\％	\％	\％	0\％	0\％	\％	\％	\％	\％
5509	65，69，990	－－Other	5	V1	$4{ }^{46}$	4%	4\％	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	0\％	0\％	\％	\％	\％	\％	0\％	0\％	\％\％	\％	\％	\％
5097	65，70，000	Head－bands，linings，covers，hat foundations，hat frames，peaks and chinstraps，for headgear．	${ }^{20}$	EL	－	U	ט	0	0	－	－	\bigcirc	－	U	－	－	－	ט	－	－	－	ט	\bigcirc	0
5098	66，01，000	－Garden or simila umberlas	${ }^{20}$	EL	\bigcirc	\bigcirc	U	U	\bigcirc	ט	\bigcirc	\bigcirc	\bigcirc	－	\bigcirc	0	－	，	\bigcirc	U	\bigcirc	\bigcirc	\bigcirc	ט
5509	66，099，100	－Having atesesolic stat	${ }^{20}$	EL	0	\bigcirc	0	0	0	－	－	0	0	0	0	0	0	0	0	0	U	\bigcirc	0	U
5500	66，09，900	－－oner	${ }^{20}$	EL	\checkmark	ט	U	ט	\checkmark	\checkmark	ט	U	U	U	U	ט	\checkmark	U	U	ט	U	U	\checkmark	\checkmark
551	66，20，000		${ }^{20}$	EL	0	\bigcirc	U	0	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	－	－	U	0	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
5102	2.000	Umbrella frames，including frames mounted on shafts（sticks）	10	sL	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	\％	\％	6\％	${ }_{5 \%}$	${ }^{4 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{1 \%}$	0\％	\％	0\％	\％
5103	66，03，010	－－Foraticios of heading 6.01	10	st	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	8\％	7\％	6\％	5\％	4\％	3\％	${ }^{2 \%}$	1\％	0\％	0\％	\％	\％
5104	66，03，020	－－Fora aticoso f f heading 66.02	${ }^{10}$	st	10\％	10\％	${ }^{10 \%}$	10\％	10\％	10\％	10%	10\％	${ }^{8 \%}$	${ }^{7 \%}$	6\％	5\％	4\％	3\％	${ }^{2 \%}$	${ }^{1 \%}$	0\％	\％\％	0\％	\％\％
5505	67，00，000	Skins and other parts of birds with their feathers or down，feathers，parts of feathers，down and articles thereof（other than goods of heading 05.05 and worked quills and scapes）． articles thereof（other than goods of heading 05.05 and worked quils and scapes）．	10	st	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	${ }^{8 \%}$	7\％	6\％	5\％	4\％	${ }^{3 \%}$	2\％	1\％	\％	\％	\％	\％
5	67，021，000	－of pasisics	${ }^{20}$	EL	\bigcirc	0	U	U	U	\bigcirc	0	U	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	ט	U	0	0	0	ט	U
5107	67，02，010	－ot paper	${ }^{20}$	EL	U	0	U	O	U	ט	\bigcirc	U	0	\bigcirc	U	0	0	ט	\bigcirc	0	\bigcirc	0	\bigcirc	U
5108	67，29，020	Offexile maierials	${ }^{20}$	EL	ט	\bigcirc	－	ט	ט	\bigcirc	U	\bigcirc	\bigcirc	\bigcirc	ט	ט	ט		U	\bigcirc	\bigcirc	－	\bigcirc	U
5109	67，29，090	Oner	${ }^{20}$	${ }^{\text {EL }}$	U	\bigcirc	－	U	U	U	\bigcirc	\bigcirc	U	－	\bigcirc	U	0	\bigcirc	\checkmark	U	\checkmark	－	\bigcirc	－
5110	67，03，000	Human hair，dressed，thinned，bleached or otherwise worked；wool or other animal hair or other textile materials，prepared for use in making wigs or the like．	${ }^{20}$	EL	u	\cup	u	\checkmark	u	\checkmark	，	u	u	u	\checkmark	u	\checkmark	u	\checkmark	u	u	u	u	\cup
511	67，04，100	－－Compleie wis	${ }^{20}$	EL	，	\checkmark	O	\bigcirc	\bigcirc	\bigcirc	－	\bigcirc	\bigcirc	，	0	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
5112	67，04，900	－－omer	${ }^{20}$	EL	U	${ }^{\circ}$	U	U	U	\bigcirc	－	U	U	U	－	U	＂	－	U	\bigcirc	－	－	U	－
5113	67，02，000	－Of human hair	${ }^{20}$	EL		0	0	U	U	\bigcirc	ט	U	U	ט	U	0	U	U	U	U	U	0	U	\bigcirc
5114	67，04，000	－Of otrer maemala	${ }^{20}$	${ }^{\text {EL }}$	U	U	U	－	\bigcirc	\bigcirc	－	U	U	－	¢	－	\bigcirc	－	－	－	\bigcirc	U	－	0
5115	68，01，000	Setts，curbstones and flagstones，of natural stone（except slate）．	5	v1	4\％	4\％	$4{ }^{4 \%}$	3\％	3\％	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％	\％	0\％	\％	\％	0\％	0\％	\％	0\％	\％	\％
5	68，02，000	－Tiles，cubes and similar articles，whether or not rectangular（including square），the largest surface area of which is capable of being enclosed in a square the side of which is less than 7 cm ；artificially coloured granules，chippings and powder	5	NT1	4\％	4\％	4\％	3\％	3\％	2\％	2\％	0\％	0\％	\％	0\％	0\％	\％	\％\％	\％	0\％	0\％	0\％	\％	0\％
517	88，02，100	－Marbe，travetine and alabasier	5	VT1	4\％	4\％	4\％	3\％	3\％	2\％	2\％	\％	\％	0\％	0\％	\％	\％	\％	\％	\％	0\％	0\％	0\％	0\％
5118	88，02，300	－Granie	5	V1	4\％	4\％	4\％	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	0\％	\％	\％	\％	\％	0\％	\％	0\％	0\％	0\％	\％	\％	\％\％
5119	68，02，910	\cdots Other calareous stone	5	V1	4%	4%	4\％	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	0\％	0\％	0\％	0\％	0\％	\％	0\％	0\％	\％	\％	0\％	\％	0\％
5120	${ }^{88,02,290}$	－Onher	5	V1	${ }^{4 \%}$	4\％	4\％	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％	\％	\％	\％	\％	\％	0\％	\％	\％	\％	\％
5121	88，02，110	\cdots Matle	5	V1	4\％	4\％	4\％	3\％	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％	\％\％	\％	\％	\％	\％	\％	\％	\％	\％	\％
5512	88，29，190	\cdots Oner	5	V1	4\％	4\％	4\％	3\％	3\％	2%	${ }^{2 \%}$	\％	\％	\％	\％	\％	\％	\％	\％	0\％	\％	\％	\％	0\％
5123	68，09，200	－－Oner calaraous solone	5	NT	4\％	4\％	4%	3\％	3\％	2%	2\％	0\％	\％	0\％	\％	0\％	\％	\％	\％	0\％	0\％	\％	\％	0\％
5124	68，02，300	－－Gantie	5	NT1	4%	4\％	4\％	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％
5	68，29，900	－－omer stone	5	NT	4%	4%	4\％	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％	\％	\％\％	\％\％	\％	\％	\％	\％	\％	\％	0\％
$5{ }^{5126}$	68，03，000	Worked slate and articles of slate or of agglomerated slate．	${ }^{5}$	NT1	4%	4\％	4\％	3\％	${ }^{3 \%}$	2%	2\％	\％	\％	\％	0\％	\％	\％	\％	\％	\％	0\％	0\％	\％	\％
515	88，04，000	－Millstones and grindstones for milling，grinding or pulping	${ }^{5}$	$\stackrel{\sim}{\text { N1 }}$	4\％	4\％	4\％	3\％	3\％	${ }^{2 \%}$	2\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	0\％	\％	\％
5	68，02，100		5	NT1	${ }^{4 \%}$	4%	4\％	3\％	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％\％	\％	\％	0\％	\％\％	0\％	\％	\％	0\％	\％\％	\％\％	\％	\％
$5{ }^{5129}$	2200	her aggomerated dabasives orot	5	NT1	4\％	4\％	4%	3\％	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	0\％	0\％	\％	0\％	0\％	0\％	\％\％	0\％	0\％	0\％	0\％	\％	0\％
5130	68，042，300	－Of natual sone	5	VT	4\％	4\％	4\％	3\％	3\％	2\％	2\％	0\％	\％	\％\％	\％	\％	0\％	0\％	0\％	0\％	0\％	\％	\％	0\％
5	68，043，000	－Hand Slapeoing or ofosising stones	5	N1	4%	4%	${ }^{4 \%}$	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	0\％	0\％	\％	0\％	\％	0\％	\％\％	\％	0\％	\％\％	0\％	\％	0\％
5132	68，05，000	－Ona base of woven texiliefatic ony	5	V1	4\％	4%	4\％	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％	\％	\％	\％	\％	\％	0\％	\％	0\％	\％	\％
5	88，052，000	－Ona base of pepero or pepeetoard only	5	${ }^{\text {NT1 }}$	${ }^{4 \%}$	${ }_{4}{ }^{4}$	4\％	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％	0\％	\％	\％	\％	\％	\％	\％	\％	\％	\％\％
5134	88，55，000	－On abse of oterer materias	5	NT1	4\％	4\％	4\％	${ }^{3 \%}$	${ }^{3 \%}$	2\％	${ }^{2 \%}$	\％	\％	\％	\％	0\％	\％	\％	\％\％	0\％	0\％	\％\％	0\％	\％\％
5	88，06，000	－Slag wool，rock wool and similar mineral wools （includuing intermixures thereof），in bulk，sheets or rolls	5	NT1	4\％	4\％	4\％	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	0\％	\％	\％	0\％	0\％	\％	\％	0\％	0\％	0\％	\％	\％	0\％
5	68，02，200	－Exioliated vermiculite，expanded clays，foamed slag and （includuing initermermixtures thereof）	5	NT1	4%	4\％	4\％	3\％	3\％	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％

香港•ASEAN FTAにかかる調査報告書

別添2－4 原産地品の関税撤廃スケジュール
（ラオス）

5137	${ }^{68,69,000}$	Onher	5	NT1	${ }^{4 \%}$	，	${ }^{4 \%}$	${ }^{3 \%}$	3\％	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％\％	\％	\％	\％	0\％	\％	\％	0\％	\％		\％\％
$5{ }^{5138}$	68，77，000	Inols	5	NT1	4\％	4%	4\％	3\％	3\％	${ }^{2 \%}$	2\％	\％	0\％	\％	\％\％	\％	\％	0\％	0\％	0\％	\％	0\％	\％	0\％
5139	68，79，010	－Tiles	5	NT	4\％	4%	4\％	3\％	3\％	2%	2\％	\％	\％	0\％	\％	\％	\％	0\％	\％	\％\％	\％	0\％	\％	0\％
5140	88，79，090	－－oner	5	NT1	4%	4%	${ }^{4 \%}$	${ }^{3 \%}$	3\％	${ }^{2 \%}$	${ }^{2 \%}$	0\％	\％	0\％	\％	0\％	\％	0\％	\％	\％	\％	\％	\％	\％
5141	88，88，010	－Rooting yies，paness，boards，blocks and similiar	5	NT1	4\％	4\％	4\％	3\％	3\％	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％
5	88，80，090	－Oher	5	NT1	4%	4%	4%	3\％	${ }^{3 \%}$	${ }^{2} \%$	${ }^{2} \%$	0\％	\％	0\％	\％	0\％	0\％	0\％	0\％	0\％	0\％	0\％	0\％	0\％
5143	68，091，100	－F Faed or reiniorced with paper or opaperoboard	5	NT1	4\％	4\％	4\％	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	2\％	\％	0\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％
514	68，09，910	\cdots	5	NT1	4\％	4%	4\％	3\％	3\％	2\％	2\％	\％	\％	\％	0\％	\％	\％	0\％	0\％	\％	\％	0\％	\％	0\％
5145	68，09，990	Other	5	NT	4\％	4%	$4{ }^{4 \%}$	3\％	${ }^{3 \%}$	${ }^{2 \%}$	2\％	0\％	0\％	0\％	\％	0\％	0\％	\％	0\％	0\％	\％	\％	\％	\％
5146	88，99，010	－－Denal mouls of p paser	5	NT	4\％	4\％	4\％	3\％	3\％	2\％	2\％	\％\％	\％	0\％	\％	\％	\％	0\％	\％	0\％	\％	0\％	\％	\％
5147	68，99，090	－Oner	5	NT	$4{ }^{4 \%}$	$4{ }^{4 \%}$	4%	3\％	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％	\％	\％	\％	0\％	\％	\％	\％	\％	\％	\％\％
5148	88，00，100	Builing bocks and birick	5	NT1	4\％	4%	4\％	${ }^{3 \%}$	3\％	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％	0\％	\％	\％	0\％	${ }^{\circ}$	${ }_{0}$	\％	\％	\％	\％
5149	88，10，90	${ }^{- \text {Tiles }}$	5	NT	4\％	4%	4\％	3\％	3\％	${ }^{2 \%}$	${ }^{2 \%}$	0\％	\％	0\％	\％	\％	\％	0\％	\％	\％	\％	0\％	\％	\％
5150	68，10，990	－Other	5	NT1	4%	4%	4%	${ }^{3}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％
551	68，10， 100	－Prefabricated structural components for building or civil engineering	5	NT1	4\％	4\％	4\％	3\％	3\％	${ }^{2 \%}$	2\％	\％	0\％	0\％	\％	\％	0\％	0\％	\％	0\％	0\％	0\％	\％	\％
5152	68，109，900	－Other	5	NT	4%	4\％	4\％	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	0\％	\％	0\％	0\％	0\％	0\％	0\％	0\％	\％	\％	\％\％	0\％	\％
5	88，14，010	－Corrugates sheels	5	NT1	4\％	4%	4\％	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％
5154	68，14，021	－Foor or wall lies ocnaining plasics	5	NT1	4\％	4\％	4%	${ }^{3 \%}$	${ }^{3 \%}$	2\％	${ }^{2 \%}$	\％	\％	0\％	\％	\％	\％	0\％	\％	0\％	\％	0\％	\％	\％
55	68，14，029	－Other	5	NT1	4\％	4\％	${ }^{4 \%}$	${ }^{3 \%}$	3\％	${ }^{2 \%}$	2\％	\％	0\％	0\％	\％	\％	\％	0\％	\％	\％	0\％	\％\％	\％	\％
55156	68，14，030	－－Tubsor orpes	5	NT	4\％	4\％	4\％	3\％	3\％	2\％	2\％	0\％	\％	\％\％	\％	\％	\％	0\％	\％	\％	\％	\％	\％	\％
$5{ }^{5157}$	68，14，040	－Tue orpipe eftings	5	NT1	4\％	4%	${ }^{4 \%}$	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	2\％	\％	\％	\％	0\％	\％	0\％	0\％	\％\％	\％	\％	\％	\％	\％\％
55	88，14，090	－other	5	NT1	4\％	4\％	4\％	${ }^{3 \%}$	3\％	2\％	${ }^{2 \%}$	\％	\％	\％\％	\％	\％	\％	0\％	\％	\％	\％	\％	\％	\％
5159	68，18，100	Corruates sheels	5	NT	4\％	4%	4%	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％
5160	68，118，210	\cdots Floor or wall lies conlaining pasitics	5	NT1	4%	4\％	4%	3\％	3\％	2\％	${ }^{2 \%}$	0\％	0\％	0\％	0\％	\％\％	0\％	0\％	0\％	0\％	\％	0\％	\％	\％
5161	68，18，290	－Other	5	NT	${ }^{4 \%}$	4%	4%	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	0\％	0\％	\％\％	\％	\％	\％	0\％	\％\％	0\％	\％\％	0\％	\％	\％
5162	68，18，910	${ }^{-T \text { Tubes or ipeas }}$	5	NT	4\％	4%	4\％	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％
5163	${ }^{88,118,920}$	－Tube or ipee fitions	5	NT	4\％	4%	4\％	${ }^{3 \%}$	${ }^{3} \%$	${ }^{2 \%}$	${ }^{2 \%}$	0\％	\％	0\％	\％	\％	\％	0\％	\％	\％	\％	\％	\％	\％
5164	68，18，990	－Other	5	NT	4\％	4\％	4\％	3\％	3\％	2\％	${ }^{2 \%}$	0\％	0\％	0\％	\％	\％	\％	0\％	\％	\％	\％	\％	\％	\％
5	68，128，020	－Cotoring	${ }^{10}$	${ }^{\text {sL }}$	\％\％	0\％	\％\％	0\％	0\％	\％\％	\％	\％	${ }^{8 \%}$	${ }^{7 \%}$	6\％	5%	${ }^{4 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	1\％	\％	\％\％	\％	\％
5166	68，128，030	Paper，milloard and feet	10	sL	10\％	0\％	0\％	\％	0\％	0\％	0\％	10\％	8%	${ }^{7 \%}$	6\％	${ }^{5 \%}$	${ }^{4 \%}$	3\％	${ }^{2 \%}$	1\％	\％	\％	\％	0\％
5167	68，128，040	－－Floor orwallilies	10	st	10\％	10\％	10\％	0\％	0\％	10\％	10\％	10\％	${ }^{8 \%}$	${ }^{7 \%}$	6\％	5\％	$4{ }^{4 \%}$	3\％	${ }^{2 \%}$	1\％	\％	\％	\％	\％
5168	88，128，050		10	st	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	8\％	7\％	6\％	5\％	4\％	3\％	2%	1\％	0\％	0\％	\％	\％
5169	68，128，990	－－Other	10	${ }^{\text {s．}}$	10\％	10\％	0\％	0\％	10\％	10\％	10\％	10\％	${ }^{8 \%}$	${ }^{7 \%}$	6\％	5\％	4\％	3\％	${ }^{2 \%}$	${ }^{10 \%}$	\％	0\％	\％\％	0\％
5170	68，129，110	\cdots	10	N2	9\％	9\％	${ }^{8 \%}$	${ }^{8 \%}$	6\％	6\％	5\％	5\％	4%	4%	${ }^{3 \%}$	3\％	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％	0\％	\％	\％
5171	${ }^{68,129,190}$	－Onter	10	st	10\％	10\％	${ }^{10 \%}$	10\％	10\％	10\％	10\％	${ }^{10 \%}$	${ }^{8 \%}$	${ }^{7} \%$	${ }^{6 \%}$	${ }^{5 \%}$	4%	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{1 \%}$	\％	\％	\％	\％
5172	${ }^{68,129,200}$	－－Paper，milboard anc iter	10	sL	${ }^{10 \%}$	10\％	${ }^{10 \%}$	${ }^{10 \%}$	10\％	${ }^{10 \%}$	10\％	${ }^{10 \%}$	${ }^{8 \%}$	${ }^{7 \%}$	6\％	5\％	4\％	${ }^{3 \%}$	${ }^{2 \%}$	1\％	\％	0\％	0\％	0\％
5	88，12，300	- Compressed asbestos fibiere ioninga，in theels or	${ }^{10}$	sL	10\％	10\％	10\％	\％\％	10\％	10\％	10\％	10\％	${ }^{8 \%}$	${ }^{7 \%}$	6\％	5\％	4\％	3\％	2%	${ }^{1 \%}$	\％	0\％	\％	\％
5174	68，129，911	- －－Mixtures with a basis of asbestos or with a basis of asbestos and magnesium carbonate of a kind used for the manufacture of goods of heading 68.13	10	s	10\％	0\％	0\％	10\％	10\％	10\％	10\％	10\％	${ }^{8 \%}$	7\％	6\％	5\％	4\％	3\％	2\％	1\％	\％	0\％	0\％	0\％
5175	68，129，999	－－－omer	0	st	0\％	0\％	0\％	0\％	10\％	10\％	10\％	10\％	8\％	${ }^{7 \%}$	6\％	${ }^{5 \%}$	${ }^{4 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	1\％	\％	0\％	\％	\％
5176	68，129，920	－Foor or rallilies	10	т2	9\％	9\％	${ }^{8 \%}$	${ }^{8 \%}$	6\％	6\％	5\％	5\％	4%	$4{ }^{4 \%}$	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％	\％	\％	\％
5177	68，129，990	－－other	10	sL	10\％	10\％	10\％	0\％	10\％	10\％	10\％	10\％	${ }^{8 \%}$	${ }^{7} \%$	6\％	5\％	4%	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{1 \%}$	\％	\％	\％	\％
5178	68，12，010	Brake linings and pads	5	NT	4\％	4%	4\％	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％	\％	\％	0\％	0\％	\％	\％\％	0\％	0\％	0\％	\％
5179	${ }^{88,132,909}$	－other	5	NT1	4\％	4%	4\％	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％
5180	68，188，100	－－Brake lings and pads	5	V1	4\％	4%	4%	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％\％	\％	\％	0\％	0\％	\％\％	\％	0\％	0\％	\％	\％\％
5518	88，18，900	－omer	5	V1	4\％	4%	${ }^{4 \%}$	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	0\％	\％	\％\％	\％	\％	0\％	\％	0\％	0\％	0\％	0\％	\％	\％
5582	68，14，000		10	NT2	\％	\％	8\％	${ }^{8}$	6\％	6\％	5\％	5\％	${ }^{4 \%}$	4\％	3\％	${ }^{3 \%}$	2\％	${ }^{2 \%}$	\％	0\％	\％	\％	\％	\％
5183	88，149，000	－other	10	N2	9\％	9\％	8\％	8%	6\％	6\％	5\％	5\％	4\％	4\％	3\％	${ }^{3} \%$	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％\％	\％	\％	\％	\％
5184	6815．10．10	－Yamortrread	10	st	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	8\％	${ }^{7 \%}$	6\％	5\％	4\％	3\％	${ }^{2 \%}$	${ }^{1 \%}$	\％	0\％	\％	\％
5	6815．0．020	－－Bricks，paivg stas，floor ilies and sim	10	st	10\％	\％\％	\％\％	0\％	${ }^{10 \%}$	10\％	10\％	10\％	${ }^{8 \%}$	${ }^{7 \%}$	6\％	${ }^{5 \%}$	${ }^{4 \%}$	3\％	${ }^{2 \%}$	1\％	\％	\％\％	\％	\％
5	${ }^{68,151,091}$	$\cdots{ }^{-\cdots a t o n ~ f i b e s ~}$	10	sL	10\％	10\％	${ }^{10 \%}$	0\％	0\％	10\％	${ }^{10 \%}$	10\％	${ }^{8 \%}$	${ }^{7 \%}$	6\％	5\％	${ }^{4 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{1 \%}$	\％	\％\％	\％	0\％
5187	68，15，099	－Oner	10	st	\％\％	0\％	10\％	\％	\％	0\％	10\％	10\％	${ }^{8 \%}$	${ }^{7 \%}$	6\％	${ }^{5 \%}$	${ }^{4 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	1\％	\％	\％	0\％	\％
5188	88，152，000	－Aticoso f peat	10	st	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	8\％	${ }^{7 \%}$	6\％	5\％	4\％	3\％	${ }^{2 \%}$	${ }^{1 \%}$	\％	0\％	\％	\％
5189	68，15，100	－Conaming magnesie，dolomile orchomie	10	st	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	${ }^{8 \%}$	${ }^{7 \%}$	6\％	5\％	4%	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{1 \%}$	\％	\％	\％	\％
5190	68，159，900	－－other	10	st	${ }^{10 \%}$	10\％	${ }^{10 \%}$	10\％	10\％	${ }^{10 \%}$	10\％	${ }^{10 \%}$	${ }^{8 \%}$	${ }^{7} \%$	6\％	5\％	4%	3\％	${ }^{2 \%}$	1\％	0\％	0\％	\％	\％
5_{5192}^{519}	69，00，000		10	st	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	${ }^{8 \%}$	7\％	6%	5\％	4\％	3\％	2%	1\％	0\％	0\％	\％	\％
5192	69，02，000	－Containing by weight，singly or together，more than 50% of the elements Mg, Ca or Cr ，expressed as $\mathrm{MgO}, \mathrm{CaO}$ or Cr 2 O 3	10	sı	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	${ }^{8 \%}$	\％	6\％	5\％	4\％	3\％	2\％	1\％	0\％	\％	\％	0\％
5193	69，02，200	－Containing by weight more than 50% of alumina （Al2O3），of silica（SiO2）or of a mixture or compound of these products	${ }^{10}$	sL	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	${ }^{8 \%}$	7\％	6\％	${ }^{5 \%}$	4\％	${ }^{3 \%}$	2\％	${ }^{1 \%}$	\％	\％	\％	\％
5194	99，029，000	－Oner	10	${ }^{\text {sL }}$	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	8%	${ }^{7 \%}$	6\％	5\％	4\％	3\％	${ }^{2 \%}$	1\％	\％\％	0\％	0\％	\％
5195	69，03，000		10	st	10\％	10\％	${ }^{10 \%}$	10\％	10\％	10\％	10\％	10\％	${ }^{8 \%}$	${ }^{7 \%}$	6\％	5\％	4\％	3\％	2\％	${ }^{1 \%}$	0\％	0\％	\％	\％
5196	69，022，000	－Containing by weight more than 50% of alumina （Al2O3）or of a mixture or compound of alumina and of silica（SiO2）	${ }^{10}$	${ }^{\text {sL }}$	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	8\％	\％	6\％	5\％	4\％	3\％	2\％	${ }^{\text {\％}}$	\％	\％	\％	\％
5197	69，09，000	－Other	10	st	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	8\％	7\％	6\％	5\％	4\％	3\％	2\％	1\％	0\％	\％\％	\％\％	\％
5198	69，04，000	－Bulding birics	${ }^{20}$	${ }^{\text {EL }}$	${ }^{0}$	${ }^{\circ}$	－	${ }^{\text {u }}$	U	${ }^{\circ}$	${ }^{\circ}$	${ }^{\circ}$	\bigcirc	\bigcirc	\bigcirc	\checkmark	\bigcirc	U	\bigcirc	\bigcirc	\bigcirc	－	\bigcirc	\bigcirc
5199	69，09，000	－Oner	${ }^{20}$	${ }^{\text {EL }}$	U	\bigcirc	U	U	U	U	U	U	\bigcirc	，	\bigcirc	U	\bigcirc	U	\checkmark	U	＂	U	U	\bigcirc
5200	69，05，000	－Roofing lies	5	NT	4\％	4%	4%	3\％	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％\％	\％	\％	0\％	0\％	\％	\％	\％	0\％	\％	\％
5201	69，59，000	－Oner	5	NT1	4\％	4\％	4\％	${ }^{3 \%}$	${ }^{3 \%}$	2\％	2\％	0\％	\％	\％\％	0\％	0\％	\％	0\％	\％	0\％	\％	0\％	\％	\％
5202	69，60，000	Ceramic pipes，conduits，guttering and pipe fittings．	${ }^{5}$	NT	4\％	4%	4\％	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％	\％	0\％	\％	\％	\％	\％	\％	\％	\％	\％
5203	6907．10．10	－－Pavig．neath orwallies	5	V1	4\％	4%	4%	3\％	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	0\％	\％	0\％	\％	\％	\％\％	0\％	\％\％	0\％	\％	\％\％	0\％	\％
5204	69，07，090	－Other	5	V1	4\％	4%	4\％	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％	\％	\％	\％\％	\％	\％	\％	\％\％	\％	\％	\％
5205	69，07，010	－Pavigg，heathor wallilies	5	${ }^{\text {NT1 }}$	4\％	4\％	4\％	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	0\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％
5206	69，079，020	－Lining lies ofa kind used tor gindingm mils	5	V1	4\％	4\％	4\％	3\％	3\％	2\％	2%	\％\％	\％	0\％	0\％	\％\％	\％	0\％	\％\％	\％\％	\％	\％\％	\％\％	\％\％
5207	690，79，990	－Oner	${ }^{5}$	V1	$4{ }^{4 \%}$	4%	${ }^{4 \%}$	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	0\％	\％	\％\％	\％	\％\％	\％	\％	0\％	0\％	\％	0\％	\％	\％
5208	${ }^{\text {6908．} 10.10}$	－Pavigg，beart or wallilies	5	NT1	${ }^{4 \%}$	4%	${ }^{4 \%}$	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	0\％	\％	\％	\％	\％	\％	0\％	\％	\％	\％	\％\％	\％	\％
5209	69，08，090	－－omer	5	${ }^{\text {NT1 }}$	4%	4\％	4%	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％
5210	69，09，011	－Paving，hearth or wall lies	5	NT1	4\％	4%	4\％	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％	\％	\％	0\％	0\％	\％\％	0\％	\％	\％	\％	\％
5211	69，89，019	－－Omer	5	NT1	4\％	4\％	4%	3\％	3\％	2\％	${ }^{2 \%}$	\％	\％	0\％	\％	\％\％	\％\％	\％\％	\％	0\％	\％	0\％	\％	\％
5212	69，09，091	－－Pavig，hearthor wallilies	5	NT1	4\％	4\％	4\％	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	0\％	0\％	0\％	\％	\％	0\％	0\％	\％\％	\％	\％	0\％	0\％	0\％
5213	69，89，099	－OMher	${ }^{5}$	${ }^{\text {NT1 }}$	4\％	4%	4\％	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％
5214	69，09，100	－of poreselan or china	5	${ }^{\text {NT1 }}$	4\％	4\％	4\％	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％\％	\％	0\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％
5215	69，091，200	－Articles having a hardness equivalent to 9 or more	5	VT1	4\％	4\％	4\％	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％\％	\％	\％	\％	\％\％	\％	\％\％	\％	\％	\％	\％
5216	69，09， 900	－omer	5	${ }^{\text {NT1 }}$	4\％	4\％	4\％	3\％	3\％	2\％	2\％	\％	\％	0\％	\％\％	\％	\％	0\％	\％	0\％	\％\％	0\％	\％	0\％

香港•ASEAN FTAにかかる調査報告書

別添2－4 原産地品の関税撤廃スケジュール
（ラオス）

$\sqrt{5217}$	［99，09，000	Onher	5	｜N1	${ }^{4 \%}$	$4{ }^{4}$	4%	3\％	${ }^{\text {3\％}}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％	0\％	\％	\％	\％	\％	\％	\％	0\％	\％	
5218	69，01，000	－of porcelain or china	5	NT1	4\％	4\％	4\％	3\％	3\％	2\％	${ }^{2 \%}$	\％	\％	0\％	0\％	0\％	\％	0\％	0\％	0\％	0\％	\％	0\％	\％\％
5219	69，10，000	－other	5	NT1	${ }^{4 \%}$	${ }^{4 \%}$	${ }^{4 \%}$	3\％	3\％	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％	0\％	\％	\％	0\％	\％	\％	\％	0\％	0\％	0\％
5220	69，11，000	－Tabeware and kichemware	5	NT1	4\％	4%	4%	${ }^{3 \%}$	3\％	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	0\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％
5221	69，19，000	－other	5	NT1	4\％	4%	4%	3\％	3\％	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％\％	\％	\％	0\％
522	69，120，000	Ceramic tableware，kitchenware，othe usehoid and toilet articles，other than of porcelain or china．	5	NT1	${ }^{4 \%}$	${ }^{4 \%}$	${ }^{4 \%}$	3\％	3\％	${ }^{2 \%}$	${ }^{2 \%}$	\％\％	\％	0\％	0\％	\％	\％	\％	\％	\％	\％	\％	\％	\％
5223	69913．0．10	－－Omamenala cgarate boxes and asstrays	5	NT1	4\％	$4{ }^{4 \%}$	4\％	3\％	3\％	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％\％	0\％	0\％	\％	0\％	0\％	\％	0\％	0\％	\％	0\％	0\％
5224	69，13，090	－other	5	v1	4\％	${ }^{4 \%}$	${ }^{4 \%}$	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	0\％	\％	\％	\％	\％	0\％	\％	\％	0\％	\％	\％	\％
2225	69，13，0，10	－Omamenal ligaetet boxes and ashruays	5	NT	4\％	${ }^{4 \%}$	4	${ }^{3}$	${ }^{3}$	${ }^{2 \%}$	${ }^{2 \%}$	0\％	0\％	0\％	\％	\％	0\％	0\％	\％	\％	\％	0\％	\％	\％
5226	69，13，9090	－－oner	5	NT1	4\％	4\％	4%	3\％	3\％	2\％	${ }^{2 \%}$	\％	\％	\％	\％	\％	\％	\％	\％	0\％	0\％	\％	\％	\％
${ }_{5}^{527}$	69，14，1，00	－or porcealin or crina	5	NT1	4\％	4%	4%	${ }^{3} \%$	3\％	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	0\％	\％
5228	69，14，000	－Other	5	NT1	4%	4%	4\％	3\％	3\％	2\％	${ }^{2 \%}$	0\％	0\％	0\％	0\％	\％	0\％	0\％	0\％	0\％	\％	\％	0\％	\％\％
5229	70，01，000	Cullet and other waste and scrap of glass；glass in the mass．	5	NT1	4\％	${ }^{46}$	4%	3\％	3\％	${ }^{2 \%}$	${ }^{2 \%}$	0\％	\％	0\％	0\％	\％	0\％	\％	\％	0\％	\％	\％	\％	\％
5230	70，02，000	－Bals	5	NT1	4\％	${ }^{4 \%}$	4%	\％	3\％	${ }^{2 \%}$	${ }^{2 \%}$	\％	0\％	\％	\％	\％	0\％	0\％	\％	\％	\％	0\％	0\％	\％
${ }^{5231}$	$7{ }^{7,022,000}$	－Rods	5	NT1	4\％	4%	4\％	3\％	3\％	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％	0\％	0\％	\％	\％	\％	\％	0\％	\％	\％	0\％
5322	$7{ }^{70,023,110}$		5	NT1	${ }^{4 \%}$	4\％	4%	3\％	3\％	${ }^{2 \%}$	2%	0\％	\％	\％	0\％	\％	0\％	\％	\％	\％	0\％	\％	0\％	\％
5233	$770.02,190$	－other	5	T1	${ }_{4}{ }^{4}$	4\％	4\％	3\％	3\％	${ }^{2 \%}$	${ }^{2 \%}$	\％	0\％	0\％	0\％	0\％	\％	0\％	0\％	\％	\％	0\％	0\％	\％
538	$7{ }^{70,03,2,10}$	Of a kin used to manuaturevecum tues	5	V1	${ }^{4 \%}$	4\％	${ }^{4 \%}$	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	0\％	\％	0\％	\％	\％	\％	0\％	\％	\％	\％	0\％	0\％	\％
5235	70，02，220	- －Other，of clear neutral borosilicate glass，with a diameter of 3 mm or more but not more than 22 mm	5	v1	4\％	4\％	4\％	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	2\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％
5236	$770.03,290$	－other	5	NT1	4\％	4\％	4%	3\％	3\％	${ }^{2 \%}$	2\％	0\％	\％	\％	\％	\％	0\％	0\％	\％	\％	0\％	0\％	\％	\％
5237	${ }^{70,023,910}$		5	N1	4\％	${ }^{4 / 6}$	4%	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	0\％	\％	\％	\％	0\％	\％	\％	\％	\％	\％	\％	\％	\％
$2{ }^{238}$	70，02，920	- －Other，of clear neutral borosilicate glass，with a diameter of 3 mm or more but not more than 22 mm	5	NT1	4\％	${ }^{4 \%}$	4\％	3\％	3\％	${ }^{2 \%}$	2%	\％	\％	\％	0\％	\％	\％	\％	\％	\％	0\％	\％	\％	\％
5239	$770.02,990$	Other	5	NT1	4\％	$4{ }^{4 \%}$	4\％	3\％	3\％	${ }^{2 \%}$	${ }^{2 \%}$	\％	0\％	\％	\％	0\％	\％	\％	0\％	\％	\％\％	\％	\％	0\％
5240	77003.12 .10	Opicial gass，not opicially wored	5	NT1	4\％	4%	4%	3\％	3\％	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％
524	$7{ }^{7003.1220}$	Other，in square or rectanguala shape（including with $1,2,3$ or 4 corners cut）	5	NT	4\％	4\％	4\％	3\％	3\％	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％	0\％	\％	\％	\％	\％	\％\％	0\％	\％	0\％	\％
5242	70，03，290	－－Other	5	NT1	4\％	4\％	4%	3\％	3\％	${ }^{2 \%}$	2\％	\％	\％	\％	\％	\％	\％	\％	\％	0\％	\％\％	\％	\％	\％
5243	$7{ }^{7,031,910}$	－Opicial glass，not opically worked	5	V1	4\％	4\％	4%	3\％	3\％	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％\％	\％	0\％	\％	\％	\％	\％\％	\％\％	\％\％	\％	\％
524	${ }^{70,03,9,990}$	\cdots	5	V1	4\％	$4{ }^{4 \%}$	4%	3\％	3\％	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％\％	0\％	\％	\％	0\％	\％	\％	\％	0\％	\％	\％
245	70，032，000	Wreesheels	5	V1	4%	${ }^{4 \%}$	$4{ }^{4 \%}$	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	2\％	0\％	0\％	0\％	0\％	0\％	0\％	0\％	0\％	\％	0\％	0\％	0\％	\％
5246	$7{ }^{7,03,000}$	－Profles	5	NT1	4\％	4\％	4\％	${ }^{3} \%$	3\％	2\％	${ }^{2 \%}$	\％	\％	\％	\％	\％	\％	0\％	\％	\％	\％	\％	\％	\％
524	$7{ }^{7}, 042,010$	－Opicial gass，notopicially worked	5	NT1	4\％	4%	4%	3\％	3\％	2\％	${ }^{2 \%}$	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％
$5{ }^{5248}$	70，042，990	－otner	5	N1	4\％	4%	4\％	3\％	3\％	${ }^{2 \%}$	${ }^{2 \%}$	\％	0\％	0\％	0\％	0\％	\％	\％\％	\％	\％	0\％	0\％	\％	0\％
524	$770.04,010$	－Opicial gass，not opicilly worked	5	VT1	4\％	4%	4%	3\％	3\％	2\％	${ }^{2 \%}$	\％	0\％	\％	\％	\％	0\％	\％	\％	\％	\％	0\％	\％	0\％
5250	$7{ }^{7,049,090}$	－other	5	vir	4\％	4%	4%	${ }^{3}$	3\％	${ }^{2 \%}$	${ }^{2 \%}$	0\％	\％	\％	\％	\％	0\％	\％	\％	\％	\％	\％	\％	0\％
5521	$7{ }^{7005.10,10}$	Opicala gass，notopiciall worked	5	N1	4\％	4\％	4%	3\％	3\％	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	0\％	0\％	0\％	\％	0\％	\％	\％	0\％	\％	\％	0\％
$5{ }^{5252}$	$7^{7,051,090}$	Other	${ }^{5}$	v1	4\％	${ }^{4 \%}$	4%	${ }^{3 \%}$	3\％	${ }^{2 \%}$	${ }^{2 \%}$	\％	0\％	0\％	0\％	0\％	0\％	0\％	\％	\％	\％\％	\％	\％	\％
253	$7{ }^{70,052,110}$	Opicial glass，not oficilly wooked	5	V1	$4{ }^{4 \%}$	4%	$4{ }^{4 \%}$	3\％	3\％	${ }^{2 \%}$	${ }^{2 \%}$	0\％	\％	\％	\％	\％	\％	0\％	\％	\％	\％	\％	0\％	\％
552	$7{ }^{7,052,190}$	－－other	5	NT1	4\％	4\％	4%	3\％	3\％	2\％	${ }^{2 \%}$	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％
5255	$7{ }^{7}, 0.05,910$	Opiciea glass，not oficilly worked	5	N1	4\％	$4{ }^{4}$	$4{ }^{4}$	3\％	3\％	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％
${ }^{5256}$	${ }^{70,052,990}$	－－Other	5	N1	4\％	4%	4\％	3\％	3\％	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	0\％	0\％	0\％	\％	\％\％	\％	\％	0\％	0\％	\％	0\％
5257	70，05，000	－Wied glass	5	NT1	4\％	4%	$4{ }^{4}$	3\％	3\％	${ }^{2 \%}$	${ }^{2 \%}$	0\％	0\％	\％	0\％	\％	0\％	\％	\％	\％	\％	0\％	\％	0\％
5258	$7{ }^{7,060,010}$	－opical glass，not opicially woked	5	NT1	4\％	$4{ }^{4 \%}$	4%	3\％	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	0\％	0\％	\％	\％	\％	0\％	\％	\％	\％	\％	\％	\％	0\％
5259	70，06，090	－other	5	NT1	4\％	4\％	4\％	3\％	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％	0\％	\％	\％	0\％	\％	\％	0\％	\％	\％	\％
5250	$7{ }^{7007.11 .10}$	Suliabl for vencices ot C Chapere 87	5	N1	4\％	$4{ }^{4 \%}$	4\％	${ }^{3 \%}$	3\％	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	0\％	0\％	0\％	\％\％	\％	\％	\％	0\％	\％	\％	\％
5261	77007.1120	－－Suitabe tor aricratio o spaceecrat of Chapere 88	5	v1	$4{ }^{4 \%}$	4%	4\％	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	0\％	0\％	0\％	\％	0\％	0\％	0\％	\％	0\％	0\％	\％	\％
	$7{ }^{7007.11 .30}$	－－－Suitable for railway or tramway locomotives or rolling stock of Chapter 86	${ }^{5}$	T1	4\％	${ }^{4 \%}$	${ }^{4 \%}$	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	0\％	0\％	0\％	\％	\％	\％	\％	\％	0	\％	
$5{ }^{523}$	$770,071,40$	－SUuliale for vesseds of Chaperer 39	5	V1	4\％	${ }^{4 \%}$	${ }^{4 \%}$	${ }^{3 \%}$	3\％	${ }^{2 \%}$	${ }^{2 \%}$	0\％	0\％	0\％	\％	0\％	0\％	0\％	0\％	\％	0\％	0\％	0\％	\％
5264	70，07，910	$\begin{aligned} & \text {-- - Suitable for machinery of heading } \\ & 84.29 \text { or } 84.30 \end{aligned}$	${ }^{5}$	T1	4%	4%	4%	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	0\％	\％	0\％	\％	\％	0\％	\％	\％	\％	\％	0\％	\％
5265	$770.071,990$	－Oher	5	NT	4\％	4%	4%	3\％	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	0\％	\％	\％
5266	72，02，110	－Suluabe for venicies of Conapere 87	5	NT1	4\％	4%	4\％	3\％	3\％	${ }^{2 \%}$	2\％	\％	0\％	0\％	0\％	0\％	\％	\％\％	\％	\％	0\％	0\％	\％	0\％
${ }^{5267}$	$7{ }^{70,02,120}$		5	NT	4\％	4\％	4%	3\％	3\％	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	${ }^{\circ}$	0\％
${ }^{5268}$	$7{ }^{70,02,130}$	－－－Suitable for railway or tramway locomotives or rolling stock of Chapter 86	5	NT1	4\％	4\％	${ }^{4 \%}$	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	0\％	\％\％	0\％	\％	\％	0\％	0\％	\％	\％	\％	0\％	\％	\％
526	$7{ }^{7}, 072,140$	\cdots Sutibue to vesesels of Chapere 89	5	NT1	4\％	4%	4%	3\％	${ }^{3} \%$	${ }^{2 \%}$	2\％	0\％	0\％	\％	\％	\％	0\％	\％	\％	\％	\％	0\％	\％	0\％
5270	$7{ }^{70,02,9,90}$	－Suliable for machiney f freading	${ }^{5}$	NT1	4\％	4%	4\％	${ }^{3 \%}$	3\％	${ }^{2 \%}$	${ }^{2 \%}$	0\％	0\％	0\％	\％	0\％	\％	\％	\％	\％	\％	0\％	0\％	\％
5271	7 70，02，290	\cdots	5	NT1	4\％	4\％	4%	3\％	3\％	2\％	2\％	0\％	\％	0\％	0\％	0\％	\％	\％	0\％	0\％	0\％	\％	0\％	\％
$5{ }^{5272}$	$7{ }^{7}, 0000000$	Mutitiewalled insulating units of flass．	5	N1	4\％	${ }^{4 \%}$	4\％	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	0\％	0\％	0\％	0\％	\％	0\％	\％	\％	\％\％	0\％	\％	\％\％
5273	70，09，000	－Rearvivew mirosis tor venicics	5	N1	4\％	4%	$4{ }^{4 \%}$	3\％	3\％	${ }^{2 \%}$	${ }^{2 \%}$	0\％	\％	\％\％	0\％	\％	\％	\％	\％	\％	\％\％	\％	\％	\％
5274	70，09，100	－Untiamed	5	NT1	4\％	4%	4\％	3\％	3\％	2\％	${ }^{2 \%}$	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％
5275	$770.09,200$	Framed	5	NT	4\％	$4{ }^{4}$	4%	3\％	3\％	${ }^{2 \%}$	${ }^{2 \%}$	\％\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％\％
5276	70，01，000	－Anpoules	5	N1	4\％	4%	4\％	3\％	3\％	${ }^{2 \%}$	${ }^{2 \%}$	\％	0\％	0\％	0\％	0\％	\％	\％\％	\％	\％	0\％	0\％	\％	\％
5277	70，102，000		5	N1	4\％	$4{ }^{4 \%}$	4%	3\％	3\％	${ }^{2 \%}$	${ }^{2 \%}$	\％	0\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％
${ }^{5278}$	$7{ }^{7,10,0,010}$	－Cataols and demijoms	5	${ }^{\text {NT1 }}$	4\％	4%	4\％	3\％	3\％	${ }^{2 \%}$	${ }^{2 \%}$	0\％	0\％	\％	\％	\％	0\％	\％	\％	\％	\％	\％	\％	0\％
5279	70，109，940	－－Bottles and phials，of a kind used for antibiotics， serums and other injectable liquids；bottles of a kind used for intravenous fluids	5	N1	${ }^{4 \%}$	4%	4\％	${ }^{3 \%}$	3\％	${ }^{2 \%}$	${ }^{2 \%}$	\％	0\％	\％	\％	0\％	0\％	\％	\％	\％	\％	\％	\％	${ }^{\text {\％\％}}$
5880	70，109，090	－other	5	N1	4\％	${ }^{4 \%}$	4\％	3\％	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	0\％	0\％	\％	0\％	\％	\％	\％	\％	\％\％	0\％	0\％	0\％
5281	72011.10 .10	－Stems	5	NT1	4\％	$4{ }^{4 \%}$	4%	3\％	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％	\％	0\％	\％	\％	\％	\％	\％	\％	0\％	\％
5282	$7{ }^{7,111,090}$	Other	5	NT1	4\％	4%	4\％	3\％	3\％	${ }^{2 \%}$	${ }^{2 \%}$	\％	0\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	0\％	\％\％
$5{ }^{523}$	$7{ }^{7,112,000}$	－For cathoderay wes		NT1	4\％	4%	4%	3\％	3\％	${ }^{2 \%}$	${ }^{2 \%}$	\％\％	0\％	\％	\％	\％	\％\％	\％	\％	\％	\％	0\％	0\％	0\％
5284	70，19，000	－other	5	NT1	4\％	4\％	4%	3\％	3\％	${ }^{2 \%}$	${ }^{2 \%}$	\％	0\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％
5285	$7{ }^{7,13,1,000}$	－oitassceramics	5	NT	4\％	4%	4%	3\％	3\％	${ }^{2 \%}$	${ }^{2 \%}$	\％\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％
${ }^{5286}$	$7{ }^{7,13,2,200}$	－－of lead crsalal	5	NT1	4\％	4\％	4%	3\％	3\％	${ }^{2 \%}$	${ }^{2 \%}$	\％	0\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％
${ }^{5287}$	$7{ }^{7,132,800}$	－other	5	NT1	${ }^{4 \%}$	${ }^{4 \%}$	4%	${ }^{3 \%}$	3\％	${ }^{2 \%}$	${ }^{2 \%}$	0\％	0\％	\％	\％	\％	0\％	\％	\％	\％	\％	\％	\％	0\％
${ }^{5288}$	${ }^{70,13,3,300}$	－oflead crssal	5	N1	4\％	4%	4\％	3\％	3\％	${ }^{2 \%}$	${ }^{2 \%}$	\％	0\％	0\％	0\％	0\％	\％	\％\％	\％	\％\％	0\％	\％\％	0\％	\％
5289	$7{ }^{7,133,700}$	－－other	5	N1	4\％	$4{ }^{4 \%}$	$4{ }^{4 \%}$	3\％	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	0\％	\％	0\％	0\％	\％	\％	\％\％	\％	\％	\％\％	\％	0\％	\％
5290	$7{ }^{70,18,100}$	－－of lead crsalal	5	N1	4\％	${ }^{4 \%}$	4%	3\％	3\％	${ }^{2 \%}$	${ }^{2 \%}$	\％	0\％	\％	0\％	0\％	0\％	0\％	0\％	\％	0\％	\％	0\％	\％\％
5291	70，134，200	－－Of glass having a linear coefficient of expansion not exceeding $5 \times 10-6$ per Kelvin within a temperature range of $0 \circ \mathrm{C}$ to $300 \circ \mathrm{C}$	5	NT1	4\％	4\％	4\％	3\％	3\％	${ }^{2}$	2%	\％	0\％	0\％	\％	\％	0\％	\％	\％	\％	\％	\％	\％	\％
5292	$7{ }^{7,13,4,900}$	－－other	5	NT1	4\％	4\％	4\％	3\％	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	0\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	0\％	\％
5^{5293}	$7{ }^{7,139,100}$	Oflead crssal	5	NT	4\％	$4{ }^{4 \%}$	4\％	${ }^{3 \%}$	3\％	${ }^{2 \%}$	${ }^{2 \%}$	0\％	0\％	0\％	0\％	\％	\％	\％	\％	\％	\％	0\％	0\％	0\％
529	70，13，900	－Oner	5	NT1	4\％	$4{ }^{4 \%}$	4%	3\％	3\％	${ }^{2 \%}$	${ }^{2 \%}$	\％	0\％	\％	\％	\％	\％	\％	\％	\％	\％	0\％	0\％	\％
5295	$7{ }^{7,140,010}$		5	N1	${ }^{4 \%}$	${ }^{4 \%}$	4%	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	0\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％
${ }^{5296}$	$7{ }^{70,14,0,90}$	－Oher	5	N1	4\％	${ }^{4 \%}$	${ }^{4 \%}$	3\％	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	0\％	\％
529	${ }^{70,151,000}$	Glasses tor correative specalaces	5	N1	4\％	4\％	4\％	3\％	3\％	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	0\％	0\％	0\％	\％	0\％	0\％	\％	\％\％	\％\％	0\％	\％
${ }^{5298}$	$7{ }^{70,159,010}$	－Cloco or wach glasses	5	NT1	${ }^{4 \%}$	$4{ }^{4 \%}$	4%	${ }^{3 \%}$	${ }^{3}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％\％	\％	\％	\％
529	70，15，9090	－Oner	5		4\％	4%	$4{ }^{4 \%}$	${ }^{\text {\％}}$	3\％	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	0\％

香港•ASEAN FTAにかかる調査報告書

別添2－4 原産地品の関税撤廃スケジュール

（ラオス）

5300	$7{ }^{70,61,000}$	－Glass cubes and other glass smallwares，whether or not on a backing，for mosaics or similar decorative purposes	10	sL	10%	10%	\％	10%	\％	\％	10\％	10\％	${ }^{8 \%}$	${ }^{7 \%}$	${ }^{6 \%}$	${ }^{5 \%}$	${ }^{4 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{1 \%}$	\％	\％	\％	\％
5301	70，16，000	－Onher	10	sL	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	8%	${ }^{7 \%}$	6\％	5\％	${ }^{4 \%}$	3\％	${ }^{2 \%}$	1\％	\％	0\％	0\％	\％
5302	${ }^{2017.10,10}$	－Quartz reactor tubes and holders designed for insertion into diffusion and oxidation furnaces for production of semiconductor wafers	5	T1	${ }^{4 \%}$	4\％	${ }^{4 \%}$	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％	\％	\％	0\％	\％	\％	\％	\％	0\％	\％	\％
303	70，71，090	－Other	5	NT	4\％	4%	$4{ }^{4 \%}$	3\％	3\％	${ }^{2 \%}$	${ }^{2 \%}$	\％	0\％	0\％	0\％	\％	0\％	0\％	0\％	\％	\％	0\％	0\％	\％
5304	70，12，000		5	NT1	4\％	4\％	4\％	3\％	3\％	2\％	2\％	\％	0\％	0\％	0\％	\％	0\％	0\％	\％	0\％	0\％	0\％	0\％	0\％
5505	${ }^{70,179,000}$	－Onher	5	T1	4\％	${ }^{4 \%}$	${ }^{4 \%}$	3\％	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	0\％	\％	\％\％	0\％	0\％	0\％	0\％	\％\％	\％\％	0\％	0\％	0\％	\％
5506	70，18，000	－Glass beads，imitation pearls，imitation precious or semi－precious stones and similar glass smallwares	5	${ }^{\text {NT1 }}$	4\％	4\％	4\％	3\％	3\％	${ }^{2 \%}$	${ }^{2 \%}$	0\％	\％	\％	0\％	0\％	\％	\％	\％	\％	\％	\％	\％	\％
5307	$7^{70,182000}$	－Glass microspheres not exceeding 1 mm in	5	NT1	4\％	4\％	4%	3\％	3\％	${ }^{2 \%}$	${ }^{2 \%}$	\％	0\％	\％	\％	\％	0\％	0\％	0\％	0\％	\％	\％	\％	\％
5308	70，18，000	－Oner	5	V1	${ }^{4 \%}$	4\％	${ }^{4 \%}$	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	0\％	0\％	0\％	0\％	0\％	0\％	0\％	\％	\％	0\％	0\％	0\％	0\％
5309	${ }^{70,19,100}$	$\begin{aligned} & - \text { Chopped strands, of a length of not more than } 50 \\ & \mathrm{~mm} \end{aligned}$	5	NT1	4\％	4\％	4\％	3\％	3\％	${ }^{2 \%}$	2\％	\％	\％	0\％	\％	0\％	\％	\％	\％	0\％	\％	\％	\％	\％
5310	${ }^{70,19,200}$	－－Rovings	5	${ }^{\text {NT1 }}$	$4{ }^{4 \%}$	4\％	4\％	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	0\％	\％	0\％	\％	0\％	\％	\％	\％	0\％	\％	\％	\％	\％
5311	${ }^{70,19,9,90}$	－ram	5	NT1	4%	4\％	4%	${ }^{3 \%}$	3\％	${ }^{2 \%}$	${ }^{2 \%}$	\％	0\％	\％	0\％	0\％	0\％	0\％	\％	\％\％	0\％	0\％	0\％	\％
5312	$7{ }^{70,19,990}$	－Oother	5	N1	$4{ }^{4 \%}$	4\％	4\％	3\％	3\％	${ }^{2 \%}$	2\％	0\％	0\％	\％	\％	0\％	\％	\％	\％	0\％	0\％	\％	\％	\％
5313	70，193，100	－Mals	5	V1	4%	${ }^{4 \%}$	${ }^{4 \%}$	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	0\％	0\％	0\％	0\％	0\％	0\％	0\％	\％	0\％	\％	0\％	0\％	\％\％
5314	7 7，19，200	－－Thinsteest（volis）	5	V1	${ }^{4 \%}$	4%	4%	3\％	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％	0\％	\％	\％	0\％	\％	\％	\％	0\％	0\％	\％
5315	70，19，990	$\begin{aligned} & \text {-- Asphalt or coal-tar impregnated glass-fibre } \\ & \text { outerwrap of a kind used for pipelines } \end{aligned}$	5	NT1	4\％	4%	4%	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	0\％	\％	\％	0\％	\％	\％	\％	\％	\％	\％	\％	\％	\％
5316	$7^{70,193,990}$	－－－Oner	5	N1	${ }^{4 \%}$	${ }^{4 \%}$	${ }^{4 \%}$	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	0\％	0\％	\％	\％	\％\％	0\％	0\％	\％\％	\％	\％	0\％	\％
5337	$7{ }^{70,194,000}$	－Wover fabics of toving	5	NT1	$4{ }^{4 \%}$	4%	4\％	3\％	3\％	${ }^{2 \%}$	2\％	\％\％	0\％	\％	0\％	0\％	0\％	0\％	0\％	\％	0\％	0\％	\％	\％\％
5318	$7{ }^{70,195,100}$	－－Of a widh notexeeseding 30 cm	5	NT1	$4{ }^{4 \%}$	4%	4%	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％	\％	\％	\％	\％	0\％	\％	\％	\％	\％	\％
5319	$7{ }^{70,195,200}$		5	${ }^{\text {NT1 }}$	${ }^{4 \%}$	4%	4\％	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％\％	\％	\％	\％	\％	\％	0\％	0\％	\％	\％	\％	\％
5320	${ }^{70,195,900}$	Onher	5	NT1	${ }_{4}{ }^{4}$	$4{ }^{4 \%}$	$4{ }^{4 \%}$	3\％	3\％	${ }^{2 \%}$	${ }^{2 \%}$	0\％	0\％	0\％	\％	0\％	0\％	0\％	\％\％	0\％	\％\％	0\％	0\％	0\％
321	70，199，010	－－Glass fives（niculung glas woon	5	T1	${ }^{4 \%}$	4\％	4\％	3\％	3\％	${ }^{2 \%}$	2\％	0\％	0\％	0\％	\％	0\％	\％	\％	\％	0\％	0\％	\％	\％	\％
5322	70，19，990	－oner	5	T1	4%	${ }^{4 \%}$	${ }^{4 \%}$	3\％	3\％	${ }^{2 \%}$	${ }^{2 \%}$	\％	0\％	0\％	0\％	0\％	\％	0\％	\％	\％	\％\％	\％\％	0\％	\％\％
5323	$7{ }^{70,20,0,011}$	－－Of a kind used for the manufacture of acrylic goods	10	${ }^{\text {sL }}$	10\％	10\％	${ }^{10 \%}$	${ }^{10 \%}$	${ }^{10 \%}$	10\％	\％	${ }^{100 \%}$	${ }^{8 \%}$	${ }^{7} \%$	6\％	${ }^{5 \%}$	4\％	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{1 \%}$	\％	\％	\％\％	\％
5324	$7^{70,200,19}$	－－oner	${ }^{10}$	NT2	${ }^{9 \%}$	\％\％	8%	8\％	6\％	6\％	5\％	5\％	4\％	4\％	3\％	3\％	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％	\％	\％	\％
5325	70，20，020		10	st	10\％	10\％	10\％	10\％	\％\％	\％	\％	10\％	${ }^{8 \%}$	\％	6\％	${ }^{5 \%}$	4\％	${ }^{3 \%}$	${ }^{2 \%}$	1\％	0\％	\％	\％	\％
5326	$7{ }^{70,20,030}$	－Glass inners for vacuum flasks or other vacuum vessels	10	N2	9\％	9\％	8%	${ }^{\text {8\％}}$	${ }^{6 \%}$	6\％	${ }^{5 \%}$	${ }^{5 \%}$	${ }^{4 \%}$	4\％	3\％	${ }^{\text {3\％}}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％	0\％	\％	\％
5327	${ }^{70,20,040}$	－Evaculade tubes fors sora eneegy coloceols	10	sL	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	${ }_{8 \%}$	${ }^{7} \%$	6\％	5\％	4\％	${ }^{3 \%}$	${ }^{2 \%}$	1\％	\％	0\％	0\％	\％
5328	${ }^{70,20,091}$	${ }^{- \text {－}}$ linds	${ }^{10}$	st	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	${ }^{8 \%}$	${ }^{7} \%$	6\％	5\％	4\％	${ }^{3 \%}$	${ }^{2 \%}$	1\％	\％	\％	0\％	\％
5329	$7{ }^{70,20,099}$	－oner	10	st	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	${ }^{8 \%}$	${ }^{7} \%$	6\％	5\％	4\％	3\％	${ }^{2 \%}$	${ }^{1 \%}$	\％	\％	\％\％	0\％
5330	$7{ }^{7,01,000}$	－Naturapeans	5	T1	$4{ }^{4 \%}$	$4{ }^{4 \%}$	4%	3\％	3\％	2%	${ }^{2 \%}$	0\％	\％	0\％	0\％	0\％	\％	\％	0\％	\％	\％	0\％	\％	\％\％
5331	$7{ }^{71,012,100}$	－Unvored	5	V1	4%	4\％	4\％	3\％	3\％	${ }^{2 \%}$	2\％	0\％	0\％	0\％	0\％	0\％	0\％	\％	0\％	0\％	\％	\％	\％	\％
5332	$7^{7,01,2,200}$	Woked	${ }^{5}$	V1	4\％	4%	4%	3\％	3\％	${ }^{2 \%}$	${ }^{2 \%}$	\％	0\％	0\％	\％	\％	\％	\％	\％	\％	\％	\％	0\％	\％
5333	7，02，000	－Unsoted	5	NT1	4\％	4\％	4\％	3\％	3\％	2\％	${ }^{2 \%}$	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％
5334	${ }^{7,02,100}$	－Unoored of s simpl sawn，claved or bruled	5	${ }^{\text {NT1 }}$	${ }^{4 \%}$	4%	$4{ }^{4 \%}$	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％\％	\％	\％	\％	\％	\％	0\％	\％	\％	\％	\％	\％
5355	$7{ }^{7,02,900}$	－Other	5	NT1	${ }^{4 \%}$	4%	4\％	${ }^{3 \%}$	3\％	${ }^{2 \%}$	2%	0\％	0\％	\％	\％	0\％	0\％	\％\％	0\％	\％	\％	0\％	\％	\％\％
5336	${ }^{7,02,100}$	－Unworedo or simpl sawn，ceaved or butued	5	NT1	4\％	4%	$4{ }^{4}$	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％\％	\％
5337	${ }^{7,02,9,900}$	－omer	5	NT1	$4{ }^{4 \%}$	4%	4\％	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％\％	\％	\％	\％	\％	\％	\％	\％	\％	\％\％	\％	0\％
5338	$7{ }^{7103.00 .10}$	－－Rubies	5	NT1	$4{ }^{4 \%}$	4\％	4%	3\％	3\％	2\％	${ }^{2 \%}$	0\％	0\％	0\％	0\％	0\％	0\％	0\％	0\％	\％	0\％	\％	\％	\％
5339	${ }^{71030302020}$	－Jade（nephite and jadede）	5	V1	${ }^{4 \%}$	4%	4%	${ }^{3 \%}$	3\％	${ }^{2 \%}$	${ }^{2 \%}$	\％\％	\％\％	0\％	\％\％	\％	0\％	\％	0\％	\％	\％	0\％	\％	\％
5340	$7{ }^{7,03,090}$	Oher	5	V1	4%	${ }^{4 \%}$	4\％	${ }^{3 \%}$	${ }^{3 \%}$	2\％	${ }^{2 \%}$	0\％	0\％	\％	\％	\％	\％	0\％	\％	\％	\％	\％	0\％	0\％
5341	$7^{7,03,10,10}$	－Rubies	5	NT1	${ }^{4 \%}$	${ }^{4 \%}$	4%	3\％	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	0\％
5342	${ }^{7,03,09,190}$	Other	5	NT1	${ }^{4 \%}$	4%	$4{ }^{4 \%}$	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％\％	\％
5393	$77.03,900$	－Onter	5	NT1	$4{ }^{4 \%}$	4%	4%	3\％	3\％	2\％	2%	0\％	0\％	\％	0\％	0\％	0\％	0\％	0\％	0\％	0\％	0\％	0\％	0\％
5394	$7{ }^{7104040,10}$	－Unworked	5	NT1	$4{ }^{4 \%}$	$4{ }^{4}$	$4{ }^{4}$	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	${ }^{\circ} \mathrm{\%}$	\％
5345	$7{ }^{71040,10.20}$	－Worked	5	NT1	$4{ }^{4 \%}$	${ }^{4 \%}$	${ }^{4 \%}$	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％	\％	\％	\％	\％	0\％	\％	\％	\％	\％	\％
${ }^{5346}$	${ }^{7,04,02000}$	－Oner，umwored or s simpl sawn or orouhy sh	5	NT	4\％	4%	4%	${ }^{3 \%}$	${ }^{3} \%$	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％\％	\％	\％	\％	\％	\％	\％	\％	\％	0\％	0\％	0\％
5347	77，049，000	－other	5	NT1	${ }^{4 \%}$	4\％	4\％	${ }^{3 \%}$	3\％	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	0\％	0\％	\％\％	\％	0\％	\％	0\％	0\％	\％	0\％	\％
$5{ }^{5348}$	${ }^{7,05,05,000}$	Of diamons	5	NT1	${ }^{4 / 8}$	4\％	$4{ }^{4 \%}$	3\％	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	0\％	\％	\％	\％	\％	\％	\％	\％	\％	0\％	\％	\％	\％
5349	${ }^{71,05,000}$	Onher	5	V1	4%	4%	${ }^{4 \%}$	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	2%	\％	0\％	\％	\％	\％	\％	\％	\％	\％	\％	0\％	\％	\％
5350	7，06，000	－Power	5	NT1	$4{ }^{4 \%}$	${ }^{4 \%}$	4%	3\％	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％
${ }^{5351}$	${ }^{7,069,100}$	－－Unwought	5	NT1	${ }^{4 \%}$	$4{ }^{4}$	${ }^{4 \%}$	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％	\％	\％	0\％	\％	\％	\％	\％	\％	\％\％	\％\％
5352	$7{ }^{7,069,200}$	－－semimanulactued	5	NT1	$4{ }^{4 \%}$	$4{ }^{4 \%}$	4\％	3\％	3\％	${ }^{2 \%}$	2\％	\％	0\％	\％	0\％	0\％	\％	\％	0\％	\％	\％\％	0\％	\％	0\％
${ }^{5353}$	71，07，000	Base metals clad with silver，not further worked than semi－manufactured．	5	N1	4\％	4\％	4\％	3\％	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	0\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％
5354	${ }^{71,081,100}$	${ }^{- \text {－Powier }}$	5	NT1	${ }^{4 \%}$	${ }^{4 \%}$	4\％	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％\％	\％\％	\％	\％	\％	\％	\％	0\％	\％	\％	\％	\％	\％
5355	${ }^{7,08,2,200}$	－Oner unwought toms	5	NT1	${ }^{4 \%}$	4\％	4\％	3\％	3\％	${ }^{2 \%}$	${ }^{2 \%}$	0\％	0\％	\％	0\％	0\％	\％	\％	0\％	\％	\％\％	\％	\％	\％
5536	${ }^{7,08,3,300}$	－Onteresemi：manufactued foms	5	NT1	${ }^{4 \%}$	$4{ }^{4 \%}$	$4{ }^{4 \%}$	${ }^{3 \%}$	3\％	${ }^{2 \%}$	${ }^{2 \%}$	0\％	\％\％	0\％	\％\％	\％\％	\％	\％	\％	0\％	0\％	0\％	0\％	\％
5357	$7{ }^{71,082,000}$	－Monearay	5	V1	${ }^{4 \%}$	${ }^{4 \%}$	${ }^{4 \%}$	3\％	${ }^{3}$	${ }^{2 \%}$	${ }^{2 \%}$	\％\％	\％	\％\％	\％	\％\％	\％	\％	0\％	\％\％	\％	\％	\％	\％
5538	${ }^{71,090000}$	Base metals or silver，clad with gold，not further worked than semi－manufactured．	5	NT1	${ }^{4 \%}$	4%	4%	3\％	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％	\％	\％	\％	\％	0\％	0\％	\％	\％\％	\％	\％\％
5539	${ }^{77,1001,100}$	－－Unwought ori powder fom	5	NT1	${ }^{4 \%}$	$4{ }^{4 \%}$	4\％	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	0\％	0\％	0\％	\％\％	\％\％	\％	\％	0\％	0\％	0\％	0\％	\％	0\％
5580	${ }^{7,101,900}$	－other	5	NT1	${ }^{4 \%}$	4\％	4\％	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％\％	0\％	0\％	0\％	\％\％	0\％	\％	0\％	0\％	0\％	\％	\％	0\％
5361	${ }^{7,102,100}$	－Unwought ori inowder form	5	NT1	${ }^{4 \%}$	4\％	4%	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	0\％	0\％	0\％	0\％	0\％	0\％	0\％	0\％	\％\％	0\％	0\％	\％	0\％
5362	${ }^{7,102,900}$	－other	5	NT1	$4{ }^{4 \%}$	$4{ }^{4}$	4%	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％\％	\％	\％	\％	0\％	\％	\％	\％	\％	\％	0\％	0\％	\％
5363	7，103，100	－Unwoughtor in powder tom	5	NT1	4%	4\％	4%	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％	\％	\％	\％	0\％	\％	\％	\％	\％	\％	\％
5354	${ }^{77,103,900}$	－Oner	5	N1	${ }^{4 \%}$	4\％	4\％	${ }^{3 \%}$	3\％	${ }^{2 \%}$	${ }^{2 \%}$	\％\％	0\％	0\％	0\％	\％\％	0\％	0\％	0\％	0\％	0\％	\％	\％	\％
5356	${ }^{7,104,100}$	－－Unwoughto of poowder tom	5	V1	${ }^{4 \%}$	$4{ }^{4 \%}$	4%	${ }^{3 \%}$	3\％	${ }^{2 \%}$	${ }^{2 \%}$	0\％	0\％	0\％	0\％	\％\％	0\％	0\％	0\％	0\％	0\％	0\％	0\％	\％\％
5366	$7^{7,104,900}$	－other	5	NT	${ }^{4 \%}$	4%	$4{ }^{4}$	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％
5367	7，10，010	－Siveror golo，，cad with paitum	5	NT1	${ }^{4 \%}$	${ }^{4 \%}$	4\％	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％	0\％	0\％	\％	\％	\％	\％	0\％	\％	\％	0\％
5388	$7^{7,110,090}$	－Oner	5	NT	4%	4%	4%	3\％	3\％	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％	\％	\％	\％	0\％	\％	\％	\％	\％	0\％	\％
5369	7，1，23，000	- Ash containing precious metal or precious metal compounds	5	NT	${ }^{4 \%}$	4%	4%	3\％	3\％	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％	\％	\％	\％	\％	0\％	\％	\％	\％	\％	0\％
5370	${ }^{7,129,100}$	\because－Of gold，including metal lad with gold but excluduing sweepings contanining other precious metal	5	NT	${ }^{4 \%}$	${ }^{4 \%}$	4\％	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％\％	\％	\％	\％	\％	\％	\％	0\％	\％	0\％	\％	\％	\％
5371	77，129，200	－Of platinum，including metal clad with platinum but excluding sweepings containing other precious metals	${ }^{5}$	NT1	${ }^{4 / 6}$	${ }^{4 \%}$	${ }^{4 \%}$	3\％	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％	\％	\％	\％	\％	\％	0\％	\％	\％	\％	\％\％
5372	$7{ }^{7,12,9,910}$	－－－Of silver，including metal clad with silver but excluding sweepings containing other precious metals	5	NT1	${ }^{4 \%}$	${ }^{4 \%}$	${ }^{4 \%}$	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％	\％	\％	\％	\％	\％\％	0\％	\％	\％	\％	\％\％
5373	7，129，990	－－Other	5	NT1	4%	4\％	4\％	3\％	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％\％	0\％	\％	\％	0\％	0\％	\％	0\％	\％	\％	\％	\％	0\％
5374	${ }^{71113.1 .10}$	Pars	5	NT1	${ }^{4 \%}$	$4{ }^{4 \%}$	$4{ }^{4 \%}$	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％
5375	${ }^{7,131,190}$	\cdots	5	NT	${ }^{4 \%}$	4%	4%	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	0\％	\％\％	0\％	0\％	\％\％	\％	0\％	0\％	0\％	0\％	0\％	0\％	0\％
$5{ }^{576}$	7，71，9，910	－．－Pats	5	NT	${ }^{4 \%}$	4\％	${ }^{4 \%}$	3\％	3\％	${ }^{2 \%}$	${ }^{2 \%}$	0\％	0\％	0\％	\％	0\％	0\％	0\％	\％	\％	\％	0\％	0\％	\％
5377	${ }^{7,13,9,900}$	－－Onher	5	${ }^{\text {NT1 }}$	$4{ }^{4 \%}$	$4{ }^{4 \%}$	4\％	3\％	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％	0\％	\％	\％	\％	\％	\％	0\％	\％	\％	0\％
5378	77，132，010	Pats	5	NT1	4%	4\％	${ }^{4 \%}$	3\％	3\％	2\％	2\％	\％	\％	\％	0\％	\％	\％	\％	\％	\％	\％	\％	\％	\％

香港•ASEAN FTAにかかる調査報告書

$5{ }^{5379}$	${ }^{77,132,900}$	－－oner	5	NT1	${ }^{4 \%}$	${ }^{4 \%}$	4\％	${ }^{3 \%}$	3\％	2\％	${ }^{2 \%}$	0\％	\％	0\％	0\％	0\％	\％	\％	\％	\％	\％\％	\％	\％	\％
330	7，141，100	－－Of silver，whether or not plated or clad with other precious metal	5	V1	$4{ }^{4 \%}$	${ }^{4 \%}$	$4{ }^{4 \%}$	${ }^{3 \%}$	3\％	${ }^{2 \%}$	${ }^{2 \%}$	0\％	0\％	\％	\％	\％	\％	\％	0\％	\％	\％	\％	\％	\％
5381	7，141，900		5	V1	${ }^{4 \%}$	4\％	${ }^{4 \%}$	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％	\％	\％	\％	0\％	\％	\％	\％	\％	\％	\％
5382	7，142，000	－Of base meal llad with percious meal	5	NT	4\％	${ }^{4 \%}$	4\％	3\％	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2}$	\％	\％	\％\％	\％	\％	\％	0\％	\％	\％	\％	0\％	\％	\％
5383	77，15，000	－Catalysts in the form of wire cloth or grill，of platinum	5	v1	4\％	${ }^{4 \%}$	4\％	${ }^{3 \%}$	${ }^{3} \%$	2\％	${ }^{2 \%}$	\％	\％	0\％	\％	0\％	0\％	0\％	\％	\％	0\％	0\％	0\％	0\％
5584	77，159，010	－－Ot ofodo or siver	5	NT	4%	${ }^{4 \%}$	4%	${ }^{3 \%}$	3\％	2\％	${ }^{2 \%}$	0\％	0\％	0\％	0\％	0\％	0\％	\％	\％\％	\％\％	0\％	0\％	\％\％	\％\％
5385	77，15，020	\cdots Of meal l lad wit god or osiver	5	NT1	4\％	4\％	4\％	3\％	3\％	2\％	2\％	0\％	\％	\％	0\％	0\％	\％	\％	\％	0\％	\％	0\％	\％	0\％
5386	77，15，900	－omer	5	NT1	4\％	4%	4%	3\％	3\％	${ }^{2 \%}$	${ }^{2 \%}$	0\％	0\％	\％	0\％	0\％	0\％	\％	0\％	0\％	0\％	\％	\％	\％
5587	77，16，000	－Of natual or cultued pears	5	NT1	4\％	4%	$4{ }^{4 \%}$	3\％	3\％	2\％	2\％	0\％	0\％	0\％	0\％	0\％	\％	0\％	\％\％	\％	0\％	0\％	0\％	0\％
5388	77，162，000	－Of precious or semi－precious stones（natural， synthetic or reconstructed）	5	NT1	4\％	4%	4%	3\％	3\％	2\％	${ }^{2 \%}$	0\％	\％	\％	\％	0\％	0\％	\％	\％	\％\％	0\％	\％	\％	\％
5389	7117．11．10	－－Pats	5	NT1	4\％	${ }^{4 \%}$	4\％	3\％	3\％	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	0\％	\％	\％	0\％	0\％	\％	\％	\％	0\％	\％	0\％
5390	72，77，190	－OMer	5	NT1	4%	${ }^{4 \%}$	4%	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％
5391	7，171，90	Barges	5	NT1	4\％	4%	4\％	3\％	3\％	2\％	2\％	0\％	\％	\％	\％	0\％	0\％	0\％	\％	0\％	\％	0\％	\％	0\％
5392	77，77，920	\cdots	5	NT1	4\％	4%	4%	3\％	3\％	2\％	${ }^{2 \%}$	0\％	0\％	\％	\％	\％	\％	\％	\％	0\％	\％	0\％	0\％	\％
5393	77，17，990	－－Pats	5	NT1	4\％	4\％	4\％	${ }^{3} \%$	${ }^{3} \%$	${ }^{2 \%}$	${ }^{2 \%}$	0\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％
5394	77，179，011	－Whallo f p pasisis or flass	5	NT1	4%	${ }^{4 \%}$	4\％	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％\％	\％	0\％	\％	\％	\％	0\％	\％	\％	0\％	0\％	\％	0\％
5395	7，179，012	- －Wholly of wood，worked tortoise shell，ivory， bone，horn，coral，mother of pearl and other animal carving material，worked vegetable carving material	5	NT1	4\％	4\％	4\％	3\％	3\％	2\％	2\％	0\％	\％\％	0\％	\％\％	\％\％	0\％	\％\％	0\％	\％\％	0\％	\％\％	0\％	\％\％
5396	77，17，013	Wholy fopocelaino crina	5	NT1	4\％	4\％	4\％	3\％	3\％	2\％	2\％	0\％	\％	0\％	\％	0\％	\％	\％	\％	0\％	\％	\％	\％	\％
5397	77，179，019	\cdots	5	NT1	4%	${ }^{4 \%}$	4\％	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％
5598	77，179，021	－－Wholl of plasitiss of glass	5	NT1	4\％	4\％	4%	3\％	3\％	${ }^{2 \%}$	${ }^{2 \%}$	0\％	\％	0\％	\％	\％	\％	0\％	\％\％	0\％	\％\％	\％	\％	0\％
5399	71，179，022	－－Wholly of wood，worked tortoise shell，ivory， bone，horn，coral，mother of pearl and other animal carving material，worked vegetable carving material or worked mineral carving material	5	NT1	4\％	4\％	4\％	3\％	3\％	2\％	2\％	0\％	0\％	0\％	\％	0\％	0\％	0\％	\％\％	\％	\％\％	\％	\％\％	0\％
5500	77，179，023	Wholly f poocelain or china	5	NT1	4\％	4%	4\％	3\％	3\％	2\％	${ }^{2 \%}$	0\％	0\％	0\％	0\％	0\％	\％	0\％	\％	0\％	\％	0\％	\％	0\％
5501	77，179，299	－oner	5	NT1	4\％	4%	4%	3\％	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	0\％	\％	\％
$5{ }^{502}$	${ }^{77,179,091}$	Wholy of pasitiso or flass	5	NT1	4%	${ }^{4 \%}$	4%	${ }^{3 \%}$	3\％	2%	${ }^{2 \%}$	0\％	\％	0\％	0\％	0\％	0\％	0\％	\％\％	0\％	\％\％	0\％	\％\％	0\％
$5{ }^{503}$	71，179，992	-- Wholly of wood，worked tortoise shell，ivory， bone，horn，coral，mother of pearl and other animal carving material，worked vegetable or worked mineral carving material	5	NT1	4\％	4\％	4\％	3\％	3\％	2\％	2\％	\％\％	\％	\％\％	\％\％	\％\％	0\％	\％	\％	\％	0\％	0\％	0\％	\％
5504	77，17，093	\cdots Wholy of porcelain or china	5	NT1	4\％	4%	4%	3\％	3\％	2\％	${ }^{2 \%}$	\％	\％	\％	\％	\％\％	\％	\％	\％	\％	\％	0\％	\％	\％
5505	77，17，099	－－other	5	NT1	4\％	4%	4%	3\％	${ }^{3 \%}$	2\％	${ }^{2 \%}$	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％
$5{ }^{506}$	$7{ }^{7118.10 .10}$	－Slver coin	5	NT1	4%	${ }^{4 \%}$	4\％	${ }^{3 \%}$	${ }^{3} \%$	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％	\％	\％	\％	\％	0\％	\％	\％	0\％	\％	\％
5507	77，18，090	－Oner	5	VT1	4\％	4%	4\％	3\％	3\％	2\％	2%	0\％	\％	0\％	\％	0\％	\％	0\％	\％	0\％	\％	\％	\％	\％
5508	${ }^{7,18,8,010}$	－Godo coin，whenero or rol ligal ender	5	NT1	4%	4%	4%	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％	0\％	\％	\％	\％	\％	\％	\％	0\％	\％	\％
5509	77，189，020	－Siver coin，being logal enener	5	NT1	4%	4%	4%	3\％	3\％	${ }^{2 \%}$	2\％	0\％	\％	0\％	0\％	0\％	0\％	0\％	0\％	0\％	0\％	0\％	0\％	0\％
5410	77，189，909	－－other	5	NT1	4%	4%	4%	3\％	3\％	${ }^{2 \%}$	2\％	\％	0\％	\％	\％	\％	\％	0\％	\％\％	\％	\％	\％	\％\％	\％
5411	$7{ }^{2,011,000}$	－Non－alloy pig iron containing by weight 0.5% or less of phosphorus	5	NT1	4\％	4%	4\％	3\％	3\％	${ }^{2 \%}$	${ }^{2 \%}$	0\％	0\％	\％	0\％	0\％	\％	\％	\％	0\％	\％	\％	\％	0\％
$5{ }^{542}$	012，000	0.5% of phosphorus	5	NT1	${ }^{4 \%}$	${ }^{4 \%}$	${ }^{4 \%}$	3\％	${ }^{\text {3\％}}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％	0\％	\％	\％	${ }^{0}$	\％	\％	${ }^{0 \%}$	${ }_{0}$	\％	${ }^{\circ}$
5413	72，015，000	－Aloy pipionins spiegesiesen	5	NT1	4\％	4%	4\％	${ }^{3 \%}$	${ }^{3} \%$	${ }^{2 \%}$	${ }^{2 \%}$	0\％	\％	\％	0\％	0\％	\％	\％	\％	\％\％	\％	0\％	\％	0\％
5414	$7{ }^{2,021,100}$	－Conlaining by weght more than ${ }^{2 \%}$ of camon	5	NT1	4\％	4%	4%	3\％	${ }^{3} \%$	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％	\％	0\％	\％	\％	\％	0\％	\％	\％	\％	\％
5415	72，02，，000	－omer	5	NT1	4\％	4%	4\％	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％	\％	\％	\％	\％	\％	\％\％	\％	\％	\％	\％
5416	72，02，100	Connaining by weigh moret than 55% or silicon	5	NT1	4\％	4\％	4\％	3\％	3\％	${ }^{2 \%}$	${ }^{2 \%}$	0\％	0\％	0\％	0\％	0\％	\％	0\％	\％	0\％	\％	0\％	\％	0\％
5417	$7{ }^{72,022,900}$	－other	5	NT1	4%	4%	4%	3\％	${ }_{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	0\％	\％	\％	\％	\％	0\％	\％	\％	\％\％	0\％	\％	\％
5418	72，02， 000	－Feros Silio－manganse	5	NT1	4\％	4%	4%	3\％	3\％	2\％	${ }^{2 \%}$	\％	\％	0\％	\％	\％	\％	0\％	\％	\％	\％	\％	\％	\％
5419	72，04， 100	－Containing by weigh more tha	5	NT1	4%	4\％	${ }^{4 \%}$	${ }^{3 \%}$	3\％	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	0\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％
5520	72，04，900	Other	5	NT1	4\％	${ }^{4 \%}$	4\％	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	0\％	0\％	\％	\％	0\％	\％	\％	\％	\％	\％	\％
$5{ }^{521}$	72，02，000	Feros silio chromium	5	NT1	4\％	4%	4%	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％
$5{ }^{522}$	72，02，000	－Feronoickel	5	NT1	4\％	4%	4%	3\％	3\％	2\％	2%	0\％	\％	0\％	\％	0\％	\％	0\％	\％	0\％	\％	\％	\％	\％
554	72，02，700	－Feromomovenum	5	NT	4%	4%	4%	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％	0\％	\％	\％	\％	\％	\％	\％	0\％	\％	\％
5524	72，08，000		5	NT1	4\％	4%	$4{ }^{4 \%}$	3\％	3\％	${ }^{2 \%}$	${ }^{2 \%}$	0\％	0\％	0\％	0\％	0\％	\％	0\％	\％\％	0\％	\％\％	\％	\％\％	0\％
$5{ }^{525}$	72，02，100		5	NT1	4%	${ }^{4 \%}$	4\％	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％	0\％	\％	\％	\％	\％	\％	\％	0\％	\％	0\％
5	72，02，200	－Ferovovadium	5	NT1	4%	${ }^{4 \%}$	4%	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	0\％	\％	0\％
$5{ }^{527}$	72，02，900	－－Feroronobium	5	NT1	4\％	4%	4\％	3\％	3\％	2\％	2\％	\％	0\％	0\％	\％	\％	\％	0\％	\％	\％	\％	0\％	\％	0\％
$5{ }^{5228}$	72，02，900	－－omer	5	NT1	4\％	4%	4%	3\％	3\％	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	0\％	0\％	\％	\％	0\％	\％	\％	\％	0\％	\％	0\％
5542	72，03，000	－Ferrous products obtained by direct reduction of iron ore	${ }^{5}$	NT1	4\％	${ }^{4 \%}$	4\％	3\％	${ }^{\text {3\％}}$	2%	${ }^{2 \%}$	0\％	0\％	\％	0\％	0\％	${ }^{0 \%}$	\％	0\％	\％\％	\％	\％	${ }^{0 \%}$	0\％
5530	72，03，000	－omer	5	NT1	4%	${ }^{4 \%}$	4\％	${ }^{3 \%}$	3\％	2%	${ }^{2 \%}$	0\％	0\％	\％\％	0\％	0\％	0\％	\％\％	\％\％	0\％	0\％	0\％	\％\％	\％\％
5531	72，04， 000	Waste and scrap of castion	5	NT1	4%	4%	4\％	${ }^{3 \%}$	${ }^{3 \%}$	2\％	2\％	\％	0\％	\％\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％
5532	72，02，100	－Of stiness sieel	5	NT1	4\％	4%	4%	3\％	3\％	${ }^{2 \%}$	2\％	0\％	\％	0\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％
$5{ }^{533}$	$7{ }^{72,02,2,90}$	－Oner	5	NT1	4%	4%	4%	${ }^{3 \%}$	3\％	${ }^{2 \%}$	2\％	\％	\％	\％	0\％	\％	\％	\％	\％	\％	\％	0\％	\％	\％
$5{ }^{534}$	72，03，000	－Wasie and scrapo of timed ion or steal	5	NT1	4%	4%	4\％	3\％	3\％	${ }^{2 \%}$	2\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	0\％	\％	\％
$5{ }^{535}$	100	－－Turnings，shavings，chips，milling waste，sawdust， filings，trimmings and stampings，whether or not in bund filings，trim bundes	5	NT1	4\％	4\％	4\％	3\％	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	0\％	\％	\％\％
$5{ }^{5366}$	${ }^{72,04,9,900}$	－－other		NT1	4\％	4\％	$4{ }^{4 \%}$	3\％	3\％	${ }^{2 \%}$	2\％	\％\％	0\％	0\％	\％\％	\％	\％\％	0\％	\％\％	\％\％	\％\％	\％	\％\％	\％\％
$5{ }^{537}$	72，04，000	－Remedings scapi igools		${ }^{\text {NT1 }}$	4%	${ }^{4 \%}$	4%	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	0\％	\％	\％
$5{ }^{5388}$	${ }^{72,051,000}$	－Garaues		NT1	4\％	4%	4%	3\％	3\％	${ }^{2 \%}$	2%	\％	\％	0\％	\％	\％	\％	0\％	\％	0\％	\％	\％	\％	\％
$5{ }^{539}$	${ }^{72,052,100}$	－oraloy steal	5	NT1	4\％	4%	4%	3\％	3\％	${ }^{2 \%}$	${ }^{2 \%}$	\％	0\％	0\％	0\％	\％	\％	0\％	\％	0\％	\％	\％	\％	\％
5440	$7{ }^{72,052,900}$	－－oner		NT1	4%	4%	4%	3\％	3\％	2\％	2\％	\％	0\％	0\％	0\％	\％	\％	\％	\％	\％	\％	\％	\％	\％
$5{ }^{541}$	${ }^{20206.0 .10}$		5	NT1	4%	4%	4\％	3\％	3\％	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％
54	${ }^{72,061,090}$	－Other	${ }^{5}$	NT1	4%	${ }^{4 \%}$	4%	3\％	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	0\％	\％	\％	\％	0\％	\％	\％	\％	\％	\％	\％
54	20，69，000	－orner	5	${ }^{\text {NT1 }}$	4%	${ }^{4 \%}$	$4{ }^{4 \%}$	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	0\％	\％	\％	\％	\％	\％\％	\％	\％	\％\％	\％	\％	\％
5444	2，071，100		5	NT1	4\％	${ }^{4 \%}$	4\％	3\％	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％	\％	\％	\％	0\％	\％	0\％	\％	\％	\％	\％
5445	207． 12.10	－Slas	5	NT1	4\％	4\％	4\％	3\％	3\％	2\％	2%	0\％	\％	0\％	\％	0\％	\％	0\％	\％	0\％	\％	\％	\％	\％
5446	$7^{72,071,230}$	－Oner	5	NT1	4%	4%	4%	3\％	3\％	${ }^{2 \%}$	2\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	0\％	\％	0\％
5447	${ }^{72,071,000}$	－Oner	${ }^{5}$	NT1	4\％	4%	$4{ }^{4 \%}$	3\％	3\％	2\％	2\％	0\％	0\％	\％	0\％	0\％	\％\％	0\％	\％	0\％	0\％	\％	\％	0\％
548	${ }^{72,072,010}$	－Stabs	5	NT1	4%	4%	4%	3\％	3\％	2\％	2\％	0\％	0\％	0\％	\％\％	\％\％	\％\％	0\％	\％\％	0\％	\％\％	\％	\％\％	0\％
$5{ }^{549}$	${ }^{72,072,021}$		5	NT1	4%	4%	${ }^{4 \%}$	3\％	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	0\％	\％	0\％	\％\％	0\％	0\％	\％	\％\％	0\％	\％\％	\％\％	\％\％	0\％
$5{ }^{5550}$	${ }^{72,072.029}$	Onter	5	${ }^{\text {NT1 }}$	4\％	$4{ }^{4 \%}$	4%	3\％	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％\％	\％	0\％	0\％	\％	\％	0\％	\％	\％	\％	0\％	\％	0\％
5545	${ }^{72,072,091}$	Slabs	5	NT1	4%	4%	4%	3\％	3\％	${ }^{2 \%}$	2\％	0\％	0\％	0\％	\％	0\％	0\％	0\％	0\％	\％	\％	\％	\％\％	\％
${ }^{5452}$	2，072，092	Biocks soughy staped by Ioging sfeee bars	${ }^{5}$	NT1	4\％	4\％	4%	${ }^{3 \%}$	3\％	${ }^{2 \%}$	${ }^{2 \%}$	0\％	0\％	0\％	0\％	0\％	\％	\％\％	\％	0\％	\％	\％	\％\％	0\％
$5{ }^{5453}$	$7^{72,072.099}$	Oner	5	NT1	4\％	${ }^{4 \%}$	4\％	3\％	3\％	${ }^{2 \%}$	${ }^{2 \%}$	0\％	\％	0\％	0\％	0\％	\％	0\％	\％	0\％	\％	0\％	0\％	\％
${ }^{545}$	22，81，000	－In coils，not further worked than hot－rolled，with patterns in relief	${ }^{5}$	T1	4\％	${ }^{4 \%}$	4\％	3\％	3\％	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％	0\％	\％	${ }^{0 \%}$	\％	\％	\％	\％	${ }^{0 \%}$	\％	${ }^{0 \%}$
5545	${ }^{72,082,500}$	－－Of thickeses of 4.75 mmor more		NT1	4%	4%	4%	3\％	3\％	2\％	2\％	0\％	\％\％	0\％	0\％	0\％	0\％	0\％	0\％	0\％	0\％	0\％	\％\％	0\％
5546	2，082，600	－－Of thickress of 3 m m or more but less than 4.75	5	NT1	${ }^{4 \%}$	${ }^{4 \%}$	$4{ }^{4}$	${ }^{3 \%}$	3\％	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	${ }^{0 \%}$	\％	\％
$5{ }^{5657}$	${ }^{72,0827710}$	－Of a tickeress of less than 2 mm		NT1	${ }^{4 \%}$	4\％	4\％	${ }^{3} \%$	3\％	${ }^{2 \%}$	${ }^{2 \%}$	0\％	\％	0\％	0\％	\％	0\％	0\％	\％	\％	0\％	0\％	\％	\％

55	$]^{\text {2，112，910 }}$	Corruated	5	NT1	4%	4%	4%	3\％	3\％	${ }^{2 \%}$	${ }^{2 \%}$	\％	0\％	\％\％	\％	0\％	\％	0\％	0\％	\％	\％	\％	0\％	\％
5539	72，12，920	${ }_{m m}^{\text {m Hop and stip，Of } \mathrm{f} \text { width notexceeding } 400}$	5	NT1	4\％	${ }^{4 \%}$	${ }^{4 \%}$	${ }^{3 \%}$	3\％	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	0\％	\％	\％	0\％	0\％	0\％	\％	0\％	0\％	\％	\％
5540	$7^{72,12,930}$		5	NT1	${ }^{4 \%}$	$4{ }^{4 \%}$	4\％	3\％	3\％	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	0\％	\％	\％\％	0\％	0\％	\％	\％	\％\％	\％	\％	0\％
5541	${ }^{72,12,990}$	－OMer	5	NT1	4%	4\％	4\％	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％	\％	\％	\％	0\％	\％	\％	\％	\％	\％	\％
$5{ }^{542}$	${ }^{72,19,010}$	－Hoop and stip，of a widt notexecesing 400 mm	5	NT1	4%	$4{ }^{4 \%}$	4\％	${ }^{3 \%}$	\％	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％	\％	0\％	\％	\％	\％	\％	\％	\％	\％	0\％
${ }^{5643}$	2，19，020	- Corruated，contaiaining by weight less than 0.6% of carbon	5	NT	${ }^{4 \%}$	4%	${ }^{4 \%}$	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	0\％	\％	0\％	\％	\％	0\％	0\％	0\％	\％	\％	\％	0\％
554	$7{ }^{72,119,030}$	－－Other，of at tiocresess 0 0． 17 mmor oress	5	NT1	4%	4%	${ }^{4 \%}$	3\％	3\％	${ }^{2 \%}$	${ }^{2 \%}$	\％	0\％	0\％	0\％	\％	\％	0\％	\％	\％	\％	\％	0\％	0\％
5545	$7^{72,19,9090}$	－oner	5	${ }^{\text {NT1 }}$	4%	4\％	4\％	${ }^{3 \%}$	${ }^{3} \%$	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％	\％\％	\％	\％	\％	\％	\％	\％	\％	\％	\％
5546	${ }^{7212120.10}$	Hoop and stip，of wididh hotexceeding 400 mm	5	${ }^{\text {NT1 }}$	4%	4\％	4\％	3\％	3\％	2\％	2%	\％	\％	\％	\％	\％	0\％	\％	\％	0\％	\％	\％	0\％	\％
${ }^{5547}$	${ }^{7,2121,091}$	Ss than 0.6 \％of cal	5	NT1	${ }^{4 \%}$	${ }^{4 \%}$	${ }^{4 \%}$	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％	\％	\％	0\％	\％	0\％	\％	\％	0\％	\％	\％
5548	72，121，099	－．omer	5	${ }^{\text {NT1 }}$	${ }^{4 \%}$	4\％	${ }_{4}{ }^{4}$	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	0\％	0\％	0\％	0\％	0\％	0\％	\％	0\％	\％\％	\％\％	\％	\％
5549	${ }^{7,122,010}$	－Hoop and strip，ot a widt notexecesing 400 mm	5	${ }^{\text {NT1 }}$	$4{ }^{4 \%}$	4\％	${ }_{4}^{4 \%}$	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	0\％	\％\％	\％	\％	\％\％	\％\％	\％\％	\％	\％	\％	\％	\％	\％\％
555	${ }^{\text {22，12，2，20 }}$	$\begin{aligned} & \text { - Other, containing by weight less than } 0.6 \% \text { of } \\ & \text { carbon and of a thickness of } 1.5 \mathrm{~mm} \text { or less } \end{aligned}$	5	${ }^{\text {T1 }}$	${ }^{4 \%}$	4\％	${ }^{4 \%}$	${ }^{3 \%}$	${ }^{3}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％	\％	\％	0\％	\％	\％	\％	\％	0\％	\％	0\％
5551		－－omer	5	${ }^{\text {NT1 }}$	4%	${ }^{4 \%}$	4\％	3\％	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％\％	\％	0\％	0\％	0\％	0\％	\％	\％	0\％	\％	0\％	\％	0\％
${ }^{5552}$	${ }^{72,12,3,010}$	－Hoop and stri，ot w widh note exeeding 400 mm	5	NT1	4%	${ }^{4 \%}$	${ }^{4 \%}$	3\％	3\％	${ }^{2 \%}$	${ }^{2 \%}$	0\％	0\％	\％	0\％	\％	\％\％	\％	\％	\％	\％	\％	\％	\％
5553	${ }^{72,12,0,20}$	－Other，containing by weight less than 0.6% of carbon and of a thickness of 1.5 mm or less	${ }^{5}$	NT1	${ }^{4 \%}$	${ }^{4 \%}$	${ }^{4 \%}$	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	0\％	\％	\％	${ }^{\text {\％}}$	\％	0\％	\％	${ }^{\text {\％}}$	0\％	\％	${ }^{0 \%}$	\％	\％
554	${ }^{72,12,0,91}$	-- Coated with zinc by the iron－zinc alloyed coating method，containing by weight less than 0.04% of carbon	${ }^{5}$	v1	4\％	4\％	4\％	3\％	${ }^{3 \%}$	${ }^{2 \%}$	2\％	\％	\％	\％	0\％	\％\％	\％	0\％	\％	0\％	0\％	\％	\％	\％
5555	$7{ }^{72,123,099}$	－．．otrer	5	VT1	4%	4%	4\％	3\％	3\％	${ }^{2 \%}$	${ }^{2 \%}$	0\％	0\％	\％	\％	0\％	\％	0\％	\％	0\％	\％	\％	\％	\％
5556	${ }^{72,124,010}$	－Hoop and strip，of a width notexeeoting 400 mm	5	V1	$4{ }^{4 \%}$	4%	4\％	3\％	3\％	${ }^{2 \%}$	${ }^{2 \%}$	0\％	\％	\％	\％	0\％	0\％	\％	\％	\％	\％	\％	\％	\％
555	${ }^{72,124,020}$	－Other，containing by weight less than 0.6% of carbon and of a thickness of 1.5 mm or less	${ }^{5}$	V1	${ }^{4 \%}$	4\％	${ }^{4 \%}$	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	2\％	${ }^{\text {\％}}$	\％	0\％	0\％	\％	0\％	0\％	\％	\％	\％	\％	\％	0\％
5558	$7^{7,12,4,090}$	－－omer	5	N1	${ }^{4 \%}$	4\％	4\％	3\％	${ }^{3} \%$	${ }^{2 \%}$	2%	0\％	\％	0\％	0\％	0\％	0\％	0\％	\％	0\％	0\％	\％	\％	0\％
5559	72，12，011	${ }_{\mathrm{mm}}^{.} \mathrm{Hop}$ and stip，of a width notexecesing 400	5	NT1	4\％	${ }^{4 \%}$	4\％	${ }^{\text {3\％}}$	3\％	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％
5560	72，12，012	Coiner containing by weght less han 0.6% of	5	V1	${ }^{4 \%}$	${ }^{4 \%}$	4\％	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	0\％	\％	\％	\％	\％	0\％	0\％	\％	\％\％	\％	0\％	\％	0\％
5561	${ }^{72,125,019}$	－．－Onter	${ }^{5}$	V1	${ }^{4 \%}$	${ }^{4 \%}$	${ }^{4 \%}$	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	0\％	0\％	\％	\％	0\％	\％	\％	\％	\％	\％	0\％	\％
5562	72，12，021	${ }_{m m}^{\text {m }}$ Hop and Stip，of a width note exeesing 400	5	NT1	4\％	4\％	4\％	3\％	3\％	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％	0\％	\％	0\％	\％	\％	\％	\％	\％	0\％	\％
5563	72，12，022	-- Other，containing by weight less than 0.6% of carbon and of a thickness of 1.5 mm or less	5	NT1	${ }^{4 \%}$	${ }^{4 \%}$	${ }^{4 \%}$	3\％	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	0\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	0\％
5564	${ }^{72,125,029}$	－．－Onter	5	N1	${ }^{46}$	${ }^{46 \%}$	${ }^{4 \%}$	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％\％	\％	\％	0\％	\％\％	\％\％	\％	\％	\％	\％ 0	\％\％	\％	0\％
565	${ }^{\text {72，12，}, \text { ，91 }}$	$\cdots \mathrm{mmop} \mathrm{andstip}$,	5	NT1	4\％	4\％	4\％	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％	0\％	\％	\％	0\％	0\％	\％	\％	\％	\％	\％
5566	72，12，092	$\begin{aligned} & --- \text { Other, containing by weight less than } 0.6 \% \text { of } \\ & \text { carbon and of a thickness of } 1.5 \mathrm{~mm} \text { or less } \end{aligned}$	5	V1	4\％	4\％	4\％	${ }^{3 \%}$	3\％	${ }^{2 \%}$	2\％	0\％	\％	\％	0\％	0\％	0\％	0\％	\％	\％	\％	0\％	0\％	\％
5567	$7^{72,12,0,99}$	…oner	5	${ }^{\text {NT1 }}$	4\％	4\％	4\％	3\％	3\％	2\％	${ }^{2 \%}$	\％	0\％	0\％	0\％	0\％	\％	\％	\％	\％	\％	\％	0\％	\％
5558	${ }^{7,126,010}$	${ }^{--H o p o p ~ a n d ~ s t i p, ~ O f ~ a ~ w i d t h ~ n o t e x e c e e d i n g ~} 400 \mathrm{~mm}$	5	${ }^{\text {NT1 }}$	4\％	4\％	4\％	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	0\％	\％\％	0\％	0\％	0\％	0\％	\％	\％	0\％	\％	0\％
5569	${ }^{72,12,0,20}$	－－Other，containing by weight less than 0.6% of carbon and of a thickness of 1.5 mm or less	${ }^{5}$	N1	4\％	4\％	4\％	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	0\％	\％	0\％	0\％	\％	0\％	0\％	0\％	\％	0\％	\％	\％	\％
5550	$7^{72,12,0,90}$	－－omer	5	NT1	4%	$4{ }^{4 \%}$	4%	3\％	3\％	${ }^{2 \%}$	${ }^{2 \%}$	0\％	0\％	0\％	0\％	0\％	0\％	0\％	0\％	\％\％	0\％	0\％	\％	0\％
5571	${ }^{72,13,000}$	－Containing indentations，ribs，groveves or other deformations produced during the rolling process	5	HSL	5\％	5\％	5\％	5\％	5\％	${ }^{5 \%}$	${ }^{5 \%}$	5\％	5\％	5\％	5\％	5\％	5\％	5\％	5\％	5\％	5\％	5\％	5\％	5\％
5572	$7{ }^{72,132,000}$	－other，of free cuting seel	5	NT1	4\％	4%	4\％	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	0\％	\％\％	0\％	\％\％	\％	\％	0\％	0\％	\％\％	0\％	\％\％	\％	\％
$5{ }^{5773}$	${ }^{72,139,110}$		5	${ }^{\text {NT1 }}$	4%	4\％	4%	${ }^{3 \%}$	3\％	${ }^{2 \%}$	${ }^{2 \%}$	0\％	0\％	0\％	0\％	\％\％	\％	0\％	0\％	\％	\％	\％	\％	\％
5574	$7{ }^{7,13,120}$	－－Of a kind used for concrete reinforcement （rebars）	${ }^{5}$	NT	4\％	${ }^{4 \%}$	4\％	3\％	${ }^{3 \%}$	${ }^{2 \%}$	2\％	\％	\％	\％	0\％	\％	\％\％	0\％	\％	\％	\％	${ }^{\text {\％}}$	\％	\％
5575	${ }^{72,139,190}$	\cdots	5	NT1	4\％	4\％	4\％	${ }^{3 \%}$	3\％	${ }^{2 \%}$	${ }^{2 \%}$	0\％	\％\％	0\％	0\％	\％\％	0\％	0\％	0\％	\％	\％\％	0\％	\％	\％\％
5576	${ }^{72,13,9,90}$		5	NT1	4\％	4\％	4%	${ }^{3 \%}$	3\％	${ }^{2 \%}$	${ }^{2 \%}$	\％\％	\％	0\％	\％\％	0\％	\％	\％	0\％	0\％	0\％	\％	\％	\％\％
5577	$7{ }^{7,13,9,920}$	－－Of a kind used for concrete reinforcement （rebars）	${ }^{5}$	NT1	${ }^{4 \%}$	${ }^{4 \%}$	4\％	3\％	3\％	${ }^{2 \%}$	${ }^{2 \%}$	\％	0\％	\％	0\％	0\％	\％	0\％	\％	0\％	0\％	\％	0\％	0\％
5578	$7^{7,139,990}$	－．．oner	5	NT1	4\％	4%	4%	3\％	3\％	${ }^{2 \%}$	${ }^{2 \%}$	0\％	\％\％	0\％	0\％	\％	0\％	0\％	0\％	0\％	0\％	\％	0\％	\％
5579	${ }^{7214.0 .111}$		5	NT1	4%	4\％	4%	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	0\％	0\％	\％\％	\％\％	\％	0\％	0\％	\％	0\％	0\％	\％	0\％	\％\％
5550	${ }^{7214.40 .19}$	－OMer	5	${ }^{\text {NT1 }}$	4%	4\％	4\％	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％	\％	\％	0\％	\％	\％	0\％	\％	\％	0\％	\％
5581	${ }^{7214.10 .21}$	…oticuluar cosss section	5	${ }^{\text {NT1 }}$	${ }_{4}{ }^{\text {\％}}$	4\％	4\％	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	0\％	\％\％	0\％	0\％	\％	0\％	0\％	\％	\％	\％	0\％
5552	${ }^{7214,1029}$	…oter	5	NT1	4%	4%	4%	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％	\％	\％	\％	\％	\％	0\％	\％	\％	0\％	\％
5583	${ }^{72,142,031}$		5	${ }^{\text {NT1 }}$	4\％	4\％	4\％	${ }^{3 \%}$	3\％	${ }^{2 \%}$	${ }^{2 \%}$	\％\％	0\％	\％	0\％	0\％	\％	0\％	\％	\％	\％	\％	0\％	\％
5584	72，142，039	－other	5	NT1	$4{ }^{4 \%}$	4\％	4\％	${ }^{3 \%}$	${ }^{3 \%}$	2\％	2\％	\％\％	\％	\％	0\％	\％	0\％	0\％	\％	0\％	0\％	\％	\％\％	0\％
5585	${ }^{72,14,041}$	Of a kind used for concrete reinforcement	5	NT1	4%	${ }^{4 \%}$	4\％	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	0\％	\％\％	\％\％	0\％	0\％	\％	\％	\％	0\％	\％	\％
5566	72，142049	－Onher	5	N1	4%	4\％	4\％	3\％	3\％	2\％	2\％	0\％	\％	\％	0\％	\％	\％\％	0\％	0\％	0\％	\％	\％\％	\％	\％
5587	${ }^{72,142,051}$	$\underset{\text {（rebars）}}{\cdots \text { Of } a \text { kind used for concretet reiniforcement }}$	5	NT1	$4{ }^{4 \%}$	4\％	4\％	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	2\％	0\％	0\％	\％	0\％	0\％	0\％	\％	0\％	\％	0\％	\％	0\％	\％
5588	${ }^{72,142,059}$	－－Oner	5	${ }^{\text {NT1 }}$	${ }^{4 \%}$	4\％	${ }^{46}$	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％	\％	0\％	\％	\％	\％	\％	${ }^{0 \%}$	0\％	\％	\％
5589	${ }^{72,142,061}$	$\begin{array}{l}--- \text { Of a kind used for concrete reinforcement } \\ \text {（rebars）}\end{array}$	5	${ }^{\text {NT1 }}$	${ }^{4 \%}$	${ }^{4 \%}$	4\％	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	0\％	\％	0\％	\％	\％	\％	\％	0\％	\％	\％	\％	\％	\％
5559	$7^{72,14,069}$	Oher	5	NT1	4%	4\％	4\％	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	0\％	\％	\％	\％\％	0\％	\％	\％	\％	\％	\％	\％	\％	\％
5597	${ }^{72,143,000}$	－other，of tee cuturing seel	5	${ }^{\text {Hst }}$	5\％	5\％	5\％	5\％	${ }^{5 \%}$	${ }_{5 \%}$	5\％	5\％	5\％	5\％	5\％	5\％	5\％	5\％	5\％	${ }^{5 \%}$	5\％	5\％	5\％	5\％
5592	${ }^{72,149,10}$	Conalining by weght less tan 0.6% o of cation	5	${ }^{\text {NT1 }}$	4%	4\％	4\％	3\％	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	0\％	\％	\％\％	0\％	\％\％	\％	0\％	0\％	0\％	\％\％	0\％	\％\％	\％\％
5593	$7{ }^{7,149,120}$	Jing by weght 0．\％\％or more of cation	5	VT	4%	4\％	4\％	3\％	3\％	${ }^{2 \%}$	${ }^{2 \%}$	\％	0\％	\％	0\％	\％	\％	0\％	\％	\％	\％	\％	\％	\％
559	${ }^{72,149,910}$	Containing by weight 0.6% or more of carbon， other than of circular cross－section	5	N1	${ }^{4 \%}$	${ }^{4 \%}$	4\％	3\％	${ }^{3 \%}$	${ }^{2 \%}$	2\％	\％	\％	\％	0\％	\％	\％	0\％	\％	\％	\％	\％	\％	\％
5595	$7^{72,149,990}$	－．－oner	5	NT1	4%	4\％	4%	${ }^{3 \%}$	3\％	${ }^{2 \%}$	${ }^{2 \%}$	0\％	0\％	0\％	0\％	0\％	0\％	0\％	0\％	0\％	\％\％	0\％	0\％	0\％
5596	72，15，000	－Of free－cutiting steel，not turther worked than cold－ formed or cold－finished	${ }^{5}$	${ }^{\text {NT1 }}$	4\％	4\％	4\％	3\％	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	0\％	\％	0\％	\％	\％	0\％	\％	0\％	0\％	\％	\％	\％	\％
559	72，15，010		${ }^{5}$	V1	4\％	4\％	4\％	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	0\％	\％	\％	\％\％	0\％	\％	\％	\％	\％	\％	\％	\％	\％
5598	$7{ }^{7,15,0,91}$	（reoars）	${ }^{5}$	V1	4\％	4\％	4\％	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	0\％	\％	0\％	\％\％	\％	\％	0\％	\％	\％	\％	\％	\％	\％
5559	$7^{72,15,0,099}$	－－Oner	5	NT1	4%	4\％	4%	3\％	3\％	${ }^{2 \%}$	${ }^{2 \%}$	0\％	0\％	0\％	0\％	0\％	0\％	0\％	0\％	0\％	0\％	\％\％	0\％	0\％
5500	72，15，010	$\begin{array}{\|l\|} \hline- \text { Of a kind used for concretet reinforcement } \\ \hline \text { (rebars) } \\ \hline \end{array}$	${ }^{5}$	NT1	4\％	4\％	4\％	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％	\％	\％	\％	0\％	0\％	\％	\％	\％	\％	\％
5501	${ }^{72,159,900}$	－－Oner	5	${ }^{\text {NT1 }}$	4\％	4%	$4{ }^{4 \%}$	${ }^{3 \%}$	3\％	${ }^{2 \%}$	${ }^{2 \%}$	0\％	\％	0\％	0\％	\％\％	0\％	\％	0\％	\％	\％	0\％	0\％	\％\％
502	72，61，000	U，I or H sections，not further worked than hot－ rolled，hot－drawn or extruded，of a height of less than 80 mm	${ }_{5}$	${ }^{\text {NT1 }}$	4\％	4\％	4\％	${ }^{3 \%}$	${ }^{3 \%}$	2\％	2\％	\％	\％	\％	\％	\％	0\％	0\％	\％	\％	\％	\％	\％	0\％
5503	${ }^{\text {2，} 162,100}$	－Lseetions	5	NT1	4\％	4%	4\％	3\％	3\％	2\％	${ }^{2 \%}$	0\％	0\％	0\％	0\％	0\％	0\％	0\％	\％	0\％	0\％	0\％	0\％	0\％
5504	${ }^{72,162,200}$	－Tseciolos	5	NT1	4%	4%	$4{ }^{4 \%}$	3\％	3\％	2\％	2\％	0\％	0\％	0\％	0\％	0\％	\％	0\％	\％	\％	0\％	\％\％	0\％	0\％
5505	$7{ }^{72,16,100}$	－Usesioions	5	NT1	4\％	4%	4\％	3\％	${ }^{3 \%}$	2\％	${ }^{2 \%}$	\％	\％	\％	\％	\％	0\％	0\％	\％	\％	0\％	\％	0\％	\％\％
5506	${ }^{72,16,200}$	－－seecions	5	${ }^{\text {NT1 }}$	4%	4\％	$4{ }^{4 \%}$	${ }^{3 \%}$	${ }^{3 \%}$	2\％	${ }^{2 \%}$	\％	\％	0\％	\％	\％	\％	0\％	\％	\％	\％	\％	\％	\％
5507	${ }^{72,16,3,300}$	－－Hsecions	5	NT1	4%	4%	4%	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％	\％\％	\％	0\％	0\％	0\％	\％	\％\％	0\％	\％	\％\％
5508	72，16，000		5	${ }^{\text {NT1 }}$	4\％	4\％	4\％	3\％	${ }^{3 \%}$	2%	2\％	\％	0\％	\％	\％\％	0\％	\％	0\％	0\％	\％	\％	\％	\％	\％
5509	${ }^{\text {2，} 2165,010}$	－Of a height of less than 80 mm	5	${ }^{\text {NT1 }}$	4\％	4\％	${ }^{4 \%}$	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	0\％	\％\％	0\％	0\％	0\％	\％	0\％	0\％	0\％	\％\％	\％	\％	\％
55610	${ }^{72,165,090}$	－－omer	5	NT	4%	4%	4%	3\％	3\％	${ }^{2 \%}$	${ }^{2 \%}$	0\％	\％	0\％	0\％	0\％	0\％	\％\％	0\％	\％	0\％	\％	0\％	\％
5611	$7{ }^{72,16,100}$		5	${ }^{\text {NT1 }}$	${ }_{4}{ }^{4}$	4%	4\％	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％	\％\％	\％	0\％	\％	\％	0\％	0\％	\％	\％	\％
5512	${ }^{72,166,900}$	－－omer	5	${ }^{\text {NT1 }}$	4%	4\％	4\％	3\％	3\％	${ }^{2 \%}$	${ }^{2 \%}$	\％\％	\％	0\％	0\％	\％\％	0\％	\％\％	0\％	\％	\％\％	\％	\％	\％
5613	2，69，100	- Cold－Formed or cold－finished from flat－－olled	${ }^{5}$	${ }^{\text {NT1 }}$	4%	$4{ }^{4 \%}$	4\％	${ }^{3 \%}$	3\％	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％
5514	${ }^{72,169,900}$	－．omer	5	NT1	4\％	4\％	4%	${ }^{3 \%}$	3\％	2\％	2%	\％\％	0\％	0\％	0\％	0\％	\％\％	0\％	0\％	0\％	\％\％	\％\％	0\％	\％\％
5615	$7{ }^{2127.10 .10}$	Onaining by wight tess tran 0.25% of catoon	${ }^{10}$	st	10\％	10\％	10\％	10\％	10\％	0\％	10\％	10\％	${ }^{8 \%}$	${ }^{7} \%$	6\％	5\％	4\％	${ }^{3 \%}$	${ }^{2 \%}$	1\％	\％	\％	\％	\％

香港•ASEAN FTAにかかる調査報告書

（ラオス）

$5{ }^{5616}$	1227．1022	Bead wire；reed wire；prestressed concrete steel wire；free－cutting steel wire		sL	${ }^{10 \%}$	10\％	${ }^{10 \%}$	${ }^{10 \%}$	${ }^{10 \%}$	${ }^{10 \%}$	10\％	10\％	${ }^{8 \%}$	${ }^{7 \%}$		${ }^{5 \%}$	${ }^{4 \%}$	${ }^{\text {3\％}}$	${ }^{2 \%}$		\％			
5617	217．1029	－other	10	sL	0\％	10\％	10\％	10\％	10\％	10\％	10\％	\％\％	${ }_{8} 8$	${ }^{7} \%$	6\％	5\％	4%	${ }^{3} \%$	${ }^{2 \%}$	\％	\％	0\％	\％	\％
5618	217．7．0．31	Spokes wire；bead wire；reed wire；prestressed concrete steel wire；free－cutting steel wire	10	N2	9\％	${ }^{\text {9\％}}$	${ }^{8 \%}$	${ }^{8 \%}$	${ }^{6 \%}$	6\％	${ }^{5 \%}$	${ }^{5 \%}$	${ }^{4 \%}$	${ }^{4 \%}$	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％	\％	\％	0\％
6619	72，771，039	－．Oher	10	NT2	${ }^{9 \%}$	9\％	8\％	8\％	6\％	6\％	${ }^{5 \%}$	${ }^{5 \%}$	${ }^{4 \%}$	${ }^{4 \%}$	3\％	3\％	2\％	${ }^{2 \%}$	0\％	\％	\％	\％	\％	0\％
5620	72，172．010	－Conataing by weight less than 0．25\％cation	10	N2	9\％	9\％	8%	8%	6\％	6\％	5\％	${ }^{5 \%}$	4\％	4\％	${ }^{3} \%$	3\％	2%	${ }^{2 \%}$	\％	\％	0\％	\％	0\％	\％
5621	$7{ }^{72,172,020}$	－Containing by weight 0.25% or more but less than	10	NT2	${ }^{9 \%}$	\％	${ }^{8 \%}$	${ }^{8 \%}$	\％	${ }^{6 \%}$	${ }^{5 \%}$	${ }^{5 \%}$	${ }^{4 \%}$	${ }^{4 \%}$	${ }^{3 \%}$	3\％	${ }^{2 \%}$	${ }^{2 \%}$	0\％	0\％	\％	\％	\％	\％
5622	${ }^{72,172,091}$	- Steel coro wire of a kind dsed for steel reintored aluminium oonductors（ACSR）	10	N2	${ }^{9 \%}$	9\％	${ }^{8 \%}$	${ }^{8 \%}$	\％	\％	${ }^{5 \%}$	${ }^{5 \%}$	${ }^{4 \%}$	${ }^{4 \%}$	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	0\％	0\％	\％	\％	\％	\％
5623	72，172，099	－－Other	10	NT2	9\％	9\％	8%	${ }^{8 \%}$	6\％	6\％	${ }^{5}$	${ }^{5 \%}$	${ }^{4 \%}$	${ }^{4 \%}$	${ }^{3 \%}$	3\％	${ }^{2 \%}$	${ }^{2 \%}$	0\％	0\％	\％	0\％	0\％	0\％
5624	${ }^{72,173,011}$	\cdots Plaled or coaied with tin	10	NT2	\％	\％	${ }_{8}^{8 \%}$	8\％	6\％	6\％	5\％	5\％	4%	$4{ }^{46}$	3\％	3\％	2\％	${ }^{2 \%}$	\％	\％	\％	\％	\％	\％
5625	72，173．19	\cdots Oner	10	NT2	\％	9\％	8%	8\％	6\％	6\％	5\％	5\％	4\％	4%	3\％	3\％	2\％	${ }^{2 \%}$	\％\％	\％	\％	\％	\％	\％
5626	${ }^{72,173,021}$	\cdots－Praled or coaied wit tin	10	NT2	9\％	9\％	${ }_{8 \%}$	${ }^{8 \%}$	6\％	6\％	${ }^{5 \%}$	${ }^{5 \%}$	${ }^{4} 9$	4%	${ }^{3 \%}$	${ }^{\text {3\％}}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％	\％	\％	0\％
5627	72，17，${ }^{\text {2 } 29}$	－Onher	0	NT2	9\％	9\％	8\％	\％	6\％	6\％	5\％	${ }^{5 \%}$	4\％	4\％	3\％	3\％	2\％	2\％	\％\％	\％	\％	\％	\％	\％
${ }^{5628}$	${ }^{72,17,3,31}$	－－Copper alloy coated steel wire of a kind used in the manufacture of pneumatic rubber tyres（bead wire）	${ }^{10}$	NT2	\％$\%$	9\％	${ }^{8}$	${ }^{8 \%}$	6\％	6\％	5\％	5\％	4\％	4\％	${ }^{3 \%}$	3\％	${ }^{2 \%}$	${ }^{2 \%}$	0\％	\％	0\％	\％	0\％	\％
5629	${ }^{72,173,032}$	\cdots Oner，paled or coaled wilh th	10	NT2	9\％	9\％	8%	8%	6\％	6\％	${ }^{5 \%}$	5\％	4\％	4%	3\％	3\％	2\％	${ }^{2 \%}$	0\％	\％\％	\％\％	\％	\％	\％\％
5630	72，17，039	\cdots Oher	10	N2	9\％	9\％	8%	${ }^{8 \%}$	6\％	6\％	5\％	5\％	4\％	4%	3\％	3\％	2\％	${ }^{2 \%}$	\％	0\％	\％	0\％	\％	\％
5631	${ }^{72,17,0,10}$	－Containing by weigh test han 0.25% of cation	10	N2	\％	9\％	8%	${ }^{8 \%}$	6\％	6\％	5\％	5\％	4\％	4\％	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％	0\％	0\％	\％
5632	${ }^{72,179,090}$	－other	10	NT2	${ }^{9 \%}$	9\％	8\％	${ }^{8 \%}$	${ }^{6 \%}$	${ }^{6}$	${ }^{5 \%}$	${ }^{5 \%}$	${ }^{4 \%}$	${ }^{4 \%}$	3\％	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	0\％	0\％	\％	\％\％	0\％
563	72，18，000	－Ingos and oltere pinay toms	5	NT1	\％	4\％	4%	3\％	3\％	${ }^{2 \%}$	2\％	\％	\％	0\％	\％	0\％	\％\％	\％	0\％	\％	0\％	\％	\％	\％
5634	$7{ }^{72,189,100}$	－Of rectanguar（otorer than square）cross sesicio	5	NT1	4\％	$4{ }^{4 \%}$	4%	3\％	${ }^{3}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	0\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％
5635	${ }^{\text {2，189，900 }}$	－other	5	N1	4%	4%	${ }^{4 \%}$	3\％	3\％	2\％	${ }^{2 \%}$	0\％	0\％	\％	\％	\％	0\％	0\％	0\％	\％	\％	\％	\％	\％
6636	${ }^{72,19,100}$	－－Ot atickessesexeesing 10 mm	5	T1	4%	${ }^{4 \%}$	4%	${ }^{3 \%}$	3\％	${ }^{2 \%}$	2%	0\％	0\％	\％	\％\％	\％\％	\％	\％	\％	\％	0\％	\％	\％	\％
5637	72，191，200	－－Of a thickness of 4.75 mm or more but not exceeding 10 mm	${ }^{5}$	NT1	4\％	4\％	4%	${ }^{3} \%$	3\％	${ }^{2 \%}$	2\％	0\％	\％	\％	\％	\％	0\％	\％	\％	\％	\％	\％	\％	\％
5568	72，191，300	${ }_{\text {mm }}$－Of a thickress ofi mm or more but ess than 4.75	5	N1	${ }^{4 \%}$	$4{ }^{4 \%}$	${ }^{4 \%}$	${ }^{3} \%$	3\％	${ }^{2 \%}$	${ }^{2 \%}$	\％	0\％	0\％	0\％	0\％	\％	0\％	0\％	\％	\％	\％	\％	\％
5639	72，19，4，400	－－Ofatickesesof flest han 3 mm	5	T1	${ }^{4 \%}$	4\％	$4{ }^{4 \%}$	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2} \%$	\％	\％	\％	\％	\％	\％	0\％	0\％	\％	\％	\％	\％	\％
5640	${ }^{\text {2，122，100 }}$	－Ota atiockess excesedign 10 mm	5	NT1	4\％	4\％	4\％	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	2%	0\％	\％\％	\％	\％	\％	\％\％	\％	\％\％	\％	\％	\％	\％	\％
554	72，192，200	$\begin{array}{\|l} \hline \begin{array}{l} - \text { Of a thickness of } 4.75 \mathrm{~mm} \text { or more but not } \\ \text { exceeding } 10 \mathrm{~mm} \end{array} \\ \hline \end{array}$	${ }^{5}$	NT1	4\％	4\％	4%	${ }^{3 \%}$	${ }^{3 \%}$	2\％	${ }^{2 \%}$	\％	\％	\％	\％	\％	0\％	\％	\％	\％	\％	\％	\％	\％
$5{ }^{564}$	$7{ }^{2,1923,300}$	${ }^{-- \text {Of }} \mathrm{mm}$ a thickness of 3 mm or more but less than 4.75	5	N1	4%	4\％	4%	${ }^{3} \%$	3\％	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	0\％	0\％	\％	\％	\％	0\％	\％	\％	\％	\％	\％
5643	$7^{2,192,400}$	－－Ota tiockress of tess than 3 mm	5	NT1	4\％	4\％	4%	3\％	${ }^{3 \%}$	${ }^{2 \%}$	2%	0\％	0\％	\％\％	0\％	0\％	\％\％	0\％	0\％	0\％	\％\％	0\％	\％	0\％
5644	${ }^{\text {72，193，100 }}$	－－Ota tickress of 4.75 mmor or moie	5	NT1	$4{ }^{4 \%}$	4\％	$4{ }^{4 \%}$	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％
5645	$7^{72,193,200}$		5	${ }^{\text {NT1 }}$	$4{ }^{4 \%}$	${ }^{46}$	4\％	${ }^{3 \%}$	3\％	${ }^{2 \%}$	2\％	\％	\％	\％	0\％	\％	0\％	\％	0\％	0\％	\％	\％	\％	\％
$5{ }^{546}$	72，193，000	－－Of thickeses exceesing 1 mm but test than	5	NT	${ }^{4 \%}$	${ }^{4 \%}$	${ }^{4 \%}$	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	0\％	\％\％	0\％	\％	0\％	\％	0\％	0\％	\％	\％	\％	\％
5647	$7^{72,193,400}$	－Of a thickness of 0.5 mm or more but not exceeding 1 mm	5	T1	${ }^{4 \%}$	${ }^{4 \%}$	${ }^{4 \%}$	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	0\％	0\％	\％	\％	\％	0\％	\％	\％	\％	\％	\％	\％	\％
5648	72，193，500	\cdots	5	NT1	4\％	4\％	${ }^{4 \%}$	${ }^{3 \%}$	3\％	${ }^{2 \%}$	${ }^{2 \%}$	0\％	\％	\％	\％	\％	\％\％	\％\％	\％	0\％	\％	\％\％	\％	\％
5549	72，199．000	－other	5	NT1	4%	4\％	4\％	${ }^{3} \%$	3\％	${ }^{2 \%}$	2\％	\％	\％	0\％	\％	\％	\％	\％	0\％	\％	0\％	\％	\％	\％
5650	${ }^{7220.11 .10}$	$\cdots \mathrm{Hop}$ and stip，of a width note excesining 400	5	NT1	4\％	4\％	4\％	3\％	3\％	${ }^{2 \%}$	2\％	\％	\％	\％	\％	\％	0\％	\％	0\％	\％	\％	\％	\％	\％
565	$7^{72,201,190}$	\cdots	5	T1	${ }^{4 \%}$	${ }^{4 \%}$	${ }^{4 \%}$	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	2\％	\％	0\％	0\％	\％	\％	\％	\％	0\％	0\％	\％	\％	\％	0\％
${ }_{5652}$	${ }^{7220.12 .10}$	$\cdots \mathrm{mmopandstip}$,	${ }^{5}$	T1	4\％	4\％	4%	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	0\％	0\％	0\％	\％	\％	0\％	\％	0\％	\％	0\％	\％	\％	\％\％
565	${ }^{72,201,290}$	－－Oner	5	NT1	${ }^{4 \%}$	4\％	4%	${ }^{3 \%}$	${ }^{3} \%$	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％	\％	\％	0\％	\％	\％\％	\％	\％	0\％	\％	\％
5654	${ }^{72,2020,010}$	－Hoop and stip，of w width note exeseding 400 mm	5	NT1	4%	${ }^{4 \%}$	4\％	${ }^{\text {3\％}}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％\％	\％\％	\％	\％	\％	\％	\％\％	\％	\％\％	\％	\％\％	0\％	\％
5655	${ }^{72,202,090}$	－oner	5	NT1	4\％	4\％	4\％	3\％	3\％	2\％	2\％	0\％	0\％	\％	\％	0\％	0\％	\％	0\％	0\％	0\％	0\％	\％	0\％
${ }^{5656}$	${ }^{72,2090,010}$	－Hoop and strip，of a width note exceeding 400 mm	5	NT1	4\％	4\％	4\％	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％\％	\％\％	\％	\％	\％	\％	\％	\％\％	\％	\％	\％	\％
5657	72，209，900	－－Oner	5	NT1	4\％	4\％	4\％	3\％	3\％	2\％	2\％	\％	\％	\％	\％	\％	0\％	\％	\％	\％	\％	\％	\％	\％
5658	72，210，000	Bars and rods，hot－rolled，in irregularly wound coils，of stainless steel．	5	NT1	4%	$4{ }^{4 \%}$	4\％	${ }^{3} \%$	3\％	${ }^{2 \%}$	2\％	\％	\％	0\％	\％	\％	0\％	\％	0\％	\％	\％	\％	0\％	\％
659	${ }^{72,221,100}$	－Ot cricular cosss section	5	NT1	4%	${ }^{4 \%}$	$4{ }^{4 \%}$	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	0\％	0\％	0\％	0\％	0\％	\％	0\％	\％	\％	0\％	\％	\％	\％
5660	${ }^{72,221,900}$	－Oher	5	NT1	${ }^{4 \%}$	4\％	4%	${ }^{3} \%$	3\％	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％\％	\％	\％	0\％	\％	\％\％	\％	\％	\％	\％	0\％
5661	${ }^{72,222,010}$	－ot itrular cross section	5	NT1	4\％	4\％	4\％	3\％	3\％	${ }^{2 \%}$	2\％	\％	0\％	0\％	\％	\％	\％	\％	0\％	\％	\％	\％	\％	0\％
566	${ }^{72,222,090}$	－Oner	5	NT1	4\％	4%	4\％	${ }^{3 \%}$	3\％	${ }^{2 \%}$	2\％	0\％	\％	0\％	\％	\％	0\％	\％	0\％	\％	\％	\％\％	\％	\％
5663	${ }^{72,223,10}$	－Oficicula cross section	5	NT1	4%	4\％	$4{ }^{46}$	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％
5664	$7{ }^{72,23,090}$	Other	5	NT1	4%	4%	4%	${ }^{3} \%$	3\％	${ }^{2 \%}$	2\％	\％	\％	\％	\％	\％	\％\％	0\％	\％	\％	\％	\％	\％	\％
5665	${ }^{72,224,010}$	- Not further worked than hot－rolled，hot－drawn or extruded	5	NT1	4%	4\％	4%	${ }^{3} \%$	3\％	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％	\％	\％	0\％	0\％	\％	\％	0\％	\％	\％	\％
5666	${ }^{72,224,000}$	－－oter	5	Nr1	4\％	4%	4%	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％	\％	\％	\％	\％	\％\％	\％	\％	0\％	\％	\％
5667	${ }^{72,230,000}$	Wire of stainess steel．	5	NT1	4\％	4\％	4\％	3\％	${ }^{3 \%}$	${ }^{2 \%}$	2%	0\％	0\％	0\％	\％	0\％	0\％	0\％	0\％	0\％	\％	0\％	\％	0\％
5668	${ }^{72,241,000}$	－Ingoss and oloer pinay toms	5	NT1	4\％	4%	4%	${ }^{3 \%}$	3\％	${ }^{2 \%}$	${ }^{2 \%}$	0\％	0\％	\％	\％	0\％	0\％	0\％	0\％	0\％	\％	0\％	\％	0\％
5669	${ }^{72,24,0,00}$	－－oner	5	NT1	${ }^{4 \%}$	4\％	4%	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％	\％	\％	\％	\％	\％	\％	0\％	\％	\％	\％
5570	${ }^{72,251,100}$	－Gaino oiened	5	NT1	4\％	4\％	4\％	3\％	3\％	${ }^{2 \%}$	2\％	0\％	0\％	0\％	\％	\％	\％	\％	0\％	\％	\％	\％	\％	\％
567	${ }^{72,251,900}$	－Oner	5	NT1	4\％	4\％	4\％	3\％	3\％	${ }^{2 \%}$	2\％	0\％	\％	0\％	0\％	\％	0\％	\％	\％	\％	0\％	\％	\％	\％
5572	${ }^{72,253,010}$	－－ high speed stel	5	T1	4%	4\％	$4{ }^{4 \%}$	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	2%	0\％	\％	0\％	\％	\％\％	0\％	\％\％	\％\％	\％\％	\％\％	\％\％	\％	0\％
5673	${ }^{72,253,000}$	－Oner	5	T1	4\％	4%	$4{ }^{4}$	${ }^{\text {3\％}}$	${ }^{3 \%}$	2\％	${ }^{2 \%}$	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％
5574	${ }^{72,254,010}$	－Ot ing speeds steel	5	NT1	4\％	4\％	$4{ }^{4 \%}$	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	0\％	\％	\％	\％	0\％	0\％	\％\％	\％\％	\％	\％	\％	\％	\％\％
5675	${ }^{72,254,000}$	－other	5	NT1	4\％	4\％	4%	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	0\％	\％	\％
5576	${ }^{72,255,10}$	－ot tigh speeds steel	5	NT1	4\％	4\％	4\％	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％	\％	\％	0\％	\％	\％	\％\％	\％	\％	\％	\％
5677	${ }^{72,255,900}$	－other	5	NT1	4\％	4%	4%	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	0\％	\％	\％	\％	\％	\％	\％	\％	0\％	\％	0\％	\％	\％
5578	${ }^{72,259,10}$	$\cdots \mathrm{Ot} \mathrm{ing} \mathrm{speeds} \mathrm{stel}$	5	${ }^{\text {N11 }}$	4\％	4\％	4%	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％
5679	${ }^{72,259,190}$	\cdots	5	NT1	4\％	4\％	4\％	3\％	3\％	${ }^{2 \%}$	${ }^{2 \%}$	0\％	\％	0\％	\％	\％	0\％	\％	\％\％	\％	\％	\％	\％	\％
5580	${ }^{72,259,210}$	\cdots Of ing spees steel	5	V1	4\％	4\％	4\％	3\％	3\％	2%	${ }^{2 \%}$	0\％	\％	0\％	\％	\％	0\％	0\％	0\％	\％	\％	\％	\％	\％
5681	${ }^{72,259,290}$	${ }^{-0}$ Oner	5	T1	4\％	$4{ }^{4 \%}$	$4{ }^{4 \%}$	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	0\％	\％	\％\％	\％	\％\％	\％\％	\％	\％	\％	\％	\％	0\％	0\％
5682	$7{ }^{72,259,910}$	\cdots Of high spees steel	5	NT1	4\％	4\％	4\％	3\％	3\％	${ }^{2 \%}$	2\％	0\％	0\％	0\％	0\％	0\％	\％	0\％	\％	0\％	\％	\％	\％	\％
5683	$7{ }^{72,259,990}$	－Oher	5	${ }^{\text {N11 }}$	4\％	4\％	4\％	3\％	3\％	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％	\％	\％	0\％	\％	\％\％	\％	\％	\％	\％	\％
5584	226．11／10	$\cdots \mathrm{mmopands} \mathrm{stip}$,	5	VT1	4\％	4\％	4%	3\％	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％	\％	\％	\％	\％	\％	0\％	\％	\％	0\％	\％
5685	${ }^{72,261,190}$	－－Onter	5	${ }^{\text {NT1 }}$	4\％	4\％	4%	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	0\％	\％	0\％	\％	\％	\％\％	\％	\％	\％	\％	0\％	0\％	\％
686	${ }^{72,261,910}$	$\cdots \mathrm{mop}$ and stip，of a width notexceeding 400	5	${ }^{\text {NT1 }}$	4\％	4\％	4\％	${ }^{3} \%$	${ }^{3 \%}$	2\％	2\％	\％	\％	\％	\％	\％	\％	\％	0\％	\％	\％	\％	\％	\％
5687	${ }^{72,261,990}$	－－Other	5	NT1	4\％	4%	4%	3\％	3\％	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	0\％	\％	0\％	0\％	0\％	0\％	0\％	\％	0\％	0\％	0\％
5588	$7{ }^{72,2620,010}$	－Hoop and stip，of a width note xceoding 400 mm	5	NT1	4\％	4\％	4\％	3\％	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％\％	0\％	\％\％	\％	\％	\％	\％\％	\％	\％\％	0\％	0\％	\％	0\％
5689	${ }^{72,262,090}$	－Oner	5	${ }^{\text {NT1 }}$	${ }^{4 \%}$	4\％	4%	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	0\％	\％	0\％	0\％	0\％	\％	0\％	\％	0\％	0\％	\％\％
5690	${ }^{72,269,10}$	$\cdots \mathrm{Hop}$ and Stip，of a width note excesidig 400	5	${ }^{\text {NTr }}$	4\％	4\％	4\％	3\％	${ }^{3 \%}$	${ }^{2 \%}$	2\％	\％	\％	0\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％
5691	${ }^{72,269,190}$	\cdots Onter	5	NT1	4\％	4\％	4\％	3\％	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	0\％	0\％	0\％	\％	\％	\％\％	\％\％	0\％	\％\％	\％	0\％	\％	0\％
5592	${ }^{72,269,210}$		5	NT1	4%	$4{ }^{46}$	4%	3\％	3\％	${ }^{2 \%}$	${ }^{2 \%}$	0\％	\％	0\％	\％	\％	\％	0\％	\％	\％\％	\％	\％	\％	0\％
5593	${ }^{72,269,290}$	\cdots	5	T1	4\％	${ }^{4 \%}$	${ }^{4 \%}$	3\％	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％	\％	\％\％	\％	0\％	\％	0\％	\％	\％	0\％	\％
569	${ }^{72,269,911}$	－Paled of coated wil zinc	5	T1	4%	4%	4%	3\％	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	0\％	0\％	\％	\％	\％	\％\％	\％	\％	\％	\％	\％	\％
5695	${ }^{72,26,9,919}$	Other	5	NT1	4\％	4%	4%	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	0\％	0\％	0\％	\％	\％	\％	\％\％	\％	\％	\％	\％	\％	0\％
5596	${ }^{72,269,991}$	Plated or coaled wilz zinc	5	NT1	${ }^{4 \%}$	4%	${ }^{46}$	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％	\％	\％	\％\％	\％	\％	0\％	\％	\％	0\％	\％
5697	${ }^{72,269,999}$	Onher	5	NT1	4\％	4\％	4\％	${ }^{3 \%}$	${ }^{3 \%}$	2\％	2\％	0\％	\％\％	0\％	\％	\％	\％	\％	0\％	\％	\％	\％\％	\％	\％
5598	${ }^{72,271,000}$	－Of hig speeds stel	5	NT1	${ }^{4 \%}$	4\％	4%	${ }^{3}$	3\％	2%	${ }^{2 \%}$	\％	\％	\％	\％	\％	\％	\％	\％	\％	0\％	\％	\％	\％

香港•ASEAN FTAにかかる調査報告書

5569	$1{ }^{12,272,000}$	Of silio－manganses steal	5	NT1	${ }^{4 \%}$	${ }^{4 \%}$	${ }^{4 \%}$	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	0\％	0\％	0\％	\％	0\％	\％	\％	0\％	\％	0\％	0\％	\％	\％\％
5700	72，27，000	－Other	5	NT1	${ }^{4 \%}$	${ }^{4 \%}$	4\％	${ }^{3 \%}$	${ }^{3 \%}$	2\％	2\％	\％	\％	\％	0\％	\％	\％	\％	\％	\％	\％	\％	\％	\％
5501	7228.10 .10	－Of iricular cross section	5	NT1	$4{ }^{4 \%}$	4%	${ }^{4 \%}$	${ }^{3 \%}$	${ }^{3 \%}$	2\％	${ }^{2 \%}$	\％\％	\％\％	\％\％	\％	\％	\％	\％	\％	\％	\％	\％\％	\％	\％
5702	${ }^{\text {22，28，090 }}$	－Oner	5	NT1	4%	${ }^{4 \%}$	${ }^{4 \%}$	3\％	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	0\％	0\％	0\％	\％	0\％	0\％	0\％	\％	0\％	\％	0\％	\％	\％\％
5703	72，28，011	－Not turther worked than hot－rolled，hot－drawn or	5	NT1	4%	$4{ }^{4 \%}$	${ }^{4 \%}$	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	0\％	0\％	0\％	\％	\％	\％	0\％	0\％	\％	\％	\％	\％	\％
5504	${ }^{72,282,19}$	－－．other	5	NT1	4%	4%	$4{ }^{46}$	3\％	${ }^{3 \%}$	${ }^{2 \%}$	2\％	0\％	0\％	0\％	0\％	\％	\％	\％	0\％	\％	0\％	0\％	\％	0\％
5705	${ }^{\text {72，282，991 }}$	－Not turther worked than hot－rolled，hot－drawn or extuded	5	NT1	4%	4\％	4\％	${ }^{3}$	3\％	${ }^{2 \%}$	${ }^{2 \%}$	\％	0\％	0\％	\％	\％	\％	0\％	\％	\％	\％	\％	\％	\％
5506	${ }^{72,282,099}$	－－Oner	5	NT1	4\％	4\％	4%	3\％	${ }^{3 \%}$	${ }^{2 \%}$	2%	\％	\％\％	\％\％	\％	0\％	\％\％	0\％	\％	\％\％	\％	\％\％	0\％	\％
5507	${ }^{12,283,010}$	Ot iricuar coss section	5	NT1	4%	4%	4\％	3\％	${ }^{3 \%}$	2\％	2\％	\％\％	0\％	0\％	\％\％	0\％	0\％	0\％	\％\％	0\％	\％	\％\％	0\％	0\％
5708	72，28，3，90	－Other	5	NT1	4%	4%	4%	3\％	${ }^{3 \%}$	2\％	${ }^{2 \%}$	\％	\％	\％	\％	0\％	\％	0\％	\％	0\％	0\％	0\％	\％	0\％
5709	${ }^{72,284,010}$	－Of iticular cross secilion	5	${ }^{\text {NT1 }}$	4%	4\％	4\％	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％	\％	\％	\％	\％	\％\％	0\％	\％\％	0\％	\％	0\％
5710	72，24，0，90	－Other	5	NT1	4%	4\％	4\％	${ }^{3 \%}$	3\％	2\％	${ }^{2 \%}$	\％	0\％	0\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％
5711	${ }^{72,28,0,010}$	－Ot iricular cross section	5	NT1	4\％	4\％	4\％	3\％	3\％	${ }^{2 \%}$	2\％	0\％	0\％	0\％	0\％	\％	\％	\％	\％	\％	\％	\％	0\％	\％\％
5712	${ }^{72,28,9,90}$	－other	5	NT1	4%	4%	4\％	3\％	3\％	2\％	2\％	0\％	0\％	0\％	0\％	\％	0\％	0\％	0\％	\％	\％	0\％	\％	\％
57	${ }^{2,288,010}$	Of ircular cosos section	5	NT1	4\％	4\％	4\％	3\％	3\％	${ }^{2 \%}$	${ }^{2 \%}$	0\％	\％	0\％	\％	\％	\％	0\％	\％	0\％	0\％	\％	\％	\％
5714	${ }^{272,28,090}$	－Oher	5	NT1	4%	4\％	4%	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％	0\％	\％	\％	\％	0\％	\％\％	\％	\％	\％	\％
5715	72，28，010	－Not further worked than hot－rolled，hot－drawn or extruded	5	NT1	4\％	4\％	4\％	3\％	${ }^{3 \%}$	2%	2%	0\％	\％	0\％	\％	\％	\％	\％	\％	\％	\％	\％\％	\％	0\％
5516	${ }^{72,287,909}$	－Oher	5	NT1	4%	4\％	4%	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	2%	0\％	\％\％	\％\％	\％\％	0\％	0\％	0\％	\％\％	0\％	\％	\％	\％	\％
5717	${ }^{\text {22，28，011 }}$	\cdots Of icrular cosss．section	5	NT1	4\％	4%	4\％	3\％	${ }^{3 \%}$	2%	${ }^{2 \%}$	\％\％	0\％	0\％	0\％	0\％	0\％	0\％	\％\％	0\％	\％	\％\％	0\％	0\％
5718	${ }^{12,288,019}$	－－Omer	5	NT1	4\％	4%	4\％	3\％	3\％	2%	2\％	0\％	0\％	0\％	0\％	0\％	0\％	0\％	0\％	0\％	\％	0\％	\％	0\％
5719	${ }^{\text {72，28，0，90 }}$	－other	5	NT1	4%	4%	4\％	3\％	3\％	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％
527	72，22，2000	－otsiloomanganses steal	5	${ }^{\text {NT1 }}$	4\％	4\％	4\％	${ }^{3 \%}$	3\％	2\％	2\％	\％	0\％	0\％	\％\％	\％	\％	\％	\％	\％	\％	\％	\％	\％
5721	72，29，010	－ot hig speed steel	5	V1	4\％	4\％	4\％	${ }^{3 \%}$	3\％	${ }^{2 \%}$	${ }^{2 \%}$	0\％	0\％	0\％	0\％	\％	\％	\％	\％	\％	\％	\％	\％	\％
5722	${ }^{12,290,900}$	－Other	5	V1	4%	4\％	4%	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	2%	0\％	\％\％	\％\％	\％\％	0\％	0\％	0\％	\％\％	0\％	0\％	\％\％	0\％	0\％
572	$7{ }^{73,01,000}$	－Sheet pling	5	V1	4\％	4\％	4\％	3\％	3\％	2\％	2\％	0\％	\％	\％\％	\％\％	0\％	0\％	\％	\％	\％	\％	\％	0\％	\％
5524	${ }^{73,012,000}$	－Angles，shapes and secioios	5	V1	4%	4\％	$4{ }^{4 \%}$	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％	0\％	\％	0\％	0\％	\％\％	0\％	\％	\％	\％	\％\％
5525	${ }^{73,02,000}$	－Rals	5	V1	4\％	4\％	4\％	${ }^{3 \%}$	3\％	${ }^{2 \%}$	2%	0\％	\％	\％	0\％	\％	0\％	\％	\％	0\％	\％	\％	0\％	\％
5726	73，02， 000	－Switch lades，crossing frogs，point rods and other crossing pieces	5	NT1	4%	4\％	4\％	3\％	3\％	${ }^{2 \%}$	${ }^{2 \%}$	\％	0\％	0\％	0\％	\％	\％	\％	\％	\％	\％	\％	\％	\％
5527	${ }^{73,24,000}$	－Fstrpales and sole plates	5	N1	4%	${ }^{4 \%}$	${ }^{4 \%}$	3\％	${ }^{3 \%}$	2\％	2%	0\％	\％\％	\％\％	\％\％	0\％	0\％	0\％	\％\％	0\％	\％	\％	0\％	\％
5578	${ }^{73,02,0,010}$	－Sleepers（cosstites）	5	N1	4%	4%	4\％	3\％	3\％	2%	${ }^{2 \%}$	0\％	0\％	0\％	0\％	0\％	0\％	0\％	0\％	0\％	\％	0\％	\％	0\％
5529	${ }^{73,02,0,90}$	－－other	5	V1	4%	4%	4\％	3\％	3\％	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	0\％	0\％	\％	\％	0\％	0\％	0\％	\％	0\％	\％	\％
5330	${ }^{73,03,0,011}$	－Hubess tues and pipes	5	V1	4\％	4%	4\％	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％
5731	$7{ }^{73,03,019}$	－Other	5	NT1	4\％	4\％	4\％	${ }^{3 \%}$	3\％	2\％	2\％	\％	0\％	0\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	0\％
5732	${ }^{7,3,03,090}$	－other	5	N1	4\％	4\％	4%	3\％	3\％	${ }^{2 \%}$	2\％	0\％	0\％	0\％	0\％	0\％	\％	\％	0\％	0\％	\％	\％	0\％	0\％
553	${ }^{73,041,100}$	－Of stiniess steel	5	V1	4\％	4%	4%	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％\％	\％\％	\％\％	\％\％	\％	\％	\％	\％\％	\％	\％	\％\％	\％	\％\％
5734	${ }^{73,041,900}$	－other	5	V1	4\％	4\％	4%	3\％	3\％	${ }^{2 \%}$	${ }^{2 \%}$	0\％	\％	\％\％	\％\％	0\％	0\％	0\％	\％\％	\％	\％	0\％	0\％	\％
5535	${ }^{73,04,200}$	－Dinl pipe of stainess steel	5	V1	4%	4%	4%	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％	0\％	\％	0\％	\％	\％	\％	0\％	\％	\％	\％
5536	${ }^{73,02,3,300}$	－Oner dintip pip	5	VT1	4\％	4\％	4\％	3\％	3\％	2\％	2\％	0\％	0\％	0\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％
5537	${ }^{73,024,400}$	－otner，of stainess stell	5	V1	4%	4%	4%	3\％	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％	\％	0\％	0\％	\％	0\％	\％\％	\％	0\％	\％	0\％
5578	${ }^{73,02,2,900}$	－－other	5	N1	4%	$4{ }^{4 \%}$	4%	3\％	3\％	2%	${ }^{2 \%}$	0\％	0\％	0\％	0\％	0\％	0\％	0\％	0\％	0\％	0\％	0\％	0\％	0\％
5539	${ }^{73,04,110}$	$\underset{\text { threads }}{\ldots}$ Dillod casing and tubing with pin and box	5	V1	4\％	4\％	4\％	3\％	3\％	2\％	${ }^{2 \%}$	0\％	0\％	0\％	0\％	\％	0\％	\％	0\％	\％	\％	0\％	0\％	0\％
5540	${ }^{73,03,120}$	－ H Highpresusue pipe	5	NT1	4\％	4\％	4%	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％\％	\％\％	\％\％	\％	\％	\％	0\％	\％\％	0\％	\％	\％\％	\％	\％
554	${ }^{73,04,140}$	$-\cdots$ Other，having an external diameter of less than 140 mm and contaiaing less than 0.45% by weight of carbon	5	${ }^{\text {NT1 }}$	4\％	4%	4\％	${ }^{3 \%}$	3\％	${ }^{2 \%}$	${ }^{2 \%}$	0\％	0\％	0\％	\％	\％	\％	\％	\％	\％	\％	\％\％	\％	\％\％
5542	${ }^{73,03,190}$	－－other	5	NT1	4\％	4\％	4\％	${ }^{3 \%}$	3\％	${ }^{2 \%}$	${ }^{2 \%}$	0\％	\％	0\％	0\％	0\％	0\％	\％	0\％	\％	0\％	0\％	\％	0\％
574	${ }^{7}, 043,920$	－Highpesesure pipe	5	NT1	4\％	4%	4\％	3\％	3\％	2\％	2\％	0\％	0\％	0\％	0\％	\％	0\％	\％	0\％	0\％	0\％	\％	\％	\％
574	73，04，940		${ }_{5}$	NT1	4\％	4\％	4\％	3\％	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	0\％	0\％	0\％	\％	0\％	\％	\％	\％	\％	\％	0\％	\％	\％
5545	${ }^{73,043,990}$	－－oner	5	NT	4%	4%	4\％	3\％	${ }^{3 \%}$	2\％	2\％	\％\％	\％\％	0\％	\％\％	0\％	0\％	0\％	\％\％	0\％	\％	0\％	\％	\％\％
5546	${ }^{73,04,100}$		5	NT	4%	4%	$4{ }^{4 \%}$	${ }^{3 \%}$	${ }^{3 \%}$	2%	${ }^{2 \%}$	\％\％	\％\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	${ }^{0 \%}$
5547	${ }^{73,04,900}$	－Oner	5	NT1	4%	4\％	4\％	${ }^{3 \%}$	3\％	2%	${ }^{2 \%}$	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	0\％
574	${ }^{73,04,110}$	$\underset{\text { threads }}{- \text { Dillod casing and tubing with pin and box }}$	5	NT1	4\％	4\％	4\％	3\％	3\％	${ }^{2 \%}$	${ }^{2 \%}$	0\％	0\％	0\％	0\％	\％	\％	\％	0\％	\％	\％	\％\％	\％	\％
549	${ }^{73,05,190}$	－－other	5	NT1	4\％	4\％	4\％	3\％	3\％	2\％	${ }^{2 \%}$	0\％	0\％	0\％	0\％	\％	\％	\％	0\％	\％	\％	0\％	\％	\％
55	${ }^{73,045,900}$	－Other	5	NT	4%	4\％	4\％	3\％	${ }^{3} \%$	2\％	${ }^{2 \%}$	\％	0\％	0\％	0\％	\％	\％	\％	0\％	\％	\％	0\％	\％	\％\％
55	${ }^{73,04,9,010}$	－Highpressure pipe	5	NT1	4%	4%	4\％	3\％	${ }^{3 \%}$	2\％	${ }^{2 \%}$	\％	0\％	0\％	0\％	0\％	0\％	0\％	0\％	0\％	\％	0\％	0\％	0\％
552	${ }^{73,04,030}$	－－Other，having an external diameter of less than 140 mm and containing less than 0.45% by weight of carbon	5	NT1	4\％	4\％	4\％	3\％	3\％	${ }^{2 \%}$	${ }^{2 \%}$	0\％	0\％	0\％	\％	0\％	0\％	0\％	\％	\％	\％	\％	\％	0\％
55	${ }^{73,04,9,90}$	－－other	5	NT1	4\％	4\％	4\％	3\％	3\％	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	0\％	0\％	0\％	0\％	0\％	0\％	\％	0\％	0\％	\％	\％
554	${ }^{73,051,100}$	－Longitudinaly submerged arc weted	5	NT1	4\％	4\％	4\％	${ }^{3 \%}$	${ }^{3} \%$	${ }^{2 \%}$	${ }^{2 \%}$	\％	0\％	0\％	0\％	\％	\％	\％	\％\％	\％	\％	\％	\％	\％
55	${ }^{7305.12,10}$	－Electicic essisalace eneded（ERW）	5	NT1	4%	4%	4%	3\％	${ }^{3 \%}$	2%	${ }^{2 \%}$	\％	0\％	\％\％	\％\％	0\％	0\％	0\％	\％\％	0\％	\％	\％\％	0\％	0\％
55	${ }^{73,051,230}$	\cdots	5	NT	4%	4%	4%	3\％	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％\％	\％\％	\％\％	\％	0\％	0\％	\％	\％\％	0\％	0\％	\％\％	\％	\％
5757	${ }^{73,05,9,910}$	\cdots Spiral or heicala summeged arc weded	5	vT1	4\％	4\％	4\％	3\％	3\％	2\％	2\％	\％\％	\％\％	0\％	\％	\％	\％	\％	\％	0\％	\％	\％	\％	\％
558	${ }^{73,051,990}$	－Oner	5	N1	4%	4\％	4%	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％	\％	\％	\％	0\％	\％	\％	\％	\％	\％	0\％
559	${ }^{7 \times, 052,000}$	Casing of a kind used indinily foro ilo rgas	5	NT1	4\％	4\％	4\％	3\％	3\％	${ }^{2 \%}$	${ }^{2 \%}$	\％	0\％	0\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％
556	${ }^{73,05,110}$	Stainess steel ipeses and lubes	5	${ }^{\text {NT1 }}$	4%	4%	4\％	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％	\％	0\％	0\％	0\％	\％	\％	\％	0\％	\％	0\％
55	${ }^{73,55,190}$	－Other	5	NT1	4%	4%	4\％	3\％	3\％	2\％	2\％	\％\％	0\％	0\％	0\％	0\％	0\％	0\％	0\％	0\％	\％	0\％	\％	0\％
5762	${ }^{73,05,9,90}$	－Highposesure pipe	5	NT1	4%	4%	4%	3\％	${ }^{3 \%}$	2\％	${ }^{2 \%}$	\％	\％	0\％	\％	\％	\％	\％	0\％	0\％	\％	\％	\％	\％
5783	${ }^{73,053,990}$	－Onter	5	NT1	4\％	4%	4\％	${ }^{3 \%}$	3\％	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％	\％	0\％	0\％	\％	\％	\％	\％	\％	\％	\％
556	${ }^{7,059,000}$	－other	5	NT1	4%	4%	4\％	3\％	3\％	2\％	${ }^{2 \%}$	0\％	0\％	0\％	0\％	0\％	\％	0\％	0\％	\％	\％	\％	0\％	\％
$5{ }^{5765}$	${ }^{7306.11 .10}$	Longtudinaly fecticic essistane weded（ERW）	${ }^{5}$	NT1	4%	4%	4\％	3\％	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	0\％	0\％	\％\％	\％\％	0\％	\％\％	\％\％	\％\％	0\％	\％	0\％	\％	\％
5	${ }^{7306.1120}$		${ }^{5}$	NT1	4%	4\％	4\％	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	2\％	0\％	0\％	\％\％	\％\％	0\％	0\％	\％	\％	0\％	\％	\％\％	${ }^{0 \%}$	0\％
5567	${ }^{73,061,190}$	\cdots	5	NT1	4%	4%	4%	${ }^{3 \%}$	${ }^{3} \%$	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％\％	0\％	\％\％	\％	\％	\％	\％	\％	\％	\％	\％	0\％
5788	${ }^{73,061,990}$		5	NT	4\％	${ }^{4 \%}$	${ }^{4 \%}$	3\％	3\％	${ }^{2 \%}$	${ }^{2 \%}$	0\％	0\％	\％	${ }^{0 \%}$	0\％	\％	\％	${ }^{0 \%}$	\％	\％	\％$\%$	${ }^{0 \%}$	${ }^{0 \%}$
576	${ }^{73,061,920}$	\cdots Spiralo r feicica slumereged ac welded	${ }^{5}$	NT1	4%	4%	${ }^{4 \%}$	3\％	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％	\％	\％	\％	\％	0\％	\％	\％	\％	\％	\％
5770	${ }^{73,061,990}$	－－Other	5	NT1	$4{ }^{4 \%}$	4%	4\％	3\％	3\％	2\％	${ }^{2 \%}$	\％	0\％	0\％	0\％	\％	\％	0\％	\％\％	\％	\％	0\％	\％	0\％
577	${ }^{73,062,100}$	Wedede，of stainoss steel		N1	4%	4\％	4\％	3\％	${ }^{3 \%}$	2%	2%	\％\％	\％	0\％	0\％	0\％	0\％	0\％	\％	\％	\％	0\％	\％	\％
5772	${ }^{73,062,900}$	－other	5	N1	4%	4%	4\％	3\％	3\％	2\％	2\％	0\％	0\％	0\％	0\％	0\％	0\％	0\％	0\％	0\％	\％	0\％	\％	\％
5773	${ }^{73,06,010}$	－Biler fubes	5	NT1	4%	4%	4\％	3\％	3\％	2\％	${ }^{2 \%}$	\％	\％	0\％	\％	0\％	0\％	0\％	0\％	0\％	\％	0\％	\％	\％
577	73，06，202		5	NT1	4\％	4\％	4\％	3\％	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	0\％	0\％	0\％	\％	0\％	0\％	\％	\％	\％	\％	\％	\％	\％\％
575	73，06，3030	Pipe of a kind used to make sheath pipe（heater pipe）for heating elements of electric flat irons or rice cookers，with an external diameter not exceeding 12 mm	5	NT1	4\％	4\％	4\％	3\％	3\％	2\％	2\％	0\％	0\％	0\％	0\％	0\％	0\％	0\％	0\％	0\％	0\％	0\％	0\％	\％
5776	${ }^{73,063,040}$	－－Highpressurue pipe	5	NT1	$4{ }^{4 \%}$	4\％	4\％	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	0\％	0\％	\％	\％	\％	\％	\％\％	\％	\％	\％	\％	\％
577	${ }^{73,063,900}$	－other	5	NT1	4%	4%	4\％	3\％	3\％	${ }^{2 \%}$	${ }^{2 \%}$	\％\％	\％	0\％	0\％	\％	0\％	\％	\％\％	0\％	\％	\％	\％	0\％
578	${ }^{73,06,0,010}$	－Boler fubes	5	NT	4%	4%	4%	3\％	3\％	2%	${ }^{2 \%}$	0\％	0\％	0\％	\％\％	0\％	0\％	\％	\％	\％\％	\％	\％\％	\％	${ }^{0 \%}$
579	$7{ }^{7,044,020}$	- Stainless steel pipes and tubes，with an external diameter exceeding 105 mm	5	NT	4\％	4\％	4\％	3\％	3\％	${ }^{2 \%}$	${ }^{2 \%}$	0\％	0\％	0\％	\％	\％	0\％	\％	\％	\％	${ }^{0 \%}$	\％	\％	\％
5780	73，064，303	－－Pieses and tubes containing by weight at least 30% of nickel，with an external diameter not exceeding 10 mm	5	NT1	4%	4\％	4\％	3\％	${ }^{3 \%}$	2\％	${ }^{2 \%}$	0\％	0\％	0\％	0\％	0\％	0\％	\％	0\％	0\％	\％	\％	\％	\％
5781	${ }^{73,064,900}$		${ }^{5}$	NT1	4%	4\％	4\％	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	0\％	0\％	0\％	0\％	0\％	\％	\％	\％	\％	\％	\％	0\％

香港•ASEAN FTAにかかる調査報告書

別添2－4 原産地品の関税撤廃スケジュール
（ラオス）

5782	${ }^{73,065,010}$	Itwee	5	，	，	4\％	$4{ }^{46}$	${ }^{\circ}$	3\％	2\％	${ }^{2 \%}$	\％	\％	\％	\％	\％	\％\％	\％	\％	\％	\％	，	0\％	\％\％
783	73，06，909	Other	5	V1	${ }_{4}^{4 \%}$	${ }^{4 \%}$	${ }^{4 \%}$	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％	\％	\％	0\％	0\％	\％	\％	\％	0\％	0\％	0\％
5784	$7{ }^{7,06,100}$	Of Square or erecaravuar cross section	5	V1	4%	4%	4\％	3\％	3\％	${ }^{2 \%}$	2\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	0\％
5785	73，66，900	Ofother noncriculur cosss secion	5	V1	4%	4%	4%	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	2\％	\％	\％	\％	0\％	\％	\％	0\％	0\％	0\％	\％	0\％	0\％	\％\％
5786	77，06，010	－Copeer brazed pipes and tubes	5	V1	4\％	4\％	4%	3\％	3\％	2\％	2%	0\％	\％	\％	\％	0\％	\％	\％	\％	\％	\％	\％	\％	\％\％
5787	73，06，090	Other	5	V1	4\％	$4{ }^{46}$	$4{ }^{4 \%}$	3\％	${ }^{3 \%}$	${ }^{2 \%}$	2\％	\％	0\％	0\％	0\％	\％	\％	\％	\％	\％	\％	0\％	\％	0\％
5788	7307．11．10	－－Hubess tue or pipe ititigs	5	NT1	4%	$4{ }^{4 \%}$	4%	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％
5789	${ }^{73,07,190}$	－－Other	5	NT1	4%	4%	4\％	3\％	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％\％	\％	\％
5990	73，07，900	Other	5	NT1	4\％	${ }^{4 \%}$	4\％	3\％	3\％	${ }^{2 \%}$	2\％	0\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	0\％	\％	0\％
${ }^{5791}$	${ }^{73,02,2,10}$	Having a in inemal diameerof fless han 15 cm	5	V1	${ }^{4 \%}$	4\％	4\％	${ }^{3 \%}$	3\％	2\％	${ }^{2 \%}$	\％	\％	\％	\％	0\％	\％	\％	\％	0\％	0\％	\％	\％	0\％
5792	$7{ }^{7,027,190}$	－Onter	5	v1	4\％	4\％	4\％	3\％	3\％	${ }^{2 \%}$	2\％	0\％	\％	\％\％	0\％	0\％	0\％	0\％	\％	\％	\％	\％	\％	\％
${ }^{5793}$	$7{ }^{7,072} 210$		5	NT	${ }^{4 \%}$	4%	4%	3\％	3\％	${ }^{2} \%$	${ }^{2 \%}$	\％	0\％	\％	0\％	\％	\％	\％	\％	\％	0\％	0\％	\％	\％
579	$7{ }^{7,0272200}$	－other	5	V1	4\％	$4{ }^{4 \%}$	4\％	${ }^{3 \%}$	3\％	${ }^{2 \%}$	${ }^{2 \%}$	\％	0\％	0\％	0\％	0\％	\％	\％	\％	\％	0\％	\％	\％	\％\％
5795	${ }^{73,02,3,30}$	Having an inemal diameierof fessthan 15 cm	5	NT	4\％	$4{ }^{46}$	4%	${ }^{\text {3\％}}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％	\％	\％	\％	0\％	0\％	\％	\％	\％\％	\％	\％
597	73，072，390	－omer	5	N1	4\％	${ }^{4 \%}$	4\％	3\％	3\％	2\％	${ }^{2 \%}$	\％	\％	\％	\％	0\％	0\％	\％\％	\％	\％	\％	\％	\％	\％
5797	${ }^{73,02,9,90}$	\cdots Having an ineman diameere fless tran 15 cm	5	V1	4%	4%	4%	${ }^{3 \%}$	3\％	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％
598	$7{ }^{7,072,990}$	－other	5	V1	4\％	${ }^{46}$	4\％	3\％	3\％	2\％	${ }^{2 \%}$	0\％	0\％	\％	\％	\％	\％	\％	\％	\％	\％	0\％	0\％	\％
5799	${ }^{73,09,110}$	－Having an inemad diameier fless than 15 cm	5	V1	${ }^{4 \%}$	${ }^{4 \%}$	4\％	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	0\％	0\％	\％	\％	\％\％	\％\％	\％\％	\％\％	0\％	0\％	\％\％	\％	\％\％
5800	73，07，190	－－Other	5	$\stackrel{1}{1}$	4\％	4\％	4\％	3\％	${ }^{3 \%}$	2\％	${ }^{2 \%}$	\％	\％	\％	0\％	\％	0\％	\％	\％	\％	\％	\％	\％	0\％
${ }^{501}$	${ }^{73,09,210}$	Having a in inemal diamelerof fesst tran 15 cm	5	NT1	4\％	${ }^{4 \%}$	4\％	${ }^{3}$	${ }^{3 \%}$	2\％	${ }^{2 \%}$	\％	\％	\％	\％	\％\％	\％	\％	\％	\％	\％	\％	\％	\％
5502	73，07，290	Other	5	VT1	4\％	${ }^{4 \%}$	4\％	3\％	3\％	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％\％	0\％	\％	\％	0\％	\％	\％	\％	0%	0	\％\％
5803	73，07，310	Having an inemal diameere fless than 15 cm	5	V1	4%	4%	4\％	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	2\％	\％	\％	\％	\％	0\％	0\％	\％	\％	\％	\％	\％	\％	\％
5804	73，07， 300	Onher	5	N1	4\％	4%	4\％	${ }^{3 \%}$	3\％	2\％	2\％	0\％	\％	\％	\％	\％\％	\％\％	\％	\％	0\％	\％	\％	\％	\％
5805	73．07，910		5	V1	4\％	4%	4\％	${ }^{3 \%}$	3\％	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％	\％	\％	\％	\％\％	\％	\％	\％	\％	\％	0\％
${ }^{5006}$	73，79，990	Onher	5	NT1	4\％	$4{ }^{4 \%}$	$4{ }^{4 \%}$	${ }^{3 \%}$	${ }^{3 \%}$	2\％	2\％	0\％	0\％	0\％	0\％	0\％	0\％	\％	0\％	0\％	0\％	0\％	0\％	\％
${ }^{5077}$	$7{ }^{7308.10 .10}$	- Prefabicicated modular type joined by shear connectior	${ }^{5}$	NT1	4\％	${ }^{4 \%}$	4%	3\％	${ }^{3 \%}$	${ }^{2 \%}$	2%	\％	\％	0\％	\％	0\％	\％	0\％	\％	\％	\％\％	0\％	\％	\％
${ }^{5008}$	77，08，090	－－Other	5	N1	${ }^{4 \%}$	${ }^{4 \%}$	${ }^{4 \%}$	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	0\％	0\％	\％	0\％	0\％	0\％	\％	\％	0\％	\％	0\％
5809	77，02，011	－Prefabricated modular type joined by shear connectors	5	V1	4\％	${ }^{4 \%}$	4\％	3\％	3\％	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％
5810	$77.02,019$	… Oner	5	T1	4\％	4%	4\％	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	2\％	0\％	\％	0\％	\％	\％	0\％	\％	\％	\％	0\％	0\％	\％	\％
5811	73，02，021	－－Prefabricated modular type joined by shear connectors	${ }^{5}$	V1	4\％	4%	4%	3\％	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％
${ }^{5812}$	${ }^{73,02,029}$	－Other	5	V1	4%	$4{ }^{46}$	4%	3\％	${ }^{3 \%}$	2\％	${ }^{2 \%}$	\％	0\％	\％	0\％	\％\％	\％\％	\％	0\％	\％\％	\％	\％	\％	\％
5813	73，03，000	－Doors，windows and their frames and thresholds for doors	${ }^{5}$	v1	4%	$4{ }^{4 \%}$	4\％	${ }^{3 \%}$	3\％	${ }^{2 \%}$	${ }^{2 \%}$	0\％	0\％	\％	\％	\％	0\％	\％	\％	\％	\％	\％	\％	\％
5814	73，84，010	- Prefabicicated modular type joined by shear connectors	5	${ }_{\text {ILL }}$	5\％	${ }^{5 \%}$	5\％	${ }^{5 \%}$	${ }^{5 \%}$	${ }^{5 \%}$	${ }^{5 \%}$	${ }^{5 \%}$	${ }^{5 \%}$	${ }^{5 \%}$	${ }^{5 \%}$	5\％	${ }^{\text {5\％}}$	${ }^{\text {5\％}}$	${ }^{5 \%}$	${ }^{5 \%}$	${ }^{5 \%}$	${ }^{5 \%}$	${ }^{5 \%}$	${ }^{5 \%}$
5815	73，04，090	－－omer	5	T1	4\％	4%	4\％	${ }^{3 \%}$	3\％	${ }^{2 \%}$	2\％	0\％	\％	\％\％	0\％	0\％	\％\％	\％\％	\％	\％	\％	\％\％	0\％	\％\％
5816	73，08，020	- Prefabicicated modular type joined by shear connectors	5	NT1	4\％	4%	4\％	${ }^{3 \%}$	${ }^{3 \%}$	2\％	2\％	\％	0\％	\％	0\％	\％	0\％	\％	\％	\％	\％	\％	\％	\％
5817	77，09，040	－－Corrugated and curved galvanised plates or sheets prepared for use in conduits，culverts or tunnels	5	V1	${ }^{4}$	4\％	${ }^{4 \%}$	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	0\％	0\％	0\％	\％	\％	\％	0\％	0\％	0\％	\％	0\％	\％	\％
${ }_{518} 5$	73，09，050	－Ralis torsios	5	V1	4\％	$4{ }^{4 \%}$	4\％	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	2%	\％	0\％	\％	\％	\％\％	\％\％	0\％	\％	\％	\％	0\％	0\％	\％
5819	77，09，060	－－Petroated cabee rays	5	NT1	4%	$4{ }^{4 \%}$	4\％	3\％	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％
5820	73，09，092	－Guaratals	5	NT1	4%	4%	4\％	${ }^{3 \%}$	3\％	${ }^{2 \%}$	2\％	\％	\％\％	\％\％	0\％	0\％	0\％	\％	0\％	\％	\％	\％	\％	0\％
5821	77，09，099	－other	5	NT1	4%	4%	4%	3\％	3\％	2\％	2\％	0\％	\％	\％\％	\％	0\％	0\％	\％	\％	0\％	\％	\％	\％	\％\％
5822	7 73，00，011	－－Lined or reativisulated	5	V1	4\％	4%	4\％	3\％	${ }^{3 \%}$	2\％	2%	\％	\％	\％	\％	\％\％	\％	\％	\％	\％	\％	\％	\％	\％
5823	${ }^{73,09,019}$	Other	5	vi	${ }^{4 \%}$	4\％	$4{ }^{4 \%}$	${ }^{3 \%}$	3\％	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％	0\％	\％	0\％	\％	\％	\％	\％ 0	0\％	\％	\％
5824	77，09，091	－Line or reatitisulated	5	NT1	4%	4%	4\％	3\％	3\％	${ }^{2 \%}$	2\％	\％	\％	\％	\％\％	\％	\％	\％	\％	\％	\％	\％	\％	\％
${ }^{5225}$	77，00，099	Other	5	NT1	4%	${ }^{4 \%}$	4%	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％
5826	$7{ }^{7310.10 .10}$	－Of inplat	5	NT1	4%	4%	4\％	3\％	${ }^{3 \%}$	${ }^{2 \%}$	2\％	\％	\％	\％	\％\％	\％	\％	\％	\％	\％	\％	\％	\％	\％
${ }_{5827}$	73，10，090	－－other	5	NT1	4%	4%	4\％	3\％	${ }^{3 \%}$	${ }^{2 \%}$	2\％	0\％	\％\％	\％	\％	0\％	\％	\％	\％	0\％	\％	0\％	\％\％	0\％
${ }^{5228}$	${ }^{73,102,110}$	－Of a a apacaly of tess than 11	5	NT1	$4{ }^{4 \%}$	${ }^{4 \%}$	4\％	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	0\％	\％	\％	\％	\％	\％\％	\％	\％	\％	0\％	\％	\％	\％
5829	$7{ }^{73,10,191}$	Of tiplate	5	v1	4\％	4%	4\％	3\％	3\％	2\％	2\％	\％	0\％	\％	0\％	0\％	0\％	0\％	0\％	\％	\％	\％	\％	\％\％
5830	$7{ }^{73,12,199}$	Onter	5	V1	4%	4%	4\％	3\％	3\％	2\％	2\％	\％	0\％	0\％	\％	\％	0\％	${ }^{0 \%}$	\％	\％	\％	0\％	0\％	\％
5831	73，12，9910	－－Of a capacty of lest than 11	5	V1	4\％	4\％	4\％	3\％	${ }^{3 \%}$	2\％	2%	0\％	\％	\％	\％	\％\％	\％	\％	\％	\％	0\％	\％	\％	\％
${ }^{5832}$	73，12，991	Of tipale	5	NT	4%	4\％	${ }^{4 \%}$	${ }^{3 \%}$	3\％	${ }^{2 \%}$	${ }^{2 \%}$	0\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％
${ }_{5833}$	73，102，999	Onter	5	NT1	4%	4%	4%	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％	\％	\％	\％	\％	\％	\％	0\％	\％	\％	\％
${ }^{5834}$	73，10，021	－Of a capality fless tan 301	5	NT1	4%	4%	4\％	3\％	3\％	${ }^{2 \%}$	2\％	\％	0\％	\％	\％	0\％	0\％	\％	\％	\％	\％	\％	\％	\％
${ }^{5335}$	${ }^{\text {73，110，022 }}$	－Of a capacily of 30 Ior more，but ess than 110	5	N1	4%	$4{ }^{4 \%}$	4\％	${ }^{3 \%}$	3\％	${ }^{2 \%}$	2%	\％	\％	\％\％	\％	\％	0\％	\％\％	\％	\％	\％	\％\％	\％	0\％
${ }_{5836}$	$7{ }^{73,10,029}$	－other	5	V1	4\％	${ }^{4 \%}$	4\％	${ }^{3 \%}$	${ }^{3 \%}$	2%	${ }^{2 \%}$	\％	0\％	0\％	\％	\％\％	\％	\％	\％	\％	0\％	\％	\％	0\％
${ }^{5837}$	${ }^{73,110,093}$	－Of a capariy of less than 301	5	NT1	4%	4%	4%	${ }^{3 \%}$	${ }^{3 \%}$	2\％	2\％	0\％	0\％	\％	\％	0\％	\％\％	\％	\％\％	0\％	0\％	0\％	\％\％	0\％
${ }^{5838}$	${ }^{73,10,094}$	－Of a capacity fo 301 or more，but lest than 1101	5	NT1	4\％	4\％	4\％	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	2\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	0\％	\％
5839	73，10，099	－other	5	NT1	4\％	4%	4\％	3\％	3\％	${ }^{2 \%}$	${ }^{2 \%}$	0\％	0\％	\％	0\％	0\％	0\％	\％	0\％	\％\％	\％	\％	\％	0\％
5840	$77^{71210.10}$	- Locked coils，flattened strands and non－rotating wire ropes	${ }^{5}$	NT1	4\％	4\％	${ }^{4 \%}$	${ }^{3 \%}$	3\％	${ }^{2 \%}$	2%	\％	0\％	\％\％	\％	\％	0\％	\％	\％	\％	\％	\％	\％	0\％
${ }^{5841}$	7312.10 .20	- Plated or coated with brass and of a diameter not exceding 3 mm	${ }^{5}$	V1	4\％	4\％	${ }^{4 \%}$	3\％	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	0\％	\％	\％\％	\％	\％	\％	\％	\％\％	\％	\％	\％	\％	0\％
5842	73，12，091	－Prestressing steelstrand	5	V1	4%	4%	4\％	3\％	3\％	2\％	2\％	\％	\％\％	\％\％	\％	0\％	0\％	0\％	\％	\％	\％	0\％	0\％	0\％
5^{5443}	${ }^{73,121,099}$	Onher	5	V1	4\％	4%	4\％	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	2\％	0\％	0\％	\％\％	\％	\％	0\％	\％	\％	\％	\％	\％	\％\％	\％\％
5_{544}	${ }^{73,129,000}$	Onher	5	NT1	4\％	4%	4%	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	2%	0\％	\％\％	\％	\％\％	\％\％	\％	\％	\％\％	\％	0\％	\％	0\％	\％\％
5845	73，13，000	Barbed wire of iron or steel；twisted hoop single flat wire，barbed or not，and loosely twisted double wire，of a kind used for fencing， of iron or steel	${ }^{5}$	NT1	4\％	4%	4\％	${ }^{3 \%}$	3\％	2\％	2\％	\％	0\％	0\％	\％	0\％	0\％	0\％	\％	0\％	\％	\％\％	0\％	0\％
${ }^{5466}$	${ }^{73,141,200}$	－－Endess bands ior macinen，of staininss stell	5	N1	4\％	${ }^{4 \%}$	4%	${ }^{3 \%}$	3\％	${ }^{2 \%}$	2\％	\％	\％	\％	\％	\％\％	\％\％	0\％	\％	\％	\％	\％	\％	0\％
${ }^{5847}$	${ }^{73,14,4,400}$	－Onere woven oloth，of stainess ssiel	5	NT1	4%	4\％	4\％	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％	\％	\％\％	\％	\％	\％	\％	\％	\％	\％	\％
${ }^{548}$	${ }^{73,14,910}$	$\begin{aligned} & \text {-- - Endless bands for machinery other than of } \\ & \text { stainless steel } \end{aligned}$	${ }^{5}$	V1	4\％	4%	4%	3\％	${ }^{3 \%}$	2\％	2\％	\％	\％	\％	\％	\％	0\％	\％	\％	\％	\％	\％	\％	\％\％
549	${ }^{73,141,990}$	－－Other	5	NT1	4\％	${ }^{4 \%}$	4\％	${ }^{3 \%}$	${ }^{3 \%}$	2\％	2%	0\％	\％	\％\％	\％	\％\％	\％	\％\％	\％\％	\％	\％	\％\％	\％\％	\％\％
${ }_{5550}$	73，42，000	－Grill，netting and fencing，welded at the intersection， of wire with a maximum corss－sectional dimension of 3 mm orore more and having a mesh size of 100 cm 2 or more	5	NT1	4\％	4\％	4\％	3\％	3\％	2\％	${ }^{2}$	\％	0\％	0\％	\％\％	0\％	\％\％	\％\％	\％\％	0\％	\％	\％\％	\％	\％
${ }_{5651}$	$7{ }^{73,14,100}$	－－Paled or coaed winz zinc	5	NT1	4\％	4%	4\％	3\％	${ }^{3 \%}$	${ }^{2 \%}$	2\％	0\％	0\％	0\％	\％	\％\％	\％\％	0\％	\％\％	0\％	\％	0\％	\％	0\％
${ }^{5352}$	${ }^{73,14,3,90}$	－Oner	5	NT1	4%	4%	4\％	3\％	3\％	${ }^{2 \%}$	2\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％
${ }^{5653}$	73，14， 100	－Paled or coaled winzinc	5	NT1	$4{ }^{4 \%}$	${ }^{4 \%}$	4\％	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	0\％	\％\％	\％	\％\％	\％	\％	\％	\％	\％	0\％	\％	\％	\％
${ }^{5854}$	73，14，200	－Coated with plasios	5	NT1	4\％	4%	4\％	3\％	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	0\％	\％	0\％	\％	\％\％	\％	\％	\％	\％	\％	\％	\％
${ }^{5855}$	73，44，900	Onher	5	NT1	${ }^{4 \%}$	4\％	4%	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％	\％\％	\％\％	\％	\％	\％	\％	0\％	\％	\％	\％
${ }_{5556}^{55}$	${ }^{73,145,000}$	－Exanased mealal	5	V1	${ }^{4 \%}$	4%	4%	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％\％	0\％	\％\％	\％\％	\％\％	\％	\％\％	\％\％	\％	\％	\％	\％\％
${ }^{5857}$	${ }^{73315.11 .10}$	－Bicyde or moiocryde chan	5	${ }^{\text {NT1 }}$	4%	4%	4%	3\％	3\％	${ }^{2 \%}$	${ }^{2 \%}$	\％	0\％	\％	\％	\％	0\％	\％	\％	\％	\％	\％	\％	0\％
${ }^{5558}$	73，15，191	$\begin{aligned} & \text {--- Transmission type, of a pitch length of not less } \\ & \text { than } 6 \mathrm{~mm} \text { and not more than } 32 \mathrm{~mm} \\ & \hline \end{aligned}$	${ }^{5}$	NT1	4\％	4%	4\％	3\％	3\％	${ }^{2 \%}$	${ }^{2 \%}$	\％	0\％	0\％	0\％	0\％	0\％	\％	\％	\％	\％	\％	\％	\％
5559	73，15，199	－－Oother	5	NT1	4\％	4%	4%	3\％	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	0\％	\％\％	\％\％	0\％	0\％	\％\％	\％	\％\％	\％	\％	\％\％	\％	0\％
${ }^{5860}$	${ }^{7315.12 .10}$	－Bicyce or moiocryde chain	5	NT1	4%	$4{ }^{4 \%}$	4\％	${ }^{3 \%}$	3\％	${ }^{2 \%}$	${ }^{2 \%}$	0\％	\％	\％	\％\％	\％	\％	\％\％	\％\％	\％	\％	\％\％	0\％	\％\％
${ }^{5661}$	${ }^{73,15,290}$	－other	5	NT1	4\％	4%	4%	${ }^{3 \%}$	3\％	${ }^{2 \%}$	${ }^{2 \%}$	\％	0\％	\％\％	0\％	0\％	\％	\％	\％\％	0\％	\％	0\％	\％	0\％
${ }^{5662}$	${ }^{73,15,910}$	－Of bicyle or molocryce chain	5	NT1	4%	4%	4\％	3\％	${ }^{3 \%}$	${ }^{2 \%}$	2\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	0\％
${ }^{5663}$	77，15，990	Other	5	NT1	4\％	4\％	4\％	3\％	3\％	2%	${ }^{2 \%}$	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％\％	\％	\％

香港•ASEAN FTAにかかる調査報告書

5864	${ }^{73,152,000}$	－－kko chain	5	NT1	4\％	$4{ }^{4 \%}$	4\％	${ }^{3 \%}$	${ }^{\text {3\％}}$	${ }^{2 \%}$	${ }^{2 \%}$	0\％	0\％	0\％	0\％	0\％	\％	0\％	\％	\％	\％	\％\％	\％	\％\％
5865	73，15，100	－Sud İ．ink	5	NT1	4%	${ }_{4 \%}$	4%	${ }^{3 \%}$	${ }^{3} \%$	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％	\％	\％	\％	\％	\％	\％\％	\％	\％	0\％	\％
386	${ }^{73,15,200}$	－Other，welted link	5	NT1	4%	4%	4\％	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	0\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％
5867	${ }^{73,15,9,90}$	${ }^{\text {Bicycle or moicocyle chain }}$	5	NT	${ }^{4 \%}$	${ }^{4 \%}$	${ }^{4 / 8}$	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	0\％	\％	0\％	0\％	0\％	0\％	\％	\％	\％	0\％	\％	\％	\％
5588	${ }^{73,15,990}$	Oner	5	NT1	${ }^{4 \%}$	$4{ }^{4 \%}$	4\％	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	0\％	0\％	0\％	0\％	\％	0\％	0\％	\％	0\％	\％	\％	0\％	${ }^{0 \%}$
5569	${ }^{73,15,920}$		5	${ }^{\text {NT1 }}$	4\％	4\％	4\％	3\％	${ }^{3} \%$	2\％	2\％	0\％	\％	\％	\％	\％\％	0\％	\％	0%	\％	\％	\％	\％	\％\％
5870	73，15，990	－Oner	5	NT1	4\％	${ }^{4 \%}$	4\％	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％\％	0\％	0\％	\％
5871	$7{ }^{73,16,000}$	Anchors，grapnels and parts thereof，of iron or steel．	5	NT1	4\％	${ }^{4 \%}$	4\％	3\％	3\％	${ }^{2 \%}$	${ }^{2 \%}$	0\％	\％	\％	\％	\％	0\％	\％	\％	\％	\％	\％	\％	\％
5872	${ }^{73,170,010}$	Wienals	5	NT1	${ }^{4 \%}$	${ }^{4 \%}$	${ }^{4 \%}$	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	0\％	0\％	\％\％	0\％	\％\％	\％	\％\％	0\％	\％	\％	0\％	\％\％	\％
5873	${ }^{73,70,020}$	－Sapes	5	${ }^{\text {NT1 }}$	4%	${ }^{4 \%}$	4\％	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％\％
5874	${ }^{73,77,090}$	－other	5	NT1	4\％	4%	4\％	3\％	${ }^{3} \%$	${ }^{2 \%}$	2\％	0\％	\％	\％	0\％	0\％	0\％	\％	\％	\％	0\％	\％	0\％	\％
58875	${ }^{73,18,100}$	－Coach screws	5	${ }^{\text {NTI }}$	4%	${ }^{4 \%}$	4%	3\％	${ }^{3} \%$	2\％	${ }^{2 \%}$	0\％	0\％	\％	\％	\％	\％	\％	0\％	\％	\％	\％	\％	\％\％
5876	${ }^{73,18,200}$	－Oher wood scews	5	NT	${ }^{4 \%}$	${ }^{4 \%}$	4%	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	0\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％
5877	${ }^{73,18,3,300}$	Screw hooks and screw	5	NT1	${ }^{4 \%}$	$4{ }^{4 \%}$	4\％	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	0\％	0\％	0\％	0\％	\％	0\％	0\％	\％	\％	\％	0\％	0\％	\％\％
5878	${ }^{73,18,4,40}$	－Selftaping strews	5	${ }^{\text {NT1 }}$	4\％	4\％	4\％	${ }^{3} \%$	${ }^{3} \%$	2\％	2\％	0\％	\％	\％	0\％	\％	\％	\％	\％\％	\％	\％	\％	\％	\％
5879	${ }^{73,18,500}$	- Other screws and bolts，whether or not with their nuts or washers	5	${ }^{\text {NT1 }}$	4\％	4\％	4\％	${ }^{3 \%}$	3\％	2%	${ }^{2 \%}$	\％	\％	\％	\％	\％	\％	\％	0\％	\％	0\％	\％	0\％	\％
5580	${ }^{73,18,500}$	－－Nuts	5	NT1	4\％	$4{ }^{4 \%}$	4\％	3\％	3\％	${ }^{2 \%}$	${ }^{2 \%}$	0\％	0\％	0\％	0\％	0\％	0\％	0\％	0\％	\％	0\％	0\％	0\％	\％
5581	${ }^{73,18,900}$	－Other	5	NT1	${ }^{4 \%}$	4%	4%	${ }^{3 \%}$	${ }^{3 \%}$	2%	${ }^{2 \%}$	\％\％	0\％	0\％	0\％	0\％	0\％	0\％	\％	\％\％	\％	0\％	\％	\％\％
5882	${ }^{73,182,100}$	－Spring wasters and other lock wasters	5	${ }^{\text {NT1 }}$	4\％	$4{ }^{4}$	4\％	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％	\％	\％	0\％	0\％	\％	0\％	0\％	\％	\％	\％\％
5583	${ }^{73,182200}$	－other washers	5	NT1	4\％	4%	4\％	3\％	${ }^{3} \%$	2\％	2\％	0\％	\％	0\％	0\％	\％	0\％	\％	0\％	\％	0\％	\％	0\％	\％
5884	${ }^{73,182300}$	－Rives	5	NT1	$4{ }^{4 \%}$	${ }^{4 \%}$	4\％	3\％	3\％	${ }^{2 \%}$	${ }^{2 \%}$	0\％	\％	\％	\％	\％	0\％	0\％	0\％	\％	0\％	\％	0\％	\％\％
5885	${ }^{73,18,400}$	－Coters and coterep pin	5	NT	${ }^{4 \%}$	${ }^{4 \%}$	4%	${ }^{3}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	0\％	0\％	0\％	\％	\％	0\％	\％	\％	\％	\％	\％	\％	\％
5886	${ }^{73,18,2,90}$	－other	5	NT	${ }^{4 \%}$	$4{ }^{4}$	4\％	${ }^{3} \%$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	0\％	0\％	0\％	\％	\％	0\％	0\％	\％	0\％	\％	\％	\％	\％
5887	${ }^{73,19,000}$	Satey p pis and other pris	5	${ }^{\text {NT1 }}$	4\％	4\％	4\％	3\％	${ }^{3} \%$	${ }^{2 \%}$	2\％	0\％	\％	\％	\％	\％\％	\％	\％	\％	0\％	\％	\％	\％	\％
5588	${ }^{73,19,010}$	－Sewing，daming orembridey neediles	5	NT1	4\％	4%	4\％	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％	\％	0\％	\％	\％	\％	\％	\％	\％	0\％	\％
5589	${ }^{73,199,990}$	－－omer	5	NT1	4%	4\％	4\％	3\％	3\％	2\％	2\％	0\％	0\％	\％	0\％	0\％	0\％	0\％	0\％	0\％	0\％	0\％	0\％	0\％
5890	${ }^{7320.10 .11}$	Suitable for use on motor vehicles of heading 87．02， 87.03 or 87.04	5	${ }^{\text {NT1 }}$	4\％	4\％	4\％	${ }^{3} \%$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	0\％	\％
5591	${ }^{7320.00 .19}$	－－Onter	5	${ }^{\text {NT1 }}$	${ }^{4 \%}$	${ }^{4 \%}$	4\％	${ }^{3} \%$	${ }^{\text {\％}}$	${ }^{2 \%}$	${ }^{2 \%}$	${ }_{0}$	\％	\％	\％	\％	\％	0\％	\％	\％\％	\％	\％	\％	\％
5982	${ }^{73,2010,90}$	Other	5	NT1	4\％	4%	4\％	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％	\％\％	0\％	0\％	\％	\％	\％	\％	\％	0\％	\％
5^{589}	${ }^{7,2020,010}$	Suitable for use on motor vehicles or machinery of	5	NT1	4\％	$4{ }^{4 \%}$	4\％	${ }^{3 \%}$	${ }^{\text {3\％}}$	${ }^{2 \%}$	${ }^{2 \%}$	0\％	\％	0\％	0\％	\％\％	\％\％	\％	\％\％	\％	\％\％	\％	\％	\％
5584	${ }^{73,202090}$	－other	5	V1	4\％	$4{ }^{46}$	4\％	3\％	3\％	${ }^{2 \%}$	${ }^{2 \%}$	0\％	\％	\％	\％	0\％	\％	\％	0\％	\％	0\％	0\％	0\％	\％
5895	${ }^{73,290,010}$	Suitabe for seso on motor venices	5	NT	${ }^{4 \%}$	${ }^{46}$	4%	3\％	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	0\％	0\％	\％	\％	\％	0\％	0\％	\％	\％\％	\％	\％	\％	\％\％
5986	${ }^{7,200,900}$	Other	5	NT1	4\％	4%	4\％	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	0\％
5897	${ }^{7,2121,100}$	－For gas tue of ofor bolt gas and ofter tulus	5	NT1	4\％	4\％	4\％	${ }^{3} \%$	3\％	${ }^{2 \%}$	${ }^{2 \%}$	0\％	\％	\％	0\％	\％	\％	\％	\％	\％\％	\％	\％	\％	\％
5598	${ }^{73,21,200}$	－For fiquid tuel	5	${ }^{\text {NT1 }}$	4\％	4\％	4\％	${ }^{3 \%}$	3\％	${ }^{2 \%}$	${ }^{2 \%}$	\％	0\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	0\％
5599	${ }^{73,211,900}$	Oherer inculing applianes Sors solid tuel	5	NT1	4%	4%	4%	${ }^{3 \%}$	${ }^{3 \%}$	2%	${ }^{2 \%}$	0\％	0\％	0\％	0\％	0\％	0\％	\％\％	\％	\％\％	0\％	0\％	0\％	\％
5590	${ }^{73,28,100}$	－－For gas tue oforo bolot gas and other fuls	5	${ }^{\text {NT1 }}$	4\％	$4{ }^{4}$	4\％	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％$\%$
5901	${ }^{73,218,200}$	－For fiquid tuel	5	NT1	4\％	4\％	4\％	${ }^{3 \%}$	3\％	2\％	2\％	\％	\％	0\％	0\％	\％	\％	\％	\％	\％	\％	\％	\％	\％
5902	${ }^{7,3,21,900}$	－Other，inculidg appliancest of solid tuel	5	${ }^{\text {NT1 }}$	4\％	$4{ }^{46}$	4\％	3\％	3\％	2\％	2\％	0\％	\％	\％	0\％	\％	0\％	\％	0\％	\％	\％	\％	\％	${ }^{\circ} \%$
5903	${ }^{73,219,010}$	－Ofterosene stoves	5	NT	4\％	${ }^{4 \%}$	4\％	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％	\％\％	\％	\％	\％	\％	\％	\％	\％	\％	\％
5904	${ }^{7,219,020}$	- Of cooking appliances and plate warmers using gas fuel	${ }^{5}$	NT1	4\％	4\％	4\％	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％	\％	\％	\％	\％	${ }^{0 \%}$	\％	\％	${ }^{0 \%}$	0\％	${ }^{\circ} \mathrm{O}$
5905	${ }^{73,219,990}$	－－other	5	NT1	4\％	$4{ }^{4 \%}$	4\％	3\％	3\％	2\％	2\％	0\％	0\％	0\％	0\％	0\％	0\％	0\％	0\％	0\％	0\％	0\％	0\％	\％
5906	${ }^{73,221,100}$	－． O c castion	5	NT1	${ }^{4 \%}$	$4{ }^{4 \%}$	4%	${ }^{3 \%}$	${ }^{3 \%}$	2%	${ }^{2 \%}$	0\％	\％	0\％	0\％	0\％	0\％	\％	\％	\％	\％	0\％	0\％	\％\％
5907	${ }^{73,221,900}$	－oter	5	NT1	4\％	4\％	4\％	3\％	3\％	2\％	${ }^{2 \%}$	0\％	0\％	\％	0\％	0\％	0\％	0\％	0\％	0\％	0\％	0\％	0\％	0\％
5908	${ }^{73,29,000}$	－oner	5	${ }^{\text {NT1 }}$	4%	4%	4\％	3\％	${ }^{3 \%}$	2%	${ }^{2 \%}$	0\％	0\％	0\％	0\％	0\％	0\％	0\％	0\％	0\％	0\％	0\％	0\％	\％
5909	${ }^{73,23,000}$	－Iron or steel wool；pot scourers and scouring or polishing pads，gloves and the like	10	NT2	9\％	9\％	8\％	${ }_{8}^{8}$	6\％	6\％	5\％	5\％	4\％	4\％	3\％	3\％	2\％	${ }^{2 \%}$	\％	\％	\％	\％	0\％	\％\％
599	${ }^{73,23,110}$	\cdots	10	sL	0\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	${ }^{8 \%}$	${ }^{\text {\％}}$	6\％	5\％	4\％	${ }^{3 \%}$	${ }^{2 \%}$	12／	\％	\％	\％	\％
5911	${ }^{7,23,29,120}$	－Astray	10	st	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	8\％	${ }^{7 \%}$	6\％	5\％	4\％	3\％	2\％	1\％	\％	\％	\％	\％
5912	${ }^{7,23,29,190}$	Other	10	sL	10\％	10\％	\％	10\％	10\％	10\％	10\％	10\％	8\％	${ }^{7 \%}$	6\％	5\％	4%	3\％	${ }^{2 \%}$	1\％	\％	\％	\％	${ }^{0 \%}$
5913	${ }^{73,23,200}$	Of castion，eramenled	10	N2	${ }^{9 \%}$	${ }^{9 \%}$	${ }^{8 \%}$	\％	6\％	6\％	${ }^{5 \%}$	${ }^{5 \%}$	${ }^{4 \%}$	${ }^{4 \%}$	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％	\％	\％	0\％
5914	${ }^{7,23,3,310}$	Hehemare	10	N2	\％	9\％	8%	\％	${ }^{6 \%}$	6\％	${ }^{5 \%}$	${ }^{5 \%}$	${ }^{4 \%}$	${ }^{4 \%}$	3\％	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	0\％	\％	\％	\％	\％\％
5915	${ }^{7,3,29,320}$	Astrays	10	st	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	${ }^{8 \%}$	${ }^{7} \%$	6\％	5\％	4\％	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{1 \%}$	\％	\％	\％	\％
599	${ }^{73,23,390}$	Onher	10	sL	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	${ }^{8 \%}$	${ }^{7 \%}$	6\％	5\％	4%	3\％	${ }^{2 \%}$	${ }^{1 \%}$	\％	\％	0\％	\％
5997	${ }^{7,3,23,400}$	－Of ion（oher than cast ion）orseel，enameled	10	SL	${ }^{10 \%}$	10\％	10\％	10\％	10\％	10\％	10\％	10\％	${ }^{8 \%}$	${ }^{7 \%}$	${ }^{6 \%}$	${ }^{5 \%}$	4%	3\％	${ }^{2 \%}$	1\％	0\％	\％	0\％	\％
5918	${ }^{7,323,910}$	\cdots	10	sL	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	8\％	${ }^{7 \%}$	6\％	5\％	4\％	3\％	${ }^{2 \%}$	${ }^{1 \%}$	\％	0\％	\％	0\％
5919	${ }^{73,23,920}$	－Astrays	10	sL	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	8\％	${ }^{7 \%}$	${ }^{6 \%}$	${ }^{5 \%}$	4%	3\％	${ }^{2 \%}$	${ }^{1 \%}$	\％	\％	\％	\％
5920	${ }^{7,23,9,990}$	Other	10	st	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	8\％	7\％	6\％	5\％	4\％	3\％	2\％	1\％	\％	\％	\％	\％
5921	${ }^{7324.10,10}$	－Kictene sinks	5	N1	4\％	${ }^{4 \%}$	${ }^{4 \%}$	3\％	3\％	${ }^{2 \%}$	${ }^{2 \%}$	0\％	\％	\％\％	0\％	\％\％	\％	0\％	\％\％	\％	0\％	\％	\％	\％
5922	${ }^{73,24,090}$	－Oner	5	NT	${ }^{4 \%}$	${ }^{4 / 6}$	4%	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	0\％	0\％	0\％	0\％	\％	0\％	0\％	\％	\％	\％	\％	\％	\％
5923	${ }^{73,242,110}$	－－Long shaped bathus	5	NT1	4\％	4%	4\％	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	0\％	\％	\％
592	${ }^{7,3242,190}$	－－Omer	5	NT1	4\％	4\％	4\％	${ }^{3 \%}$	3\％	${ }^{2 \%}$	${ }^{2 \%}$	0\％	0\％	0\％	\％	0\％	\％	\％	\％	\％\％	\％	\％	0\％	${ }^{0 \%}$
5925	${ }^{73,242,900}$	Oher	5	NT1	4\％	$4{ }^{4}$	4\％	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	0\％	0\％
5926	${ }^{73,249,010}$		5	NT1	${ }^{4 \%}$	4%	4%	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	0\％	0\％	0\％	0\％	0\％	0\％	0\％	\％	0\％	0\％	0\％	0\％
5927	${ }^{73,24,030}$	－Beeponas and portable urials	5	${ }^{\text {NT1 }}$	4\％	$4{ }^{4}$	4%	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％
5928	${ }^{73,24,091}$	－PPars of kictene sinks or baltubs	5	${ }^{\text {NT1 }}$	4\％	$4{ }^{4}$	4%	3\％	3\％	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	0\％	\％	\％
529	${ }^{7,24,0,03}$	－Parts of flushing water closets or urinals（fixed	5	NT1	${ }^{4 \%}$	4\％	4\％	3\％	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	0\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	0\％	\％
5950	${ }^{7,24,9,099}$	－．other	5	NT1	4\％	$4{ }^{4 \%}$	4\％	3\％	3\％	2\％	${ }^{2 \%}$	0\％	0\％	0\％	\％	0\％	0\％	\％	\％	0\％	0\％	\％\％	\％	0\％
5931	${ }^{7325.10 .20}$	minde covers，graings and fra	5	NT1	${ }^{4 \%}$	$4{ }^{4 \%}$	4%	3\％	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	0\％	0\％	0\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	${ }^{0 \%}$
5932	${ }^{73,25,090}$	Other	5	${ }^{\text {NT1 }}$	4\％	$4{ }^{4 \%}$	4\％	3\％	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％
5933	${ }^{73,259,100}$	－Giriding balls and similar aricos or milis	${ }^{5}$	${ }^{\text {HSL }}$	5\％	5\％	5\％	5\％	5\％	5\％	5\％	5\％	5\％	5\％	5\％	5\％	5\％	5\％	5\％	5\％	5\％	${ }^{5 \%}$	${ }^{5 \%}$	${ }^{5 \%}$
${ }^{5934}$	${ }^{73,25,920}$	Manhole covers，gatiogs and fames therior	5	${ }^{\text {NT1 }}$	4\％	${ }^{4 \%}$	4%	3\％	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％	\％	\％	\％	\％	\％\％	\％	\％	\％	\％	\％
5935	${ }^{7,25,59,90}$	Oner	5	NT1	4\％	4\％	4\％	3\％	3\％	2\％	2\％	0\％	\％	0\％	0\％	0\％	0\％	\％	0\％	\％	\％	\％	0\％	\％
5936	${ }^{73,26,100}$	－Ginding balls and Similar aricios of or mils	5	NT1	4\％	4%	4%	3\％	3\％	2\％	${ }^{2 \%}$	0\％	0\％	\％	0\％	0\％	0\％	0\％	0\％	0\％	0\％	0\％	0\％	\％
5937	${ }^{7,3,26,900}$	－Other	5	NT1	4\％	4%	4%	${ }^{3 \%}$	${ }^{3 \%}$	2%	${ }^{2 \%}$	0\％	0\％	\％	0\％	0\％	\％	\％	0\％	\％	0\％	0\％	0\％	0\％
5938	${ }^{7,3,262,505}$	－Poultry cages and the lie	5	${ }^{\text {NT1 }}$	4\％	$4{ }^{4}$	4%	3\％	${ }^{3} \%$	${ }^{2 \%}$	${ }^{2 \%}$	0\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％\％	\％	\％
5939	${ }^{73,262,990}$	－other	5	NT1	4\％	${ }^{4 \%}$	4\％	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％
5940	${ }^{73,269,010}$	－Ships roders	5	NT1	4\％	${ }_{4}^{4 \%}$	4%	3\％	${ }^{3 \%}$	2%	${ }^{2 \%}$	0\％	0\％	0\％	0\％	0\％	0\％	0\％	0\％	\％	0\％	0\％	0\％	\％\％
$5{ }^{594}$	${ }^{73,26,030}$	－－Stainless steel clamp assemblies with rubber sleeves of a kind used for hubless cast iron pipes and pipe fittings	${ }_{5}$	${ }^{\text {NT1 }}$	4\％	${ }^{4 \%}$	4\％	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	${ }^{0 \%}$	\％	\％\％	\％	\％	0\％	\％	\％\％	0\％	\％\％	\％	\％
5942	${ }^{73,269,660}$	－－Bunsen bumers	${ }^{5}$	Hst	5\％	${ }^{\text {5\％}}$	5\％	5\％	5\％	5\％	5\％	5\％	5\％	5\％	5\％	${ }^{5 \%}$	5\％	5\％	${ }^{5 \%}$	5\％	5\％	5\％	5\％	${ }^{5 \%}$
593	${ }^{73,26,0,070}$	－Horssshoses inding boot spus	5	${ }^{\text {NT1 }}$	4\％	4\％	4%	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％	\％	\％	\％	0\％	0\％	\％	\％	0\％	0\％	\％
5994	${ }^{73,269,091}$	－Cigarefe cases and boxes	5	HsL	5\％	${ }^{5 \%}$	${ }^{5 \%}$	5\％	5\％	5\％	${ }^{\text {5\％}}$	5\％	5\％	5\％	5\％	5\％	5\％	5\％	${ }^{5 \%}$	5\％	5\％	5\％	5\％	${ }^{5 \%}$
5945	${ }^{73,26,099}$	－－omer	5	HSL	5\％	${ }^{5 \%}$	5\％	5\％	5\％	5\％	${ }^{5 \%}$	5\％	5\％	5\％	${ }^{5 \%}$	5\％	5\％	5\％	5\％	5\％	5\％	5\％	5\％	${ }^{5 \%}$
5946	$7{ }^{7,010,000}$	Copper mattes；cement copper（precipitated copper）．	5	NT1	$4{ }^{4 \%}$	${ }^{4 \%}$	4\％	${ }^{3 \%}$	${ }^{3 \%}$	2\％	${ }^{2 \%}$	\％	\％\％	\％	0\％	\％	0\％	\％	0\％	\％	0\％	\％	\％	0\％
5947	7，020，000	Unrefined copper；copper anodes for electrolytic refining．	${ }^{5}$	NT1	${ }^{4 \%}$	${ }^{4 \%}$	${ }^{4 \%}$	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％\％
59	${ }^{7,03,1,100}$	\cdots Cathoose and secitions ot cathodes	5	${ }^{\text {NT1 }}$	${ }^{4 \%}$	${ }^{4 \%}$	4\％	3\％	${ }^{3} \%$	${ }^{2 \%}$	${ }^{2 \%}$	0\％	\％	\％	\％\％	\％\％	\％	\％	\％	0\％	\％	\％	\％	\％
5949	7，03，200	Wriebars	5	NT1	4\％	4\％	4\％	3\％	3\％	2\％	2\％	0\％	\％	\％	\％	0\％	0\％	\％	0\％	\％	\％	\％	\％	\％
	${ }^{7,03,3,300}$			${ }^{\text {NT1 }}$	4\％	4%	4\％	3\％	3\％	${ }^{2}$	${ }^{2 \%}$	0\％	0\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	0\％	\％

香港•ASEAN FTAにかかる調査報告書

${ }^{6038}$	${ }^{78,042,110}$	Perforated tube profiles of a kind suitable for use in evaporator coils of motor vehicle air conditioning machines	5	NT1	${ }^{4 \%}$	${ }^{4 \%}$	${ }^{4 \%}$	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	0\％	\％	\％	\％	0\％	\％\％	\％	${ }^{0 \%}$	\％	0\％	\％\％
6039	7，02，190	－Other	5	NT1	4%	$4{ }^{4 / 8}$	4%	3\％	3\％	2%	${ }^{2 \%}$	\％	0\％	0\％	0\％	0\％	0\％	\％	\％	0\％	0\％	0\％	0\％	\％
5040	$77.04,9,90$	－Extuded bars and rods	5	NT1	4\％	4%	4\％	${ }^{3 \%}$	3\％	${ }^{2 \%}$	2\％	\％	0\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％
604	${ }^{7,0,02,930}$		5	NT1	$4{ }^{4 \%}$	4%	4\％	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	0\％	\％	0\％	0\％	\％	\％	\％	\％	\％	\％	\％
5042	${ }^{77,029,990}$	\cdots Oner	5	T1	4%	${ }^{4 \%}$	4\％	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	0\％	\％	0\％	0\％	0\％	\％	0\％	\％	\％	\％	\％	\％
${ }^{6043}$	7，05，100	$\begin{aligned} & \text { - Of which the maximum cross- sectional dimensio } \\ & \text { exceeds } 7 \mathrm{~mm} \\ & \hline \end{aligned}$	5	NT1	${ }^{4 \%}$	4%	${ }^{4 \%}$	${ }^{3 \%}$	3\％	2\％	${ }^{2 \%}$	0\％	\％	0\％	0\％	\％	\％	0\％	0\％	\％	\％	0\％	\％	0\％
6044	${ }^{77,051,910}$	$\cdots \mathrm{OT}$ diameter 0 Ot exceding 0.0508 mm	5	NT1	4%	${ }^{4 \%}$	${ }^{4 \%}$	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	0\％	0\％	0\％	\％	0\％	0\％	0\％	0\％	\％	\％	\％	\％	0\％
5045	$7{ }^{7,051,990}$	－－Other	5	NT1	4%	4%	4%	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	2%	0\％	\％	\％	\％	0\％	\％	\％	0\％	0\％	\％	\％	\％\％	\％
5046	$7^{7,052,100}$	－－Of which the maximum cross－sectional dimensio exceeds 7 mm	${ }^{5}$	NT1	4\％	${ }^{46}$	4\％	${ }^{3 \%}$	3\％	${ }^{2 \%}$	${ }^{2 \%}$	0\％	\％	\％	0\％	0\％	0\％	\％	0\％	\％\％	\％\％	\％\％	${ }^{0 \%}$	${ }^{0 \%}$
5047	${ }^{77,052,900}$	－Other	5	${ }^{\text {NT1 }}$	4\％	${ }^{4 / 8}$	4\％	${ }^{3 \%}$	3\％	2%	2%	\％	\％	0\％	\％\％	\％	0\％	0\％	\％	\％	0\％	\％	0\％	\％\％
5048	7700.11 .10	Plain or figured by rolling or pressing，not otherwise surface treated	5	NT1	4\％	4%	4\％	3\％	3\％	${ }^{2 \%}$	${ }^{2 \%}$	\％	0\％	0\％	0\％	\％	0\％	\％	\％	\％	0\％	\％	\％	\％
5049	$7{ }^{78,061,190}$	…Oter	5	NT1	4%	${ }^{4 \%}$	4\％	3\％	3\％	${ }^{2 \%}$	${ }^{2 \%}$	0\％	0\％	0\％	0\％	0\％	0\％	\％	0\％	0\％	\％	\％\％	0\％	\％
6050	7006．12：10	${ }_{\text {cois }}$ Can sook inoluding end stock and tab sock，in	5	NT1	4%	4%	4%	3\％	3\％	${ }^{2 \%}$	${ }^{2 \%}$	\％	0\％	0\％	\％\％	\％	\％	\％	\％	0%	0\％	\％	\％	\％
${ }^{6051}$	7606.1220	\cdots Aluminium plates，not sensitised，of a kind used in the printing industry	5	NT1	${ }^{4 \%}$	4\％	${ }^{4 \%}$	${ }^{3 \%}$	${ }^{\text {\％}}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	0\％	0\％	0\％	\％	\％	0\％	\％	\％$\%$	${ }^{0 \%}$	\％	\％	
$6{ }^{605}$	7606.1231		5	NT1	${ }^{4 \%}$	${ }^{4 \%}$	${ }^{4 \%}$	${ }^{\text {\％}}$	${ }^{\text {3\％}}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％	\％	0\％	\％	\％	\％	\％$\%$	\％$\%$	\％	${ }^{0 \%}$	\％\％
6053	76，06，239	\cdots	5	NT1	$4{ }^{4 \%}$	4\％	4\％	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	0\％	0\％	0\％	0\％	0\％	\％	\％	0\％	0\％	0\％	0\％	\％	0\％
6054	${ }^{7,0601,290}$	\cdots Oner	5	NT1	4\％	4%	4%	${ }^{3} \%$	${ }^{3} \%$	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％	0\％	\％\％	\％	\％	\％\％	\％\％	\％	\％\％	\％	\％
${ }^{6055}$	$7{ }^{7,069,100}$	－otaunium，notaloyed	5	NT1	4%	4\％	4%	3\％	3\％	2\％	2\％	\％	\％	\％	0\％	\％	\％	\％	\％	\％	\％	\％	\％	\％
6056	${ }^{78,069,200}$	－ot aumnium aloys	${ }^{5}$	NT1	4\％	4%	4\％	3\％	3\％	2%	2\％	0\％	\％	0\％	\％\％	\％	\％	\％	0\％	\％	\％	\％	\％	\％\％
6057	$7{ }^{76,071,100}$	－Rolled but not turter w	5	NT1	49	4%	$4{ }^{4}$	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	0\％	\％	0\％	\％	\％	\％	\％	\％	\％	0\％	\％	\％	\％\％
6058	76，07，900	－Oner	5	NT1	$4{ }^{4 \%}$	4%	$4{ }^{4 \%}$	3\％	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	0\％	\％	0\％	0\％	\％	0\％	\％	\％\％	\％	0\％	\％	\％
609	76，02，200	Backed	5	NT1	4%	4%	4\％	${ }^{3} \%$	${ }^{3} \%$	${ }^{2 \%}$	${ }^{2 \%}$	\％	0\％	\％	0\％	\％	0\％	\％	\％	\％	\％	\％	\％	\％
5060	78，08，000	－of aluminim，notalolyed	5	${ }^{\text {NT1 }}$	4%	$4{ }^{4 \%}$	4%	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％\％	0\％	\％	\％	\％\％	\％	\％	\％	\％	\％	\％	\％
5061	$7{ }^{7,082}, 0000$	Of aluminim aloys	5	NT1	4%	4%	4\％	3\％	3\％	2%	2\％	0\％	0\％	0\％	0\％	0\％	0\％	\％	0\％	0\％	\％\％	0\％	0\％	\％
6062	$7{ }^{7,00,000}$	Aluminium tube or pipe fittings（for example， couplings，elbows，sleeves）．	5	NT1	4%	4%	4%	3\％	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	0\％	\％	\％	0\％	\％	\％	\％	\％	\％	0\％	\％	\％	\％
${ }^{6063}$	78，01，000	－Doors，windows and their frames and thresholds for doors	10	sL	0\％	10\％	10\％	\％\％	\％	\％\％	\％\％	10\％	${ }^{8 \%}$	${ }^{\text {\％}}$	\％	${ }^{\text {5\％}}$	${ }^{4 \%}$	3\％	${ }^{2 \%}$	${ }^{1 \%}$	${ }_{0}^{0 \%}$	\％	\％	
5684	$7{ }^{7,100,020}$	－－Inemal or exemal floting foois for soroge lants	10	sL	\％\％	10\％	0\％	10\％	0\％	10\％	\％	10\％	\％	${ }^{7 \%}$	\％	${ }^{\text {5\％}}$	${ }^{4 \%}$	3\％	${ }^{2 \%}$	${ }^{\text {1\％}}$	\％	\％	${ }^{0 \%}$	\％
5005	$7{ }^{7,100,900}$	－Oner	10	NT2	9\％	9\％	${ }^{8 \%}$	${ }^{8 \%}$	6\％	${ }^{6 \%}$	5\％	5\％	4\％	4\％	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％\％	0\％	\％\％	\％\％	0\％	\％
5066	76，10，000	Aluminium reservoirs，tanks，vats and similar containers，for any material（other than compressed or liguefied gas），of a capacity exceeding 300 I，whether or not lined or heat－ insulated，but not fitted with mechanical or thermal equipment．	10	${ }^{\text {st }}$	10\％	${ }^{10 \%}$	10\％	10\％	10\％	10\％	10\％	10\％	8\％	\％	6\％	5\％	4\％	3\％	2\％	1\％	0\％	\％	\％	\％
6067	${ }^{78,121,000}$	Collassble wuluar conlainets	${ }^{10}$	${ }^{\text {sL }}$	10\％	10\％	0\％	\％\％	0\％	10\％	10\％	\％\％	8%	${ }^{\text {7\％}}$	6\％	${ }^{5 \%}$	${ }^{4 \%}$	3\％	${ }^{2 \%}$	1\％	\％	\％	\％	\％
5008	76，12，0010	$\underset{\text { milk }}{- \text { Seamless containers of a kind suitable for fresh }}$	${ }^{10}$	sL	\％	10\％	\％\％	\％\％	\％	0\％	0\％	10\％	8%	${ }^{7 \%}$	6\％	5\％	${ }^{4 \%}$	3\％	2\％	${ }^{1 \%}$	\％	\％	\％	\％
6069	$7{ }^{76,129,990}$	－Other	10	st	0\％	10\％	10\％	10\％	0\％	10\％	10\％	10\％	8\％	7\％	6\％	${ }^{5 \%}$	${ }^{4 \%}$	3\％	${ }^{2 \%}$	1\％	\％	0\％	\％\％	\％
6070	76，30，000	Aluminium containers for compressed or liguefied gas．	5	V1	4\％	4%	4%	${ }^{3 \%}$	3\％	${ }^{2 \%}$	${ }^{2 \%}$		\％	\％	\％	\％ 0	\％	\％$\%$	\％	${ }^{0 \%}$	${ }^{0 \%}$	\％\％	${ }^{0 \%}$	${ }^{\circ} \mathrm{O}$
6071	${ }^{7614.10 \cdot 11}$	Of da diameer rote exceeding 25.3 mm	5	NT1	4\％	4%	4\％	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	2\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	0\％	\％	0\％	0\％
5072	$7{ }^{7614.10 .12}$	- －Of a diameter exceeding 25.3 mm but not exceeding 28.28 mm	5	NT1	4%	4%	4%	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	0\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	${ }^{0 \%}$
6073	77614010.19	．－omer	5	NT1	4\％	4\％	4\％	3\％	3\％	${ }^{2 \%}$	${ }^{2 \%}$	\％	0\％	\％	0\％	\％	0\％	\％	0\％	0\％	0\％	\％\％	\％	\％
6074	${ }^{77,141,090}$	－oner	5	NT1	4\％	4\％	4\％	3\％	3\％	${ }^{2 \%}$	2%	\％	0\％	0\％	\％\％	\％	\％\％	\％	\％\％	0\％	\％\％	\％\％	0\％	\％
6075	${ }^{76,14,0,011}$	－Of dadiamet rote exeesing 25.3 mm	${ }^{5}$	NT1	4\％	4%	4%	3\％	3\％	2\％	2%	0\％	0\％	0\％	\％\％	\％\％	\％\％	0\％	\％\％	0\％	0\％	0\％	0\％	\％
8076	$7{ }^{7,149,012}$	－．Of a diameter exceeding 25.3 mm but not	${ }^{5}$	NT1	4\％	4%	${ }^{4 \%}$	3\％	3\％	2\％	${ }^{2 \%}$	\％	\％	\％	0\％	\％	0\％	\％	0\％	\％	\％	\％	\％	\％
607	78，44，019	‥Oner	5	NT1	4%	4%	4\％	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	2\％	0\％	\％	\％	\％	0\％	\％	\％	\％	0\％	0\％	\％	\％	\％
$6{ }^{6078}$	$7{ }^{7,149,090}$	－Oner	${ }^{5}$	NT1	4\％	4%	4\％	${ }^{3 \%}$	3\％	${ }^{2 \%}$	${ }^{2 \%}$	0\％	0\％	\％	\％	\％\％	0\％	\％	\％	\％	\％	\％	\％	\％
6079	$7{ }^{7615.10 .10}$	Pot scourers and scouring or polishing pads， gloves and the like	${ }^{10}$	NT2	9\％	9\％	8%	8\％	6\％	6\％	5\％	5\％	4\％	$4{ }^{4 \%}$	3\％	3\％	${ }^{2 \%}$	${ }^{2 \%}$	0\％	\％	0\％	\％	0\％	0\％
6080	${ }^{78,151,090}$	$\stackrel{- \text { Oher }}{ }$	${ }^{10}$	st	\％	0\％	\％$\%$	10\％	0\％	10\％	10\％	10\％	8%	${ }^{7 \%}$	6\％	5\％	${ }^{4 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{1 \%}$	0\％	\％\％	\％	\％
6081	${ }^{78,152,020}$	－Beopans，urinals and chamberpols	10	st	0\％	10\％	\％\％	10\％	10\％	10\％	\％	10\％	8%	7\％	6\％	5\％	4\％	${ }^{3 \%}$	${ }^{2 \%}$	1\％	\％	\％\％	\％	\％
6082	76，15，090	－Oner	10	NT2	9\％	9\％	${ }_{8 \%}$	${ }^{8 \%}$	6\％	6\％	5\％	${ }^{5 \%}$	$4{ }^{4 \%}$	$4{ }^{4 \%}$	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％	\％	\％	0\％
6083	$7{ }^{7616.10 .10}$	－Nals	10	NT2	9%	9\％	${ }_{8} 8$	${ }^{8 \%}$	6%	${ }^{6 \%}$	${ }^{5 \%}$	${ }^{5 \%}$	${ }^{4 \%}$	$4{ }^{4}$	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％	\％	\％\％	\％
5084	$7{ }^{7616.10 .20}$	－Sapese and hooks，blis and nuts	10	NT2	9\％	\％	${ }^{8} \%$	${ }_{8} 8$	6\％	6\％	5\％	5\％	4\％	4\％	3\％	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％	\％	\％	\％
5085	${ }^{78,66,090}$	－Oner	${ }^{10}$	st	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	${ }^{8 \%}$	7\％	${ }^{6 \%}$	${ }^{5 \%}$	${ }^{4 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{1 \%}$	\％\％	\％	\％	\％
${ }^{0086}$	${ }^{78,169,100}$	－Colot，gill，neting and fencing，of aluminium wie	10	NT2	${ }^{9 \%}$	9\％	8\％	8\％	6\％	6%	5\％	5\％	4\％	${ }^{4 \%}$	3\％	3\％	2\％	${ }^{2 \%}$	\％\％	0\％	\％\％	\％\％	\％	\％
5087	6，169，920	－－Ferrules of a kind suitable for use in the manufacture of pencils	${ }^{10}$	sL	10\％	10\％	10\％	\％	10\％	10\％	\％\％	10\％	${ }^{8 \%}$	${ }^{7 \%}$	${ }^{6 \%}$	5\％	${ }^{4 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	1\％	\％	\％\％	\％	\％\％
6088	76，66，930	\cdots Slugs，round，of such dimension that the thickness exceeds one－tenth of the diameter	${ }^{10}$	NT2	\％	9\％	${ }^{8 \%}$	${ }^{8 \%}$	6\％	6\％	${ }^{5 \%}$	${ }^{5 \%}$	${ }^{4 \%}$	${ }^{4 \%}$	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％	\％	\％	\％\％
6089	78，69，940	$-\cdots$ Bobbins，spools，reels and similar supports for textile yarn	10	${ }^{\text {st }}$	10\％	10\％	10\％	10\％	0\％	10\％	10\％	10\％	${ }^{8 \%}$	\％	6\％	${ }^{5 \%}$	$4{ }^{40}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{1 \%}$	0\％	\％	0\％	${ }^{0 \%}$
${ }^{6090}$	7，6，69，960		10	${ }^{\text {s }}$	10\％	10\％	10\％	0\％	10\％	10\％	10\％	10\％	${ }^{8 \%}$	${ }^{7}$	6\％	${ }^{5 \%}$	${ }^{4 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{1 \%}$	0\％	0\％	\％\％	${ }_{0}^{0 \%}$
609	$7{ }^{7,169,991}$	\ldots Cigaetele cases or boxes，blins	10	st	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	${ }^{8 \%}$	\％	6\％	5\％	${ }^{4 \%}$	3\％	${ }^{2 \%}$	${ }^{1 \%}$	\％	0\％	\％	\％
6092	$7{ }^{76,16,992}$	EEpanded meal	10	st	10\％	10\％	10\％	${ }^{10 \%}$	10\％	${ }^{10 \%}$	10\％	${ }^{10 \%}$	${ }^{8 \%}$	${ }^{7}$	${ }^{6 \%}$	5\％	4\％	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{1 \%}$	\％	\％	0\％	\％
5093	$7{ }^{76,66,999}$	… Onter	10	st	0\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	8\％	7\％	6\％	5\％	4\％	3\％	2\％	1\％	\％\％	\％	\％	0\％
6094	$7{ }^{78,01,000}$	－Refineal lead	5	NT1	${ }^{4 \%}$	4%	4%	3\％	3\％	2%	2%	0\％	0\％	\％	0\％	\％	\％	\％	\％	\％	\％	\％	\％	\％\％
5095	78，019，00	- Containing by weight antimony as the principal other element	${ }^{5}$	NTI	$4{ }^{4 \%}$	${ }^{4 \%}$	4%	3\％	3\％	2\％	${ }^{2 \%}$	\％	\％	\％	0\％	\％	\％	\％	\％	\％	\％	\％	${ }^{0 \%}$	0\％
6096	${ }^{78,019,900}$	－Other	5	NT1	4%	4\％	4%	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	0\％	0\％	0\％	0\％	\％\％	0\％	\％	\％	\％\％	\％\％	\％	\％	\％
6097	${ }^{78,020,000}$	Lead waste and scrap．	5	NT1	4\％	4\％	4\％	3\％	3\％	2%	2%	\％	\％\％	0\％	0\％	\％	0\％	\％	\％\％	\％	\％	\％\％	\％	\％
6098	$7{ }^{78,041,100}$	- Sheets，strip and foil of t thickness（excluding any backing） 0.2 mm not exceeding	5	NT1	4%	4%	4\％	${ }^{3 \%}$	3\％	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％
6099	${ }^{78,041,000}$	－Other	${ }^{5}$	NT1	4\％	4\％	4\％	3\％	3\％	2\％	2\％	\％	0\％	0\％	0\％	\％	\％	0\％	\％\％	0\％	0\％	\％\％	\％	\％
6100	${ }^{78,022,000}$	Powders and flakes	5	NT1	4\％	4\％	4\％	3\％	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	0\％	0\％	\％	0\％	\％	\％\％	\％	\％\％	0\％	\％	\％	\％	\％\％
6101	$7{ }^{78,060,020}$	Bas，rods，pofilies and wie	${ }^{10}$	NT2	9\％	9\％	8\％	8\％	6\％	6\％	5\％	5\％	4\％	4%	3\％	3\％	2\％	${ }^{2 \%}$	0\％	0\％	0\％	0\％	0\％	0\％
6102	$7{ }^{7,060,030}$	－Tubes，pipes and tube or pipe fittings（for example， Couplings，elbows，sleeves）	${ }^{10}$	HsL	\％	10\％	\％	\％	\％	0\％	10\％	${ }^{10 \%}$	10\％	10\％	\％\％	\％\％	${ }^{10 \%}$	10\％	${ }^{10 \%}$	0\％	10\％	\％\％	\％\％	\％
6103	$7{ }^{78,060,900}$	Other	10	${ }^{\text {HSL }}$	0\％	10\％	10\％	10\％	0\％	\％\％	\％\％	10%	10\％	10\％	10\％	10\％	${ }^{10 \%}$	10\％	10\％	10%	10\％	0\％	10\％	\％
6	${ }^{79,011,100}$	\cdots Conlaining by weght 99.99% or more of inc	${ }^{5}$	NT1	4\％	4%	4\％	${ }^{3 \%}$	3\％	${ }^{2 \%}$	${ }^{2 \%}$	0\％	0\％	\％	\％	\％	0\％	\％	0\％	\％	\％	\％	\％	\％
${ }^{6105}$	${ }^{79,011,200}$	－Conlaining by weight ess than 99．99\％\％of zinc	${ }^{5}$	${ }^{\text {NT1 }}$	4\％	${ }^{4 \%}$	4\％	${ }^{3 \%}$	3\％	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	0\％	\％\％	\％	\％	\％	\％	\％\％	0\％	\％\％	0\％	\％
6106	${ }^{79,012,000}$	Znealoys	5	NT1	4%	${ }^{4 \%}$	4%	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	0\％	\％	\％\％	\％	\％	\％	0\％	\％	\％	\％	\％	\％
6107	${ }^{78,020,000}$	Zinc waste and scrap．	${ }^{5}$	NT1	4%	4\％	4\％	3\％	3\％	2%	2%	0\％	0\％	\％	\％\％	0\％	\％	\％	\％\％	\％	\％	\％\％	0\％	\％\％
6108	$7{ }^{79,03,000}$	Zncodust	${ }^{5}$	NT1	4%	4%	4%	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％	\％\％	\％\％	\％	\％	\％\％	\％	\％	\％	\％	\％
6109	77，03，000	Other	${ }^{5}$	NT1	4\％	4\％	4\％	3\％	3\％	2\％	2\％	\％	0\％	0\％	0\％	\％\％	0\％	0\％	0\％	\％\％	0\％	\％\％	0\％	\％\％
6110	$770.00,000$	Zinc aras，rods，profiles and wire．	${ }^{5}$	NT1	4%	$4{ }^{46}$	4%	3\％	3\％	2%	2%	0\％	0\％	0\％	\％	\％	\％\％	\％	\％	\％\％	\％	0\％	0\％	\％
6111	${ }^{77,050,030}$	Foll of tatiokness note exceeding 0.25 mm	${ }^{5}$	${ }^{\text {HSL }}$	5\％	${ }^{5 \%}$	${ }^{5 \%}$	${ }^{5 \%}$	5\％	5\％	5\％	5\％	5\％	5\％	5\％	5\％	5\％	${ }^{5 \%}$	${ }^{5 \%}$	${ }^{5 \%}$	${ }^{5 \%}$	5\％	${ }^{5 \%}$	${ }^{5 \%}$
6112	$7{ }^{79,050,090}$	Other	5	HSL	5\％	5\％	5\％	5\％	5\％	5\％	5\％	5\％	5\％	5\％	5\％	5\％	5\％	${ }^{5 \%}$	5\％	5\％	${ }^{5 \%}$	5\％	${ }^{5 \%}$	${ }^{5 \%}$
$6{ }^{6113}$	$7{ }^{7,000,030}$	－Gutters，roof capping，sklight frames and other fabricated building components	${ }^{20}$	${ }_{\text {EL }}$	ט	0	\bigcirc	O	O	\bigcirc	0	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	ט	0	U	U	O	－
6114	$7{ }^{7,00,0,040}$	－Tubes，pipes and tube or pipe fittings（for example couplings，elbows，sleeves）	${ }^{20}$	${ }^{\text {EL }}$	\bigcirc	，		，	0	0	0	U	U	0	0	0	O	U	0	U	U	U	${ }^{0}$	0
6115	${ }^{79,007,091}$	－Coanetele cases or boxeses astrays	${ }^{20}$	EL	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	U	－	\bigcirc	\bigcirc	\checkmark	\checkmark	\checkmark	\checkmark	\bigcirc
6	$7{ }^{79,070,092}$	－Onereroushold aticles	${ }^{20}$	EL	－	－	O	U	U	U	－	\bigcirc	\bigcirc	－	\bigcirc	U	U	\bigcirc	U	U	U	－	U	\bigcirc
6117	77	Other	${ }^{20}$	EL	U	\bigcirc	U	\bigcirc	\bigcirc	U	\bigcirc	U	\bigcirc	\bigcirc	U	\bigcirc	\bigcirc	\bigcirc	\bigcirc	U	\bigcirc	\bigcirc	\bigcirc	\bigcirc

6118	${ }^{88,011,000}$	－Ti，notatioved	20	EL	U	U	U	U	U	0	U	U	U	U	U	U	U	U	U	U	U	U	U	${ }^{\circ}$
619	88，012，000	－Traloys	${ }^{20}$	EL	\bigcirc	\bigcirc	U	\checkmark	\cup	U	\checkmark	\checkmark	U	ט	U	\checkmark	\checkmark	\checkmark	\bigcirc	U	U	U	U	U
6120	80，02，000	Tin waste and scrap．	${ }^{20}$	EL	\bigcirc	\bigcirc	U	\bigcirc	\bigcirc	U	U	U	\bigcirc	\bigcirc	U	U	\bigcirc	U	U	U	U	U	U	\bigcirc
$6{ }^{6121}$	80，03，010	－Sodeding bars	${ }^{20}$	EL	U	\bigcirc	0	U	\bigcirc	，	ט	U	U	U	U	U	U	U	U	U	U	U	U	\bigcirc
$6{ }^{6122}$	0，030，090	－other	${ }^{20}$	EL	\bigcirc	\bigcirc	\bigcirc	O	0	0	\bigcirc	\bigcirc	0	0	U	\bigcirc	\bigcirc	0	U	－	0	0	0	\bigcirc
${ }^{6123}$	80，07，020	－Plates，sheets and strip，of a thickness exceeding 0.2 mm	${ }^{20}$	EL	U	－	－	U	U	U	U	U	U	U	U	，	U	0	ט	U	U	U	U	U
6124	80.007030	Foil（whether or not printed or backed with paper， paperboard，plastics or similar backing materials），of a thickness（excluding any backing）not exceeding 0.2 mm ；powders and flakes	${ }^{20}$	EL	\checkmark	\checkmark	\checkmark	\cup	\cup	\checkmark	\cup	\cup	\checkmark	\cup	\cup	\cup	\cup	u	u	u	\checkmark	\cup	\checkmark	\checkmark
6125	80，07，040	Tubes，pipes and tube or pipe fittings（for example， couplings，elbows，sleeves）	${ }^{20}$	EL	\bigcirc	\checkmark	\checkmark	\checkmark	\checkmark	0	\checkmark	U	\bigcirc	0	u	\checkmark	\bigcirc	\bigcirc	u	u	\bigcirc	\checkmark	U	\bigcirc
6^{6126}	88，070，091	－－Cigaetere asese or boxes ashriays	${ }^{20}$	EL	U	\bigcirc	U	U	U	\bigcirc	U	\bigcirc	U	\bigcirc	ט	U	\bigcirc	U	\bigcirc	U	ט	U	U	\bigcirc
6127	80，07，092	－OMter fousenoldaticies	${ }^{20}$	EL	ט	ט	ט	U	U	ט	－	U	ט	0	U	U	0	U	U	ט	U	ט	U	\bigcirc
$6{ }^{6128}$	80，070，099	Oner	${ }^{20}$	${ }^{\text {EL }}$	U	U	\bigcirc	U	U	U	O	O	0	\bigcirc	U	\bigcirc	\bigcirc	0	U	U	U	O	\bigcirc	U
6	81，01，000	－Powdes	${ }^{10}$	sL	10\％	0\％	10\％	\％\％	0\％	\％\％	0\％	10\％	${ }^{8 \%}$	${ }^{7} \%$	6\％	${ }^{5 \%}$	${ }^{4 \%}$	3\％	${ }^{2 \%}$	1\％	0\％	\％	\％	\％
6130	8，109，400	－Unwrought tungsten，including bars and rods obtained simply by sintering	${ }^{10}$	st	\％\％	0\％	\％\％	\％\％	0\％	0\％	0\％	\％	${ }^{8 \%}$	${ }^{7 \%}$	${ }^{6 \%}$	${ }^{5 \%}$	${ }^{4 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	1\％	\％	\％	\％	\％\％
6131	81，019，600	－－Wie	10	T2	9\％	9\％	8%	${ }^{8 \%}$	6\％	6\％	5\％	5\％	$4{ }^{4 \%}$	$4{ }^{4 \%}$	${ }^{3}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	0\％	0\％	0\％	\％
6	81，019，700	－Waste and scrap	10	st	0\％	10\％	10\％	10\％	\％\％	\％\％	0\％	10\％	${ }^{8} \%$	7\％	6\％	5\％	4\％	${ }^{3 \%}$	2\％	1\％	\％	\％	\％	\％
6	81，09，9，90	Bars and rods，other than those obtained simply by sintering；profiles，sheets，strip and foil	${ }^{10}$	sL	10\％	10\％	10\％	10\％	0\％	10\％	10\％	10\％	${ }^{8 \%}$	${ }^{7 \%}$	6\％	5\％	4\％	3\％	2\％	1\％	\％	\％	\％	0\％
$\underline{6134}$	81，019，990	－－other	10	st	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	8\％	${ }^{7 \%}$	6\％	${ }^{5 \%}$	－	3\％	2\％	1\％	\％	\％	\％	\％
6135	81，01，000	－Powdes	10	st	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	${ }^{8 \%}$	${ }^{7}$	6\％	${ }^{5 \%}$	4\％	${ }^{3 \%}$	2\％	1\％	\％	\％	0\％	0\％
$6{ }^{6136}$	81，29，400	- Unwrought molybdenum，including bars and rods obtained simply by sintering	10	st	\％\％	10\％	10\％	10\％	0\％	10\％	10\％	10\％	8%	${ }^{7} \%$	6\％	${ }^{5 \%}$	4\％	3\％	${ }^{2 \%}$	1\％	\％	0\％	0\％	0\％
${ }_{6}^{6137}$	81，29，500	－－Bars and rods，other than those obtained simply by sintering，profiles，plates，sheets，strip and foil	10	st	10\％	10\％	10\％	10\％	0\％	0\％	${ }^{10 \%}$	10\％	${ }^{8}$	${ }^{7 \%}$	6\％	${ }^{5 \%}$	${ }^{4 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{1 \%}$	\％	\％	\％	\％
$6{ }^{6138}$	81，02，900	－Wre	10	s．	10\％	10\％	10\％	10\％	10\％	10\％	10%	10\％	8\％	${ }^{7 \%}$	6\％	5\％	4\％	${ }^{3 \%}$	2%	1\％	\％	\％	\％	\％
6139	81，02，700	Wasie and scapa	10	st	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	8\％	${ }^{7 \%}$	6\％	5\％	4\％	3\％	${ }^{2 \%}$	1\％	\％	0\％	0\％	0\％
$6{ }^{6140}$	81，02，900	－Oner	10	sL	\％\％	0\％	10\％	10\％	\％\％	\％\％	10\％	10\％	${ }^{8 \%}$	7\％	6\％	5\％	4\％	${ }^{3 \%}$	${ }^{2 \%}$	1\％	0\％	0\％	0\％	\％
${ }^{6141}$	81，02，2000	－Unwrought tantalum，including bars and rods obtained simply by sintering；powders	${ }^{10}$	st	${ }^{10 \%}$	10\％	10\％	\％	10\％	10\％	${ }^{10 \%}$	0\％	${ }^{8 \%}$	${ }^{7 \%}$	${ }^{6 \%}$	${ }^{5 \%}$	${ }^{4 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{1 \%}$	\％	\％	${ }^{\circ}$	\％
6	81，03，000	－Waste and scrap	10	st	10\％	10\％	\％	0\％	10\％	10\％	0\％	10\％	8\％	\％	6\％	${ }^{5 \%}$	${ }^{4 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	1\％	0\％	\％	\％	\％
6	81，03，000	－Other	10	st	10\％	10\％	10\％	10\％	0\％	10\％	10\％	10\％	${ }^{8 \%}$	${ }^{7 \%}$	6\％	5\％	4\％	3\％	2\％	1\％	\％	\％	\％	\％
6	81，04，100	- Containing a t least 99.8% by weight of magnesium	${ }^{10}$	st	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	${ }^{8 \%}$	${ }^{7} \%$	6\％	5\％	4\％	${ }^{3 \%}$	2\％	1\％	\％	\％	\％	\％
6	81，04， 900	－－omer	10	st	10\％	10\％	10\％	10\％	0\％	10\％	10\％	10\％	${ }^{8 \%}$	${ }^{7 \%}$	6\％	5\％	4\％	3\％	${ }^{2 \%}$	1\％	0\％	0\％	\％	0\％
6	81，02，2000	－Waste and scrap	${ }^{10}$	st	${ }^{10 \%}$	10\％	10\％	${ }^{10 \%}$	10\％	10\％	10\％	10\％	8\％	${ }^{7} \%$	6\％	5\％	4\％	3\％	2\％	1\％	\％	\％	\％	0\％
$\overline{6147}$	81，04，300	－Raspings，turnings and granules，graded according to size；powders	10	st	10\％	10\％	10\％	\％	0\％	\％\％	10\％	10\％	${ }^{8 \%}$	${ }^{7 \%}$	6\％	5\％	4\％	3\％	${ }^{2 \%}$	1\％	\％	\％	\％	0\％
$6{ }^{6148}$	81，04，000	－oher	10	${ }^{\text {sL }}$	10\％	10\％	10%	10\％	10\％	10\％	10\％	10\％	${ }^{8 \%}$	${ }^{7 \%}$	${ }^{6 \%}$	5\％	${ }^{4 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{1 \%}$	0\％	\％\％	\％	0\％
6	81，05，0，10	－Unwought oobat	10	st	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	${ }^{8 \%}$	${ }^{7} \%$	6\％	5\％	4\％	3\％	2\％	1\％	\％	\％	\％	\％
6	81，052，090	－Oner	10	st	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	8\％	${ }^{7 \%}$	6\％	5\％	4\％	3\％	2%	${ }_{1}^{1 \%}$	\％	\％	0\％	0\％
6	81，05，000	－Wast and scrap	10	sL	10\％	10\％	10\％	10\％	\％\％	10\％	10\％	${ }^{10 \%}$	${ }^{8 \%}$	${ }^{7 \%}$	6\％	${ }^{5 \%}$	${ }^{4 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	1\％	0\％	\％	0\％	0\％
6	81，05，000	－Oner	10	st	10\％	10\％	10\％	10\％	\％	10\％	10\％	10\％	${ }^{8 \%}$	${ }^{7}$	6\％	5\％	${ }^{4 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{1 \%}$	0\％	0\％	0\％	0\％
6	81，06，010	－Unwought bismulif wasie and scrap；	10	sL	10\％	10\％	${ }^{10 \%}$	10\％	\％\％	10\％	10\％	${ }^{10 \%}$	8%	${ }^{7 \%}$	6\％	5\％	$4{ }^{4 \%}$	3\％	${ }^{2 \%}$	${ }^{1 \%}$	0\％	0\％	\％	0\％
6154	81，06，090	－Oner	10	st	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	${ }^{8 \%}$	${ }^{7} \%$	6\％	5\％	4\％	${ }^{3 \%}$	2\％	1\％	\％	0\％	\％	\％
$6{ }^{6155}$	81，02，200	－Unwought casmimm powders	10	st	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	${ }^{8 \%}$	${ }^{7} \%$	6\％	5\％	4\％	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{1 \%}$	\％	\％	\％	\％
6	81，07，000	－Waste and scrap	10	st	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	8\％	${ }^{7 \%}$	6\％	5\％	4\％	3\％	2\％	1\％	0\％	0\％	0\％	0\％
6	81，09，000	－Oner	10	st	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	${ }^{8 \%}$	${ }^{7 \%}$	\％\％	${ }^{5 \%}$	4\％	3\％	${ }^{2 \%}$	1\％	\％	\％	\％	0\％
6	81，082，000	－Unwought Hanaium；powders	${ }^{10}$	st	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	8\％	${ }^{7 \%}$	6\％	5\％	4\％	3\％	2\％	1\％	\％	\％	\％	\％
6	81，08，000	－Waste and scrap	10	st	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	8\％	${ }^{7} \%$	6\％	5\％	4\％	3\％	2\％	1\％	\％	\％	\％	\％
6160	81，08，000	－other	10	st	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	8\％	${ }^{7 \%}$	6%	5\％	4\％	3\％	${ }^{2 \%}$	1\％	\％	0\％	0\％	0\％
661	81，02， 000	Unwoughtziroonium；powders	10	st	10\％	10\％	10\％	10\％	0\％	10\％	10\％	10\％	8%	${ }^{7 \%}$	6\％	5\％	${ }_{4}{ }^{4}$	3\％	2\％	\％	\％	\％	\％	\％
66	81，03，000	Waste and scrap	10	st	0\％	10\％	10\％	10\％	\％	10\％	10\％	10\％	${ }^{8 \%}$	${ }^{7 \%}$	6\％	${ }^{\text {5\％}}$	${ }^{4 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{\text {1\％}}$	\％	0\％	\％	0\％
6	81，09，000	Oher	${ }^{10}$	st	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	8\％	${ }^{7} \%$	6\％	5\％	4\％	3\％	2\％	1\％	\％	\％	\％	\％
$\overline{6164}$	88，01，000	－Uumought animony powders	10	st	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	${ }^{8 \%}$	${ }^{7 \%}$	6\％	5\％	4\％	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{1 \%}$	\％	\％	\％	\％
6165	81，102，000	－Waste and scrap	10	st	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	8%	${ }^{7 \%}$	6\％	5\％	4\％	3\％	2\％	1\％	0\％	0\％	0\％	0\％
$6{ }^{6166}$	88，109，000	－Oner	10	st	10\％	10\％	10\％	${ }^{10 \%}$	10\％	10\％	10\％	10\％	${ }^{8 \%}$	${ }^{7 \%}$	6\％	5\％	4\％	${ }^{3 \%}$	2\％	1\％	\％	\％	\％	\％
667	88，10，000	Manganese and articles thereof，including waste and scrap．	10	${ }^{\text {sL }}$	10\％	10\％	10\％	10\％	10\％	10\％	0\％	10\％	${ }^{8 \%}$	${ }^{7 \%}$	6\％	5\％	${ }^{4 \%}$	3\％	${ }^{2 \%}$	${ }^{1 \%}$	\％	\％	\％	\％
68	88，12，200	－－Unwought powdes	10	HSL	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10%
66	88，121，300	Waste and scrap	10	HSL	10\％	${ }^{10 \%}$	10\％	${ }^{10 \%}$	10\％	10\％	${ }^{10 \%}$	${ }^{10 \%}$	${ }^{10 \%}$	10\％	10\％	10\％	10\％	${ }^{10 \%}$	10\％	10\％	10\％	10\％	10\％	${ }^{10 \%}$
6170	88，121，900	－Oner	${ }^{10}$	${ }^{\text {HSL }}$	10\％	10\％	10\％	10\％	0\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	${ }^{10 \%}$	10\％	${ }^{10 \%}$	${ }^{10 \%}$	10\％	10\％	${ }^{10 \%}$
6	88，122，100	Uumought powders	10	HSL	10\％	10\％	10\％	10\％	0\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％
6172	88，122，200	－Waste ands scap	10	${ }^{\text {HSL }}$	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％
${ }^{6173}$	88，12，2900	－other	${ }^{10}$	HSL	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	${ }^{10 \%}$	10\％	10\％	10\％	10\％	10\％	10\％
6174	88，125，100	－Unwought powders	10	HSL	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％
6175	88，125，200	－Wasie and scrap	${ }^{10}$	HSL	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	${ }^{10 \%}$	10\％	${ }^{10 \%}$	10\％	10\％	10\％	10\％
6^{6176}	88，125，900	－Oner	${ }^{10}$	${ }^{\text {HSL }}$	10\％	${ }^{10 \%}$	10\％	${ }^{10 \%}$	10\％	10\％	10\％	10\％	10\％	${ }^{10 \%}$	10\％	10\％	${ }^{10 \%}$	${ }^{10 \%}$	10\％	10%	${ }^{10 \%}$	${ }^{10 \%}$	10\％	10\％
6177	88，129，200	－Unwrought waste and scrap：powders	${ }^{10}$	HSL	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	${ }^{10 \%}$	10\％	10\％	10\％	10\％	10\％	10\％
6178	88，129，900	－Oner	10	Hst	10\％	10\％	10\％	10\％	0\％	10\％	${ }^{10 \%}$	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	\％
$6{ }^{6179}$	81，13，000	Cermets and articles thereof，including waste and scrap．	10	sL	0\％	0\％	\％\％	0\％	10\％	0\％	0\％	10\％	${ }^{8 \%}$	${ }^{7 \%}$	6\％	5\％	4\％	3\％	${ }^{2 \%}$	${ }^{1 \%}$	\％\％	0\％	\％	\％
6880	82，01，000	－Spades and shovels	5	HSL	5\％	5\％	${ }^{5 \%}$	${ }^{\text {5\％}}$	5\％	5\％	${ }^{\text {5\％}}$	${ }^{5 \%}$	5\％	5\％	5\％	${ }^{5 \%}$	${ }^{\text {5\％}}$	5\％	${ }^{5 \%}$	${ }^{5 \%}$	${ }^{\text {5\％}}$	5\％	${ }^{\text {5\％}}$	5\％
${ }^{6181}$	82，013，010	－Hose and rakes	5	HSL	5\％	${ }_{5 \%}$	5\％	${ }^{5 \%}$	5\％	5\％	${ }^{5 \%}$	5\％	${ }^{5 \%}$	${ }_{5 \%}$	${ }_{5 \%}$	${ }_{5 \%}$	${ }^{5 \%}$	${ }_{5 \%}$	${ }^{5 \%}$	${ }_{5 \%}^{5 \%}$	${ }^{5 \%}$	${ }_{5 \%}$	${ }^{5 \%}$	${ }^{5 \%}$
6182	82，013，090	－other	${ }^{5}$	${ }^{\text {HSL }}$	5\％	${ }_{5 \%}^{5 \%}$	5\％	5\％	5\％	5\％	${ }^{5 \%}$	5\％	${ }^{5 \%}$	5\％	5\％	${ }^{5 \%}$	5\％	${ }^{5 \%}$	${ }^{5 \%}$	${ }^{5 \%}$	5\％	5\％	${ }^{5 \%}$	${ }^{5 \%}$
6183	82，014，000	－Axese bill hooks and simlar hewivg lools	5	HSL	${ }^{5 \%}$	${ }^{5 \%}$	5\％	5\％	5\％	5\％	${ }^{5 \%}$	5\％	${ }^{5 \%}$	${ }^{5 \%}$	${ }^{5 \%}$	${ }^{5 \%}$	${ }^{5 \%}$	${ }^{5 \%}$	${ }^{5 \%}$	${ }^{5 \%}$	${ }^{5 \%}$	${ }^{5 \%}$	${ }^{5 \%}$	${ }^{5 \%}$
68	2，015，000	$\begin{array}{\|l} \hline- \text { Secateurs and similar one-handed pruners and } \\ \text { shears (including poultry shears) } \\ \hline \end{array}$	5	HSL	5\％	${ }^{5 \%}$	5\％	5\％	5\％	5\％	${ }^{5 \%}$	5\％	5\％	5\％	5\％	${ }^{5 \%}$	5\％	5\％	${ }^{5 \%}$	${ }^{5 \%}$	${ }^{5 \%}$	5\％	${ }^{5 \%}$	${ }^{5 \%}$
6185	82，016，000	－Hedge shears，two－handed pruning shears and similar two－handed shears	5	HSL	5\％	5\％	5\％	${ }^{5 \%}$	5\％	5\％	5\％	${ }^{5 \%}$	5\％	5\％	5\％	5\％	5\％	5\％	5\％	5\％	5\％	5\％	5\％	5\％
${ }^{6186}$	10，000	－Other hand tools of a kind used in agriculture， horticulture or forestry	5	HSL	${ }^{5 \%}$	${ }^{5 \%}$	${ }^{5 \%}$	${ }^{5 \%}$	${ }^{5 \%}$	${ }^{5 \%}$	${ }^{5 \%}$	${ }^{5 \%}$	${ }^{5 \%}$	${ }^{5 \%}$	${ }^{5 \%}$	${ }^{5 \%}$	${ }^{5 \%}$	${ }^{5 \%}$	${ }^{5 \%}$	${ }^{5 \%}$	${ }^{5 \%}$	${ }^{5 \%}$	${ }^{5 \%}$	${ }^{5 \%}$
6187	82，01，000	－Hand saws	5	NT1	4%	4\％	4%	${ }^{3 \%}$	${ }^{3 \%}$	2%	${ }^{2 \%}$	\％	\％	\％	\％	\％	\％	\％	\％	\％	0\％	\％	\％	\％
6	82，02，010	－Banks	${ }^{5}$	NT1	4\％	4%	4\％	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	0\％	\％	0\％	0\％	0\％	\％	\％	\％	\％	\％	\％
689	82，02，200	－oner	5	NT1	4\％	4\％	4\％	3\％	3\％	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％
6190	${ }^{\text {82，02，} 110}$	Bians	5	NT1	4\％	4\％	4\％	3\％	3\％	2\％	2\％	0\％	\％	0\％	0\％	0\％	\％\％	0\％	\％	\％	\％	\％	\％	0\％
6191	${ }^{82,023,190}$	－Oner	${ }^{5}$	NT1	4\％	4%	4\％	${ }^{3 \%}$	${ }^{3 \%}$	2\％	${ }^{2 \%}$	\％	\％	0\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％
6192	82，02，900	Other，inculing pars	5	NT1	4%	4%	$4{ }^{4 \%}$	${ }^{\text {\％}}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	0%	\％	\％	\％	${ }^{\circ} \mathrm{O}$	\％	0\％	\％	${ }^{\circ}$	${ }_{0}$	\％	\％	\％
6193	82，24，400	Chainsaw blades	${ }^{5}$	NT1	4%	4%	4\％	${ }^{3 \%}$	${ }^{3 \%}$	2\％	${ }^{2 \%}$	\％	\％	\％	\％	\％	0\％	0\％	\％	\％	\％	\％	\％	0\％
6194	82，029，100	Straigr saw budes tor working metal	${ }^{5}$	NT1	4\％	4\％	4\％	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％\％	0\％	0\％	0\％	0\％	\％	0\％	0\％	\％	0\％	\％	0\％	0\％
6195	82，02，9，90	－－Straght saw blades	5	NT1	4%	4%	4\％	3\％	3\％	2\％	${ }^{2 \%}$	0\％	0\％	0\％	0\％	0\％	0\％	0\％	\％	\％	0\％	0\％	\％	0\％
6196	82，029，990	．－Other	5	NT1	4%	4%	4%	${ }^{3 \%}$	${ }^{3 \%}$	2\％	${ }^{2 \%}$	\％	\％	0\％	\％	\％	0\％	0\％	\％	\％	0\％	\％	\％	0\％
6197	82，03，000	－Fies， asps and simiar fools	5	NT1	4\％	4\％	4\％	3\％	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	0\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％
$6{ }^{6198}$	82，032，000	－Pliers（including cutting pliers），pincers，tweezers and similar tools	${ }^{5}$	${ }^{\text {NT1 }}$	4\％	4\％	4\％	${ }^{3 \%}$	3\％	2\％	${ }^{2 \%}$	\％	0\％	\％	\％	\％	\％	\％	0\％	\％	0\％	0\％	\％	\％
6199	82，03，000		5	NT1	4\％	4%	4\％	3\％	3\％	2\％	${ }^{2 \%}$	0\％	\％	\％	\％	0\％	0\％	\％	0\％	\％	0\％	\％	0\％	\％
	4,000	$\begin{aligned} & \text {-Pipe-cutters, bolt croppers, perforating punches } \\ & \text { and similar tools } \end{aligned}$	5	NT^{1}	4\％	4\％	4\％	3\％	3\％	${ }^{2 \%}$	${ }^{2 \%}$	0\％	\％	\％	\％	\％	0\％	\％	\％	\％	\％	\％	\％	0\％

香港•ASEAN FTAにかかる調査報告書

201	${ }^{820.041,100}$	－Noravaiusable	5	${ }^{\text {NT1 }}$	4\％	${ }^{4 \%}$	4\％	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	0\％	0\％	0\％	0\％	0\％	0\％	0\％	0\％	0\％	\％	\％	\％	\％
6202	$18.04,200$	－Adisabale	5	NT1	4%	4%	4%	${ }^{3 \%}$	${ }^{3} \%$	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％\％
	82，042，000	－Interchangeable spanner sockets，with or without	5	T1	4\％	${ }^{4 \%}$	4%	3\％	3\％	2\％	${ }^{2 \%}$	\％	\％	\％	\％	\％	\％	\％	0\％	\％	\％	\％	\％	\％
6204	$18.8051,000$	－－oiling，treading ortaping tools	5	NT1	4%	${ }^{4 \%}$	${ }^{4 \%}$	${ }^{3 \%}$	3\％	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％	\％	0\％	\％	\％	\％	0\％	0\％	\％	0\％	0\％
6205	${ }^{82,052,000}$	－Hammers and sidedg hammers	5	V1	4%	4\％	${ }^{4 \%}$	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	0\％	0\％	0\％	0\％	\％	0\％	0\％	\％	\％	0\％	0\％	0\％	0\％
6206	32，53，000	－Planes，chisels，gouges and similar cutting tools for working wood	5	T1	${ }^{4 \%}$	${ }^{4 \%}$	$4{ }^{4 \%}$	${ }^{3 \%}$	${ }^{\text {3\％}}$	${ }^{2 \%}$	${ }^{2 \%}$	0\％	\％	0\％	0\％	0\％	0\％	\％	\％	\％	0\％	0\％	0\％	0\％
6207	${ }^{82,054,000}$	－Sceendives	5	T1	${ }^{4 \%}$	${ }^{4 \%}$	4\％	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	0\％	0\％	\％	\％	0\％	0\％	\％	\％	\％	0\％	0\％	${ }^{0 \%}$	\％
6208	82，05， 110	－Fations	5	NT1	4\％	4\％	4\％	3\％	3\％	2\％	2%	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％
6209	${ }^{82,055,190}$	－Oher	5	${ }^{\text {NT1 }}$	4\％	${ }^{4 / 8}$	4\％	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％	\％	\％	\％	\％\％	\％	\％	\％	\％\％	0\％	\％\％
6210	${ }^{82,05,900}$	－－other	5	NT1	4\％	4%	4\％	3\％	3\％	2\％	2\％	0\％	0\％	0\％	0\％	0\％	0\％	\％	\％	0\％	\％	\％	\％	\％
6211	82，05，000	－Bowlams	5	NT1	4%	$4{ }^{46}$	4%	${ }^{3 \%}$	3\％	${ }^{2 \%}$	${ }^{2 \%}$	\％\％	0\％	\％	\％\％	\％	\％	\％	0\％	\％	\％	0\％	\％	\％
6212	${ }^{82,05,000}$	－Vices，clamps and the ilie	5	NT1	$4{ }^{4 \%}$	4%	4%	${ }^{3} \%$	${ }^{3} \%$	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％
${ }^{6213}$	82，05，000	－Other，including sets of articles of two or more subheadings of this heading	5	${ }^{\text {NTr }}$	4\％	4\％	$4{ }^{4 \%}$	${ }^{3} \%$	3\％	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％
6214	82，06，000	Tools of two or more of the headings 82.02 to 82.05 ，put up in sets for retail sale．	5	NT1	4%	${ }^{4 \%}$	4%	3\％	3\％	2\％	${ }^{2 \%}$	\％	\％	0\％	0\％	\％	0\％	0\％	0\％	0\％	0\％	0\％	\％	\％
6215	882.07, ，300	－Wit wooking parat of cemels	5	T1	4\％	${ }^{4 \%}$	${ }^{4 \%}$	3\％	3\％	2\％	${ }^{2 \%}$	\％	\％	\％\％	\％	0\％	0\％	0\％	\％	\％	\％	0\％	\％	\％\％
6216	${ }^{82,071,900}$	Onter，inculing pats	5	V1	4%	${ }^{4 \%}$	4\％	${ }^{3 \%}$	3\％	${ }^{2 \%}$	${ }^{2 \%}$	0\％	\％	0\％	0\％	0\％	\％	\％	\％	\％	\％	\％	0\％	\％
6217	${ }^{82,072,000}$	－Dies for crawing orextuding meal	5	V1	4%	${ }^{4 \%}$	$4{ }^{46}$	3\％	3\％	2\％	${ }^{2 \%}$	0\％	\％	\％	\％	\％\％	\％	\％	\％	\％	\％	\％	\％	\％\％
6218	82，07，000	Toos tor pressig，samping of runching	5	V1	4%	${ }^{4 \%}$	4%	${ }^{3 \%}$	3\％	${ }^{2 \%}$	${ }^{2 \%}$	0\％	\％	0\％	0\％	0\％	0\％	\％	0\％	\％	0\％	0\％	0\％	0\％
6219	82，074，000	－Toos tor rapping oftreading	5	NT1	4%	${ }^{4 \%}$	4%	3\％	${ }^{3} \%$	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％	\％	\％	\％	0\％	0\％	\％	\％	\％	\％	\％
6220	${ }^{82,05,000}$		${ }^{5}$	NT1	4%	${ }^{4 \%}$	4%	${ }^{3 \%}$	3\％	${ }^{2 \%}$	${ }^{2 \%}$	0\％	\％	\％	\％	\％	\％	\％	0\％	\％	\％	\％	\％	\％\％
6221	${ }^{82,076,000}$	－Toos tor boring of broading	5	NT1	4\％	4\％	4\％	3\％	3\％	2\％	2\％	0\％	0\％	\％\％	0\％	0\％	0\％	0\％	\％\％	0\％	\％	\％	\％	\％
6222	${ }^{82,077,000}$	－Toos tor miling	5	NT1	4%	$4{ }^{4}$	4%	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	2%	\％\％	\％\％	\％	\％\％	\％	\％\％	\％	\％\％	\％	0\％	0\％	\％	\％
623	82，07，000	－Toos sorturing	5	NT1	${ }^{4 \%}$	$4{ }^{4 \%}$	4%	${ }^{3 \%}$	${ }^{3} \%$	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％	\％	\％	\％	\％	\％	0\％	0\％	\％	\％	\％
622	82，07，000	－Oter interchangeabe tools	5	NT1	4%	4%	4\％	3\％	3\％	2\％	${ }^{2 \%}$	0\％	\％	\％	\％	0\％	0\％	\％	\％	\％	\％	\％	\％	\％
625	$882,08,000$	－For meal woking	5	NT1	4\％	${ }^{4 \%}$	$4{ }^{4 \%}$	3\％	3\％	2\％	${ }^{2 \%}$	0\％	0\％	0\％	\％	\％\％	\％	\％	\％	\％	\％	\％	\％	\％
6226	${ }^{82,082,000}$	－For wood working	5	V1	4\％	${ }^{4 \%}$	4%	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	2%	0\％	0\％	\％	\％	\％\％	0\％	\％\％	\％	0\％	0\％	0\％	0\％	\％
$\underline{227}$	82，03，000	－For kitchen appliances or for machines used by the food industry	5	NT1	4\％	${ }^{4 \%}$	4%	${ }^{3 \%}$	3\％	${ }^{2 \%}$	${ }^{2 \%}$	\％	0\％	\％	0\％	\％	\％	\％	\％	\％	\％	\％	\％	
6228	82，084，000	－For agioulual horitulutura of foresty mathines	${ }^{5}$	N1	4\％	4\％	${ }^{4 \%}$	${ }^{3 \%}$	${ }^{3}$	${ }^{2 \%}$	${ }^{2 \%}$	0\％	\％	\％	0\％	\％	0\％	\％	\％	\％	0\％	0\％	\％	\％
629	82，09，000	－Oner	5	NT1	4%	${ }^{4 \%}$	4%	3\％	3\％	2\％	${ }^{2 \%}$	\％	\％	0\％	\％	\％	0\％	0\％	0\％	\％	\％	\％	0\％	\％
6230	82，00，000	Plates，sticks，tips and the like for tools， unmounted，of cermets．	5	NT1	4%	4%	4%	${ }^{3 \%}$	${ }^{3} \%$	${ }^{2 \%}$	${ }^{2 \%}$	0\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％
${ }^{631}$	22，100，000	Hand－operated mechanical appliances，weighing 10 kg or less，used in the preparation， conditioning or serving of food or drink．	5	NT1	4\％	4\％	4\％	3\％	3\％	2\％	2\％	0\％	0\％	0\％	\％	\％\％	0\％	\％	0\％	\％\％	\％	\％	0\％	\％
623	82，11，000	－Sels fo asorote aticios	5	NT1	4\％	4\％	4\％	3\％	3\％	2\％	2\％	0\％	\％	0\％	\％	0\％	0\％	\％\％	0\％	\％	\％	\％\％	\％	\％
623	${ }^{82,19,100}$	Tatie krives havig fived bades	5	NT1	4\％	4\％	4\％	3\％	3\％	2\％	2\％	0\％	0\％	0\％	0\％	0\％	0\％	0\％	\％	0\％	\％	0\％	0\％	\％
6234	82，19，250	$\begin{aligned} & \text { For at a kind used for agriculture, horiciculture or } \\ & \hline \text { foresty } \end{aligned}$	5	NT1	4\％	4\％	4\％	3\％	3\％	2\％	${ }^{2 \%}$	\％	\％	0\％	0\％	\％	0\％	\％	\％	\％	\％	0\％	\％	\％
6235	82，19，290	\cdots	5	NT1	4%	4\％	4%	3\％	3\％	${ }^{2 \%}$	${ }^{2 \%}$	0\％	\％	\％	0\％	\％	0\％	\％\％	\％\％	0\％	\％	\％\％	0\％	\％
${ }^{2386}$	${ }^{82,11,3,30}$	－Of a kind used for agriculture，horiculuture or	5	NT1	4\％	4%	4\％	3\％	3\％	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％	\％	0\％	0\％	\％	\％	\％	\％	0\％	\％	\％
6237	${ }^{82,19,390}$	…oner	5	NT1	4\％	4\％	${ }^{4 \%}$	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	0\％	0\％	0\％	\％	\％	0\％	0\％	0\％	\％	\％	0\％	0\％	\％
${ }^{6238}$	82，11，410	For knives of a kind used for agriculture， horticulture or forestry	${ }^{5}$	${ }^{\text {NT1 }}$	4\％	4\％	4\％	3\％	3\％	2\％	${ }^{2 \%}$	\％	\％\％	\％	\％	0\％	\％	\％	\％	\％	\％	\％	0\％	\％
623	82，19，490	\cdots	5	${ }^{\text {T1 }}$	${ }^{4 \%}$	4\％	4\％	3\％	3\％	2\％	${ }^{2 \%}$	\％	\％	\％	\％	0\％	\％	\％\％	\％	\％	\％	\％\％	\％	\％
629	${ }^{82,119,500}$	－－Handes of thase metal	5	NT1	4\％	4%	4\％	${ }^{3 \%}$	${ }^{3 \%}$	2\％	2\％	\％	0\％	\％\％	\％\％	0\％	\％\％	\％\％	\％\％	\％	0\％	\％\％	\％\％	\％
${ }^{6241}$	82，12，000	－Razors	5	NT1	4\％	4\％	4\％	3\％	3\％	2%	2\％	\％	\％	\％	\％	\％	\％\％	\％	\％	\％	\％	\％	\％	\％\％
6242	${ }^{82,12,010}$	Doulle edged razor lides	5	V1	4%	4%	4%	3\％	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％\％	0\％	0\％	0\％	\％	\％	0\％	\％	\％	\％	\％	0\％	\％
6243	82，12，, 90	－other	5	NT1	4%	4%	4%	${ }^{3 \%}$	${ }^{3} \%$	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％	\％	\％	\％	\％	0\％	\％	\％	\％	\％	\％
6^{624}	${ }^{8,12,0,00}$	－Onere pats	5	NT1	4%	$4{ }^{40}$	4%	${ }^{3 \%}$	3\％	2%	2%	0\％	\％	\％	\％	\％	\％	\％	\％	0\％	\％	\％	\％	\％
6245	82，130，000	Scissors，tailors＇shears and similar shears，and blades therefor．	5	${ }^{\text {NT1 }}$	4%	4%	4\％	${ }^{3 \%}$	${ }^{3} \%$	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％	\％	\％	\％	\％	\％	\％	0\％	\％	\％	\％
6246	82，41，000	－Paper Kivies，leterer openerss，erasing knives，pencil sharpeners and blades therefor	10	sL	0\％	0\％	\％	0\％	0\％	10\％	10\％	10\％	${ }^{8 \%}$	${ }^{7 \%}$	6\％	5\％	${ }^{4 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	1\％	\％	0\％	0\％	\％
${ }^{624}$	32，42，000	－Manicure or pedicure sets and instruments （including nai files）	10	${ }^{\text {sL }}$	0\％	0\％	0\％	10\％	0\％	10\％	10\％	10\％	${ }^{8 \%}$	${ }^{7 \%}$	6%	5\％	4%	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{1 \%}$	\％\％	\％	\％	\％
6^{2248}	82，14，000	－Other	10	${ }^{\text {sL }}$	0\％	10\％	0\％	10\％	10%	10\％	10\％	10\％	8\％	7\％	6\％	5\％	4\％	3\％	2%	1\％	\％	0\％	0\％	\％
${ }^{6249}$	82，15，000	Sets of assorted articles containing at least one article plated with precious metal	10	T2	\％	9\％	8\％	8\％	6\％	6\％	5\％	5\％	4\％	4／8	${ }^{3 \%}$	3\％	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％\％	\％	\％	\％
6250	${ }^{82,15,000}$	－Other sests of asosotede antices	10	N2	${ }^{\circ}$	9\％	${ }_{8}^{8 \%}$	${ }^{8 \%}$	6\％	6\％	5\％	${ }^{5 \%}$	${ }^{4 \%}$	4\％	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％	\％	\％	\％
6251	82，159，100	－－Paled with Precious meal	10	st	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	${ }^{8 \%}$	${ }^{7} \%$	6\％	5\％	4\％	3\％	${ }^{2 \%}$	1\％	\％	\％	\％	\％
625	${ }^{8,15,9,900}$	－－omer	10	st	0\％	10\％	0\％	10\％	10\％	10\％	10\％	10\％	${ }^{8 \%}$	${ }^{7 \%}$	6\％	5\％	4\％	3\％	${ }^{2 \%}$	1\％	\％	\％	\％	\％
$6{ }^{623}$	83，011，000	－Padocks	5	NT1	4\％	4\％	4\％	3\％	3\％	2\％	2%	0\％	\％	\％	\％	\％	0\％	\％	\％	\％	\％	\％	\％	\％
${ }_{6} 625$	${ }^{83,012,000}$	－Locks of a kind used for motor venioles	5	V1	$4{ }^{4 \%}$	${ }^{4 \%}$	4%	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	0\％	\％
625	83，01，000	－Loors of a kind used lof turiture	5	NT1	4%	${ }^{4 \%}$	4%	3\％	3\％	2\％	2\％	\％	\％	0\％	\％	\％	\％	0\％	0\％	\％	\％	\％	\％\％	\％
656	${ }^{83,014,010}$	－－Handoutf	5	NT1	4\％	$4{ }^{46}$	4%	${ }^{3 \%}$	${ }^{3 \%}$	2\％	2\％	0\％	\％	\％	\％\％	0\％	\％\％	\％	\％\％	0\％	\％	\％	\％\％	\％
${ }^{2627}$	${ }^{8,014,090}$	－other	5	NT1	4\％	4\％	4\％	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％\％	\％	\％	\％	0\％	\％\％	\％	\％\％	\％	\％	\％	\％	\％
${ }^{2258}$	${ }^{8,0,05,000}$		5	NT1	4\％	${ }^{4 \%}$	4\％	${ }^{\text {3\％}}$	3\％	${ }^{2 \%}$	${ }^{2 \%}$	0\％	0%	\％	\％	\％	\％	\％\％	0\％	\％	\％	\％	\％	${ }^{0 \%}$
6259	83，01，000	－Pats	5	${ }^{\text {NT1 }}$	4\％	4%	4\％	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％\％	\％	\％	\％\％	0\％	\％\％	\％	\％	0\％	0\％	\％	\％	\％
6260	${ }^{83,07,000}$	－Kess presentes speparaley	5	NT1	4%	$4{ }^{4 \%}$	4%	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	2%	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％
${ }^{2621}$	$8^{83,02,000}$	－Hinges	5	NT1	4%	4%	4\％	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％\％	\％\％	\％	\％	\％	\％	\％	\％	0\％	0\％	\％	\％	\％
${ }^{6262}$	83，02，010	－Of a diameter（including tyres）exceeding 100 mm ，but not exceeding 250 mm	5	NT1	4\％	4%	4\％	${ }^{3 \%}$	3\％	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	0\％	0\％	0\％	\％	\％	\％	\％	\％	\％	\％	\％
${ }^{2263}$	83，02，, 090	－other	5	N1	4\％	4%	4\％	${ }^{3 \%}$	${ }^{3 \%}$	2\％	2%	0\％	\％\％	\％	\％	\％\％	\％\％	\％\％	\％	\％	\％	\％\％	\％\％	\％
$6{ }^{264}$	${ }^{8,023,010}$	－ Hasps	5	V1	4\％	${ }^{4 \%}$	4\％	${ }^{3 \%}$	${ }^{3 \%}$	2\％	2\％	0\％	0\％	\％\％	\％	0\％	\％	\％\％	\％\％	\％	\％	\％	\％\％	\％
$\underline{6265}$	${ }^{83,02,090}$	－other	5	V1	4%	${ }^{4 \%}$	$4{ }^{4 \%}$	${ }^{3 \%}$	${ }^{3 \%}$	2%	2%	0\％	\％\％	\％\％	0\％	\％	\％	\％	\％	\％\％	\％\％	\％	\％	\％
${ }^{266}$	${ }^{83,024,31}$	Hasps	5	V1	4%	${ }^{4 \%}$	4%	3\％	3\％	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％	0\％	\％	\％	0\％	\％	\％	\％	\％	\％	\％\％
6267	83，024，139	－．．－Other	5	NT1	4\％	4\％	4\％	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	2%	\％	\％	\％	\％\％	\％	\％	\％	\％	\％	\％	\％	\％	\％
6288	${ }^{83,024,190}$	Other	5	NT1	4%	4\％	4%	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％
6269	${ }^{83,024,220}$	${ }^{\text {Hasps }}$	5	NT1	4\％	4\％	4\％	3\％	3\％	2\％	2\％	0\％	0\％	0\％	0\％	0\％	0\％	\％	\％\％	0\％	\％	0\％	0\％	\％
6270	${ }^{83,024,230}$	\cdots	5	NT1	4%	$4{ }^{4}$	4\％	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	0\％	0\％	0\％	\％	0\％	\％\％	\％	\％	\％	\％	0\％	0\％	\％
6271	${ }^{83,024,90}$	\cdots	5	NT1	${ }^{4 \%}$	${ }^{4 \%}$	4\％	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％	\％	\％	\％	\％	\％	\％	0\％	\％	0\％	\％
6272	${ }^{8,024,991}$	－Hasps	5	NT1	4\％	4\％	4\％	${ }^{3} \%$	${ }^{3} \%$	${ }^{2 \%}$	${ }^{2 \%}$	0\％	0\％	\％	0\％	\％	\％\％	\％	\％	\％	\％	\％	\％	\％
$6{ }^{627}$	83，042，999	Other	5	NT1	4%	${ }^{4 \%}$	4%	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％
${ }^{627}$	${ }^{83,025,000}$	－Hatracks，hat peos，brackels and smiliar fixues	5	V1	4\％	4\％	4%	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	0\％	0\％	\％	\％	0\％	0\％	\％\％	\％\％	0\％	0\％	\％\％	\％	\％\％
6275	${ }^{83,026,000}$	－Automaic door cosesis	5	V1	4\％	${ }^{4 \%}$	4\％	3\％	3\％	${ }^{2 \%}$	2\％	0\％	0\％	\％	\％\％	0\％	\％\％	\％\％	0\％	\％	0\％	\％\％	0\％	\％
${ }^{6276}$	83，03，000	Armoured or reinforced safes，strong－boxes and doors and sate deposit lockers for strong－ rooms．cash or deed boxes and the like，of base metal．	10	st	0\％	0\％	0\％	10\％	10\％	10\％	10\％	10\％	${ }^{8 \%}$	7\％	6\％	5\％	4\％	3\％	2\％	1\％	\％\％	\％\％	0\％	\％
$6{ }^{627}$	${ }^{83,040,010}$	－Filimg cabnests and cardirimex cabinets	${ }^{20}$	EL	${ }^{\circ}$	\bigcirc	\bigcirc	－		U	－	，	\checkmark	－	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\checkmark	0^{0}	，	${ }^{\circ}$	\bigcirc	\bigcirc
6278	88，000，091	－otaumium	${ }^{20}$	EL	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	0	0	0	\bigcirc	0	\bigcirc	0	\bigcirc	U	U	\bigcirc	\bigcirc	\bigcirc	U	\bigcirc
6279	${ }^{83,040,099}$	－other	${ }^{20}$	${ }^{\text {EL }}$	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	ט	\bigcirc		\bigcirc	\bigcirc	\bigcirc	U	\checkmark		\bigcirc	\bigcirc	\bigcirc	\bigcirc
6280	${ }^{800510.10}$	－For dowbel loop wie binders	${ }^{20}$	EL	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	0	\bigcirc	U	\bigcirc	U	0	0	\bigcirc	\bigcirc	U	\bigcirc	\bigcirc	U	\bigcirc	\bigcirc
${ }^{2881}$	${ }^{8,051,090}$	－other	${ }^{20}$	EL	0	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	0	\bigcirc	0	0	\bigcirc	\bigcirc	0	U	\bigcirc	\bigcirc	U	\bigcirc	\bigcirc
${ }^{282}$	${ }^{83,052,010}$	－Of a knd foro oficie use	${ }^{20}$	EL	\bigcirc	U	\bigcirc	\bigcirc	\bigcirc	\bigcirc	－	－	\bigcirc	U	\checkmark	－	－	\checkmark	U	U	\bigcirc	\bigcirc	\bigcirc	\bigcirc
${ }^{6283}$	83，052，200	－Other，of iono or stell	${ }^{20}$	EL	\checkmark		，	\bigcirc	0	0	0	0	\bigcirc	0	0	U	\bigcirc	0	U	U	0	U	U	\bigcirc
$\underline{624}$	$8^{8,052,090}$	Other	${ }^{20}$	EL	ט	\bigcirc	－	U	\bigcirc	\bigcirc	－	U	\bigcirc	U	\bigcirc	\bigcirc	\bigcirc	－	U	U	\bigcirc	U	U	\bigcirc

香港•ASEAN FTAにかかる調査報告書
 別添2－4 原産地品の関税撤廃スケジュール

（ラオス）

${ }^{2825}$	${ }^{83,55,010}$	Paper clips	${ }^{20}$	${ }^{\text {EL }}$	U	U	\bigcirc	U	0	0	0	U	U	U	U	U	U	U	U	U	，	，	，	，
6886	83，59，090	－other	${ }^{20}$	EL	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\cup	\bigcirc	\bigcirc	U	U	U	\bigcirc	\bigcirc	\bigcirc	\bigcirc	U	U
687	3300．10．10	－Forcyles	10	st	10\％	0\％	\％	10\％	10\％	10\％	0\％	0\％	8\％	${ }^{7}$	${ }^{6 \%}$	${ }^{5 \%}$	${ }^{4 \%}$	3\％	${ }^{2 \%}$	1\％	\％	\％	\％	\％
628	3306．1020	Onere，of copene	10	st	10\％	0\％	10\％	10\％	10\％	10\％	10\％	10\％	${ }^{8 \%}$	${ }^{7 \%}$	${ }^{6 \%}$	${ }^{5 \%}$	${ }^{4 \%}$	3\％	${ }^{2 \%}$	1\％	\％	\％	\％	0\％
629	83，06，090	－oner	10	т2	${ }^{9 \%}$	9\％	${ }^{8 \%}$	${ }^{8 \%}$	6\％	6%	5\％	5\％	${ }^{4 \%}$	${ }^{4 \%}$	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％\％	\％\％	\％	0\％	0\％
629	83，02，100	Paled witp pecious melas	10	sL	0\％	0\％	10\％	10\％	10\％	10\％	0\％	10\％	${ }^{8 \%}$	${ }^{\text {\％}}$	\％	${ }^{5 \%}$	4\％	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{1 \%}$	0\％	\％	\％	0\％
629	${ }^{83,02,9,90}$	Of copere r read	10	sL	10\％	10\％	10\％	10\％	10\％	10\％	0\％	10\％	${ }^{8 \%}$	${ }^{7 \%}$	6\％	5\％	4\％	${ }^{3 \%}$	${ }^{2 \%}$	1\％	\％	\％	0\％	0\％
629	83，02，2920	－ot nickel	10	sL	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	${ }^{8 \%}$	${ }^{7} \%$	6\％	5\％	4\％	${ }^{3}$	${ }^{2 \%}$	${ }^{1 \%}$	\％	\％	\％	\％
629	83，02，230	－ofalunium	10	sL	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	${ }^{8}$	\％	${ }^{6 \%}$	${ }^{5 \%}$	4\％	${ }^{3 \%}$	${ }^{2 \%}$	1\％	\％	\％	\％	0\％
629	83，062，990	Onler	10	sL	10\％	10%	10\％	10\％	10\％	10\％	10\％	10\％	${ }^{8}$	7\％	6\％	${ }^{5 \%}$	4%	${ }^{3 \%}$	${ }^{2 \%}$	1\％	0\％	0\％	0\％	\％
${ }^{629}$	83，03，010	Of copeer	10	T2	9\％	9\％	${ }_{8}^{8 \%}$	8\％	6\％	6\％	5\％	5\％	4\％	${ }^{4 \%}$	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％	0\％	\％	\％
6296	83，06，091	－－－Metallic mirrors reflecting traffic views at road intersections or sharp corners	${ }^{10}$	sL	\％	10\％	${ }^{10 \%}$	${ }^{10 \%}$	10\％	10\％	\％\％	\％	8\％	${ }^{\text {\％\％}}$	6\％	${ }^{5 \%}$	${ }^{4 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{1 \%}$	\％	\％	\％	0\％
6297	83，06，099	－－－oter	${ }^{10}$	sL	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	${ }_{8 \%}$	${ }^{7} \%$	6\％	${ }^{5 \%}$	4\％	${ }^{3} \%$	${ }^{2 \%}$	1\％	\％	\％	0\％	\％
6^{6288}	83，77，000	Ofionor steal	10	st	0\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	0\％	0\％	0\％	0\％	0\％	\％\％	10\％	0\％	10\％	0\％	0\％	0\％
629	83，79，000	－Ofoter base meal	10	st	10\％	10\％	10\％	10\％	10\％	10\％	10\％	${ }^{10 \%}$	\％	10\％	\％	\％	\％\％	0\％	10\％	10\％	10\％	10\％	\％\％	10\％
6500	83，08，000	－Hooks，eyse and evelels	10	st	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	${ }^{8 \%}$	${ }^{7 \%}$	6\％	${ }^{5 \%}$	$4{ }^{4 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{1 \%}$	0\％	0\％	\％	\％
6501	83，02，000	－Tuubar or biturated fivels	10	sL	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	${ }_{8 \%}$	${ }^{7 \%}$	${ }^{6 \%}$	${ }^{5 \%}$	4%	${ }^{3} \%$	${ }^{2 \%}$	1\％	\％	\％	\％	\％
6802	83，08，010	${ }^{\text {Beads }}$	10	т2	9\％	9\％	${ }_{8 \%}$	${ }^{8 \%}$	${ }^{6 \%}$	${ }^{6 \%}$	${ }_{5 \%}$	${ }^{5 \%}$	4\％	4\％	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％	0\％	\％	0\％
${ }^{603}$	83，09，090	－other	10	N2	9\％	9\％	8%	8\％	6\％	6\％	5\％	5\％	4\％	4\％	3\％	3\％	2%	2%	0\％	\％	\％	0\％	\％	\％
6504	83，09，000	Crown cons	10	IsL	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	${ }^{10 \%}$
6505	83，99，010	${ }^{\text {Capsules for bolles }}$	${ }^{10}$	sL	\％\％	${ }^{10 \%}$	10\％	${ }^{10 \%}$	10\％	10\％	10\％	10\％	\％	${ }^{10 \%}$	10\％	10\％	${ }^{10 \%}$	0\％	10\％	10\％	10\％	10\％	10\％	0\％
6^{5006}	83，99，020	Topends of aluminium cas	10	IsL	0\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％
${ }^{607}$	83，99，060	－Aerosol can ends，of tipalie	10	HSL	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％
${ }^{6008}$	83，09，070	－Oner caps tor cans	10	IsL	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％
6509	83，99，081	－Botle and screw caps	10	${ }^{\text {sL }}$	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％
6310	83，09，089	－omer	10	Ist	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	${ }^{10 \%}$	10\％	10\％	10\％	10\％	10\％	10\％	10\％
${ }^{6311}$	83，99，091	－Botle and screw caps	10	st	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％
6312	83，99，099	－other	${ }^{10}$	st	10\％	10\％	10\％	10\％	10\％	10\％	10\％	${ }^{10 \%}$	0\％	10\％	10\％	10\％	10\％	0\％	10\％	${ }^{10 \%}$	10\％	10\％	${ }^{10 \%}$	0\％
${ }^{6313}$	83，10，000	Sign－plates，name－plates，address－plates and similar plates，numbers，letters and other symbols，of base metal，excluding those of heading 94.05 ．	10	st	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	${ }^{8 \%}$	7\％	6\％	5\％	4\％	3\％	2\％	1\％	0\％	\％	0\％	0\％
6314	83，11，000	－Coated electrodes of base metal，for electric arc－ welding	10	sL	0\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	8\％	${ }^{7} \%$	6\％	5\％	$4{ }^{4 \%}$	3\％	2\％	${ }^{1 \%}$	\％	0\％	\％	\％
6315	83，112，020	－－Cored wire of alloy steel，containing by weight 4.5% or more of carbon and 20% or more of chromium	${ }^{10}$	sL	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	${ }^{8 \%}$	${ }^{7} \%$	${ }^{6 \%}$	${ }^{5 \%}$	4\％	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{1 \%}$	\％	\％	\％	0\％
${ }^{6316}$	${ }^{83,112,090}$	－－Oner	0	st	10\％	10\％	10\％	10\％	10\％	10%	10\％	10\％	8%	${ }^{7 \%}$	6\％	5\％	4%	${ }^{3 \%}$	${ }^{2 \%}$	1\％	0\％	0\％	0\％	0\％
${ }^{6317}$	83，113，020	－－Cored wire of alloy steel，containing by weight 4.5% or more of carbon and 20% or more of chromium	10	${ }^{\text {sL }}$	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	8\％	${ }^{7 \%}$	6\％	${ }^{5 \%}$	4\％	3\％	${ }^{2 \%}$	1\％	0\％	0\％	\％	0\％
${ }^{6318}$	83，113，909	－－Oner	${ }^{10}$	st	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	${ }^{8 \%}$	${ }^{7} \%$	${ }^{6 \%}$	${ }^{5 \%}$	4%	${ }^{3 \%}$	${ }^{2} \%$	${ }^{1 \%}$	\％	0\％	\％	\％
6319	88，19，000	－other	10	sL	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	${ }_{8 \%}$	${ }^{7 \%}$	6\％	5\％	$4{ }^{4 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{1 \%}$	0\％	0\％	\％	\％
6320	84，01，000	－Nucear reacoros	5	EL	－	U	U	U	U	U	U	U	¢	U	U	¢	＂	U	U	U	U	\square	U	－
${ }^{6821}$	84，012，000	－Machinery and apparatus for isotopic separation， and parts thereof	${ }^{5}$	EL	${ }^{\circ}$	\bigcirc	0	U	U	${ }^{\circ}$	\bigcirc	\checkmark	U	${ }^{\circ}$	\bigcirc	${ }^{\circ}$	U	＂	U	${ }^{\circ}$	${ }^{\circ}$	${ }^{\circ}$	U	U
632	84，013，000	－Fuele lemens ceartioges，noni iradiald	5	${ }^{\text {EL }}$	U	－	，	\checkmark	U	U	U	－	－	U	U	ט	\bigcirc	U	U	U	U	ט	U	U
6323	84，04，000	－Pars of tuclear eeacoios	5	${ }^{\text {EL }}$	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\checkmark	\bigcirc	\bigcirc	U	\bigcirc	\bigcirc	\bigcirc	\bigcirc	U	U	\checkmark	\bigcirc	U	\bigcirc
${ }^{632}$	${ }^{8802.11 .10}$	－Electricaly operated	10	sL	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	${ }_{8 \%}$	${ }^{7 \%}$	6\％	${ }^{5 \%}$	4%	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{1 \%}$	\％	\％	\％	\％
6325	84021120	－Not electricaly operated	10	sL	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	8%	${ }^{7 \%}$	6\％	${ }^{5 \%}$	$4{ }^{4 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	1\％	0\％	0\％	0\％	0\％
${ }^{632}$	8802.12 .11	\cdots Boilers witha steam production exceeding 15 t per hour	10	т2	9\％	9\％	${ }^{8 \%}$	${ }^{8 \%}$	6\％	6\％	5\％	5\％	4\％	${ }^{4 \%}$	${ }^{3} \%$	${ }^{3 \%}$	2\％	${ }^{2 \%}$	\％	\％	\％	0\％	\％	\％
6327	8802.12 .19	－－Onher	${ }^{10}$	sL	\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	${ }^{8 \%}$	${ }^{7 \%}$	${ }^{6 \%}$	${ }^{5 \%}$	4%	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{1 \%}$	0\％	0\％	\％	0\％
${ }^{6328}$	${ }^{88021221}$	．．．．Bolies with a steam prococtione exceeding $15 t$	10	${ }^{\text {sL }}$	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	8\％	${ }^{7 \%}$	${ }^{6 \%}$	5\％	$4{ }^{4 \%}$	3\％	${ }^{2 \%}$	1\％	0\％	0\％	0\％	\％
6329	88021229	\cdots	10	T2	9\％	\％	8\％	${ }^{8 \%}$	6\％	6\％	5\％	5\％	4\％	4\％	${ }^{3 \%}$	${ }^{3 \%}$	2%	${ }^{2 \%}$	\％	0\％	\％	\％	\％	0\％
6^{630}	84，01，911		10	sL	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	${ }^{8 \%}$	7\％	6\％	5\％	4\％	3\％	${ }^{2 \%}$	1\％	0\％	\％	\％	\％
${ }^{6331}$	84，01，919	\cdots	10	st	\％\％	10\％	10\％	10\％	10\％	10\％	0\％	10\％	${ }^{8 \%}$	${ }^{7 \%}$	6\％	${ }^{5 \%}$	4\％	3\％	${ }^{2 \%}$	${ }^{1 \%}$	\％	0\％	\％	0\％
6332	84，02，121	－－－Boilers with a steam production exceeding 15 t per hour	${ }^{10}$	sL	10\％	10\％	\％	10\％	10\％	10\％	10\％	\％	${ }^{8 \%}$	${ }^{7 \%}$	6\％	5\％	4\％	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{1 \%}$	\％	\％	\％	\％
${ }^{633}$	84，01，929	Other	10	st	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	${ }^{8 \%}$	${ }^{7 \%}$	${ }^{6 \%}$	${ }^{5 \%}$	4\％	${ }^{3 \%}$	${ }^{2 \%}$	1\％	\％	\％	0\％	\％
${ }^{634}$	84，02，010	－Eectically opeated	10	sL	10\％	10\％	10\％	10\％	10\％	10\％	10\％	${ }^{10 \%}$	${ }^{8 \%}$	${ }^{7 \%}$	6\％	${ }^{5 \%}$	4%	${ }^{3 \%}$	${ }^{2 \%}$	1\％	0\％	0\％	\％	0\％
${ }^{6335}$	84，02，020	－Note electically peerated	10	sL	10\％	10\％	10\％	10\％	10\％	10\％	10\％	${ }^{10 \%}$	${ }^{8 \%}$	${ }^{7}$	6\％	${ }^{5 \%}$	4%	3\％	${ }^{2 \%}$	1\％	0\％	0\％	\％	\％
${ }_{6}^{636}$	84，29，010	－Bolere bodies or stells	10	т2	9\％	9\％	${ }^{8 \%}$	${ }^{8 \%}$	6\％	6\％	5\％	5\％	4%	4%	3\％	${ }^{3 \%}$	2\％	${ }^{2 \%}$	\％	\％	\％	0\％	0\％	\％
${ }^{6337}$	84，02，090	－Other	10	Ist	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	\％\％
${ }^{6338}$	84，03，000	－Bolers	10	st	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	${ }_{8 \%}$	${ }^{7 \%}$	6\％	5\％	$4{ }^{4 \%}$	3\％	${ }^{2 \%}$	${ }^{1 \%}$	\％	\％	\％	0\％
633	84，03，010	－－Bolere boides or shels	10	T2	9\％	9\％	8\％	${ }^{8 \%}$	6\％	6\％	${ }_{5 \%}$	5\％	4\％	4%	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	2\％	0\％	0\％	\％	0\％	0\％	\％
${ }^{639}$	84，03，090	－oner	10	sL	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	${ }_{8 \%}$	7\％	6\％	${ }^{5 \%}$	${ }^{4 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	1\％	0\％	\％	\％	\％
${ }^{6341}$	8804．10：10	－For sse with boiers of theaing 8 8．02	10	sL	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	${ }^{8 \%}$	${ }^{7} \%$	6\％	5\％	$4{ }^{4 \%}$	3\％	2\％	${ }^{1 \%}$	\％	\％	0\％	\％
${ }^{6342}$	8804．1020	－For use wilt bolers of teading 84.03	10	NT2	${ }^{9 \%}$	${ }^{9 \%}$	${ }^{8 \%}$	${ }^{8 \%}$	6\％	6%	5\％	5\％	4%	4\％	${ }^{3}$	${ }^{3 \%}$	2%	${ }^{2 \%}$	\％	\％	\％	\％	\％	\％
${ }^{634}$	84，02，000	Condensess ior steam or orter vapour powe units	5	NT1	4\％	4\％	4%	${ }^{3 \%}$	3\％	${ }^{2 \%}$	${ }^{2 \%}$	0\％	0\％	0\％	\％	0\％	0\％	\％	\％	0\％	\％	\％	\％	\％
${ }^{6344}$	84，09，011	\cdots Bbier bodiso ors shals	5	V1	4\％	4\％	$4{ }^{4 \%}$	3\％	3\％	${ }^{2 \%}$	${ }^{2 \%}$	\％	0\％	\％	\％	\％	\％	\％	0\％	\％	\％	0\％	\％	\％
${ }^{6345}$	84，04，019	－Other	5	NT1	4\％	4\％	4\％	3\％	${ }^{3} \%$	2%	${ }^{2 \%}$	\％	\％	\％	0\％	\％	0\％	\％	\％	\％	0\％	0\％	\％	\％
${ }^{6346}$	84，09，021	\cdots Boler bodies or stals	5	${ }^{\text {NT1 }}$	4\％	4\％	4%	3\％	3\％	2%	2%	\％	0\％	\％	0\％	\％	0\％	\％	\％	\％	\％	\％	\％	0\％
${ }^{6347}$	84，09，029	－Oner	5	NTI	4\％	4\％	4%	3\％	3\％	2%	2%	\％	0\％	\％	\％	\％	\％	\％	\％	\％\％	\％	\％	\％	\％
${ }^{6348}$	84，099，090	－－omer	5	V1	4%	4%	$4{ }^{4 \%}$	3\％	3\％	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％\％	\％	\％\％	\％	0\％	\％	\％	0\％	\％	0\％	\％	\％
639	84，05，000	－Producer gas or water gas generators，with or without their purifiers；acetylene gas generators and similar water process gas generators，with or without their purifiers	${ }_{5}$	NT1	4\％	4\％	4\％	3\％	3\％	${ }^{2 \%}$	2\％	0\％	0\％	0\％	0\％	\％	0\％	\％	0\％	0\％	\％	0\％	0\％	0\％
${ }^{6350}$	84，55，000	－Pars	5	NT1	4\％	4\％	4%	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	0\％	\％\％	\％	\％\％	\％	\％	\％	\％	0\％	\％	\％	\％	\％
${ }^{6351}$	84，06，000	－Turines tor maine propusion	5	NT1	4\％	4\％	4%	3\％	3\％	${ }^{2 \%}$	${ }^{2 \%}$	0\％	\％\％	0\％	\％	\％	0\％	0\％	0\％	0\％	0\％	0\％	\％	\％
653	84，06，100	－Ot a outuputexeeding 40 MW	5	NT1	4\％	4\％	4%	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	0\％	\％	\％	\％	\％	\％	\％	\％	\％	0\％	0\％	0\％
${ }^{6353}$	84，08，200		5	NT1	4\％	4\％	4%	${ }^{3 \%}$	${ }^{3 \%}$	2\％	${ }^{2 \%}$	0\％	\％	\％	\％	\％	0\％	\％	\％	\％	0\％	0\％	\％	\％
${ }^{6354}$	84，09，000	－Pats	5	NT1	4\％	4\％	$4{ }^{4 \%}$	3\％	3\％	${ }^{2 \%}$	${ }^{2 \%}$	\％	0\％	\％	\％	0\％	\％	\％	0\％	\％	\％	\％	\％	0\％
6355	84，07，000	－Aicrate ngines	5	T1	4\％	4%	4%	3\％	3\％	2\％	2\％	\％	0\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	0\％
$6{ }^{636}$	84，02，110		5	st	5\％	5\％	5\％	5\％	${ }^{5 \%}$	5\％	5\％	5\％	${ }^{4 \%}$	4%	3\％	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	${ }^{1 \%}$	${ }^{1 \%}$	\％	0\％	\％	\％
6357	84，02，190	\cdots	5	sL	5\％	5\％	5\％	5\％	5\％	${ }_{5 \%}$	${ }_{5 \%}$	5\％	4\％	4%	3\％	3\％	2%	${ }^{2 \%}$	1\％	${ }^{1 \%}$	\％	0\％	\％	\％
${ }^{6588}$	84，02，290	－Ota power note exeesing 22.38 kNW （30 h p$)$	10	${ }^{\text {ISL }}$	\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	\％
6539	84，72，990	－－Other	10	st	10\％	10\％	10\％	10\％	10\％	10\％	10\％	${ }^{10 \%}$	10\％	10\％	10\％	10\％	10\％	${ }^{10 \%}$	10\％	10\％	10\％	10\％	10\％	\％
6360	84，07， 100	－- a a culinder capacity not exceeding 50 coc	${ }^{20}$	${ }^{\text {EL }}$	\bigcirc	\bigcirc	U	\bigcirc	U	\bigcirc	U	U	\bigcirc	0	－	ט	\bigcirc	\bigcirc	－	－	\bigcirc	－	\bigcirc	\bigcirc
${ }^{6861}$	84，73，211	Forvenides of theading 8 7．01	${ }^{30}$	EL	0	－	－	－	－	－	－	ט	U	－	U	－	－	U	－	U	0	U	ט	U
${ }^{6362}$	${ }^{84,703,212}$	For vencices of heading 87．11	${ }^{30}$	${ }^{\text {EL }}$	－	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	U	\bigcirc	U	\bigcirc	U	\bigcirc	\bigcirc	U	\bigcirc	U	U	U	U	\bigcirc
${ }^{683}$	84，773，219	－Onter	${ }^{30}$	EL	，	\bigcirc	，	\bigcirc	\bigcirc	U	U	\bigcirc	\bigcirc	－	U	\bigcirc	U	U	0	U	\bigcirc	U	U	0
$6{ }^{634}$	84，73，221	\cdots Forvenicses of heading 87.01	${ }^{30}$	EL	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\checkmark	\checkmark	\checkmark	\checkmark	\bigcirc	U	U	\checkmark	\checkmark	\bigcirc	\checkmark	U	\checkmark	U	U	\bigcirc
6865	84，73， 222	\cdots Forvenicies of theaing 87.11	${ }^{30}$	EL		U	\bigcirc		U	U	0		U	U	，	U	0	U	－	U	U	－	U	U
${ }^{6366}$	84，73，229	Onher	${ }^{30}$	EL	\bigcirc	－	\bigcirc	\bigcirc	U	\bigcirc	－	\bigcirc	\bigcirc	U	－	\bigcirc	－	－	U	U	\bigcirc	－	U	U
6367	84，73，3，30	－Forvenicies of theading 87.01	${ }^{40}$	${ }^{\text {EL }}$	\bigcirc		\bigcirc	\bigcirc	\bigcirc	U	\bigcirc	\bigcirc	U	\bigcirc	U	U		U	\bigcirc	U	U	，	U	U
${ }^{6388}$	$84,073,320$	Or venices of theading 87.11	40	EL	O	－	－	\bigcirc	U	－	U	U	－	0	\bigcirc	－	U	\bigcirc	－	U	－	U	U	U

${ }^{5369}$	84，77，390	Oner	40	EL	U	U	U	U	ט	－	0	U	U	U	U	0	U	U	\bigcirc	\bigcirc	\bigcirc	U	U	0
6370	84，07，440	－．．．．For pedestrian controlled tractors，of a cylinder capacity note exceeding 1,100	${ }^{40}$	${ }^{\text {EL }}$	\checkmark	u	\checkmark	u	u	\checkmark	U	u	\bigcirc	u	\checkmark	\checkmark	u	u	u	u	\checkmark	U	u	\bigcirc
6371	84，73，450	For othe venicies of theaing 8 7．01	${ }^{40}$	${ }^{\text {EL }}$	0	－	U	U	0	0	U	U	U	0	\bigcirc	\bigcirc	U	0	U	\bigcirc	\bigcirc	ט	U	\bigcirc
${ }^{6372}$	88，7， 3,460	For venicies of heading 87.11	40	${ }^{\text {EL }}$	U	0	0	U	U	U	U	\bigcirc	\bigcirc	\bigcirc	U	U	0	U	U	U	\bigcirc	U	U	\bigcirc
$6{ }^{673}$	88，07，471	Of a cylinder capailit notexceeding 2，000 c	${ }^{40}$	${ }^{\text {EL }}$	U	－	U	O	U	${ }^{\text {u }}$	U	－	－	U	\bigcirc	U	ט	${ }_{0}$	U	U	U	U	U	\bigcirc
${ }^{637}$	73，472	．．．．．Of a cylinder capacity exceeding 2，000 cc but not exceeding $3,000 \mathrm{cc}$	${ }^{40}$	${ }^{\text {EL }}$	，	，	U	U	，	u	U	0	\bigcirc	0	U	U	\checkmark	u	－	U	U	U	U	\bigcirc
$6{ }^{6375}$	88，77，473	－Of a clinder capasity exceding $3,000 \mathrm{cc}$	${ }^{40}$	EL	0	0	0	U	0	，	0	ט	U	u	0	\bigcirc	\bigcirc	u	u	U	\bigcirc	U	U	\bigcirc
${ }^{6376}$	073，491	For pedestrian controlled tractors，of a cylinder capacity not exceeding 1,100 cc	${ }^{40}$	EL		，	，	U	，	，	，	U	U	0	U	U	\bigcirc	U	U	U	U	U	U	U
${ }^{6377}$	88，73，492		${ }^{40}$	－	U	0	0	\bigcirc	U	0	0	\bigcirc	\bigcirc	U	0	\bigcirc	\bigcirc	ט	ט	ט	\bigcirc	U	ט	\bigcirc
${ }^{6378}$	88，07，493	\cdots Forvenices of heading 87.11	${ }^{40}$	EL	0	ט	U	\bigcirc	ט	\bigcirc	ט	ט	\checkmark	0	U	－	\bigcirc	ט	0	\bigcirc	\checkmark	ט	U	\bigcirc
${ }^{6879}$	84，77，494	Of a cylinder capacily note exeesing 2，000	40	EL	\bigcirc	\bigcirc	\bigcirc	0	ט	ט	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	－	ט	\bigcirc	\bigcirc	0	\bigcirc	\bigcirc
6880	84，073，495	Of a cylinder capacity exceeding 2,000 cc but	${ }^{40}$	EL	U	0	0	U	U	U	0	U	\bigcirc	0	0	U	\bigcirc	u	U	U	\checkmark	U	U	\bigcirc
6881	88，07，499	－－of acylinder capacily exceeding 3,000 co	${ }^{40}$	${ }^{\text {EL }}$	U	U	U	U	U	U	U	U	\bigcirc	0	0	U	\bigcirc	u	\checkmark	U	\checkmark	U	U	\bigcirc
6382	84，079，010	－Of a powe rote exceeding 18.55 kN	40	EL	U	U	U	U	U	U	U	0	－	0	0	\bigcirc	\bigcirc	U	U	U	\bigcirc	U	U	\bigcirc
6883	84，07，020	- Of a power exceeding 18.65 kW but not exceeding 22.38 kW	${ }^{40}$	${ }^{\text {EL }}$	U	U	ט	ט	ט	U	\bigcirc	\bigcirc	\bigcirc	u	\checkmark	\bigcirc	\checkmark	${ }_{0}$	u	U	\checkmark	U	U	U
${ }^{6384}$	88，797，090	－－other	40	${ }^{\text {EL }}$	0	U	U	U	－	0	－	U	0	${ }_{0}$	U	0	U	U	U	U	U	U	U	U
${ }^{6335}$	8400．10．10	－－Of powe rote exceeding 22.38 kW	10	${ }^{\text {sL }}$	0\％	0\％	10\％	10\％	10\％	10\％	\％\％	0\％	8\％	${ }^{7 \%}$	6\％	5\％	4\％	3\％	${ }^{2 \%}$	1\％	\％	\％	\％	\％
${ }^{6386}$	8008．1020	- Of power exceeding 22.38 kW but not exceeding 100 kW	10	sL	\％\％	0\％	0\％	\％\％	10\％	10\％	10\％	0\％	${ }^{8} \%$	${ }^{7} \%$	6\％	5\％	4\％	3\％	${ }^{2 \%}$	${ }^{1 \%}$	\％	0\％	\％	\％
${ }^{6387}$	84，01，090	－－other	10	sL	0\％	10\％	0\％	\％	10\％	10\％	10\％	0\％	8%	${ }^{7} \%$	6\％	5\％	4%	${ }^{3 \%}$	${ }^{2 \%}$	1\％	\％	\％	\％	\％
${ }^{6388}$	88，02，010	\cdots Forvenicos of stubeaing 8801.10	10	1	9\％	8\％	6\％	5\％	4%	3\％	2\％	0\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％
6389	84，02，021	Of a chinder capactiy notexeeseding 2，000 co	10	${ }^{\text {st }}$	\％\％	\％\％	\％	0\％	10\％	10\％	10\％	\％ 0	0\％	\％	10\％	10\％	10\％	\％	0\％	\％	\％	\％\％	\％	0\％
639	2.22	－．．．Of a a cyinder capacity exceeding 2,000 cc but not exceeding 3,500 cc	${ }^{10}$	sL	\％\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	${ }^{8 \%}$	${ }^{7} \%$	${ }^{6 \%}$	${ }^{\text {5\％}}$	${ }^{4 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{1 \%}$	0\％	\％	\％	\％
639	84，02，023	－．－Of a culinder capacily exeesing 3，500 co	0	${ }^{\text {sL }}$	0\％	10\％	10\％	10\％	10\％	10\％	10\％	\％	${ }^{8 \%}$	7\％	\％\％	5\％	4%	${ }^{3 \%}$	${ }^{2 \%}$	1\％	0\％	0\％	\％	0\％
${ }^{6392}$	88，082093	－For venicies of stubeading 8 700．10	10	T1	${ }^{9 \%}$	${ }_{8} 8$	${ }^{6 \%}$	5\％	4%	${ }^{3 \%}$	${ }^{2 \%}$	0\％	\％	\％	\％	0\％	0\％	\％	\％	\％	\％\％	0\％	\％	0\％
${ }^{6393}$	88，08，2094	Of a cyinder crapalily notexeeseding 2.000 co	${ }^{10}$	${ }^{\text {sL }}$	0\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	${ }^{8} \%$	${ }^{7 \%}$	6\％	5\％	4\％	3\％	${ }^{2 \%}$	${ }^{1 \%}$	\％	\％	\％	\％\％
639	84，02，095		10	sL	10\％	10\％	${ }^{10 \%}$	10\％	${ }^{10 \%}$	10\％	10\％	0\％	${ }^{8 \%}$	${ }^{7 \%}$	6\％	${ }^{5 \%}$	4\％	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{1 \%}$	\％	\％	0\％	0\％
${ }^{6395}$	84，08， 096	\cdots Ot a cylinder capacaly exeesing 3.500 co	10	st	0\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	${ }^{8 \%}$	${ }^{7 \%}$	${ }^{6 \%}$	${ }^{5 \%}$	4%	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{1 \%}$	\％	\％	0\％	\％
${ }^{6396}$	84，09，010	－Oa power note exeeoding 18．65 kN	10	st	0\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	8\％	${ }^{7} \%$	6\％	5\％	4%	3\％	${ }^{2 \%}$	1\％	\％\％	\％	\％	\％
6397	84，09，050	Of a powere ecoeding 100 kW	${ }^{10}$	st	\％\％	0\％	\％\％	0\％	10\％	10\％	10\％	\％\％	${ }^{8 \%}$	${ }^{7} \%$	${ }^{6 \%}$	${ }^{5 \%}$	4%	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{1 \%}$	0\％	\％	0\％	0\％
298	88，09，091		10	st	0\％	0\％	0\％	10\％	10\％	10\％	10\％	0\％	\％\％	\％\％	10\％	10\％	0\％	0\％	0\％	10\％	10\％	\％	10\％	\％
6399	84，09，099	－other	10	sL	0\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	${ }_{8}^{8}$	${ }^{7 \%}$	6\％	5\％	4\％	3\％	${ }^{2 \%}$	${ }^{1 \%}$	0\％	\％	\％	\％
8400	88，09，000	－For aicarat engines	5	v1	4%	4\％	4%	3\％	3\％	${ }^{2 \%}$	${ }^{2 \%}$	0\％	\％\％	\％	0\％	\％	\％	\％	\％	\％	\％	\％	\％	\％
${ }^{8401}$	84，09， 111	Caturuetos and pars thereof	0	st	0\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	8\％	7\％	6\％	5\％	4%	3\％	${ }^{2 \%}$	1\％	\％\％	\％	0\％	0\％
${ }^{8402}$	88，09，112	Cylinder flocks	10	st	0\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	${ }^{8 \%}$	${ }^{7 \%}$	6%	5\％	4%	3\％	${ }^{2 \%}$	${ }^{1 \%}$	\％	\％	\％	0\％
${ }^{6403}$	84，09， 113	Cylinder liners，with an internal diameter of 50 mm or more，but not exceeding 155 mm	10	${ }^{\text {sL }}$	0\％	10\％	10\％	\％	10\％	10\％	10\％	\％\％	${ }^{8 \%}$	${ }^{7 \%}$	6\％	5\％	4\％	3\％	${ }^{2 \%}$	1\％	\％	\％	\％	0\％
${ }^{6804}$	88，09， 114	\cdots O－Cher cylinder ines	10	st	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	${ }^{8 \%}$	${ }^{7} \%$	6\％	5\％	4\％	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{1 \%}$	\％	\％	\％	\％
6405	84，09， 115	Cylinefer eeads and head covers	10	st	10\％	${ }^{10 \%}$	${ }^{10 \%}$	10%	10\％	10\％	${ }^{10 \%}$	10\％	8\％	${ }^{7 \%}$	6\％	5\％	4\％	${ }^{3 \%}$	${ }^{2 \%}$	1\％	\％\％	0\％	0\％	0\％
88006	84，09， 116	－．．Pistons，with an external diameter of 50 mm or but not exceeding 155 mm	10	sL	10\％	10\％	10\％	\％\％	10\％	10\％	10\％	10\％	8%	${ }^{7 \%}$	\％	${ }^{5 \%}$	4%	${ }^{3 \%}$	${ }^{2 \%}$	1\％	\％	\％	\％	\％
${ }^{8007}$	84，09， 117	－Onter pisions	10	${ }^{\text {st }}$	0\％	10\％	0\％	\％\％	${ }^{10 \%}$	10\％	10\％	\％	${ }^{8 \%}$	${ }^{7 \%}$	6\％	${ }^{5 \%}$	4%	${ }^{3 \%}$	${ }^{2 \%}$	1\％	0\％	0\％	\％	0\％
6408	84，09， 118	Pistor ingsa and gulgeon pins	10	st	0\％	0\％	\％\％	0\％	10\％	10\％	10\％	\％	${ }^{\text {\％}}$	\％	6\％	${ }^{5 \%}$	4%	${ }^{3} \%$	${ }^{2 \%}$	${ }^{1 \%}$	\％	\％	\％	\％
8409	84，09， 119	Onher	10	st	0\％	10\％	0\％	\％\％	10\％	10\％	10\％	0\％	8%	7\％	6\％	${ }^{5 \%}$	4\％	3\％	${ }^{26}$	${ }^{1 \%}$	\％	${ }^{0 \%}$	\％	\％\％
6410	88，09，121	Caturutors and parst hereof	10	sL	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	${ }^{8} \%$	${ }^{7 \%}$	6\％	5\％	4\％	3\％	${ }^{2 \%}$	${ }^{1 \%}$	\％	\％	\％	\％
${ }^{6411}$	88，09，122	Cylinder flocks	10	st	10\％	10\％	10%	10\％	${ }^{10 \%}$	10\％	10%	${ }^{10 \%}$	${ }^{8 \%}$	${ }^{7 \%}$	6%	${ }^{5 \%}$	4%	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{1 \%}$	\％	0\％	\％	\％
${ }^{6412}$	84，09， 123	－Cy Cyinder liners，with an internal diameter of 50 mm or more，but not exceeding 155 mm	10	${ }^{\text {sL }}$	0\％	10\％	0\％	10\％	10\％	10\％	10\％	\％	${ }^{8 \%}$	${ }^{7 \%}$	6\％	5\％	4%	3\％	${ }^{2 \%}$	${ }^{1 \%}$	0\％	\％	\％	\％
${ }^{6413}$	84，09，124	－．．．Onee cylinder iness	10	sL	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	${ }^{8 \%}$	${ }^{7 \%}$	${ }^{6 \%}$	5\％	4%	3\％	${ }^{2 \%}$	${ }^{1 \%}$	\％\％	\％	\％	\％
${ }^{6414}$	84，09， 125	Clinder heass and head covers	10	st	10\％	10\％	10\％	10\％	${ }^{10 \%}$	10\％	10\％	10\％	${ }^{8}$	${ }^{7 \%}$	${ }^{6 \%}$	${ }^{5 \%}$	$4{ }^{4 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{1 \%}$	\％	\％	0\％	\％
${ }^{6415}$	84，09，126	Pistons，with an external diameter of 50 mm or more，but not exceeding 155 mm	10	${ }^{\text {sL }}$	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	${ }^{8 \%}$	${ }^{7 \%}$	6\％	5\％	4\％	3\％	2\％	\％	0\％	\％	\％	\％
${ }^{6416}$	88，09， 127	\cdots	10	sL	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	${ }^{8} \%$	${ }^{7} \%$	6\％	5\％	4\％	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{1 \%}$	\％	\％	\％	0\％
${ }^{6417}$	84，09，128	－Psion ings and gulugen pins	10	st	0\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	8\％	${ }^{7 \%}$	6\％	5\％	4\％	3\％	2\％	${ }^{1 \%}$	0\％	0\％	\％	\％\％
${ }^{6418}$	84，09，129	Other	10	sL	0\％	10\％	0\％	${ }^{10 \%}$	${ }^{10 \%}$	10\％	10\％	\％\％	${ }^{8 \%}$	7\％	6\％	5%	4%	${ }^{3 \%}$	${ }^{2 \%}$	1\％	\％	\％	0\％	\％\％
${ }^{6419}$	88，09， 131	Caturuetors and parst thereof	10	st	0\％	0\％	0\％	\％\％	10\％	10\％	10\％	0\％	$8{ }^{8 \%}$	7\％	6\％	5\％	4%	3\％	${ }^{2 \%}$	1\％	\％	\％	\％	\％
${ }^{6420}$	88，09，132	Cyinder books crank cases	10	sL	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	${ }^{8 \%}$	${ }^{7 \%}$	6\％	${ }^{5 \%}$	$4{ }^{4 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	1\％	\％	\％	\％	\％
${ }^{6421}$	88，09，134	Cylindef inees	${ }^{10}$	st	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	${ }^{8 \%}$	${ }^{7 \%}$	6\％	5\％	4%	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{1 \%}$	\％	\％	\％	\％
${ }^{6422}$	84，09，135	Cylinder heads and head covers	10	sL	${ }^{10 \%}$	10\％	10\％	${ }^{10 \%}$	10\％	10\％	${ }^{10 \%}$	${ }^{10 \%}$	8\％	${ }^{7 \%}$	6\％	5\％	4\％	${ }^{3 \%}$	${ }^{2 \%}$	1\％	0\％	\％	0\％	0\％
${ }^{6423}$	84，09，137	Psions	10	st	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	${ }^{8 \%}$	7\％	6\％	5\％	4%	3\％	${ }^{2 \%}$	${ }^{1 \%}$	\％\％	\％	\％	\％
${ }^{6824}$	88，09，138	－Pisor ings and gusuen pins	10	st	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	${ }^{8 \%}$	${ }^{7} \%$	${ }^{6 \%}$	${ }^{5 \%}$	4%	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{1 \%}$	\％	\％	\％	\％
${ }^{6425}$	88，09，139	－other	10	${ }^{\text {sL }}$	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	${ }^{8} \%$	${ }^{7 \%}$	6\％	5\％	4\％	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{1 \%}$	\％\％	\％	\％	\％
${ }^{6426}$	84，09，141	Caturuturs and parst theoef	${ }^{10}$	st	10\％	10\％	10\％	${ }^{10 \%}$	${ }^{10 \%}$	10\％	10\％	10\％	${ }^{8 \%}$	${ }^{7 \%}$	6\％	${ }^{5 \%}$	4\％	3\％	${ }^{2 \%}$	${ }^{1 \%}$	\％	\％	0\％	\％\％
${ }^{6427}$	84，09，142	Coyliner blocks crank cases	10	st	0\％	10\％	0\％	\％\％	10\％	10\％	${ }^{10 \%}$	${ }^{10 \%}$	8%	7\％	6\％	${ }^{5 \%}$	4\％	3\％	${ }^{2 \%}$	1\％	0\％	\％	\％	\％\％
${ }^{6428}$	4，099，143		10	${ }^{\text {sL }}$	10\％	10\％	10\％	0\％	\％\％	0\％	0\％	10\％	${ }^{8 \%}$	${ }^{7 \%}$	6\％	5\％	4\％	3\％	${ }^{2 \%}$	\％	\％	0\％	\％	\％
${ }^{6429}$	88，09，144	Oner crlinder inees	10	st	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	${ }_{8 \%}$	${ }^{7 \%}$	${ }^{6 \%}$	5%	$4{ }^{4 \%}$	3\％	${ }^{2 \%}$	${ }^{1 \%}$	0\％	\％	\％	\％\％
${ }^{6830}$	84，09，145	－Cyinder heass and head covers	10	st	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	8\％	${ }^{7 \%}$	6\％	5\％	4%	3\％	${ }^{2 \%}$	1\％	\％\％	\％	\％	\％
${ }^{6831}$	4，0，99，146	\cdots Pistons with an external diameter of 50 mm or more，but not exceeding 155 mm	${ }^{10}$	st	0\％	10\％	\％\％	10\％	10\％	10\％	10\％	10\％	${ }^{8} \%$	${ }^{7 \%}$	6%	5\％	4\％	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{1 \%}$	\％	\％	\％	\％\％
${ }^{6432}$	88，09， 147	－Oherer isons	10	st	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	${ }^{8 \%}$	${ }^{7 \%}$	6\％	5\％	${ }^{4 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	，	\％\％	\％	0\％	\％
${ }_{6}^{6433}$	84，09，148	Psison ings and gutgeon pins	10	st	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	8\％	${ }^{7 \%}$	6\％	5\％	4%	3\％	${ }^{2 \%}$	1\％	0\％	0\％	0\％	0\％
${ }_{6}^{634}$	88，09， 149	Other	10	st	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	${ }^{8 \%}$	${ }^{7 \%}$	6\％	5\％	4%	${ }^{3 \%}$	${ }^{2 \%}$	1\％	0\％	\％	\％	\％
${ }_{6}^{6435}$	88，09，151	－Cyinder flocks crank cases	10	st	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	${ }^{8 \%}$	${ }^{7 \%}$	6\％	5\％	4\％	${ }^{3 \%}$	${ }^{2 \%}$	1\％	\％	0\％	\％	\％
6^{6436}	88，09，152	－．．．Cylinder liners，with an intemal diameter of 50 mm or more，but not exceeding 155 mm	${ }^{10}$	${ }^{\text {sL }}$	10\％	10\％	\％	${ }^{10 \%}$	10\％	10\％	10\％	10\％	${ }^{8} \%$	${ }^{7 \%}$	${ }^{6 \%}$	5\％	4\％	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{1 \%}$	\％	\％	\％	\％\％
${ }_{6}^{647}$	84，09， 53	－－－Onfere cylideer ineers	${ }^{10}$	st	10\％	${ }^{10 \%}$	${ }^{10 \%}$	10%	${ }^{10 \%}$	10\％	${ }^{10 \%}$	10\％	8\％	${ }^{7 \%}$	6\％	5\％	4\％	3\％	${ }^{2 \%}$	1\％	\％\％	\％	\％\％	\％\％
${ }^{6438}$	84，09，154	－．．．Pistons，with an extemal diameter of 50 mm or more，but not exceeding 155 mm	10	st	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	${ }^{8 \%}$	${ }^{7 \%}$	6\％	5\％	4\％	3\％	${ }^{2 \%}$	1\％	\％	\％	\％	0\％
${ }^{6439}$	84，09，155	－omer pisons	10	st	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	8\％	${ }^{7 \%}$	6\％	5\％	4%	3\％	${ }^{2 \%}$	1\％	0\％	0\％	0\％	0\％
${ }^{6440}$	88，09，159	Oner	10	st	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	${ }_{8} 8$	${ }^{7 \%}$	6\％	5\％	4%	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{1 \%}$	\％	\％	0\％	\％
${ }^{6441}$	84，09，161	Cryinder bocoss crank cases	10	st	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	8\％	${ }^{7 \%}$	6\％	5\％	4%	${ }^{3 \%}$	${ }^{2 \%}$	1\％	\％\％	\％	\％	\％\％
$6{ }^{642}$	88，09， 162	－．．．Cylinder liners，with an intemal diameter of 50 mm or more，but not exceeding 155 mm	${ }^{10}$	st	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	8\％	${ }^{7 \%}$	6%	5\％	4\％	3\％	${ }^{2 \%}$	${ }^{1 \%}$	\％	\％	\％	\％\％
${ }^{6443}$	84，09， 163	Other clyided ines	10	st	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	8\％	${ }^{7 \%}$	6\％	5\％	4%	3\％	${ }^{2 \%}$	\％	0\％	\％	\％	\％
6^{644}	84，09，164	O．．．．Pistons，with an external diameter of 50 mm or more，but not exceeding 155 mm	${ }^{10}$	sL	10\％	10\％	\％	10\％	10\％	10\％	10\％	10\％	8\％	${ }^{7 \%}$	6\％	5\％	4\％	3\％	2\％	1\％	\％	\％	\％	\％\％
${ }^{6445}$	84，09，165	－Oner pisions	10	sL	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	8\％	${ }^{7 \%}$	6\％	${ }_{5 \%}$	4%	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{1 \%}$	0\％	\％	0\％	0\％
${ }^{6446}$	84，09，169	\cdots Onter	${ }^{10}$	st	10\％	${ }^{10 \%}$	${ }^{10 \%}$	10\％	10\％	10\％	10\％	10\％	${ }^{8 \%}$	${ }^{7} \%$	6%	5\％	4\％	${ }^{3 \%}$	${ }^{2 \%}$	1\％	0\％	\％	0\％	\％
${ }^{6447}$	88，09， 71	Caturuetos and parss hereof	10	sL	10\％	10\％	10\％	10\％	${ }^{10 \%}$	10\％	10\％	${ }^{10 \%}$	${ }^{8} \%$	${ }^{7 \%}$	6\％	${ }^{5 \%}$	${ }^{4 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{1 \%}$	\％	0\％	\％	\％
${ }^{6448}$	84，09，172	${ }^{\text {Cylinder flocks }}$	10	st	10\％	${ }^{10 \%}$	${ }^{10 \%}$	10\％	10\％	10\％	10\％	10\％	${ }^{8 \%}$	${ }^{7} \%$	6\％	${ }^{5 \%}$	4%	${ }^{3 \%}$	${ }^{2 \%}$	1\％	0\％	\％	\％	\％
6^{649}	84，09， 173	－．Cylinder liners，with an intemal diameter of 50 mm or more，but not exceeding 155 mm	${ }^{10}$	${ }^{\text {sL }}$	${ }^{10 \%}$	${ }^{10 \%}$	${ }^{10 \%}$	10\％	${ }^{10 \%}$	10\％	${ }^{10 \%}$	${ }^{10 \%}$	${ }^{8 \%}$	${ }^{7 \%}$	${ }^{6 \%}$	${ }^{5 \%}$	${ }^{4 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{1 \%}$	\％	\％	0\％	\％
${ }^{6450}$	84，09，174	－\cdots Oner cylinder fines	10	st	0\％	${ }^{10 \%}$	10\％	${ }^{10 \%}$	10\％	10\％	10\％	10\％	8\％	\％	${ }^{6 \%}$	${ }^{5 \%}$	4\％	3\％	${ }^{2 \%}$	1\％	0\％	\％	\％\％	\％
6_{645}^{645}	84，09， 175	－－Culinder reads and head covers	10	${ }^{\text {st }}$	10\％	10\％	${ }^{10 \%}$	${ }^{10 \%}$	10\％	10\％	10\％	${ }^{10 \%}$	${ }^{8 \%}$	${ }^{7 \%}$	${ }^{6 \%}$	${ }^{5 \%}$	4%	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{1 \%}$	\％\％	\％\％	\％	0\％
	．099，176	－．．．Pistons，with an exteral diameter of 50 mm or more，but not exceding 155 mm	${ }^{10}$	sL	\％	\％\％	$1{ }^{10 \%}$	10\％	10\％	10\％	10%	\％	${ }^{8 \%}$	${ }^{7} \%$	6\％	${ }^{5 \%}$	4%	${ }^{\text {\％}}$	${ }^{2 \%}$	${ }^{1 \%}$	\％	\％	0\％	0\％

香港•ASEAN FTAにかかる調査報告書

別添2－4 原産地品の関税撤廃スケジュール
（ラオス）

${ }^{6453}$	${ }^{\text {84，09，} 177}$	Other psions	10	st	10%	10%	10\％	10\％	10%	${ }^{10 \%}$	10\％	10\％	${ }^{8 \%}$	${ }^{\text {\％\％}}$	6\％	${ }^{5 \%}$	${ }^{4 \%}$	${ }^{\text {3\％}}$	${ }^{2 \%}$	${ }^{1 \%}$	\％	\％	\％	\％
$6{ }^{6454}$	84，09， 178	Pisors sings and gutgeen pins	10	sL	10\％	0\％	0\％	10\％	10\％	10\％	10\％	10\％	${ }^{8} \%$	${ }^{7} \%$	6\％	5\％	4\％	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{1 \%}$	\％	\％	\％	\％
${ }^{6455}$	84，09， 179	－oner	10	st	0\％	10\％	0\％	10\％	10\％	10\％	10\％	10\％	${ }_{8} \%$	${ }^{7 \%}$	6\％	5\％	4\％	3\％	${ }^{2 \%}$	${ }^{1 \%}$	\％	，	\％	\％\％
6456	88，09，911	Catuerotos sand pars feereof	10	sL	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	${ }^{8 \%}$	\％	6%	${ }_{5 \%}$	4%	3\％	${ }^{2 \%}$	1\％	0\％	\％	\％	\％
${ }^{6457}$	84，09，912	－Coylider bocks	10	sL	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	8%	${ }^{7 \%}$	6\％	5\％	4%	${ }^{3 \%}$	${ }^{2 \%}$	1\％	\％	0\％	0\％	\％
${ }^{6458}$	84，09，913	Cylinder liners，with an internal diameter of 50 mm or more，but not exceeding 155 mm	10	sL	10\％	10\％	10\％	${ }^{10 \%}$	10\％	10\％	10\％	\％	${ }^{8 \%}$	7\％	6\％	5\％	4\％	3\％	${ }^{2 \%}$	1\％	\％	\％	\％	\％
6459	84，09，914	\cdots Oner clinde inees	10	st	10%	${ }^{10 \%}$	10\％	10\％	10\％	10\％	10\％	10\％	${ }_{8 \%}$	\％	6\％	${ }^{5 \%}$	${ }^{4 \%}$	3\％	${ }^{2 \%}$	1\％	\％	\％	0\％	\％
${ }^{6860}$	84，09，915	Cylinder heads and head covers	10	st	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	${ }_{8} 8$	${ }^{\text {\％}}$	6\％	5\％	${ }^{4 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	1\％	\％	\％	\％	\％
${ }^{6461}$	84，09，9，96	Pistons，with an external diameter of 50 mm or	10	${ }^{\text {st }}$	10\％	\％	10\％	${ }^{10 \%}$	${ }^{10 \%}$	\％\％	10\％	10\％	8\％	${ }^{7 \%}$	6\％	5\％	4%	${ }^{3 \%}$	2\％	1\％	0\％	\％	\％	\％
${ }^{6462}$	84，09，9，97	\cdots	10	${ }^{\text {sL }}$	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	8\％	${ }^{\text {\％}}$	6\％	${ }^{5 \%}$	${ }^{4 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{\text {\％}}$	\％	\％	0\％	\％
${ }^{6463}$	84，09，9，918	PPsion inios and gutseon pins	10	st	\％ 0	10\％	10\％	10\％	10\％	10\％	10\％	10\％	\％	${ }^{7 \%}$	6\％	5\％	${ }^{4 \%}$	3\％	${ }^{2 \%}$	1\％	\％	\％	\％	\％\％
${ }^{6864}$	88，09，9，99	Oner	10	sL	\％	\％\％	\％	0\％	10\％	10\％	10\％	10\％	${ }^{8 \%}$	7\％	${ }^{6 \%}$	${ }^{5 \%}$	${ }^{4 \%}$	\％	${ }^{2 \%}$	${ }^{1 \%}$	\％	\％	\％	\％
6465	88，09，921	Caturetos and parst hereof	10	st	0\％	0\％	0\％	10\％	10\％	10\％	10\％	10\％	${ }^{8 \%}$	${ }^{\text {\％\％}}$	6\％	5\％	${ }^{4 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{1 \%}$	\％	\％	\％	\％
6466	84，09，922	Cyinder books	10	st	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	8%	7\％	6\％	5\％	$4{ }^{4 \%}$	3\％	2\％	1\％	\％	0\％	\％	\％
${ }^{8647}$	84，09， 223	Cylinder liners，with an internal diameter of 50 mm or more，but not exceeding 155 mm	10	${ }^{\text {sL }}$	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	${ }^{8} \%$	${ }^{7 \%}$	6\％	5\％	4\％	3\％	${ }^{2 \%}$	1\％	0\％	0\％	\％	\％
${ }^{64688}$	84，09，924	－\cdots Oner cryinder inees	10	st	\％ 0	\％\％	\％\％	10\％	10\％	10\％	10\％	10\％	${ }^{8 \%}$	${ }^{7 \%}$	6\％	5\％	${ }^{4 \%}$	3\％	${ }^{2 \%}$	1\％	\％	\％	\％	\％
6469	84，09，925	－－Cylidef heads and head covers	10	st	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	${ }^{8 \%}$	${ }^{7} \%$	6\％	5\％	$4{ }^{4 \%}$	3\％	${ }^{2 \%}$	1\％	\％\％	\％	\％\％	\％
${ }^{6470}$	09，926	．－．Pistons，with an external diameter of 50 mm or more，but not exceeding 155 mm	${ }^{10}$	${ }^{\text {sL }}$	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	${ }_{8 \%}$	7\％	6\％	5\％	4\％	3\％	${ }^{2 \%}$	1\％	\％	\％	\％	\％\％
647	84，09，927	\cdots Oner pisions	10	st	0\％	0\％	10\％	10\％	10\％	10\％	10\％	10\％	${ }^{8 \%}$	${ }^{\text {\％\％}}$	${ }^{6 \%}$	${ }^{5 \%}$	4\％	3\％	${ }^{2 \%}$	${ }^{1 \%}$	0\％	0\％	\％	0\％
6472	88，09，928	Psion ingasand sudgeon pins	1	st	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	${ }^{8 \%}$	${ }^{7 \%}$	6\％	5\％	${ }^{4 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{1 \%}$	\％	\％	\％	\％
6473	84，09，929	Other	10	st	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	8\％	${ }^{7 \%}$	6\％	5\％	4\％	3\％	${ }^{2 \%}$	${ }^{1 \%}$	0\％	0\％	\％	\％
6474	84，09，931	Caturuturs and pars thereof	10	st	\％\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	8\％	${ }^{7 \%}$	6\％	5\％	4\％	3\％	2\％	${ }^{1 \%}$	\％	\％	\％	\％\％
${ }^{6775}$	84，09，9，932	Cylinder blocks cank cases	10	st	0\％	\％	0\％	0\％	10\％	10\％	\％\％	10\％	${ }^{\text {\％}}$	7\％	6\％	${ }^{5 \%}$	${ }^{4 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	1\％	\％	\％\％	\％	0\％
6^{6776}	84，09，9，93	Cylinder Iness	10	st	0\％	0\％	\％	10\％	10\％	10\％	10\％	10\％	${ }^{8 \%}$	${ }^{7 \%}$	${ }^{6 \%}$	5\％	${ }^{4 \%}$	${ }^{3}$	2\％	${ }^{1 \%}$	\％	\％	\％\％	\％
5677	8，09，9，34	Clyinder heads and head covers	10	sL	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	8%	${ }^{7} \%$	6\％	5\％	4\％	3\％	${ }^{2 \%}$	${ }^{1 \%}$	\％	\％	\％	\％
6478	84，099，935	－－Pisons	10	sL	10\％	${ }^{10 \%}$	${ }^{10 \%}$	10\％	10\％	10\％	10\％	${ }^{10 \%}$	8\％	${ }^{7 \%}$	6\％	${ }^{5 \%}$	${ }^{4 \%}$	${ }^{3 \%}$	2%	1\％	0\％	\％	\％	\％
${ }^{6479}$	84，099，936	－－Psison ings and gudgeon pins	10	st	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	8\％	${ }^{7 \%}$	6\％	5\％	4%	3\％	2\％	1\％	0\％	0\％	0\％	\％
5880	84，09，939	Other	10	sL	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	${ }_{8 \%}$	${ }^{7} \%$	6\％	5\％	4%	${ }^{3 \%}$	${ }^{2 \%}$	1\％	\％	\％	\％	\％
5881	84，09，991	Catueflos and pars stereof	10	st	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	${ }^{8} \%$	${ }^{7} \%$	6\％	5\％	$4{ }^{4 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	1\％	\％	\％	\％	\％
${ }^{6882}$	${ }^{88,099,942}$	Cylined foocks crank cases	10	${ }^{\text {sL }}$	10\％	${ }^{10 \%}$	${ }^{10 \%}$	${ }^{10 \%}$	10\％	10%	${ }^{10 \%}$	${ }^{10 \%}$	8%	${ }^{7 \%}$	6\％	5\％	4\％	3\％	${ }^{2 \%}$	1\％	\％	\％	\％	\％
${ }^{\text {c483 }}$	84，09，993	Cylinder liners，with an internal diameter of 50	10	${ }^{\text {sL }}$	\％\％	10\％	10\％	10\％	${ }^{10 \%}$	10\％	10\％	${ }^{10 \%}$	8%	${ }^{7 \%}$	6\％	5\％	$4{ }^{4 \%}$	3\％	${ }^{2 \%}$	${ }^{1 \%}$	0\％	0\％	\％	\％
5684	84，09，994	．．．．Onere cylinderinines	10	st	0\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	8%	\％	6\％	5\％	4\％	3\％	${ }^{2 \%}$	${ }^{1 \%}$	\％	0\％	\％	\％
${ }^{6885}$	${ }^{8,099,995}$	Crinder reass and head covers	${ }^{10}$	${ }^{\text {sL }}$	10\％	0\％	10\％	10\％	10\％	10\％	10\％	10\％	8\％	${ }^{7 \%}$	6\％	${ }^{5 \%}$	4\％	3\％	${ }^{2 \%}$	1\％	\％	\％	\％	\％
${ }^{6886}$	84，09，996	$\begin{aligned} & \text {....... Pistons, with an exteral diameter of } 50 \mathrm{~mm} \text { or } \\ & \text { more, but not exceeding } 155 \mathrm{~mm} \\ & \hline \end{aligned}$	${ }^{10}$	sL	\％	10\％	10\％	0\％	${ }^{10 \%}$	10\％	10\％	\％	${ }^{8 \%}$	${ }^{7 \%}$	${ }^{6 \%}$	${ }^{5 \%}$	${ }^{4 \%}$	${ }^{\text {3\％}}$	${ }^{2 \%}$	${ }^{1 \%}$	\％	${ }^{0 \%}$	${ }^{0 \%}$	\％\％
${ }^{6887}$	84，09，997	－Onerepsions	10	st	0\％	0\％	0\％	10\％	10\％	10\％	10\％	10\％	${ }^{8 \%}$	${ }^{\text {\％}}$	${ }^{6 \%}$	${ }^{5 \%}$	${ }_{4 \%}$	3\％	${ }^{2 \%}$	${ }^{\text {\％}}$	0\％	0\％	0\％	0\％
${ }^{6888}$	84，09，9，98	PPsion ings and gutgeon pins	10	sL	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	${ }^{8 \%}$	${ }^{7}$	6\％	5\％	$4{ }^{4 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{1 \%}$	\％	\％	\％	\％
5689	8，099，949	Other	10	st	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	${ }^{8 \%}$	${ }^{7 \%}$	6\％	5\％	$4{ }^{4 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{1 \%}$	\％	\％\％	0\％	\％
5490	84，09，951	Coyinder bocks crank cases	10	sL	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	8\％	${ }^{7 \%}$	6\％	5\％	$4{ }^{4 \%}$	${ }^{3 \%}$	2\％	${ }^{1 \%}$	0\％	0\％	0\％	\％\％
5891	8，09，9，92	－．．．．Cylinder liness，with an intemal diameter of 50 mm or more，but not exceeding 155 mm	10	${ }^{\text {sL }}$	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	8\％	${ }^{7 \%}$	6\％	5\％	4\％	3\％	${ }^{2 \%}$	${ }^{1 \%}$	\％	\％	\％	\％
6992	84，09，953	－O．－Other crividef iness	10	sL	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	8\％	${ }_{7 \%}$	6\％	5\％	${ }^{4 \%}$	3\％	2\％	1\％	\％	0\％	0\％	\％
5693	84，09，954	－．－－Pistons，with an external diameter of 50 mm or more，but not exceeding 155 mm	10	sL	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	8\％	${ }^{7 \%}$	6\％	5\％	4\％	3\％	${ }^{2 \%}$	${ }^{1 \%}$	\％	\％	\％	\％
5694	84，09，955	$\cdots{ }^{\text {anmer }}$	10	st	10\％	10\％	10\％	10\％	${ }^{10 \%}$	10\％	10\％	10\％	${ }^{8 \%}$	${ }^{7} \%$	6\％	${ }^{5 \%}$	$4{ }^{4 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{1 \%}$	\％	0\％	0\％	\％
5695	8，09，959	－－Oner	10	sL	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	${ }^{8 \%}$	${ }^{7 \%}$	6\％	5\％	4\％	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{1 \%}$	\％	\％	\％	\％
${ }^{6996}$	${ }^{8,0,099,961}$	－Cylinder books crank cases	${ }^{10}$	sL	10\％	10\％	10\％	10\％	10\％	10%	${ }^{10 \%}$	10\％	8\％	${ }^{7 \%}$	6\％	${ }^{5 \%}$	$4{ }^{4 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	1\％	0\％	\％\％	\％	\％
5997	84，09，962	．．．．．Cylinder liness，with an intemal diameter of 50 mm or more，but not exceeding 155 mm	${ }^{10}$	st	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	${ }_{8 \%}$	${ }^{7 \%}$	6\％	5\％	4%	3\％	${ }^{2 \%}$	1\％	${ }^{0 \%}$	\％	${ }^{0 \%}$	\％\％
5698	84，09，963	\cdots	10	${ }^{\text {sL }}$	0\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	8%	${ }^{7 \%}$	6\％	5\％	${ }^{4 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	1\％	\％	\％	\％	\％
6999	84，09，964	or．Pistons，with an external diameter of 50 mm or more，but not exceeding 155 mm	${ }^{10}$	sL	10\％	10\％	10\％	10\％	10\％	10\％	\％\％	10\％	8	${ }^{7 \%}$	6\％	${ }^{5 \%}$	${ }^{4 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{1 \%}$	${ }^{0 \%}$	${ }^{0 \%}$	${ }^{0 \%}$	\％${ }^{0 \%}$
5500	8，099，965	－．－．Oherepsions	10	st	0\％	0\％	10\％	10\％	10\％	10\％	10\％	10\％	8%	${ }^{7} \%$	6\％	5\％	${ }^{4 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	1\％	0\％	0\％	0\％	\％
5501	84，09，969	Onter	10	sL	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	${ }^{8}$	${ }^{7} \%$	6\％	${ }_{5 \%}$	4%	${ }^{3} \%$	${ }^{2 \%}$	${ }^{1 \%}$	\％	\％	\％	\％
5602	84，09，9971	Caturetos and parst hereof	10	sL	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	${ }^{8 \%}$	${ }^{7 \%}$	6\％	5\％	4\％	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{1 \%}$	\％	\％	\％	\％
${ }^{5653}$	84，09，972	Culinear books	${ }^{10}$	sL	10\％	10\％	${ }^{10 \%}$	10\％	${ }^{10 \%}$	${ }^{10 \%}$	${ }^{10 \%}$	${ }^{10 \%}$	8%	${ }^{7 \%}$	6\％	${ }^{5 \%}$	${ }^{4 \%}$	${ }^{3 \%}$	2\％	1\％	\％	\％	\％	\％
565	84，09，973	Cylinder liners，with an internal diameter of 50 mm or more，but not exceeding 155 mm	10	${ }^{\text {sL }}$	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	${ }^{8} \%$	${ }^{7 \%}$	6\％	5\％	4\％	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{1 \%}$	\％	\％	\％	\％
5655	84，09，9，97	－- Other crinider inees	10	${ }^{\text {sL }}$	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	${ }^{8 \%}$	7\％	6\％	5\％	${ }^{4 \%}$	3\％	${ }^{2 \%}$	${ }^{1 \%}$	0\％	\％\％	\％\％	\％
5656	84，09，975	－－Cuyine heasis and head covers	10	st	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	${ }^{8 \%}$	${ }^{7}$	${ }^{6 \%}$	${ }^{5 \%}$	$4{ }^{4 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{1 \%}$	\％	\％	\％	\％
6507	84，09，976	Pistons，with an external diameter of 50 mm or more，but not exceeding 155 mm	10	${ }^{\text {sL }}$	${ }^{10 \%}$	10\％	10\％	10\％	10\％	10\％	10\％	10\％	8\％	${ }^{\text {7\％}}$	6\％	5\％	${ }^{4 \%}$		${ }^{2 \%}$	${ }^{1 \%}$	\％	\％	\％	\％
5658	84，09，997	\cdots	10	st	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	${ }^{8 \%}$	${ }^{7} \%$	6\％	${ }^{5 \%}$	4%	${ }^{3 \%}$	${ }^{2 \%}$	1\％	\％	\％	\％	\％
5659	84，09，9，978	－Psions ings and gucgeon pins	10	st	0\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	${ }_{8 \%}$	${ }^{7 \%}$	6\％	5\％	4\％	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{1 \%}$	\％	\％	\％	\％
6510	84，09，9，979	\cdots	10	sL	0\％	0\％	0\％	10\％	10\％	10\％	10\％	10\％	${ }^{8 \%}$	${ }^{7 \%}$	6\％	5\％	4\％	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{1 \%}$	\％	\％	\％	\％
565	8，00，100	－－Ot powe rote exceding 1.00 kW	5	N	4%	4\％	4\％	${ }^{3 \%}$	3\％	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％	\％	\％	0\％	\％	\％	\％	\％	\％	\％	\％
6512	88，01，200	－Of power exceeding $1,000 \mathrm{~kW}$ but not exceeding $10,000 \mathrm{~kW}$	5	T1	4\％	4\％	4\％	3\％	${ }^{3 \%}$	2\％	${ }^{2 \%}$	0\％	\％	0\％	\％	\％	\％	0\％	\％	\％	\％	\％	\％	\％
$5{ }^{565}$	88，01，300	－－Of apowe exceeding $10,000 \mathrm{kN}$	5	V1	4%	${ }^{4 \%}$	4%	${ }^{3 \%}$	3\％	${ }^{2} \%$	${ }^{2 \%}$	\％	\％	0\％	\％	\％	\％	0\％	\％	\％	\％	\％	\％	\％
565	8，109，000	－Parss，inculing fegulalors	5	V1	${ }^{4 \%}$	4\％	4%	${ }^{3 \%}$	3\％	${ }^{2 \%}$	${ }^{2 \%}$	0\％	\％	\％	\％\％	0\％	\％	\％	\％	\％	\％	\％\％	0\％	\％
5515	8，${ }^{\text {P11，100 }}$	－Of aturst notex xeoeding 25 kN	5	T1	4%	4\％	4\％	${ }^{3 \%}$	3\％	${ }^{2 \%}$	${ }^{2 \%}$	0\％	\％	\％	\％	0\％	\％	0\％	\％	\％	\％	\％	\％	\％
5516	${ }^{8,111,200}$		5	V1	4%	4\％	4%	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％\％	\％	0\％	\％	\％	\％	\％	\％	\％	\％\％	\％\％	\％\％	\％
555	${ }^{8,112,100}$	－Of a power note exceeding 1，100 kN	5	NT	${ }^{4 \%}$	4\％	4%	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％\％	\％	0\％	\％	0\％	\％	\％	\％\％	\％	\％	\％	0\％	\％
565	88，12，200	－Ota powere exceeding $1,100 \mathrm{~kW}$	5	NT1	$4{ }^{4 \%}$	4\％	4%	${ }^{3 \%}$	${ }^{3} \%$	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％
6519	84，118，100	－Of a power note exceeding 5.000 kV	5	N1	4%	4\％	4\％	3\％	3\％	${ }^{2 \%}$	2%	\％	0\％	\％\％	0\％	\％	\％	\％	\％\％	\％	\％	\％	\％	\％
${ }^{6520}$	84，11，200	－Ota powe erceeding 5.00 ow	5	N1	4\％	4\％	4\％	3\％	3\％	${ }^{2 \%}$	2\％	0\％	0\％	0\％	0\％	\％	\％	\％	\％	\％	\％	\％	\％	\％\％
${ }^{6521}$	${ }^{8,119,100}$		5	V1	$4{ }^{4 \%}$	4\％	4%	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％	\％\％	\％	\％	\％	\％	\％	\％	\％	\％	\％
653	84，19，9，90	－other	5	V1	4%	4\％	4%	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％	\％	\％	\％	\％	${ }^{\circ} \mathrm{\%}$	\％	\％	\％\％	\％	\％
${ }^{6523}$	84，12，，000	－Reacion engines ofter than utuofilis	5	NT1	4%	4\％	4%	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	0\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％
${ }^{6524}$	${ }^{8,12,120}$	－Linearacing（cylines）	5	NT1	4%	4\％	4%	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	0\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％
${ }^{6525}$	${ }^{84,122,900}$	－Oner	5	N1	${ }^{4 \%}$	4\％	4\％	${ }^{3 \%}$	3\％	${ }^{2 \%}$	${ }^{2 \%}$	0\％	\％	0\％	\％	0\％	\％	0\％	\％\％	\％	\％	\％	\％	\％
${ }_{6} 56$	84，123，100	－Linear acting（cyivides）	5	NT1	$4{ }^{4 \%}$	4\％	4%	${ }^{3 \%}$	3\％	${ }^{2 \%}$	${ }^{2 \%}$	0\％	\％	0\％	\％	0\％	0\％	\％	\％	\％	0\％	\％\％	0\％	\％
${ }^{6527}$	${ }^{8,12,3,900}$	－Oner	5	NT1	4%	4\％	4%	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％
${ }^{6528}$	84，12，．000	－omer	5	NT1	$4{ }^{4 \%}$	4\％	$4{ }^{4 \%}$	${ }^{3 \%}$	${ }^{3} \%$	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％
$6{ }^{652}$	${ }^{8,129,010}$	－Of engines of stubeading 8412.10	5	NT	4%	4\％	4%	${ }^{3 \%}$	3\％	${ }^{2 \%}$	2%	0\％	\％\％	\％\％	\％	0\％	0\％	0\％	0\％	\％	0\％	\％	\％	\％
6530	${ }^{84,129,900}$	－－omer	5	V1	${ }^{4 \%}$	4%	4%	${ }^{3 \%}$	3\％	${ }^{2 \%}$	${ }^{2 \%}$	0\％	\％\％	\％\％	\％	0\％	0\％	0\％	0\％	\％	0\％	\％	\％	\％\％
${ }^{6531}$	84，13，100	Pumps for dispensing fuel or lubricants，of the type used in filling－stations or in garages	${ }^{5}$	NT1	4%	$4{ }^{4 \%}$	4\％	${ }^{3 \%}$	3\％	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	0\％	\％
${ }^{6532}$	${ }^{84,13,900}$	－Other	5	N1	${ }^{4 \%}$	4\％	4\％	${ }^{3 \%}$	3\％	${ }^{2 \%}$	${ }^{2 \%}$	0\％	\％\％	\％\％	\％	0\％	\％	0\％	\％	\％	\％	\％	\％	\％
653	${ }^{8,13,12,010}$	－Water pumps	5	NT1	$4{ }^{4 \%}$	4\％	4\％	${ }^{3 \%}$	3\％	${ }^{2 \%}$	${ }^{2 \%}$	0\％	0\％	0\％	0\％	0\％	0\％	0\％	0\％	0\％	0\％	\％\％	0\％	0\％
${ }^{6534}$	${ }^{84,132,090}$	－Oner	5	NT1	4%	4\％	4\％	${ }^{3 \%}$	3\％	${ }^{2 \%}$	${ }^{2 \%}$	0\％	0\％	0\％	0\％	0\％	0\％	0\％	0\％	0\％	0\％	\％\％	\％\％	\％
${ }^{655}$	，33，012	engater pumps or fuel pumps of a kind used for engine of motor venicles of heading $87.02,87.03$ or	${ }^{5}$	NT1	4\％	4\％	4\％	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％	\％	0\％	0\％	\％	\％	\％	0\％	\％\％	\％	0\％
${ }^{6536}$	33，019	Oher	5	NT1	4%	4\％	4\％	${ }^{3 \%}$	3\％	${ }^{2 \%}$	2\％	0\％	\％\％	\％\％	0\％	0\％	0\％	\％\％	\％\％	\％	0\％	\％\％	\％\％	\％
${ }^{6537}$	， 33,021	－－－Water pumps or fuel pumps of a kind used for engines of motor vehicles of heading $87.02,87.03$ or 87.04	5	NT	${ }^{4 \%}$	4\％	4\％	${ }^{3 \%}$	${ }^{3}$	${ }^{2 \%}$	2\％	0\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％
655	84，13，029	－${ }^{\text {ofter }}$	5	NT1	4\％	4\％	4%	3\％	3\％	2%	${ }^{2 \%}$	\％\％	\％	0\％	\％	0\％	0\％	\％	\％	\％	\％	0\％	\％	\％

香港•ASEAN FTAにかかる調査報告書

別添2－4 原産地品の関税撤廃スケジュール
（ラオス）

${ }^{6539}$	38，13，092		${ }^{5}$	${ }^{\text {NT1 }}$	${ }^{4 \%}$	${ }^{4 \%}$	${ }^{4 \%}$	${ }^{3} \%$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％\％	\％	0\％	0\％	0\％	\％	\％	0\％	\％	\％	\％
659	8，133，099	．．．Other	5	NT1	4\％	4\％	$4{ }^{46}$	3\％	3\％	2\％	2\％	0\％	0\％	0\％	\％	0\％	0\％	0\％	\％	\％	\％\％	0\％	\％	\％
654	88，13，4，000	－Concele pumps	5	NT1	4%	4%	4\％	${ }^{3 \%}$	3\％	${ }^{2 \%}$	2\％	\％	\％	\％	0\％	\％	0\％	0\％	0\％	\％	0\％	\％	\％	0\％
6542	88，13，030	- Water pumps，with a flow rate not exceeding 8.000 m 3 h	5	${ }^{\text {NT1 }}$	4\％	4%	4\％	${ }^{3 \%}$	3\％	${ }^{2 \%}$	${ }^{2 \%}$	0\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％
6543	${ }^{88,135,040}$	－Water pumps，with a flow rate exceeding 8，000 mz / h but not exceeding $13,000 \mathrm{m3} / \mathrm{h}$	5	V1	${ }^{4 \%}$	${ }^{4 \%}$	4\％	3\％	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	0\％	\％	\％	\％	0\％	0\％	\％	\％\％	\％	\％\％	0\％	\％	\％
${ }^{654}$	88，13，9090	－－Oher	5	NT1	${ }^{4 \%}$	${ }^{4 \%}$	${ }^{4 \%}$	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	0\％	\％	0\％	0\％	0\％	\％	0\％	\％	0\％	0\％	\％	\％	0\％
${ }^{6545}$	${ }^{8,13,13,030}$	－－Water pumps，with a flow rate not exceeding $8,000 \mathrm{m3} / \mathrm{h}$	${ }^{5}$	NT1	${ }^{4 \%}$	4\％	${ }^{4 \%}$	3\％	${ }^{3 \%}$	${ }^{2 \%}$	2\％	\％	\％	0\％	0\％	\％	\％	0\％	\％	\％	0\％	0\％	\％	${ }^{0 \%}$
${ }^{6546}$	88，136，900	－Water pumps，with a flow rate exceeding 8，000 $\mathrm{m} 3 / \mathrm{h}$ but not exceeding $13,000 \mathrm{~m} 3 / \mathrm{h}$	5	NT1	${ }^{4 \%}$	4\％	${ }^{4 \%}$	3\％	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	0\％	0\％	\％	0\％	0\％	0\％	0\％	0\％	0\％	\％	\％	\％
${ }^{6547}$	88，13，9000	－－other	5	${ }^{\text {NT1 }}$	4\％	$4{ }^{4 \%}$	4\％	${ }^{3} \%$	3\％	2\％	${ }^{2 \%}$	\％	\％	0\％	\％	0\％	0\％	0\％	\％	\％	0\％	0\％	0\％	\％
${ }^{6548}$	${ }^{84,13,0011}$	Wilt an inet diameter note exeseding 200 mm	5	NT1	${ }^{4 \%}$	${ }^{4 \%}$	${ }^{4 \%}$	3\％	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％	\％	\％	0\％	\％	\％	\％	0\％	\％	\％	\％
659	${ }^{84,13,019}$	\cdots	5	NT1	4\％	${ }^{4 \%}$	4\％	3\％	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	0\％	\％	\％	0\％	0\％	0\％	0\％	\％	\％	0\％	\％
${ }^{6550}$	84，137，031	－Wit an inet diameler note excesing 200 mm	5	NT1	4%	4%	4\％	3\％	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	0\％	0\％	\％	\％	0\％	0\％	\％	\％	\％	\％	\％	0\％
${ }_{651} 6$	88，13，039	－other	5	NT1	4\％	4\％	4\％	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％	\％	\％	0\％	\％	\％	\％	\％	\％	\％	\％
655	${ }^{8,13,7,041}$	－Withinet diameer rotexceeding 200 mm	5	NT1	4\％	4\％	4\％	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％	\％	\％	0\％	\％	\％	\％	0\％	0\％	\％	\％
655	88，13，049	－Oner	5	NT1	4%	4%	4%	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	0\％	0\％	0\％	0\％	0\％	0\％	\％	\％	0\％	0\％	\％	\％
${ }^{6554}$	${ }^{88,137,051}$		5	NT1	4\％	${ }^{4 \%}$	4\％	3\％	3\％	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％	0\％	\％	\％	\％	0\％	\％	\％	\％	\％	\％
655	${ }^{84,13,7,59}$	－－－other	5	${ }^{\text {NT1 }}$	4\％	4\％	4\％	3\％	3\％	2\％	${ }^{2 \%}$	\％	\％	\％	\％	0\％	\％	\％	\％	\％	\％	\％	\％	\％
${ }^{6556}$	${ }^{84,13,091}$	Withan initidianeer notexeeseding 200 mm	5	NT1	4%	$4{ }^{4 \%}$	4\％	3\％	3\％	${ }^{2 \%}$	${ }^{2 \%}$	0\％	\％	\％	\％	\％	0\％	0\％	\％\％	\％\％	0\％	\％\％	\％	\％
657	88，13，099	Other	5	NT1	4%	${ }_{4 \%}$	4%	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	0\％	\％	0\％	0\％	0\％	\％	\％	0\％	0\％	0\％	\％
${ }^{6558}$	88，13，111	$\begin{aligned} & -- \text { Water pumps, with a flow rate not exceeding } \\ & 8,000 \mathrm{mz} / \mathrm{h} \end{aligned}$	5	${ }^{\text {NTI }}$	4\％	4\％	4\％	3\％	3\％	2%	${ }^{2 \%}$	\％	\％	\％	\％	\％	0\％	\％	\％	0\％	0\％	\％	\％	\％
6559	${ }^{88,138,112}$	Water pumps，with a flow rate exceeding 8,000 ms / h but not exceeding $13,000 \mathrm{m3} / \mathrm{h}$	5	NT1	${ }^{4 \%}$	${ }^{4 \%}$	${ }^{4 \%}$	3\％	3\％	${ }^{2 \%}$	${ }^{2 \%}$	\％	0\％	0\％	0\％	\％	0\％	0\％	\％	\％	\％	\％	\％	\％
6560	88，13，119	－－－other	5	NT1	4\％	4\％	4\％	3\％	${ }^{3 \%}$	2\％	${ }^{2 \%}$	0\％	\％	\％	\％	0\％	\％	0\％	\％	\％	\％	\％	\％	\％
${ }^{6561}$	${ }^{8,13,18,200}$	－Luad develars	5	NT1	4%	4%	4%	3\％	3\％	2\％	${ }^{2 \%}$	\％	\％	\％	\％\％	0\％	\％	\％	\％	\％	0\％	\％	\％	\％
${ }^{6562}$	${ }^{8,13,13,110}$	－Of punso of stubeading 8413．20．10	5	NT1	4\％	4\％	4\％	3\％	3\％	${ }^{2 \%}$	${ }^{2 \%}$	0\％	\％	\％	\％	0\％	\％	0\％	\％	\％	0\％	0\％	\％	\％
656	${ }^{88,139,120}$	Of pump of stubleading 841322.90	5	NT1	$4{ }^{46}$	4%	$4{ }^{4 \%}$	3\％	${ }^{3 \%}$	2\％	${ }^{2 \%}$	\％	\％	0\％	\％	\％	\％	0\％	\％	\％	\％	\％	\％	\％
656	${ }^{8,13,13,130}$	$\begin{array}{\|l\|} \hline- \text { - Of pumps of subheadings } \\ 8413.70 .11 \text { and } 8413.70 .19 \\ \hline \end{array}$	5	${ }^{\text {NT1 }}$	4%	4\％	4\％	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	0\％	\％\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％
656	${ }^{8,13,14,140}$	－－Otother cennititual umps	5	NT1	4\％	4\％	4\％	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	0\％	\％	0\％	\％	0\％	\％	\％	\％	\％	0\％	0\％	0\％	\％
${ }_{656}$	${ }^{88,13,190}$	－．Ot other pumps	5	NT1	4%	4%	4\％	${ }^{3 \%}$	3\％	${ }^{2 \%}$	${ }^{2 \%}$	\％	0\％	0\％	\％	0\％	\％	0\％	\％\％	\％	0\％	\％	\％	0\％
${ }^{6567}$	${ }^{88,139,200}$	－ot liquidelevaios	5	NT1	4\％	4\％	4\％	3\％	${ }^{\text {\％}}$	2%	${ }^{2 \%}$	0\％	\％	\％	\％	0\％	\％	\％\％	\％	\％	0\％	\％	\％	0\％
${ }^{6568}$	${ }^{88,41,1,000}$	－vacum pumps	5	NT1	4\％	4\％	4\％	3\％	3\％	2\％	2\％	0\％	\％	\％\％	0\％	0\％	0\％	0\％	0\％	\％	0\％	\％	0\％	0\％
659	${ }^{88,142,010}$	－Bicyde pumps	5	NT1	4%	4%	4%	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	0\％	0\％	\％	\％	0\％	\％	\％	\％	0\％	0\％	0\％	\％	\％
${ }^{657}$	${ }^{88,42,2,90}$	－other	5	HSL	5\％	${ }^{5 \%}$	5\％	5\％	${ }^{5 \%}$	5\％	${ }^{5 \%}$	${ }^{5 \%}$	${ }^{5 \%}$	${ }^{5 \%}$	${ }^{5 \%}$	${ }^{5 \%}$	5\％	5\％	${ }^{5 \%}$	5\％	5\％	5\％	5\％	5\％
${ }^{6571}$	${ }^{88,143,020}$		5	${ }^{\text {NT1 }}$	${ }^{4 \%}$	4\％	4\％	3\％	${ }^{3 \%}$	2\％	${ }^{2 \%}$	0\％	\％	\％\％	\％	\％	\％	\％	\％\％	\％	\％	\％	\％\％	\％\％
${ }^{6572}$	${ }^{84,143,3030}$	funis to ar ar onditioning machines	5	${ }^{\text {NT1 }}$	$4{ }^{4 \%}$	${ }^{4 \%}$	${ }^{4 \%}$	3\％	3\％	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％	\％	\％	\％\％	\％\％	\％\％	\％	\％	\％	\％\％	\％
${ }^{6573}$	88，143，404	－Other，with a refrigeration capacity exceeding 21.10 kW ，or with a displacement per revolution of 220 cc or more	5	${ }^{\text {NTI }}$	4\％	4\％	4\％	3\％	3\％	2\％	${ }^{2 \%}$	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％\％
657	${ }^{84,143,090}$	－－omer	${ }^{5}$	T1	${ }^{4 \%}$	${ }^{46}$	4\％	3\％	${ }^{3 \%}$	${ }^{2 \%}$	2\％	0\％	0\％	0\％	0\％	0\％	0\％	0\％	\％\％	\％	0\％	0\％	\％	0\％
${ }^{6575}$	88，14，000	－Air compressors mounted on a wheeled chassis for towing	${ }^{5}$	T1	4%	4\％	4\％	3\％	3\％	2\％	${ }^{2 \%}$	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	${ }^{0 \%}$	\％
6576	${ }^{88,145,110}$	\cdots	${ }^{20}$	${ }^{\text {EL }}$	\bigcirc	0	0	\bigcirc	\bigcirc	${ }^{\circ}$	\bigcirc	${ }^{\circ}$	U	\checkmark	${ }^{\circ}$	${ }^{\circ}$	U	\bigcirc	\bigcirc	\bigcirc	U	－	U	${ }^{\circ}$
657	${ }^{88,45,191}$	With poomectivescreen	${ }^{20}$	${ }^{\text {EL }}$	\bigcirc	\bigcirc	\bigcirc	\bigcirc	0	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\checkmark	U	U	\bigcirc
6578	${ }^{88,145,199}$	Other	${ }^{20}$	${ }^{\text {EL }}$	U	U	\bigcirc	U	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	0	U	\bigcirc	\checkmark	\bigcirc	0	\bigcirc
6579	${ }^{8,4,45,920}$	－．－Explosion－proof air fans，of a kind used in underground mining	${ }^{20}$	${ }_{\text {EL }}$	U	U	\bigcirc	\bigcirc	－	U	U	ט	U	\bigcirc	\bigcirc	U	U	\bigcirc	－	\bigcirc	U	0	U	${ }^{\circ}$
6580	${ }^{8,144,9,930}$	\cdots	${ }^{20}$	${ }_{\text {EL }}$	\bigcirc	0	\bigcirc	\bigcirc	U	\bigcirc	\bigcirc	\bigcirc	U	\bigcirc	\bigcirc	\bigcirc	O	\bigcirc	0	\bigcirc	\bigcirc	\bigcirc	0	\bigcirc
${ }_{6581}$	${ }^{8,4,45,9,41}$	With polective screen	${ }^{20}$	${ }_{\text {EL }}$	ט	ט	\bigcirc	U	U	\checkmark	\checkmark	\bigcirc	ט	\checkmark	\checkmark	\checkmark	\checkmark	U	U	\bigcirc	\checkmark	－	\checkmark	\bigcirc
${ }^{6582}$	${ }^{88,14,4,49}$	Other	${ }^{20}$	${ }_{\text {EL }}$	0	0	0	U	0	U	0	0	0	0	U	0	U	U	0	0	\bigcirc	U	U	0
${ }^{6533}$	${ }^{8,4,45,590}$	Bowers	${ }^{20}$	${ }_{\text {EL }}$	\bigcirc	0	\bigcirc	U	\bigcirc	－	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	U	＂	0
${ }^{6584}$	84，14，9991	－Witprotecive screen	${ }^{20}$	EL	U	U	\bigcirc	U	U	U	\bigcirc	\bigcirc	U	U	\checkmark	\checkmark	ט	U	\bigcirc	U	\checkmark	U	－	\bigcirc
${ }^{6585}$	84，45，999	Other	20	EL	0	0	U	－	U	0	0	0	U	0	U	O	U	\bigcirc	0	0	U	U	U	0
${ }_{6586}$	84，146，011	－Laminara aituw cabionets	5	NT1	4\％	4\％	4\％	3\％	3\％	2\％	${ }^{2 \%}$	\％\％	0\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％
${ }_{6587}$	${ }^{8,44,16,019}$	－－．ther	5	NT1	4%	${ }^{4 \%}$	${ }^{4 \%}$	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％\％	\％	\％	\％	\％	\％	0\％	\％	\％	\％	\％	\％	\％
${ }^{6588}$	8，44，0，091	SUubable to notustral use	5	T1	$4{ }^{4 / 8}$	${ }^{4 \%}$	4\％	3\％	3\％	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	0\％	0\％	0\％	\％\％	0\％	\％	0\％	\％\％	\％	\％	\％
6589	84，44，099	Onter	5	NT1	4\％	4\％	4\％	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	0\％	\％	\％	\％	\％	\％	\％	\％	\％	0\％	\％
6590	${ }^{8,48,48,013}$	Laminara itfow cabinels	5	NT1	4%	4%	4\％	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％	\％	0\％	\％	\％	\％	\％	\％	\％	\％	\％
659	${ }^{8,148,0,14}$	Other	5	NT1	4\％	4\％	4\％	3\％	3\％	2\％	2\％	0\％	0\％	0\％	0\％	0\％	0\％	0\％	0\％	\％	0\％	\％	0\％	0\％
6592	88，48，015		5	NT1	4%	4%	4%	3\％	3\％	${ }^{2 \%}$	${ }^{2 \%}$	\％	0\％	\％	\％	0\％	\％	0\％	\％	\％	\％	\％	\％	0\％
6593	88，14，019		5	${ }^{\text {NT1 }}$	4\％	4\％	4\％	${ }^{3 \%}$	${ }^{3 \%}$	\％	${ }^{2 \%}$	\％	\％	0\％	\％	\％	\％	0\％	\％	\％	\％	0\％	\％	\％
659	${ }^{8,48,48,30}$		5	NT1	4%	4%	4\％	${ }^{3 \%}$	3\％	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％	\％	0\％	\％	\％	\％\％	\％	0\％	0\％	\％	\％
6595	84，488，041	Gas compression modules suitable for use in oil	5	NT1	4\％	4%	4\％	3\％	${ }^{3} \%$	${ }^{2 \%}$	${ }^{2 \%}$	0\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	0\％	0\％
${ }^{6596}$	${ }^{8,148,049}$	－Onter	5	${ }^{\text {NT1 }}$	4\％	${ }^{4 \%}$	${ }^{4 \%}$	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	0\％	\％	\％	\％	0\％	\％	0\％	\％	\％	\％	\％
659	${ }^{8,4,48,050}$	－Airpumps	5	NT1	4\％	4\％	4\％	3\％	${ }^{3} \%$	${ }^{2 \%}$	${ }^{2 \%}$	\％\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％
${ }^{6598}$	84，48，0，90	－oner	5	NT1	4\％	4\％	4\％	3\％	3\％	2\％	${ }^{2 \%}$	\％	0\％	\％	\％	\％	\％	0\％	\％	\％	\％	\％	\％	\％
6599	${ }^{8,49,4,013}$		5	NT1	4\％	4\％	4\％	${ }^{3 \%}$	${ }^{3} \%$	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％	\％	\％	\％	\％	\％	0\％	\％	\％	\％	\％
6800	${ }^{8,44,49,014}$	－Of soods of subheading 814.20	5	NT1	4%	4%	4\％	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％
860	84，49，0，15	$\cdots \mathrm{Of} \mathrm{goods} \mathrm{of} \mathrm{stuheading} \mathrm{8414.30}$	5	NT1	4%	4\％	4\％	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％	\％	\％	\％	\％	0\％	\％	0\％	\％	0\％	0\％
6602	${ }^{8,4,49,016}$	－Of goods of stobeading 8444.40	5	NT1	4%	4%	4\％	3\％	3\％	${ }^{2 \%}$	${ }^{2 \%}$	\％	0\％	\％	\％	0\％	0\％	0\％	\％\％	\％	0\％	\％	0\％	0\％
6803	${ }^{8,4,49,0,19}$	Onher	5	NT1	4\％	4%	4\％	3\％	3\％	2%	${ }^{2 \%}$	0\％	0\％	0\％	0\％	0\％	0\％	0\％	0\％	\％\％	0\％	0\％	0\％	0\％
8604	88，49，021	$-\cdots$ Of a kind for fans suitable for use in goods of heading 85.16	${ }^{5}$	NT1	4\％	4\％	4\％	3\％	${ }^{3} \%$	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％	\％	\％	\％	\％	\％	\％\％	\％	\％	\％	\％
6005	${ }^{8,4,49,029}$	－－other	5	NT1	4%	4%	4\％	3\％	3\％	2\％	${ }^{2 \%}$	0\％	0\％	\％\％	\％	0\％	0\％	0\％	\％\％	\％	\％	\％	0\％	\％\％
6506	${ }^{8,4,49,031}$		5	NT1	${ }^{4 \%}$	4%	4\％	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％
6607	${ }^{8,14,4,032}$	$\cdots \mathrm{Of}$ goods of stubeading 8414.80	5	NT1	${ }^{4 \%}$	4\％	4\％	${ }^{3 \%}$	${ }^{3} \%$	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％
6808	${ }^{8415.0 .0 .10}$	－ O a nouput note exceeding 26.3 BkN	${ }^{20}$	${ }^{\text {EL }}$	－	\bigcirc	，		U	\bigcirc	\bigcirc	－	－	\bigcirc	\bigcirc	－	\bigcirc	－	\bigcirc	－	\bigcirc	\bigcirc	\bigcirc	\bigcirc
6609	${ }^{8,151,090}$	－Other	${ }^{20}$	${ }^{\text {EL }}$	\bigcirc	\bigcirc	\bigcirc	－	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	U	\bigcirc	\bigcirc	0	U	\bigcirc
6610	84，152．010	－Ot a ouput note excesing 26.38 BW	${ }^{20}$	${ }_{\text {EL }}$	ט	\bigcirc	U	U	U	U	0	－	\bigcirc	\bigcirc	－	U	0	U	U	\bigcirc	\bigcirc	0	U	\bigcirc
6611	${ }^{8,15,12,090}$	－other	${ }^{20}$	${ }^{\text {EL }}$	\bigcirc	\bigcirc	U	U	\checkmark	\checkmark	U	\bigcirc	－	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	，	\bigcirc	\checkmark	\checkmark	\checkmark	\bigcirc
6612	84，158，111	－Ot a nouput note exeesing 21．10 kN	${ }^{20}$	${ }^{\text {EL }}$	U	0	－		U	U	\bigcirc	0	U	U	U	U	0	U	U	U	\bigcirc	U	U	U
${ }^{6613}$	84，158，112	$-\cdots$ Of an output exceeding 21.10 kW and with an air fiow rate of each evaporator unit exceeding 67.96 m3／min	${ }^{20}$	${ }_{\text {EL }}$	U	0	\bigcirc	\bigcirc	－	\bigcirc	U	\bigcirc	U	U	－	U	U	U	0	0	－	－	－	－
6614	84，158，119	Ohner	${ }^{20}$	${ }^{\text {EL }}$	\bigcirc	\bigcirc	，	U	\bigcirc	\bigcirc	U	，	－	\checkmark	U	\checkmark	\checkmark	－	\bigcirc	U	\bigcirc		，	\bigcirc
6615	${ }^{8,158,121}$	Ota a ouput tote exeeding 26.38 kN	${ }^{20}$	${ }_{\text {EL }}$	0	0	\bigcirc	－	0	U	0	0	0	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	0	0	\bigcirc	\bigcirc	U	0
6616	${ }^{84,158,129}$	Onher	${ }^{20}$	${ }^{\text {EL }}$	\bigcirc	\bigcirc	\bigcirc		U	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	ט	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
6617	${ }^{8,158,131}$		${ }^{20}$	EL	\bigcirc	\bigcirc			U	U	\bigcirc	\bigcirc	\bigcirc	\bigcirc	－	\checkmark	\checkmark	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
6618	84，158，139	Onher	${ }^{20}$	${ }^{\text {EL }}$	U	\square	－	\bigcirc	\bigcirc	U	U	\checkmark	U	U	\bigcirc	U	\bigcirc	U	U	\bigcirc	U	\bigcirc	U	\bigcirc
6619	84，158，191	$-\cdots$－Of an output exceeding 21.10 kW and with an air f fow rate of each evaporator unit exceeding 67.96 m3／min	${ }^{20}$	${ }^{\text {EL }}$	\checkmark	\checkmark	U	\bigcirc	\bigcirc	\bigcirc	\checkmark	\checkmark	－	\checkmark	\checkmark	\checkmark	\bigcirc	\bigcirc	U	\bigcirc	－	－	\bigcirc	\bigcirc
6820	88，158，193	．－．．－O a a outut note exceeding 21.10 kW			U	U	U	U	U	U	\bigcirc	U	U	U	U	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	U	\bigcirc

${ }^{6621}$	58，199	Of an output exceeding 21.10 kW but not exceeding 26.38 kW	${ }^{20}$	${ }^{\text {EL }}$	U			U	U	－					0	0								
652	88，15，199	\cdots Onter	${ }^{20}$	EL	U	U	U	U	U	U	U	U	\bigcirc	U	U	U	U	U	\bigcirc	U	U	0	ט	U
23	84，158，211	-- －Of an output exceeding 21.10 kW and with an air flow rate of each evaporator unit exceeding 67.96 air flow $\mathrm{m} 3 / \mathrm{min}$ m3／min	${ }^{20}$	${ }^{\text {EL }}$	\bigcirc	－	－	\bigcirc	U	\bigcirc	ט	ט	\bigcirc	－	\bigcirc	U	U	ט	－	－	－	ט	U	U
624	88，158，219	Other	${ }^{20}$	EL	\bigcirc			－	U	ט	U	U	U	U	U	ט	U	U	U	U	－	U	U	\bigcirc
6625	${ }^{38,158,221}$		${ }^{20}$	${ }^{\text {EL }}$	\bigcirc	\bigcirc	U	0	U	0	0	\bigcirc	\bigcirc	0	U	0	U	U	U	ט	\bigcirc	\bigcirc	\bigcirc	\checkmark
6626	88，15，2，29	－Onter	${ }^{20}$	EL	\bigcirc	\bigcirc	－	\bigcirc	\bigcirc	\bigcirc	\bigcirc	0	U	\bigcirc	\checkmark	\bigcirc	\bigcirc	0	\bigcirc	\bigcirc	\bigcirc	\checkmark	U	0
6627	38，15，231	Of an ouput tote exceding 26.3 BWW	${ }^{20}$	EL		\bigcirc	\bigcirc	0	0	\bigcirc	0	0	0	U	0	ט	ט	U	U	U	\bigcirc	ט	U	\checkmark
28	88，15，239	－Oner	${ }^{20}$	EL	0	U	U	0	\bigcirc	U	U	U	U	U	\bigcirc	U	U	U	U	U	U	U	U	0
659	${ }^{38,158,291}$	Of a oupup tol exceeding 26.3 KWW	${ }^{20}$	EL	\bigcirc	\bigcirc	U	0	0	\bigcirc	0	\bigcirc	\bigcirc	\bigcirc	O	\bigcirc	ט	\bigcirc	0	\bigcirc	0	O	\bigcirc	\bigcirc
6530	88，15，299	Other	${ }^{20}$	EL	\bigcirc	U	U	\bigcirc	\bigcirc	\bigcirc	\bigcirc	U	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	0	\bigcirc	\bigcirc
${ }^{6631}$	88，15，311	and air flow rate of each evaporator unit exceeding 67.96 $\mathrm{m} 3 / \mathrm{min}$	${ }_{10}$	${ }^{\text {sL }}$	10%	10\％	10\％	10\％	\％	10\％	\％	10\％	${ }^{8 \%}$	7\％	6\％	5\％	4\％	${ }^{3 \%}$	2\％	${ }^{1 \%}$	\％	\％	\％	\％
6632	88，15，319	\cdots	10	st	10\％	10\％	10\％	10\％	10\％	10\％	0\％	10\％	8\％	${ }^{7 \%}$	6\％	5\％	4\％	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{1 \%}$	\％\％	\％\％	\％	0\％
663	84，15，3，31	Of a noutut note exeesing 26.38 kW	10	sL	10\％	10\％	10\％	10\％	10\％	10\％	0\％	10\％	8\％	${ }^{7}$	6\％	5\％	4\％	3\％	2\％	1\％	0\％	\％	\％	\％
634	88，15，3，39	－other	10	st	\％	10\％	0\％	10\％	0\％	10\％	10\％	\％	${ }^{8 \%}$	${ }^{7 \%}$	6\％	5\％	${ }^{4 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{1 \%}$	\％\％	\％\％	\％	0\％
6635	88，15，3，311	Ot a ouput no exceeding 26.3 skN	10	sL	10\％	10\％	10\％	10\％	10\％	10\％	0\％	10\％	${ }^{8 \%}$	${ }^{7} \%$	6\％	5\％	${ }^{4 \%}$	${ }^{3 \%}$	2\％	${ }^{1 \%}$	0\％	\％	0\％	\％\％
${ }_{6}^{636}$	${ }^{88,15,3,39}$	Other	10	s	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	${ }^{8 \%}$	${ }^{7 \%}$	6\％	5\％	4\％	${ }^{3 \%}$	${ }^{2 \%}$	1\％	\％	\％	\％	\％
${ }_{6}^{637}$	${ }^{\text {84，} 58,391}$	－Of a o ouput tote exeeding 26.38 kW	10	sL	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	${ }^{8 \%}$	${ }^{7 \%}$	6\％	5\％	$4{ }^{4 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	\％	\％	\％	0\％	\％
6638	88，15，399	Other	10	sL	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	${ }^{8 \%}$	7\％	6\％	5\％	4%	3\％	${ }^{2 \%}$	\％	\％	\％	\％	\％
6639	${ }^{8,15,9,13}$		10	st	10\％	10\％	10\％	10\％	${ }^{10 \%}$	10\％	10\％	10\％	\％	10\％	10\％	\％	\％	\％	\％\％	10\％	\％	\％	\％	\％\％
6640	88，15，0，14		10	sL	10\％	10\％	\％	10\％	10\％	10\％	10\％	10\％	${ }^{8 \%}$	7\％	6\％	5\％	4\％	3\％	${ }^{2 \%}$	${ }^{1 \%}$	\％	\％	\％	0\％
${ }^{6641}$	84，15，019	－－other	10	sL	\％\％	10\％	0\％	10\％	10\％	0\％	0\％	10\％	8\％	${ }^{7}$	6\％	5\％	$4{ }^{4 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	1\％	0\％	\％	\％	0\％
${ }^{6642}$	${ }^{88,15,024}$		10	st	10\％	10\％	${ }^{10 \%}$	${ }^{10 \%}$	10\％	10\％	0\％	10\％	8\％	${ }^{\text {\％}}$	${ }^{60}$	5\％	4%	3\％	${ }^{2 \%}$	1\％	\％	0\％	\％	\％
64	88，15， 2 ，25	Ohter	10	sL	0\％	10\％	0\％	10\％	10\％	\％\％	0\％	10\％	${ }^{8 \%}$	7\％	6\％	5\％	4\％	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{1 \%}$	\％	0\％	\％	\％
664	${ }^{88,159,026}$		10	st	10\％	10\％	\％	10\％	\％	\％	\％	10\％	8\％	${ }^{7 \%}$	6\％	5\％	4\％	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{1 \%}$	\％	\％	\％	0\％
8645	88，15，2，29	Other	10	st	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	${ }^{8 \%}$	${ }^{7} \%$	6\％	5\％	4\％	${ }^{3 \%}$	2\％	1\％	\％	0\％	0\％	0\％
46	59，034		10	st	10\％	10\％	${ }^{10 \%}$	10\％	10\％	10\％	10\％	${ }^{10 \%}$	8%	${ }^{7 \%}$	6\％	${ }^{5 \%}$	4%	${ }^{3 \%}$	${ }^{2 \%}$	1\％	\％	\％	\％	\％
6647	84，15，0，35	Oner	10	st	10\％	10\％	10\％	10\％	10\％	10\％	0\％	10\％	8\％	${ }^{7 \%}$	6\％	5\％	4\％	3\％	2\％	1\％	\％	0\％	\％	0\％
${ }^{6648}$	${ }^{88,15,0,36}$	Of a kind	10	st	10\％	${ }^{10 \%}$	${ }^{10 \%}$	10\％	10\％	10\％	10\％	${ }^{10 \%}$	${ }^{8 \%}$	7\％	6\％	${ }^{5 \%}$	4%	3\％	${ }^{2 \%}$	1\％	\％	\％	\％	0\％
6649	88，15，0，39	Oner	10	sL	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	${ }^{8 \%}$	${ }^{7 \%}$	6\％	${ }^{5 \%}$	${ }^{4 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{1 \%}$	\％	0\％	0\％	\％\％
${ }^{6550}$	84，15，9044		10	st	10\％	10\％	10\％	10\％	${ }^{10 \%}$	10\％	10\％	${ }^{10 \%}$	${ }^{8 \%}$	${ }^{7 \%}$	6\％	${ }^{5 \%}$	4%	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{1 \%}$	\％	\％	\％	\％
${ }_{6651}$	88，15，095	－other	10	st	10\％	${ }^{10 \%}$	10\％	10\％	${ }^{10 \%}$	${ }^{10 \%}$	10\％	${ }^{10 \%}$	${ }^{8 \%}$	${ }^{7 \%}$	6\％	5\％	4\％	3\％	2\％	1\％	\％	0\％	0\％	\％
${ }^{6652}$	88，15，946	Of k kind use	10	st	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	${ }^{8 \%}$	${ }^{7} \%$	6\％	5\％	4\％	${ }^{3 \%}$	${ }^{2 \%}$	1\％	\％	\％	\％	0\％
${ }^{6553}$	88，159，049	Onter	10	sL	\％\％	10\％	10\％	${ }^{10 \%}$	0\％	${ }^{10 \%}$	\％	${ }^{10 \%}$	\％	\％	${ }^{6 \%}$	${ }^{5 \%}$	4%	3\％	${ }^{2 \%}$	1\％	\％	\％	\％	\％
659	88，61，000	－Furnace bumers iof ilivid tue	10	st	10\％	10\％	10\％	10\％	10\％	10\％	0\％	10\％	${ }^{8 \%}$	${ }^{\text {\％}}$	6\％	5\％	4\％	${ }^{3 \%}$	2	${ }^{1 \%}$	\％	\％	\％	\％
6655	88，16，2000	－Other furnace burners，including combination burners	10	st	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	${ }^{8 \%}$	${ }^{7 \%}$	6\％	5\％	4\％	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{1 \%}$	\％	${ }^{0}$	\％	\％
${ }_{6}^{656}$	88，16，000	－Mechanical stokers，including their mechanical grates，mechanical ash dischargers and similar appliances	10	st	10\％	10\％	${ }^{10 \%}$	10\％	10\％	10\％	10\％	10\％	${ }^{8 \%}$	${ }^{7 \%}$	6\％	5\％	4\％	3\％	${ }^{2 \%}$	${ }^{1 \%}$	\％	\％	\％	\％
${ }^{6657}$	88，169，000	－Pats	10	st	10\％	${ }^{10 \%}$	${ }^{10 \%}$	${ }^{10 \%}$	${ }^{10 \%}$	10\％	0\％	${ }^{10 \%}$	8%	${ }^{7 \%}$	6\％	5\％	4\％	${ }^{3 \%}$	2%	1\％	\％	0\％	\％	\％\％
58	88，77，000	－Furmaces and ovens tor the raasting，melting or other heattreatment of ores，pyitits or of metals	5	T1	4\％	4\％	4\％	3\％	3\％	2\％	${ }^{2 \%}$	0\％	\％	\％	\％	0\％	\％	\％	\％	\％	\％	0\％	0\％	\％
6659	88，72，2000	－Bakey vovens，inculding bscuiliovens	5	T1	4\％	4\％	4\％	3\％	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％\％	\％\％	\％\％	0\％	0\％	\％\％	\％\％	\％\％	0\％	0\％	0\％	0\％	\％\％
6660	88，78，000	－Oner	5	HsL	${ }^{5 \%}$	5\％	5\％	5\％	${ }^{5 \%}$	5\％	${ }^{5 \%}$	5\％	5\％	5\％	5\％	${ }^{5 \%}$	5\％	5\％	${ }^{5 \%}$	5\％	5\％	5\％	5\％	${ }^{5 \%}$
${ }^{6661}$	84，79，000	－Pats	5	T1	4\％	4\％	${ }^{4 \%}$	3\％	3\％	2\％	${ }^{2 \%}$	0\％	\％	\％	0\％	\％	\％	\％	\％	\％	\％	\％	\％	\％\％
662	${ }^{8418,10.10}$	－Hosestod type	10	${ }^{\text {T1 }}$	9\％	8%	6\％	5\％	4%	3\％	${ }^{2 \%}$	0\％	\％\％	0\％	0\％	0\％	\％\％	0\％	\％	\％	\％	\％	\％	\％
663	88，18，090	Onher	10	st	0\％	10\％	10\％	${ }^{10 \%}$	10\％	10\％	0\％	${ }^{10 \%}$	8%	7\％	6\％	${ }^{5 \%}$	$4{ }^{4 \%}$	3\％	${ }^{2 \%}$	1\％	\％	\％	\％	\％
666	88，182，100	－Compessiontype	10	st	10\％	10\％	10\％	10\％	${ }^{10 \%}$	10\％	10\％	${ }^{10 \%}$	${ }^{10 \%}$	10\％	10\％	10\％	${ }^{10 \%}$	${ }^{10 \%}$	\％	${ }^{10 \%}$	10\％	\％	10\％	0\％
${ }^{6665}$	88，18，900	－other	10	st	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	${ }^{8 \%}$	${ }^{7 \%}$	6\％	${ }^{5 \%}$	4\％	${ }^{3 \%}$	${ }^{2 \%}$	1\％	0\％	\％	\％	\％
${ }_{6666}$	8， 88,0010	－Notexceoding 2001 capacily	10	st	10\％	10\％	10\％	10\％	${ }^{10 \%}$	10\％	10\％	10\％	${ }^{8 \%}$	${ }^{7 \%}$	6\％	5\％	4%	${ }^{3 \%}$	${ }^{2 \%}$	1\％	0\％	0\％	0\％	0\％
${ }^{6667}$	88，18，090	－－other	10	st	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	${ }^{8 \%}$	${ }^{7} \%$	6\％	5\％	4\％	${ }^{3 \%}$	${ }^{2 \%}$	1\％	\％	\％	\％	0\％
${ }^{6668}$	8，84，0，010	－Notexeeseding 2001 capacaly	10	st	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	8\％	${ }^{7 \%}$	6\％	5\％	4\％	${ }^{3 \%}$	${ }^{2 \%}$	1\％	\％	0\％	\％	0\％
${ }^{669}$	${ }^{8,184,090}$	－－omer	${ }^{10}$	sL	10\％	10\％	10\％	10\％	10\％	10\％	10\％	${ }^{10 \%}$	8\％	7\％	6\％	${ }^{5 \%}$	4\％	3\％	2\％	1\％	0\％	\％	\％	\％
6670	8，185，011	l－ora kind suitable for medical，surgical or	${ }^{10}$	st	10\％	\％	\％	\％	\％	0\％	\％	\％	8\％	7\％	6\％	5\％	4\％	3\％	${ }^{2 \%}$	1\％	0\％	0\％	\％	0\％
${ }^{6671}$	84，185，019	－－Other	10	st	10\％	${ }^{10 \%}$	${ }^{10 \%}$	${ }^{10 \%}$	${ }^{10 \%}$	10\％	10\％	${ }^{10 \%}$	${ }^{8 \%}$	7\％	6\％	5\％	4\％	3\％	2\％	1\％	\％	\％	\％	\％\％
6672	84，18，091	\cdots Of kind suitable for medical，surgical or laboratory	10	st	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	${ }^{8 \%}$	${ }^{7 \%}$	6%	5\％	4%	3\％	2\％	${ }^{1 \%}$	\％	\％	\％	\％\％
$6{ }^{673}$	88，18，099	－Onter	10	st	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	${ }_{8 \%}$	${ }^{7} \%$	6\％	5\％	4\％	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{1 \%}$	\％	\％	\％	\％
687	84，18，100	－－Heat pumps other than air conditioning machines of heading 84.15	10	st	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	${ }^{8 \%}$	${ }^{7 \%}$	6\％	5\％	4\％	${ }^{3 \%}$	${ }^{2 \%}$	1\％	\％	\％	\％	0\％
675	8， 8 ，8，990	．－Beverage coolers	10	st	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	${ }^{8 \%}$	${ }^{7 \%}$	6\％	5\％	4\％	${ }^{3 \%}$	${ }^{2 \%}$	1\％	0\％	0\％	0\％	0\％
6876	88，18，930	\cdots－Dinikng water coolers	10	st	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	${ }^{8 \%}$	${ }^{7} \%$	6\％	5\％	4%	${ }^{3 \%}$	${ }^{2 \%}$	1\％	\％	\％	\％	\％
${ }_{6} 677$	84，18，941	Forariconofitioning mactines	10	st	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	8%	${ }^{7} \%$	6\％	${ }^{5 \%}$	4\％	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{1 \%}$	\％	\％	\％	\％
6678	8，18，949	\cdots Onmer	10	st	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	8\％	${ }^{7 \%}$	6\％	5\％	4\％	3\％	${ }^{2 \%}$	${ }^{1 \%}$	\％	\％	\％	\％
6679	${ }^{8,186,590}$	Scale ieemaker unis	${ }^{10}$	sL	10\％	10\％	10\％	10\％	10\％	10\％	10\％	${ }^{10 \%}$	${ }^{8 \%}$	${ }^{7 \%}$	6\％	5\％	4\％	3\％	2\％	1\％	\％	\％\％	\％	\％\％
6880	84，18，990	Other	10	st	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	${ }^{8 \%}$	${ }^{7} \%$	6\％	5\％	4%	${ }^{3 \%}$	${ }^{2 \%}$	1\％	\％	\％	\％	0\％
668	8，189，100	－Furniture designed to receive refrigerating or freezing equipment	10	sL	10\％	10\％	${ }^{10 \%}$	${ }^{10 \%}$	10\％	10\％	${ }^{10 \%}$	10\％	${ }^{8 \%}$	${ }^{7 \%}$	6%	5\％	4\％	3\％	2\％	${ }^{1 \%}$	\％	\％	\％	\％\％
6882	8， 8 ，89，910	－EVvapoaias or condensels	10	st	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	8\％	${ }^{7 \%}$	6\％	5\％	4%	${ }^{3 \%}$	${ }^{2 \%}$	1\％	0\％	\％	0\％	\％
683	9，940	－－Aluminium roll－bonded panels of a kind used for the goods of subheading $8418.10 .10,8418.21 .00$ or 8418.29 .00	10	st	10\％	10\％	10\％	10\％	\％${ }^{10}$	10\％	10\％	10\％	${ }^{8 \%}$	${ }^{7} \%$	6\％	5\％	4\％	${ }^{3 \%}$	${ }^{2 \%}$	1\％	\％	\％	\％	\％
688	${ }^{8,189,990}$	－－oner	10	sL	10\％	${ }^{10 \%}$	10\％	10\％	10\％	10\％	10\％	10\％	8%	${ }^{7 \%}$	6\％	5\％	4\％	3\％	${ }^{2 \%}$	1\％	0\％	0\％	0\％	0\％
${ }_{6}^{685}$	$8{ }^{8419.11 .10}$	\cdots－${ }^{\text {Hossenod type }}$	10	т2	9\％	9\％	8%	8%	6\％	6\％	5\％	5\％	4\％	4\％	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	2\％	\％	\％	\％	\％	\％	\％
${ }_{6866} 6$	84，19，190	－Onter	10	st	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	${ }^{8 \%}$	${ }^{7} \%$	6\％	${ }^{5 \%}$	4\％	${ }^{3 \%}$	${ }^{2 \%}$	1\％	\％	\％\％	\％	\％
${ }_{6887}$	${ }^{8,19,9,90}$	Housenold type	${ }^{10}$	sL	10\％	10\％	10\％	${ }^{10 \%}$	10\％	10\％	10\％	${ }^{10 \%}$	8\％	${ }^{7 \%}$	6\％	5\％	4\％	${ }^{3 \%}$	2\％	1\％	\％\％	0\％	0\％	0\％
6688	84，19，990	－Oner	10	st	10\％	${ }^{10 \%}$	10\％	10\％	${ }^{10 \%}$	${ }^{10 \%}$	10\％	${ }^{10 \%}$	${ }^{8 \%}$	${ }^{7 \%}$	6%	5\％	4%	${ }^{3 \%}$	${ }^{2 \%}$	\％	0\％	\％	\％	\％
6689	88，19，2000	Medical，surgical or bioratoo seielisers	5	${ }^{\text {HSL }}$	${ }^{5 \%}$	${ }^{5 \%}$	${ }^{5 \%}$	5\％	${ }^{59}$	${ }^{5 \%}$	${ }^{5 \%}$	${ }^{5 \%}$	${ }^{5 \%}$	5%	${ }^{5 \%}$	${ }^{5 \%}$	${ }^{5 \%}$	${ }^{5 \%}$	${ }^{5 \%}$	${ }^{5 \%}$	${ }^{5 \%}$	${ }^{5 \%}$	${ }^{5 \%}$	5\％
6690	88，193，10	－Electically operated	5	NT1	4%	4\％	4\％	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％	\％\％	\％	\％	\％	\％	\％	0\％	\％	\％	\％
699	${ }^{8,193,120}$	－Not electrically operated	5	NT1	${ }^{4 \%}$	4\％	4\％	3\％	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	0\％	0\％	0\％	0\％	0\％	\％	0\％	0\％	0\％	0\％	\％
6692	88，19，210	－Ebertically operated	5	NT1	4%	4\％	4\％	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％
6693	88，193，220	Noteacticially operaled	5	NT1	${ }^{4 \%}$	4\％	4\％	3\％	3\％	${ }^{2 \%}$	${ }^{2 \%}$	\％\％	\％\％	\％\％	0\％	\％	\％\％	0\％	\％\％	\％	0\％	\％	\％	\％\％
669	84，19，9，91	Machinery for the treatment of materials by a process involving heating，for the manufacture of printed circuit boards，printed wiring boards or printed circuit assemblies	10	NT2	9\％	9\％	8\％	8\％	6\％	6\％	5\％	5\％	4\％	4\％	3\％	3\％	2\％	2%	0\％	0\％	0\％	\％	\％	0\％
6695	84，19，9，99	Onher	10	st	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	8\％	${ }^{7 \%}$	6\％	5\％	4\％	3\％	2\％	1\％	\％\％	0\％	\％	0\％
669	84，19，920	$\cdots{ }^{-\cdots 0}$ Notectricall operated	10	sL	10\％	${ }^{10 \%}$	10\％	${ }^{10 \%}$	${ }^{10 \%}$	${ }^{10 \%}$	10%	${ }^{10 \%}$	${ }^{8 \%}$	${ }^{7 \%}$	6\％	${ }^{5 \%}$	4%	${ }^{3 \%}$	${ }^{2 \%}$	\％	\％	\％	\％\％	\％\％
669	8，194，010	－Eiectrically perated	5	NT1	${ }^{4 \%}$	4\％	$4{ }^{4 \%}$	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％\％	0\％	0\％	\％	0\％	\％	\％	\％	\％	0\％	\％	0\％
6698	88，19，020	－No etectricaly operated	5	V1	4%	4\％	4%	3\％	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％
669	8，195，010	－Coolig tovers	10	st	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	${ }^{8 \%}$	${ }^{7 \%}$	6\％	5\％	4\％	${ }^{3 \%}$	${ }^{2 \%}$	1\％	0\％	0\％	\％	0\％
6700	84，19，090	－Oner	10	st	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	${ }^{8 \%}$	${ }^{7} \%$	6\％	5\％	4%	${ }^{3 \%}$	${ }^{2 \%}$	1\％	\％	\％	\％	\％
6701	88，196，010	Electrically operated	10	st	10%	10%	10%	10%	10%	10%	10%	10%	8%	7\％	6\％	5\％	4%	${ }^{3 \%}$	${ }^{2 \%}$	1\％	0\％	\％	\％	\％

香港•ASEAN FTAにかかる調査報告書

別添2－4 原産地品の関税撤廃スケジュール
（ラオス）

香港•ASEAN FTAにかかる調査報告書

別添2－4 原産地品の関税撤廃スケジュール
（ラオス）

6852	${ }^{\text {84，22，2000 }}$	Graders anclivelers	5	HSL	5\％	${ }^{5 \%}$	${ }^{5 \%}$	${ }^{5 \%}$	${ }^{5 \%}$	${ }^{5 \%}$	${ }^{5 \%}$	${ }^{5 \%}$	${ }^{5 \%}$	${ }^{\text {5\％}}$	${ }^{5 \%}$	${ }^{\text {5\％}}$	${ }^{5 \%}$	${ }^{\text {5\％}}$	${ }^{\text {5\％}}$	${ }^{\text {5\％}}$	${ }^{\text {5\％}}$	5\％	5\％	${ }^{5 \%}$
	88，29，000	Scapers	5	HSL	5\％	5\％	5\％	5\％	5\％	5\％	5\％	5\％	5\％	5\％	5\％	5\％	5\％	5\％	5\％	5\％	5\％	5\％	5\％	${ }^{5 \%}$
654	4，294，030	－Tamping mactines	5	HSL	5\％	5\％	5\％	5\％	5\％	5\％	5\％	5\％	5\％	5\％	5\％	5\％	5\％	5\％	5\％	5\％	5\％	5\％	${ }^{\text {5\％}}$	${ }^{5 \%}$
685	8，4，29，040	-- Vibratory smooth drum rollers，with a centrifugal force drum not exceeding 20 t by weight	5	HSL	${ }^{5 \%}$	${ }^{5 \%}$	${ }^{5 \%}$	${ }^{5 \%}$	${ }^{5 \%}$	${ }^{5 \%}$	${ }^{5 \%}$	${ }^{\text {5\％}}$	${ }^{5 \%}$	5\％	5\％	${ }^{5 \%}$	${ }^{5 \%}$	${ }^{\text {5\％}}$	${ }^{5 \%}$	${ }^{5 \%}$	${ }^{5 \%}$	${ }^{\text {5\％}}$	${ }^{\text {5\％}}$	${ }^{5 \%}$
8656	88，24，050	－Oner vibatoy road roles	5	NT1	4\％	4\％	4\％	3\％	3\％	2\％	${ }^{2 \%}$	\％	0\％	\％	\％	\％	\％	0\％	0\％	0\％	\％	\％	\％	\％
${ }^{6857}$	88，29，090	－－other	5	NT1	4%	4\％	4\％	3\％	${ }^{3 \%}$	2\％	${ }^{2 \%}$	\％	\％	\％	\％	\％	\％	\％	0\％	\％	\％	\％	\％	\％
${ }^{6558}$	88，29，100	\cdots	5	NT1	4%	4%	4%	3\％	3\％	2\％	${ }^{2 \%}$	0\％	0\％	0\％	0\％	\％	0\％	\％	0\％	\％	\％	0\％	\％	0\％
${ }^{6859}$	88，25，200	－Machiney with a sborerevoving stupestructure	5	NT1	4%	4\％	4\％	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	0\％	\％	\％	\％	\％	\％	0\％	\％	0\％	\％	\％	\％
1880	88，29，900	－－nter	5	Hst	5\％	5\％	5\％	5\％	5\％	5\％	5\％	${ }^{5 \%}$	5\％	5\％	5\％	5\％	${ }^{5 \%}$	${ }^{5 \%}$	${ }^{5 \%}$	5\％	${ }^{5 \%}$	${ }^{5 \%}$	${ }^{5 \%}$	5\％
${ }_{6861} 6$	88，30，，000	－Piededivers and pilie extacolos	5	NT1	4\％	4\％	4\％	3\％	${ }^{3 \%}$	${ }^{2 \%}$	2%	\％\％	0\％	\％	0\％	0\％	\％	\％	\％	0\％	\％	\％	\％	0\％
6862	88，32，200	－Sow．iologns and stow．blowers	5	NT1	4\％	4\％	4\％	3\％	3\％	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	0\％	0\％	0\％	\％	\％	\％	0\％	\％\％	\％	\％	\％
863	88，30，100	－Selipropelled	5	v1	$4{ }^{4}$	$4{ }^{4 \%}$	4%	3\％	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	0\％	0\％	\％	\％	0\％	0\％	\％	\％	\％	0\％	0\％	0\％	\％
${ }^{6864}$	88，30，900	－Oner	5	V1	4%	4\％	4%	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	0\％	0\％	\％	\％	\％	0\％	0\％	\％	\％	\％	\％	0\％	\％
${ }^{6665}$	88，304，100	－Selipropeled	5	NT1	4%	4\％	4%	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％\％	\％	\％	\％	\％	\％	\％	\％	0\％	0\％	\％	\％\％
${ }^{6866}$	88，304，910	-- －Wellhead platforms and integrated production modules suitable for use in drilling operations modules suitable for use in drilling operations	5	NT1	$4{ }^{4 \%}$	4%	4%	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％	\％	0\％	\％	\％	\％	\％	\％	\％	\％	\％
${ }^{6887}$	88，304，990	\cdots Other	5	NT1	4\％	4\％	4\％	3\％	3\％	${ }^{2 \%}$	${ }^{2 \%}$	\％\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	0\％	0\％
${ }^{6668}$	88，35，000	－Other machinev，stefpropopled	5	NT1	4%	4%	4%	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	0\％	\％	\％	0\％	0\％	0\％	\％	\％	\％	\％	\％	\％
${ }^{6869}$	88，30， 100	－Tamping or compacing machinery	5	NT1	4\％	4\％	4\％	3\％	3\％	${ }^{2 \%}$	${ }^{2 \%}$	\％\％	0\％	0\％	\％	\％	\％	\％	\％	0\％	0\％	\％	\％	0\％
${ }^{6870}$	84，30，900	－other	5	NT1	4\％	4\％	4\％	${ }^{3 \%}$	3\％	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％	0\％	\％	\％\％	\％	\％	\％\％	\％	0\％	0\％	\％
6871	8331．10．13	$\begin{array}{\|l\|} \hline- \text { Of goods of subheading 8425.11.00, } \\ 8425.31 .00 \text { or } 8425.49 .10 \end{array}$	5	NT	${ }^{4 \%}$	${ }^{4 \%}$	${ }^{4 \%}$	3\％	3\％	${ }^{2 \%}$	${ }^{2 \%}$	0\％	\％	\％	\％	\％	0\％	0\％	\％	\％	\％	\％	\％	\％
${ }^{6872}$	2431.0 .19	－．．other	5	V1	4%	${ }^{4 \%}$	4\％	${ }^{3 \%}$	${ }^{\text {3\％}}$	${ }^{2 \%}$	${ }^{2 \%}$	0\％	0\％	\％\％	0\％	0\％	0\％	0\％	0\％	0\％	0\％	0\％	0\％	\％
${ }^{6873}$	${ }^{88331.1022}$		${ }^{5}$	NT1	4%	4\％	4\％	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	${ }^{0 \%}$
${ }^{6874}$	${ }^{883510.1029}$	－Other	5	NT1	4%	$4{ }^{4 \%}$	$4{ }^{4 \%}$	3\％	${ }^{3 \%}$	2\％	${ }^{2 \%}$	\％	0\％	0\％	0\％	\％	\％	\％	0\％	\％	\％	0\％	\％\％	0\％
${ }^{6875}$	88，312，000	－Ot machinery of heaing 84.27	5	N1	4\％	4\％	4\％	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	0\％	0\％	0\％	0\％	0\％	0\％	\％	\％	\％\％	0\％	\％	0\％	\％
${ }^{6876}$	84，31，110	$\begin{array}{\|l\|} \hline \text {-Of goods of subheading 8428.10.21, } \\ \text { 8428.10.29 or 8428.10.90 } \end{array}$	5	NT1	4%	4\％	4%	3\％	3\％	2\％	${ }^{2 \%}$	\％	0\％	\％	0\％	\％	\％	\％	\％	0\％	\％	\％	\％	\％
${ }^{8877}$	3，120	$\begin{aligned} & \text {-. Of goods of subheading 8428.10.10 or } \\ & \text { 8428.40.00 } \end{aligned}$	5	NT1	${ }^{4 \%}$	${ }^{4 \%}$	4\％	${ }^{3 \%}$	${ }^{\text {3\％}}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	0\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％
${ }^{6878}$	3，910	－－－Of goods of subheading 8428．20．10， 8428．32．10，8428．33．10 or 8428．39．10	5	NT1	${ }^{4 \%}$	4\％	4\％	${ }^{3 \%}$	3\％	${ }^{2 \%}$	${ }^{2 \%}$	0\％	0\％	\％	\％	\％	\％	0\％	0\％	\％	0\％	0\％	0\％	\％
${ }^{6879}$	88，31，920	－- Of soods of s subneading 8288.90	5	NT1	$4{ }^{4 \%}$	${ }^{4 \%}$	${ }^{4 \%}$	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	0\％	0\％	\％	\％	0\％	\％	0\％	\％	\％	\％	0\％	\％	\％
${ }^{6880}$	313，940	－－Of automated machines for the transport， handling and storage of printed circuit boards， printed wiring boards or printed circuit assemblies	5	NT1	4%	4\％	4\％	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	0\％
6881	88，31，990	‥oner	5	N1	4\％	4\％	${ }^{4 \%}$	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％	0\％	\％	\％	0\％	0\％	\％\％	\％	\％	0\％	\％
6882	8，4，34，410	－For machiney of heading 84.26	5	NT1	4\％	4\％	4\％	3\％	3\％	${ }^{2 \%}$	2%	0\％	0\％	0\％	0\％	\％	\％	\％	\％	0\％	\％	\％	\％	\％
883	${ }^{88,34,1,190}$	－－Other	5	V1	$4{ }^{4 \%}$	4%	$4{ }^{4 \%}$	${ }^{3 \%}$	3\％	${ }^{2 \%}$	2\％	\％	0\％	0\％	\％	0\％	0\％	0\％	\％	0\％	\％	0\％	\％	\％
${ }^{6884}$	88，34，200	－－Bullozer oranglederer blades	5	NT1	4%	4\％	4\％	3\％	3\％	2\％	${ }^{2 \%}$	\％	\％	\％	0\％	\％	\％	\％	\％	\％	\％	\％	0\％	0\％
6885	314，300	- －Parts for boring or sinking machinery of subheading 8430.41 or 8430.49	${ }^{5}$	V1	4%	4\％	4\％	3\％	3\％	${ }^{2 \%}$	2\％	\％	0\％	\％	\％	\％	\％	\％	\％	0\％	\％	${ }^{0}$	${ }^{0 \%}$	\％
${ }_{6886} 6$	84，34，9，90	－Pants of machiney of heading 8426	5	N1	4\％	4\％	4\％	${ }^{3 \%}$	3\％	${ }^{2 \%}$	2%	\％\％	0\％	0\％	0\％	0\％	\％	\％	\％	\％\％	0\％	\％	\％	\％
	88，34，920	\cdots Cutting edgeses or end bits of a kind used for scrapers，graders or levellers	${ }^{5}$	N1	4\％	4\％	4\％	3\％	3\％	${ }^{2 \%}$	${ }^{2 \%}$	0\％	\％	0\％	0\％	\％	\％	\％	\％	\％	\％	\％	\％	\％
6888	4，940	Cutting edges or end bits of a kind used for bulldozer or angledozer blades	5	V1	${ }^{4 \%}$	${ }^{4 \%}$	${ }^{4 \%}$	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	0\％	\％	0\％	\％	\％	0\％	\％	\％	\％	\％	0\％	\％	\％
6889	88，34，4，50	－Of road foleers	5	NT1	4%	4\％	4%	${ }^{3 \%}$	${ }^{3 \%}$	2\％	${ }^{2 \%}$	\％	\％\％	\％	0\％	0\％	\％	\％	0\％	0\％	\％	0\％	\％	\％
${ }^{6890}$	88，34，9，60		5	NT1	4%	4\％	4\％	3\％	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％	\％	0\％	\％	\％	\％	\％\％	\％	\％	0\％	0\％
${ }^{6891}$	88，34，990	－other	5	NT1	4\％	4\％	4\％	3\％	3\％	${ }^{2 \%}$	2%	0\％	0\％	\％	0\％	\％	\％	\％	\％	\％	\％	\％	\％	\％
6892	88，32，000	－Poughs	5	NT1	4\％	4%	4%	3\％	3\％	2\％	2%	\％	0\％	0\％	0\％	0\％	0\％	\％	\％	0\％	0\％	\％	\％	\％
693	${ }^{\text {84，32，} 100}$	Disc harows	5	V1	${ }^{4 \%}$	${ }^{4 \%}$	${ }^{4 \%}$	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％\％	\％\％	\％	\％	\％	\％	\％\％	\％	\％	\％	\％
${ }^{6894}$	88，32，900	－other	5	NT1	4\％	4\％	4%	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％	\％	\％	\％	\％	\％	0\％	0\％	\％	\％	0\％
${ }^{6995}$	88，32，000	－Seedes，panates and traspenaners	5	NT1	4%	4\％	4%	3\％	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	0\％
${ }^{6896}$	88，34，000	－Manure spreadess and feritise distrobulors	5	N1	4\％	4\％	4\％	3\％	3\％	${ }^{2 \%}$	${ }^{2 \%}$	0\％	0\％	0\％	0\％	0\％	0\％	\％\％	\％	0\％	0\％	0\％	0\％	0\％
${ }^{6987}$	88，38，010	－Agrictural or horiciulual yee	5	NT1	4%	4\％	4%	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％	\％	0\％	\％	\％	\％	\％	\％	\％	\％	0\％
${ }^{6898}$	88，38，020		5	VT1	4%	$4{ }^{4 \%}$	4\％	3\％	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％	\％	0\％	\％	\％	\％	\％	\％	\％	0\％	\％\％
${ }^{689}$	88，38，090	－omer	5	NT	4\％	4\％	4\％	3\％	3\％	${ }^{2 \%}$	2%	0\％	\％	\％	\％	0\％	\％	\％	\％	\％	\％\％	\％	\％	\％
6900	88，32，9010	－Of machiney of subineading 843288．900	5	NT1	4\％	4%	4\％	3\％	3\％	${ }^{2 \%}$	2%	\％	\％	\％	0\％	0\％	\％	\％	\％	0\％	\％	\％\％	\％	\％
${ }^{6901}$	88，32，020	－of tawnor spors sfound oliers	5	v1	${ }^{4 \%}$	4%	4%	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	0\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％
${ }^{6902}$	88，32，9090	－Oner	5	V1	$4{ }^{4 \%}$	4\％	4\％	3\％	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	0\％	0\％	\％	\％	\％	\％	0\％	\％	\％	\％	\％	\％	\％
${ }^{6003}$	84，33，100	－－Powered，with the cutting device rotating in a horizontal plane	${ }^{5}$	NT1	4%	4\％	4\％	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％\％	\％	0\％	\％	\％	\％	\％	\％	\％	\％	\％	\％\％
${ }^{9904}$	88，31，910	－－Not poweed	5	NT	$4{ }^{4}$	4\％	4%	${ }^{3 \%}$	${ }^{3} \%$	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％
${ }^{5005}$	88，31，990	－－Onmer	5	NT1	$4{ }^{4 \%}$	4\％	4\％\％	${ }^{3 \%}$	${ }^{3 \%}$	2\％	${ }^{2 \%}$	0\％	0\％	0\％	0\％	0\％	0\％	\％\％	\％\％	0\％	0\％	0\％	\％	0\％
\＄906	2，000	Other mowers，including cutter bars for tractor mounting	5	VT1	4\％	$4{ }^{4 \%}$	4\％	3\％	3\％	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	0\％
${ }^{9907}$	88，33，000	－Other haymakis machinex		N1	4%	4\％	4\％	3\％	${ }^{3 \%}$	2\％	${ }^{2 \%}$	0\％	\％	0\％	0\％	\％	0\％	\％	\％	0\％	0\％	\％	\％	\％
${ }^{5008}$	84，34，000	Stawe orfoder braless，inculung pick－up balers	5	N1	4%	$4{ }^{4 \%}$	4\％	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％	\％	0\％	\％	\％	\％	\％	0\％	\％	0\％	\％
6909	88，35，100	－Combine haveseserflresters	5	N1	4\％	4\％	${ }_{4}^{4 \%}$	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	0\％	0\％	0\％	\％	0\％	0\％	0\％	0\％	\％	0\％	\％	\％	0\％
6910	88，35，200	－Onee tressing machiney	5	NT1	4\％	4%	4\％	3\％	3\％	${ }^{2 \%}$	2%	\％	0\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％
6911	${ }^{88,35,3,300}$	－Root of tuer havesing mactines	5	v1	${ }^{4 \%}$	$4{ }^{4 \%}$	$4{ }^{4 \%}$	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％
${ }^{6912}$	88，35，910	Cototo piokers and cototo gins	5	V1	4%	4\％	4\％	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	0\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	0\％	\％
${ }^{6913}$	28，35，990	Other	5	NT1	4\％	4\％	4%	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	0\％	\％	\％	0\％	\％	\％	\％	\％	\％	\％	\％	\％	0\％
6914	88，36，010	－Electrially opeated	5	NT1	4%	4\％	4%	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％
${ }^{6915}$	44，33，020	－Note elecricall operaled	5	NT1	4%	4\％	4%	${ }^{3} \%$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	0\％	\％	0\％
6916	${ }^{88,393,010}$	－Castors，of a diameter（including tyres）exceeding 100 mm but not exceeding 250 mm ，provided that the widthth of any wheel or tyre fitted thereto exceeds 30 mm	${ }_{5}^{5}$	${ }^{\text {NT1 }}$	4\％	4\％	4\％	3\％	3\％	${ }^{2 \%}$	2\％	0\％	0\％	\％	\％\％	\％	0\％	\％	\％	\％\％	0\％	\％${ }^{0}$	\％ 0	\％
${ }^{6917}$	4，33，020	－－Other，of goods of subheading 8433.11 or 8433．19．90	${ }^{5}$	N1	4\％	4\％	4%	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	0\％	${ }^{0 \%}$	\％	\％	\％\％	\％\％	0\％	\％	\％	0\％	\％\％	0\％	\％\％
${ }^{6918}$	88，33，0，30	Other，of toos of t subheading 8433，19：10	5	N1	4\％	4\％	4\％	3\％	3\％	${ }^{2 \%}$	${ }^{2 \%}$	0\％	0\％	0\％	0\％	0\％	0\％	\％\％	\％	0\％	0\％	\％	0\％	\％
6919	84，39，0，90	Other	5	V1	${ }^{4 \%}$	$4{ }^{4 \%}$	4\％	${ }^{3 \%}$	3\％	${ }^{2 \%}$	${ }^{2 \%}$	0\％	0\％	0\％	0\％	0\％	0\％	0\％	\％	0\％	0\％	\％	0\％	\％
6920	${ }^{8834.10 .10}$	－Eeacrically operated	5	N1	4\％	4%	4%	${ }^{3 \%}$	3\％	${ }^{2 \%}$	${ }^{2 \%}$	0\％	0\％	0\％	0\％	0\％	0\％	\％\％	\％	0\％	0\％	\％	0\％	\％
${ }^{6921}$	${ }^{2834.10,20}$	－No eteectrially opeated	${ }^{5}$	N1	4\％	$4{ }^{4 \%}$	4\％	${ }^{3 \%}$	3\％	${ }^{2 \%}$	${ }^{2 \%}$	\％	0\％	0\％	0\％	0\％	\％	\％	0\％	\％	\％	\％	\％	\％
${ }^{6922}$	${ }^{\text {24，3，32，010 }}$	－Ebectically opeated	5	VT1	4\％	4%	4%	3\％	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	0\％	\％	0\％
${ }^{6923}$	${ }^{88,3,32,020}$	－No etestricaly operaled	5	N1	4\％	4\％	4\％	3\％	3\％	${ }^{2 \%}$	${ }^{2 \%}$	0\％	0\％	0\％	0\％	0\％	\％	\％\％	0\％	0\％	0\％	\％	\％	0\％
${ }^{6924}$	88，39，0，10	－of elecricilly opeated machines	${ }^{5}$	NT	4%	4%	4%	3\％	3\％	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％	\％	0\％	\％	\％	\％	\％	\％	\％	0\％	\％
${ }^{6925}$	88，49，020	－Ot onomeertrially operated machines	5	NT1	4%	4\％	4%	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％	\％	0\％	\％	\％	\％	\％	\％	\％	\％	\％
${ }^{9926}$	${ }^{8835.10 .10}$	－Eecricalil opeated	5	NT1	${ }^{4 \%}$	4%	${ }^{4 \%}$	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	0\％	0\％	0\％	0\％	\％	0\％	\％\％	\％	0\％	0\％	\％	\％	0\％
${ }^{6927}$	${ }^{8835.10,20}$	Not teatrically operated	5	N1	4\％	4\％	4\％	${ }^{3 \%}$	3\％	${ }^{2 \%}$	${ }^{2 \%}$	0\％	0\％	0\％	0\％	0\％	\％\％	\％\％	0\％	0\％	0\％	\％	0\％	0\％
${ }^{6928}$	88，55，010	－ O elecrically opeateded macrines	5	N1	${ }^{4 \%}$	4%	${ }^{4 \%}$	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	0\％	0\％	\％	\％	\％	\％	0\％	\％	\％	\％	\％
${ }^{6929}$	84，59，020	－Of ron－lesericilly operaied machines	5	NT1	4\％	4\％	4\％	3\％	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％\％	\％	\％\％	0\％	0\％	\％	\％	\％	\％	\％	\％	\％	\％
${ }^{6930}$	${ }^{8836.10 .10}$	－Electrically peoraed	5	NT	4%	${ }^{4 \%}$	4%	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％\％	0\％	0\％	0\％	\％	\％\％	\％	0\％	0\％	\％	\％	\％
${ }^{6931}$	${ }^{8836,1020}$	－Not electricaly operated	5	NT	4%	4\％	4%	3\％	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％
${ }^{6932}$	88，36，110	－Electricaly operated	5	VT1	4\％	4\％	4%	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	0\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	0\％	\％	\％
${ }^{\text {6933 }}$	${ }^{88,362,120}$	telectricaly opeated	5		4\％	4%	4\％	3\％	3\％	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％	0\％	\％	\％	\％	\％	0\％	\％	\％	\％	\％

香港•ASEAN FTAにかかる調査報告書

別添2－4 原産地品の関税撤廃スケジュール
（ラオス）

6934	${ }^{88,362,910}$	－Eectrically perated	5	｜NT	4\％	4\％	4\％	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	0\％	0\％	0\％	\％	\％	0\％	\％	\％	\％	\％\％	\％\％	\％	\％
6935	${ }^{88,362,290}$	－Not electrically operated	5	NT1	4%	4%	4\％	3\％	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	0\％	0\％	\％	0\％	0\％	0\％	0\％	\％	0\％	0\％	\％\％	\％	0\％
2936	4，368，011	－Agiculural of horicicluar lype	5	NT1	4\％	${ }^{4 \%}$	${ }^{4 \%}$	3\％	3\％	2\％	2\％	0\％	\％	\％	\％	\％	0\％	0\％	\％	\％	\％\％	\％	\％	\％
6937	84，36，019	－other	5	NT1	4%	$4{ }^{4 \%}$	4\％	3\％	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％	\％	0\％	\％	\％	\％	\％	\％	\％	\％	\％
698	4，386，021	－Agiculural or horiciulual tye	5	NT1	${ }^{4 \%}$	${ }^{4 \%}$	${ }^{4 \%}$	${ }^{3 \%}$	${ }^{\text {3\％}}$	${ }^{2 \%}$	${ }^{2 \%}$	0\％	0\％	0\％	0\％	0\％	\％	0\％	\％	0\％	0\％	\％	\％\％	\％\％
693	88，36，029	Other	5	NT1	4\％	$4{ }^{4 \%}$	4\％	3\％	${ }^{3 \%}$	${ }^{2 \%}$	2\％	\％	\％	\％	\％	\％	0\％	\％	\％	\％	\％	\％	\％	0\％
6940	4，369，110	eouimeneritially operated mactines and	5	NT1	4\％	4\％	4\％	3\％	${ }^{3 \%}$	${ }^{2 \%}$	2\％	\％	\％	0\％	\％	\％	\％	\％	0\％	\％	\％	0\％	\％	\％
\％	84，36， 120	eoon ronelecericially opeataded madinies and	5	NT1	${ }^{4 \%}$	${ }^{4 \%}$	${ }^{4 \%}$	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	0\％	0\％	0\％	0\％	0\％	0\％	\％	0\％	\％	0\％	0\％	\％	\％\％
${ }^{6942}$	4，369，911	Agriculura of horiculural tye	5	NT1	${ }^{4 \%}$	4\％	4\％	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	2%	0\％	0\％	0\％	\％	\％	\％	0\％	\％	0\％	0\％	\％	\％	0\％
${ }^{6943}$	88，36，9，919	\cdots Oner	5	NT1	${ }^{4 \%}$	4%	${ }^{4 \%}$	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	0\％	0\％	\％	\％	\％\％	\％	0\％	\％\％	\％	0\％	0\％	\％	0\％
6944	88，36，921	－Agiculural of roficiulural tpe	5	NT1	4\％	4\％	4\％	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％
6945	88，36，929	Other	5	NT1	4\％	4%	4\％	${ }^{3} \%$	3\％	2\％	${ }^{2 \%}$	\％	0\％	\％	\％	0\％	\％	\％	\％	\％	${ }_{0} 0$	\％	\％	0\％
6946	8837.10 .10	－－For grains，electrically operated；winnowing and similar cleaning machines，electrically operated	5	NT1	4\％	4\％	4\％	${ }^{3} \%$	${ }^{3}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	0\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％\％
${ }^{6947}$	8437．10．20	－－For grains，not electrically operated；winnowing and similar cleaning machines，not electrically operated	5	NT1	4\％	4\％	4\％	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	2\％	\％	\％	0\％	\％	\％	\％	\％	\％	\％	0\％	\％	\％	0\％
693	8837．1．0．30	－Other，electrically operated	5	NT1	4\％	4\％	4\％	3\％	3\％	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	0\％	0\％	0\％	\％	0\％	0\％	\％	0\％	0\％	\％	0\％
699	88，37，040	－Onter，note fecticilly operated	5	NT1	$4{ }^{4 \%}$	4%	4%	3\％	${ }^{3 \%}$	2%	${ }^{2 \%}$	0\％	0\％	0\％	\％	0\％	\％	\％\％	\％	\％\％	\％	\％	\％	\％
6950	4，378，010	－－Rice hullers and cone type rice mills，electrically operated	5	NT1	4%	4\％	4\％	3\％	3\％	2\％	2\％	\％	0\％	\％	0\％	\％	\％	0\％	0\％	0\％	\％	0\％	\％	\％
6951	4，37．020	－Rice hullers and cone type rice mills，not electrically operated	5	NT1	4\％	4\％	${ }^{4 \%}$	${ }^{\text {\％}}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	0\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	0\％
6952	4，378，030	－Industrial type coffee and corn mills，electrically operated	5	NT1	4\％	4\％	${ }^{4 \%}$	${ }^{3 \%}$	${ }^{\text {3\％}}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％\％	\％	\％	0\％
6953	4，378	Industrial type coffee and corn mills，not electrically operated	5	NT1	${ }^{4 \%}$	${ }^{4 \%}$	${ }^{4 \%}$	${ }^{\text {3\％}}$	${ }^{3} \%$	${ }^{2 \%}$	${ }^{2 \%}$	0\％	0\％	\％	0\％	0\％	\％	\％	\％	\％	0\％	0\％	\％	\％
659	378，051	- －Polishing machines for rice，sifting and sieving machines，bran cleaning machines and husking maines	5	NT1	${ }^{4 \%}$	${ }^{4 \%}$	4\％	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	${ }^{0 \%}$	0\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％
${ }^{6955}$	4，378，059	…oter	5	NT1	4\％	4%	4\％	3\％	${ }^{3 \%}$	${ }^{2 \%}$	2\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	0\％
${ }_{6056}$	84，78，061	－－Polishing machines for rice，sifting and sieving machines，bran cleaner machines and husking machines	${ }^{5}$	NT1	4\％	4\％	4\％	${ }^{3 \%}$	${ }^{3 \%}$	2\％	2\％	\％	0\％	0\％	\％	\％	\％\％	0\％	\％	\％	\％	\％	\％	\％
6957	84，378，699	－．．other	5	NT1	4\％	${ }^{4 \%}$	4\％	3\％	3\％	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％	0\％	0\％	\％	\％	\％	\％	0\％	\％	\％	0\％
$6{ }^{6958}$	88，37，011	Of matines of stubeading 8437.10	5	NT1	4\％	$4{ }^{46}$	$4{ }^{4 \%}$	3\％	3\％	${ }^{2 \%}$	${ }^{2 \%}$	0\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	0\％
$6{ }^{699}$	${ }^{88,379,019}$	－other	${ }^{5}$	NT1	4\％	$4{ }^{4 \%}$	4\％	3\％	${ }^{3 \%}$	2\％	${ }^{2 \%}$	0\％	0\％	0\％	\％	0\％	\％\％	\％\％	\％	\％	\％	0\％	\％	${ }^{0 \%}$
6960	84，37，021	－－Of madines of stubleading 8437．10	5	NT1	4\％	4\％	4\％	3\％	3\％	2%	${ }^{2 \%}$	\％	0\％	\％	0\％	\％	\％	\％\％	\％	\％\％	\％\％	\％	0\％	\％
6961	${ }^{88,379,029}$	－－Other	5	NT1	4\％	4%	$4{ }^{4 \%}$	3\％	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	0\％	\％	0\％	0\％	0\％	0\％	0\％	0\％	\％	0\％	0\％	\％	0\％
${ }^{692}$	${ }^{8888.10 .10}$	－Electrially operated	5	NT1	4\％	4\％	4\％	${ }^{3 \%}$	${ }^{3 \%}$	2%	${ }^{2 \%}$	0\％	\％	\％	\％	0\％	\％	\％	\％	\％	\％	0\％	\％	\％
${ }^{6983}$	${ }^{8888.10 .20}$	－Note electicaly operated	5	NT1	4\％	4\％	4\％	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	0\％	\％	0\％	\％	\％	\％	\％	\％	\％	\％	\％	\％
${ }^{6964}$	88，382，010	－Electrially operated	5	NT1	4\％	4\％	4\％	3\％	${ }^{3 \%}$	2\％	2\％	0\％	0\％	\％	\％	0\％	0\％	0\％	\％	0\％	\％	\％	\％	\％
6965	88，882，020	－Note electically opeated	5	NT1	4\％	4\％	4\％	3\％	3\％	2\％	2\％	\％	0\％	\％	\％	0\％	\％	0\％	\％	0\％	\％	\％	\％	\％
${ }^{6966}$	88，83，0，10	－Eecricially peerated	5	NT1	${ }^{4 \%}$	$4{ }^{4 \%}$	4%	${ }^{3 \%}$	3\％	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％	\％	\％	\％	0\％	\％\％	\％	\％	\％	${ }^{0 \%}$	\％\％
${ }^{6987}$	84，83， 202	－Notelecticilaly peraled	5	NT1	4\％	4\％	4\％	${ }^{3 \%}$	3\％	2\％	2\％	0\％	\％	\％	0\％	\％	\％	\％	\％	\％\％	\％	\％	\％	\％
${ }^{6988}$	88，84，000	Brever mactiney	5	NT1	4\％	4%	4\％	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	0\％	\％	\％	\％	0\％	\％	\％	\％\％	\％	\％	0\％	\％	\％
699	88，35，010	－Electricaly opeated	5	NT1	4\％	4%	4%	3\％	${ }^{3 \%}$	2\％	${ }^{2 \%}$	0\％	0\％	\％	\％\％	0\％	0\％	0\％	0\％	0\％	\％	0\％	0\％	\％
6990	88，35，020	－No etectricilly opeated	5	NT1	4\％	$4{ }^{4 \%}$	4\％	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	0\％	\％	\％	\％\％	0\％	\％	\％	\％	\％	\％	\％	\％	\％
6971	8，4，38，010	－Electrially pepaled	5	NT1	4\％	4\％	${ }^{4 \%}$	${ }^{3 \%}$	${ }^{3 \%}$	2\％	${ }^{2 \%}$	\％	\％	\％	0\％	\％	\％	\％\％	\％	0\％	\％	\％	\％	\％
6972	88，36，020	－Notetecticially opeated	5	NT1	4\％	4%	4\％	3\％	3\％	2%	2\％	0\％	0\％	\％	0\％	0\％	0\％	0\％	\％	\％	\％	\％	\％	\％\％
6973	${ }^{88,38,0011}$	\cdots Eloctricaly opeatad	5	NT1	4\％	${ }^{4 \%}$	4\％	3\％	3\％	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％\％	0\％	\％	\％	\％\％	\％	\％	\％	\％\％	\％	\％	0\％
6974	88，38，012	$\cdots{ }^{\text {Note electically operated }}$	5	NT1	4\％	$4{ }^{4 \%}$	4\％	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％	\％	\％	\％	\％\％	\％	\％	\％	\％	\％	0\％
6975	88，38，091	－Elecrically operated	5	NT1	4\％	4%	${ }^{4 \%}$	3\％	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	0\％	0\％	\％	\％\％	0\％	\％	\％\％	\％	\％\％	\％\％	\％	\％	\％
${ }^{6976}$	88，38，092	\cdots	5	NT1	4\％	4\％	4\％	3\％	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	0\％	0\％	\％	\％	\％	\％	\％	\％	0\％	\％	\％
6977	88，89，0，011	－Of goods of subleading 8483． 3.0 .10	5	NT1	4%	4%	${ }^{4 \%}$	3\％	${ }^{3 \%}$	2\％	${ }^{2 \%}$	0\％	0\％	0\％	0\％	0\％	\％	\％\％	0\％	\％	0\％	0\％	\％	0\％
${ }^{6978}$	88，38，0，12	\cdots Of offep pupers	5	NT1	4\％	4%	4%	3\％	${ }^{3 \%}$	2\％	${ }^{2 \%}$	0\％	\％	\％	\％	0\％	\％	\％	\％	\％	\％	\％	\％	\％
6979	88，89，019	－omer	5	NT1	4\％	4\％	4\％	3\％	3\％	2\％	2\％	0\％	0\％	\％	0\％	0\％	0\％	\％	\％	0\％	\％	\％	\％	0\％
980	88，88，021	Of goos of s subheading 8488．30．20	5	NT1	4\％	4\％	4\％	3\％	3\％	2\％	2\％	0\％	0\％	0\％	\％	\％	\％	0\％	\％	\％	\％	\％	\％	\％\％
6981	88，38，0，02	－Ot cofte puluers	5	NT1	4\％	$4{ }^{4 \%}$	4\％	3\％	3\％	2%	${ }^{2 \%}$	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％
6882	88，38，029	Other	5	NT1	4\％	4%	4%	3\％	3\％	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％\％	\％	\％	\％
${ }^{6983}$	4，39，000	－Machinery for making pulp of fibrous cellulosic material	${ }^{5}$	NT1	4\％	4%	4\％	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％	\％	\％	\％	0\％	\％	\％	0\％	\％	\％	\％
${ }^{684}$	392，00	－Machine f tor maxing paper or Papetoroard	5	NT1	${ }^{4 \%}$	4\％	4\％	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％\％	\％	0\％	\％	\％	\％	\％	\％	0\％	0\％	\％
6985	88，39，000	－Machiney yof finsising paper or repeetoard	5	NT1	4\％	4%	4%	3\％	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	0\％	0\％	\％	\％	\％	\％	\％	0\％	0\％	0\％	0\％	\％	0\％
C	4，399，100		5	NT1	4\％	4\％	4\％	3\％	\％	${ }^{2 \%}$	2\％	\％	\％	\％	\％	\％	\％	－	\％	\％	\％	\％	\％	\％
${ }^{688}$	84，39，900	－Onter	5	NT1	4\％	4\％	4\％	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	2\％	\％	0\％	\％	\％	0\％	\％	0\％	0\％	\％	\％	0\％	\％	\％
${ }^{6988}$	8400．10．10	－Electically opeated	5	NT1	4\％	4%	${ }^{4 \%}$	${ }^{3 \%}$	${ }^{3 \%}$	2\％	2\％	\％	\％\％	0\％	\％	\％\％	\％\％	0\％	\％	\％	\％	\％	\％	\％
6989	${ }^{8440.1020}$	${ }^{- \text {－}}$－Atectically 0 operated	5	NT1	4\％	4%	4\％	${ }^{3 \%}$	3\％	${ }^{2 \%}$	2\％	\％	\％\％	0\％	\％	\％	\％\％	\％\％	\％	\％	\％	\％\％	\％	\％
6990	88，40，9，010	－ O electically opeated macrines	${ }^{5}$	NT1	4\％	4%	4%	3\％	3\％	2\％	${ }^{2 \%}$	\％	\％\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％
6991	88，40，020	－Of nomeleatrically operated mathines	${ }^{5}$	NT1	4\％	$4{ }^{4 \%}$	${ }^{4 \%}$	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	0\％	0\％	\％	\％	0\％	\％\％	\％\％	\％	0\％	\％\％	0\％	\％	0\％
6992	${ }^{8841.10,10}$	－Electically operated	5	NT1	4\％	4\％	4%	3\％	3\％	${ }^{2 \%}$	2%	\％	0\％	\％	0\％	\％	\％	\％	0\％	0\％	\％	0\％	0\％	0\％
6993	${ }^{8441.1020}$	－Not esecticilly operaled	5	NT1	4\％	4%	${ }^{4 \%}$	3\％	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	0\％	0\％	\％	\％\％	0\％	\％	\％\％	0\％	\％	\％\％	0\％	\％	0\％
6994	88，41，010	－Electrially operated	5	NT1	4\％	4\％	4\％	${ }^{3 \%}$	${ }^{3 \%}$	2\％	${ }^{2 \%}$	0\％	\％	\％	\％	0\％	\％	\％	0\％	\％	\％	0\％	\％	\％
6995	88，41，2020	－Note electiciall operated	5	NT1	4\％	4\％	4\％	3\％	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	0\％	0\％	\％	\％	\％	\％	\％	\％	\％	\％	\％
$6{ }^{696}$	${ }^{88,413,010}$	－Electically operaed	5	NT1	${ }^{4 \%}$	4%	4\％	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％	\％	\％	\％	\％	0\％	\％	\％	\％	\％	\％
6997	88，41，020	－Note electically operated	${ }^{5}$	NT1	4%	4%	4\％	3\％	3\％	2\％	${ }^{2 \%}$	\％	0\％	0\％	\％	0\％	\％\％	\％	\％	0\％	\％	\％	\％	0\％
6998	${ }^{88,44,0,00}$	－Electically operated	5	NT1	4%	4%	4%	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％	\％	\％\％	\％	0%	\％	\％	\％	\％\％	\％	\％
6999	88，414，020	－Notetecticilly operaled	5	NT1	4%	4%	4\％	3\％	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％	\％\％	\％	\％	\％	0\％	\％	\％	\％	\％	\％
7200	88，48，010	－Eeactically operated	5	NT1	4%	4\％	4\％	3\％	${ }^{3 \%}$	2\％	2%	\％\％	0\％	0\％	0\％	0\％	\％	\％\％	\％	0\％	0\％	0\％	0\％	\％
7201	88，418，020	${ }^{- \text {－Not electically oearaed }}$	5	NT1	4%	4%	4%	3\％	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％	\％\％	\％	\％	\％	\％	\％	\％	\％	\％	\％
7202	88，41，010	－Of electrially opeated mactines	5	NT1	4%	4\％	4\％	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	0\％	\％	\％	\％\％	0\％	\％	\％	\％	\％	\％\％	\％	\％	\％
7203	88，41，020	－of onorelectrially operated machines	5	${ }^{\text {NT1 }}$	$4{ }^{4 \%}$	4%	4%	${ }^{3 \%}$	${ }^{3 \%}$	2%	${ }^{2 \%}$	\％	0\％	\％	0\％	\％	\％	\％	\％	0\％	0\％	\％	\％	\％
7004	${ }^{84,423,010}$	－Electricaly operated	5	NT1	4%	4\％	4%	${ }^{3 \%}$	${ }^{3 \%}$	2\％	2%	0\％	0\％	\％	\％	0\％	\％	\％\％	0\％	\％\％	0\％	\％\％	\％	0\％
72005	88，42，3，20	${ }^{- \text {－Not electically } 0 \text { oeataed }}$	${ }^{5}$	NT1	4%	4%	${ }^{4 \%}$	3\％	${ }^{3 \%}$	2\％	${ }^{2 \%}$	\％	\％	\％	\％\％	\％	\％	\％\％	\％	\％\％	0\％	0\％	\％	\％
7206	88，42，0，10	－or ene ectically operated machines，apparatus or	${ }^{5}$	NT1	$4{ }^{4 \%}$	4\％	4\％	3\％	3\％	2\％	${ }^{2 \%}$	\％	0\％	\％	0\％	\％	0\％	0\％	\％	\％	0\％	\％	0\％	${ }_{0} \%$
7207	88，42，0，20	－－Of non－electrically operated machines，apparatus or equipment	5	NT1	4\％	4\％	4\％	3\％	${ }^{3 \%}$	2\％	${ }^{2 \%}$	0\％	0\％	\％	0\％	0\％	0\％	0\％	\％	\％	\％	0\％	\％	\％
7208	425，00	－Plates，cylinders and other printing components； plates，cylinders and lithographic stones，prepared for printing purposes（for example，planed，grained or polished） or polished）	5	NT1	4\％	4\％	4\％	3\％	3\％	2\％	2\％	\％	0\％	0\％	0\％	\％	\％\％	0\％	\％	0\％	\％	0\％	\％	\％
7209	84，43，100		5	NT1	4%	4%	4\％	3\％	3\％	2\％	2\％	0\％	0\％	0\％	\％	\％	0\％	0\％	0\％	0\％	\％	\％\％	\％	\％
720	24，43，200	－－Offset printing machinery，sheet－fed，office type （using sheets with one side not exceeding 22 cm and the other side not exceeding 36 cm in the unfolded state）	5	NT1	4\％	4\％	4\％	3\％	3\％	2\％	2\％	0\％	\％\％	0\％	\％	0\％	0\％	0\％	0\％	0\％	\％	0\％	\％	\％
7011	88，43，300	－－Other ofsest prinimg machiney	5	NT1	4%	4%	${ }_{4 \%}$	${ }^{3 \%}$	${ }^{3 \%}$	2%	${ }^{2 \%}$	\％	0\％	0\％	\％	\％\％	\％	\％	\％	0\％	0\％	0\％	\％	\％\％
7212	88，43，4，400	－－Letterpress printing machinery，reel－fed，	5	NT1	4\％	4\％	4\％	3\％	3\％	${ }^{2 \%}$	2\％	0\％	\％	0\％	\％	0\％	\％\％	\％	\％	0\％	0\％	\％	0\％	0\％
7213	8，4，43，500	－－Letterpress printing machinery，other than reel－ fed，excluding flexographic printing	5	NT1	$4{ }^{4 \%}$	${ }^{4 \%}$	${ }^{4 \%}$	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	0\％	\％	0\％	0\％	0\％	\％	0\％	\％	0\％	\％	0\％	\％	0\％
2014	${ }^{88,431,600}$	－Ffexogaphic prining mediney	5	Nri	4\％	4\％	4\％	${ }^{3 \%}$	3\％	2\％	${ }^{2 \%}$	\％	\％	\％	\％	0\％	\％	\％	\％	\％	\％	\％	\％	\％

7015	${ }^{88,431,700}$	Graure pininivg machiney	5	NT1	${ }^{4 \%}$	$4{ }^{4 \%}$	4\％	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	0\％	0\％	\％	0\％	\％\％	0\％	\％	\％	\％\％	\％	\％	\％	\％\％
2016	88，43，900	－other	5	NT1	4\％	4%	4\％	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％	0\％	\％	\％	\％	\％	\％	\％	\％	\％	\％
2017	84，43，110	Pininercopies，prining by the ikj jeil	5	NT1	${ }^{4 \%}$	${ }^{4 \%}$	4%	3\％	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	0\％	0\％	\％	\％	\％	\％	\％	\％	\％	\％	\％
2018	4，433，120	finercopoies，prining by the isser proic	5	NT1	${ }^{4 \%}$	${ }^{4 \%}$	${ }^{4 \%}$	${ }^{\text {\％}}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	0\％	0\％	0\％	\％	0\％	\％	\％	\％	\％	\％	\％	\％	0\％
2719	3，130	－．Combinaion pinierecopieferacsimile machines	5	NT1	${ }^{4 \%}$	4\％	${ }^{4 \%}$	${ }^{3} \%$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	0\％	0\％	\％\％	0\％	\％	0\％	\％	\％	\％	\％	0\％	\％
7202	88，43，190	－Oher	5	NT1	4\％	$4{ }^{4 \%}$	$4{ }^{4 \%}$	3\％	3\％	${ }^{2 \%}$	${ }^{2 \%}$	\％	0\％	0\％	\％	\％	\％	\％	\％	\％	\％	0\％	0\％	\％\％
7201	84，43，210	\cdots	5	${ }^{\text {NT1 }}$	4\％	4\％	4\％	${ }^{3 \%}$	3\％	${ }^{2 \%}$	${ }^{2 \%}$	0\％	\％	0\％	\％	0\％	\％\％	\％	0\％	\％	\％	\％	0\％	\％
7202	84，43，220	－Mk．jeteprines	5	NT1	4%	4\％	4\％	3\％	3\％	2\％	${ }^{2 \%}$	\％	0\％	\％	0\％	\％	\％	0\％	\％	0\％	\％	\％	0\％	\％
7203	84，43，230	－Laserp pinees	5	NT1	4\％	4\％	4\％	3\％	3\％	2\％	2\％	0\％	\％	0\％	0\％	0\％	0\％	\％\％	0\％	0\％	0\％	0\％	0\％	0\％
7202	88，43，240	\cdots	10	st	\％	\％	\％	10\％	10\％	\％	10\％	\％	8\％	${ }^{7 \%}$	6\％	5\％	4\％	3\％	${ }^{2 \%}$	1\％	\％	\％	\％	\％
7202	88，43，250	－－Screen printing machinery for the manufacture of printed circuit boards or printed wiring boards	5	NT1	4\％	4%	${ }^{4 \%}$	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	${ }^{\text {\％\％}}$	\％
7202	88，43，260	－Poteres	5	V1	4\％	4\％	4\％	3\％	3\％	${ }^{2 \%}$	${ }^{2 \%}$	0\％	\％	0\％	0\％	\％	0\％	0\％	\％	0\％	\％	\％\％	\％	\％
7207	84，43，290	Onher	5	NT1	4\％	4\％	4\％	3\％	3\％	2\％	2\％	0\％	0\％	0\％	0\％	0\％	0\％	0\％	0\％	0\％	0\％	0\％	0\％	0\％
7202	84，43，9，91	Colour	5	NT1	4\％	4\％	4\％	3\％	3\％	2\％	2\％	\％\％	0\％	0\％	\％	0\％	0\％	\％\％	0\％	0\％	0\％	0\％	0\％	\％
7202	88，43，9，99	Onter	5	NT1	4\％	4%	4\％	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	0\％	\％	\％	\％	\％	0\％	\％	0\％	\％	0\％	\％
7230	9，433，20	－－Electrostatic photocopying apparatus，operating by reproducing the original image via an intermediate onto the copy（indirect process）	5	NT1	4\％	4%	4\％	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％	0\％	\％	\％	\％	\％	\％	\％	\％	\％	\％
$7{ }^{731}$	884，43，930	－Other photocoppying apparatus incorporating an	5	${ }^{\text {NT1 }}$	${ }^{4 \%}$	4\％	4\％	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	0\％	0\％	0\％	0\％	\％	\％	0\％	0\％	0\％	\％	\％	\％	\％
7732	84，43，940	\cdots	5	V1	${ }^{4 \%}$	$4{ }^{4 \%}$	${ }^{4 \%}$	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％\％	\％\％	0\％	0\％	0\％	\％	\％	\％	\％	0\％	\％	0\％	\％
7233	84，43，990	Other	5	NT1	4\％	4\％	4\％	3\％	3\％	2\％	${ }^{2 \%}$	\％\％	\％\％	0\％	0\％	\％	\％\％	0\％	\％\％	\％\％	0\％	0\％	0\％	0\％
$7{ }^{734}$	84，43，100	－Parts and accessories of printing machinery used for printing by means of plates，cylinders and other printing components of heading 84.42	5	NT1	4\％	4\％	4\％	3\％	${ }^{3} \%$	${ }^{2 \%}$	${ }^{2 \%}$	0\％	0\％	0\％	0\％	0\％	\％	0\％	\％	\％	\％	\％	0\％	0\％
7735	84，43，9，90	$\begin{aligned} & \text {-- Of screen printing machinery for the } \\ & \text { manufacture of printed circuit boards or printed } \\ & \text { wiring boards } \end{aligned}$	${ }^{5}$	NT1	${ }^{4 \%}$	4\％	${ }^{4 \%}$	${ }^{\text {3\％}}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％\％	\％	\％	\％	\％\％	\％	0\％	0\％	0\％	0\％	\％\％	\％	\％\％
7236	84，439，920	－－Inkililied priner catridges	5	NT1	4\％	4\％	${ }^{4 \%}$	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	0\％	0\％	\％	\％	\％	0\％	0\％	0\％	\％	0\％	\％	\％	0\％
7307	88，43，930	\cdots－Paper feeders and sorets	5	${ }^{\text {NT1 }}$	4\％	4\％	4\％	3\％	3\％	${ }^{2 \%}$	2\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％
7738	88，43，990	－－Onter	5	${ }^{\text {NT1 }}$	4\％	4\％	4\％	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％	\％	\％\％	\％	\％	0\％	\％	0\％	\％	\％	\％
7393	88，40，010	－Electically operated	5	NT1	4\％	4\％	4%	3\％	3\％	2\％	2\％	0\％	0\％	0\％	\％	0\％	\％	0\％	0\％	0\％	0\％	0\％	0\％	\％
7204	88，40，020	－Notetectricall operated	5	${ }^{\text {NT1 }}$	4%	${ }^{4 \%}$	${ }^{4 \%}$	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％	\％	\％	\％	\％	0\％	0\％	0\％	\％	0\％	\％
7204	845．11．10	－－Electrialy opealad	5	${ }^{\text {NT1 }}$	4\％	4\％	4\％	${ }^{3 \%}$	3\％	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％
7204	8445．1120	－Notetectricaly operaled	5	NT1	4\％	4\％	4\％	3\％	3\％	2\％	2\％	0\％	0\％	0\％	0\％	0\％	\％	\％	0\％	\％	0\％	\％	0\％	\％
7243	8445．12．10	－Electricaly operated	5	NT1	4\％	4\％	4\％	3\％	3\％	2\％	2\％	0\％	0\％	0\％	\％	0\％	0\％	\％	\％	0\％	\％	\％	0\％	0\％
7044	${ }^{8845.1220}$	－Not electicilly operated	5	T1	4%	$4{ }^{4}$	$4{ }^{4 \%}$	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％\％	0\％	\％	\％	\％	\％	\％	\％	\％	\％	\％
7204	88，45，310	－Electrically operated	5	NT1	4%	4%	4\％	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％	\％	0\％	\％	0\％	\％	\％	\％	\％	\％	\％
7204	88，45，130	－Noteestricaly operaled	5	NT1	4\％	4%	4\％	3\％	3\％	${ }^{2 \%}$	${ }^{2 \%}$	0\％	\％	\％	\％	\％\％	\％	\％	\％	\％	\％	\％	\％	\％
7047	84，45，910	－Eearcirally opeatad	5	${ }^{\text {NT1 }}$	4\％	4\％	4\％	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％	\％	\％	0\％	0\％	\％	0\％	\％	0\％	0\％	\％
7208	84，45，1920	\cdots－Note electically operaled	5	NT1	4%	$4{ }^{4 \%}$	$4{ }^{4 \%}$	${ }^{3 \%}$	3\％	${ }^{2 \%}$	${ }^{2 \%}$	\％	0\％	0\％	\％	0\％	\％	\％	0\％	0\％	0\％	0\％	0\％	\％
7249	88，45，010	－Electically operated	5	${ }^{\text {NT1 }}$	4\％	4%	${ }^{4 \%}$	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％\％	\％	\％	\％	\％	\％	\％	0\％	0\％	0\％	\％	0\％	\％
7250	88，45，020	－Notetedricaly operaled	5	${ }^{\text {NT1 }}$	4\％	4%	4\％	3\％	3\％	${ }^{2 \%}$	${ }^{2 \%}$	0\％	\％	0\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％
7051	88，45，010	－Electically pepalad	5	${ }^{\text {NT1 }}$	4\％	4\％	4%	3\％	3\％	2\％	2\％	0\％	0\％	0\％	0\％	0\％	\％	0\％	0\％	\％	0\％	\％	\％	0\％
7752	88，45，020	\cdots Notelectrially operated	5	NT1	4\％	4%	4\％	3\％	3\％	2%	2\％	0\％	0\％	0\％	0\％	0\％	0\％	\％	0\％	0\％	\％\％	\％	\％	\％
7053	${ }^{88,45,010}$	－Eecricilily operated	5	T1	4\％	4%	${ }^{4 \%}$	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％\％	\％	\％	\％	\％	\％	0\％	\％	0\％	\％	\％	\％	\％
7205	88，45，020	－－ 0 etectrically opeated	5	NT1	4\％	4%	4\％	${ }^{3 \%}$	3\％	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％	\％	\％	\％	\％	\％	\％	0\％	\％	0\％	\％
7755	88，45，010	－－Electricaly opealad	5	NT1	4\％	4%	4\％	3\％	3\％	${ }^{2 \%}$	${ }^{2 \%}$	0\％	0\％	0\％	0\％	0\％	\％	\％	\％	\％	\％	\％	\％	\％
7256	84，45，020		5	NT1	4\％	4\％	4\％	${ }^{3 \%}$	${ }^{3} \%$	${ }^{2 \%}$	2%	\％	\％	\％	\％	\％	\％	\％	0\％	0\％	0\％	0\％	0\％	\％
7057	8846.10 .10	－－Electically peatad	5	NT1	4\％	4%	4\％	${ }^{3 \%}$	3\％	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％	\％	0\％	\％	0\％	0\％	\％	\％	\％	0\％	\％
$7{ }^{7058}$	84461．020	－－Noteectrially operated	5	NT1	${ }^{4 \%}$	4%	$4{ }^{4 \%}$	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％	\％	\％	\％	\％	0\％	0\％	0\％	0\％	\％	\％
7209	84，46， 100	－－Power loms	5	NT1	4\％	4\％	4\％	3\％	3\％	${ }^{2 \%}$	${ }^{2 \%}$	0\％	\％	0\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％
7700	84，462，900	－－oner	5	NT1	4\％	4\％	4%	3\％	${ }^{3 \%}$	2%	2%	\％	\％\％	\％\％	\％	\％	0\％	\％	\％	0\％	\％	0\％	\％	\％
7206	84，46，000	－For weaving fabrics of a width exceeding 30 cm ， shuttleless type	${ }^{5}$	NT1	4\％	4\％	$4{ }^{4 \%}$	3\％	3\％	2\％	2\％	0\％	\％	0\％	0\％	0\％	\％	0\％	0\％	\％	\％	\％	0\％	\％
7062	8847.11 .10	－Electicalaly opealed	5	V1	${ }^{4 / 8}$	$4{ }^{4 \%}$	${ }^{4 \%}$	3\％	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	0\％	\％	0\％	0\％	\％	\％	\％	0\％	\％	\％	\％	0\％
2063	8847.1120	\cdots Not electrically operated	5	NT	4%	${ }^{4 \%}$	${ }^{4 \%}$	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	0\％	0\％	\％	\％	\％	\％	\％	\％	\％	0\％	\％	0\％	\％
7204	8847.12 .10	\cdots Eleaticaly opeated	5	NT1	4\％	4%	4\％	3\％	3\％	${ }^{2 \%}$	${ }^{2 \%}$	0\％	0\％	0\％	0\％	0\％	0\％	\％	\％	\％	\％	\％	\％	\％
7205	8847.1220	${ }^{-}$Notetectrically opeated	5	NT1	4\％	4%	4\％	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	2%	\％	\％	0\％	\％	\％	\％	\％	0\％	\％	0\％	\％	\％	\％
7206	84，472，010	－Eectrically operated	5	NT1	4\％	4\％	4\％	3\％	3\％	2\％	2\％	\％	0\％	\％	\％	0\％	0\％	0\％	0\％	0\％	0\％	0\％	0\％	0\％
7007	88，472，020	－Note teetrically operated	5	NT1	4\％	4%	4%	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	0\％	0\％	\％	\％	\％	\％	0\％	0\％	\％	\％	\％
7208	88，47，010	－－Electicaly opeatad	5	NT1	4\％	4\％	4\％	3\％	${ }^{3} \%$	${ }^{2 \%}$	2%	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％
7069	88，47，020	－Noteedricialy operaled	5	NT1	4\％	4%	4\％	3\％	3\％	2\％	2\％	\％	\％	0\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％
7270	8448．11．10	\cdots Eectrically opeated	5	NT1	4\％	4\％	4\％	3\％	3\％	2\％	2\％	0\％	0\％	0\％	0\％	0\％	0\％	\％	\％	0\％	\％	0\％	\％	\％
2707	${ }^{3448.1120}$	${ }^{-}$Note electically operated	5	T1	4%	$4{ }^{4 \%}$	4%	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％\％	\％	\％	\％	\％\％	\％	\％	\％	\％\％	\％	\％	0\％	0\％
72072	88，41，910	－－Electrialy operated	5	NT1	4\％	4%	4\％	${ }^{3}$	${ }^{3}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％\％	\％	\％
77073	84，48，1920	\cdots Noteseticially oeratied	5	NT1	4%	4%	4\％	3\％	3\％	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	0\％	0\％	\％\％	\％	\％	\％	\％	\％	\％	0\％	\％
72074	88，482，000	－Parts and accessories of machines of heading 84.44 or of their auxiliary machinery	${ }^{5}$	NT1	4\％	4%	4\％	3\％	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％	\％	\％	0\％	\％	0\％	0\％	0\％	\％	0\％	0\％
7775	84，48， 100	－Card oloting	5	NT1	4\％	4\％	4\％	3\％	${ }^{3} \%$	2%	2%	\％\％	0\％	0\％	0\％	0\％	0\％	0\％	0\％	0\％	0\％	\％	0\％	0\％
770	84，48，200	- Of machines for preparing texile fibres，other than card card clothing	5	NT1	4\％	4%	4\％	3\％	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	0\％	0\％	\％	0\％	\％	\％	\％	\％	\％	\％	\％
77^{77}	330	－－Spindles，spindle flyers，spinning rings and ring travellers	5	NT1	4\％	${ }^{4 \%}$	${ }_{4}$	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	0\％	\％	\％	0\％	0\％	0\％	\％	0\％	\％	\％	\％	0\％
7707	88，43，900	－－omer	5	NT1	4\％	4%	${ }^{4 \%}$	${ }^{3 \%}$	${ }^{3} \%$	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％	0\％	\％\％	\％	0\％	\％	0\％	\％	0\％	\％	\％
770	84，84，200	－Reeds tor looms，healds and heald． trames	5	NT1	4\％	4\％	4\％	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％	\％	\％	\％	0\％	0\％	\％	0\％	0\％	0\％	\％
7808	84，84，9，90	Shutles	5	NT1	4\％	4\％	4\％	3\％	3\％	2\％	2\％	\％	\％	0\％	0\％	0\％	\％	0\％	\％	\％	0\％	\％	\％	\％
7881	84，48，991	\cdots Parss of electricall operated machines	5	V1	4\％	4\％	4\％	3\％	${ }^{3 \%}$	2%	2\％	\％\％	0\％	\％	\％	0\％	0\％	0\％	0\％	0\％	\％	0\％	0\％	0\％
7782	84，48，992	Parss of ono electricilly operated mactines	5	NT1	4\％	4\％	4\％	3\％	${ }^{3 \%}$	2%	2%	\％	\％\％	\％\％	0\％	0\％	0\％	0\％	0\％	0\％	\％\％	0\％	0\％	0\％
${ }^{7083}$	84，45，100	- Sinkers，needles and other aritiles used in forming stitches	${ }^{5}$	T1	${ }^{4 \%}$	${ }^{4 / 8}$	${ }^{4}$	${ }^{\text {\％}}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％	\％	\％	0\％	\％	\％	\％	\％	\％	\％	${ }^{0 \%}$
7884	84，46，900	－OMner	5	NT1	4\％	4%	4\％	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％\％	\％	\％	\％	\％\％	\％	0\％	0\％	\％	\％	\％	\％	0\％
7885	88，40，010	－Electrially operated	5	NT1	4%	4%	4\％	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	0\％	\％	\％	\％	0\％	0\％	\％	0\％	0\％	0\％	\％
7786	84，490，020	－Note electrially opeated	${ }^{5}$	NT1	4\％	4\％	4\％	3\％	${ }^{3 \%}$	2%	2%	\％\％	\％	\％	0\％	0\％	0\％	0\％	0\％	0\％	0\％	0\％	0\％	\％
${ }^{7087}$	${ }^{8450.11 .10}$	Each of a dy linen capacily nol exceosing 6 kg	${ }^{10}$	${ }^{\text {st }}$	\％	10\％	\％	10\％	\％	\％\％	${ }^{10 \%}$	\％	${ }^{8 \%}$	${ }^{7 \%}$	6\％	${ }^{5 \%}$	${ }^{4 \%}$	3\％	${ }^{2 \%}$	${ }^{1 \%}$	\％	\％	\％	0\％
7288	88，50，190	－．Oner	${ }^{10}$	NT2	${ }^{9 \%}$	9\％	8%	8\％	6\％	6\％	5\％	5\％	4\％	4\％	3\％	3\％	2\％	${ }^{2 \%}$	0\％	\％	0\％	0\％	\％	\％
7889	88，50，200		${ }^{10}$	${ }^{\text {sL }}$	\％	10\％	\％ 10	10\％	10\％	10\％	10\％	10\％	${ }^{8 \%}$	${ }^{7 \%}$	6\％	5\％	4%	3\％	${ }^{2 \%}$	${ }^{1 \%}$	\％	\％	\％	\％
290	88，50，9，90	－－Eectricaly oeataled	${ }^{10}$	${ }^{\text {sL }}$	${ }^{10 \%}$	10\％	10\％	10\％	10\％	10\％	10\％	10\％	8%	${ }^{7 \%}$	6\％	5\％	4%	3\％	${ }^{2 \%}$	1\％	\％	\％	0\％	0\％
7201	88，50，，990	…oter	${ }^{10}$	st	${ }^{10 \%}$	10\％	10\％	10\％	${ }^{10 \%}$	10\％	10\％	${ }^{10 \%}$	${ }^{8 \%}$	${ }^{7 \%}$	6\％	5\％	${ }^{4 \%}$	3\％	${ }^{2 \%}$	1\％	\％	0\％	\％	\％
7092	${ }^{8,562,000}$	－Machines，each of a dry linen capacity exceeding 10 kg	10	${ }^{\text {sL }}$	10\％	10\％	${ }^{10 \%}$	10\％	${ }^{10 \%}$	10\％	10\％	10\％	${ }^{8 \%}$	${ }^{7 \%}$	6\％	5\％	${ }^{4 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	1\％	\％	\％	\％	\％\％
2093	84，509，010	\cdots	${ }^{10}$	${ }^{\text {sL }}$	10\％	10\％	10\％	10\％	${ }^{10 \%}$	10\％	10\％	10\％	8\％	7\％	6\％	${ }^{5 \%}$	4\％	3\％	2\％	1\％	0\％	0\％	0\％	\％
7294	84，50，020	- Of machines of subheading 8450．11， 8450．12．00 or 8450.19	${ }^{10}$	NT2	${ }^{9 \%}$	${ }^{9 \%}$	8\％	8\％	6\％	6\％	${ }^{5 \%}$	5\％	4\％	${ }^{4 \%}$	3\％	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％	\％	\％	${ }^{0 \%}$
7209	84，51，000	－ory－cleaing matines	10	st	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	8\％	7\％	6\％	5\％	4%	3\％	2%	1\％	0\％	0\％	\％	\％
7096	84，512，100	－Each of a dy linen capacily note exceeding 10 kg		${ }^{\text {sL }}$	10\％	10%						10\％	${ }^{8 \%}$	${ }^{7 \%}$	6\％	5\％	4\％	3\％	${ }^{2 \%}$	${ }^{1 \%}$	\％	\％	\％	0\％

7097	84，512，900	－－omer	10	${ }^{\text {HSL }}$	\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10%	10%	10%	${ }^{10 \%}$	${ }^{10 \%}$	10%	10\％	10%	10%	10%	${ }^{10 \%}$	10\％
7208	4，513，010	Singer orler tre comesitic ioning machines	5	NT1	4\％	4%	4\％	${ }^{3}$	${ }^{3}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	0\％	\％
7099	84，53，090	－－oner	5	NT1	4\％	4\％	4\％	3\％	3\％	2%	2\％	\％	0\％	0\％	\％	\％	0\％	0\％	\％	\％	\％	0\％	0\％	\％
7100	84，54，000	－Wasting，bleaching ordyeing madines	5	NT1	4\％	4\％	4\％	${ }^{3 \%}$	3\％	2%	2\％	0\％	0\％	\％	\％	0\％	\％	\％	\％	0\％	\％	\％	\％	\％
771	84，515，00	－Machines for reeling，unreeling，folding，cutting or pinking textile fabrics	5	NT1	4\％	4\％	4\％	${ }^{3 \%}$	3\％	${ }^{2 \%}$	${ }^{2 \%}$	\％	0\％	0\％	0\％	\％	\％	0\％	\％	\％	\％	\％	\％	\％
7102	84，58，000	－Oner machiner	10	sL	10\％	\％	10\％	${ }^{10 \%}$	\％	10\％	10%	${ }^{10 \%}$	${ }^{8 \%}$	${ }^{7}$	6\％	${ }^{\text {5\％}}$	${ }^{4 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{1 \%}$	\％	0\％	\％	\％
7703	84，59，011	－．．For comesicic se	10	NT2	9\％	9\％	8\％	8%	6\％	6\％	5\％	5\％	4%	4%	${ }^{3}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％	\％	\％	\％
7104	84，59，019	－．－other	10	sL	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	8\％	7\％	6\％	5\％	4\％	3\％	2\％	1\％	\％	\％	\％	\％
7705	84，59，090	－other	10	HSL	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	0\％	\％\％	10\％	10\％	0\％	10\％	10\％	10\％	\％\％	10\％	10\％
7706	84，52，000	－Sewing madinesot the housenolod tpe	5	NT1	4\％	4\％	4\％	3\％	3\％	2\％	${ }^{2 \%}$	0\％	0\％	0\％	0\％	0\％	0\％	0\％	0\％	\％	\％	0\％	0\％	\％
77107	84，52，100	－Alumalic unis	5	NT1	4\％	4\％	4%	3\％	3\％	2\％	2\％	0\％	0\％	\％\％	\％	\％	0\％	\％\％	0\％	\％$\%$	\％	\％	0\％	0\％
77108	84，52，200	－Oner	5	N1	${ }^{4 \%}$	4%	${ }_{4 \%}$	${ }^{\text {3\％}}$	${ }^{\text {\％}}$	${ }^{2} \%$	${ }^{2 \%}$	\％\％	\％\％	\％\％	\％\％	\％	\％\％	\％\％	\％	\％	\％	\％	\％\％	\％\％
7109	84，523，000	－Sewing madine needes	5	vi	$4{ }^{4 \%}$	4\％	4\％	${ }^{3} \%$	${ }^{3 \%}$	2\％	${ }^{2 \%}$	\％	\％\％	\％	\％	0\％	\％	\％	\％	\％	\％	0\％	0\％	0\％
7710	529，011	－－Arms and beds；stands with or without centre frames；flywheels；belt guards；treadles or pedals	5	NT1	4\％	4\％	4\％	${ }^{3 \%}$	3\％	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％	\％	\％	\％	0\％	\％	\％	\％	\％	\％	\％
7^{7111}	84，52，012	Fumitue，bases and covers and pants theoof	5	NT1	${ }^{4 \%}$	4\％	4\％	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	0\％	\％\％	\％\％	\％	0\％	\％	\％	${ }^{0 \%}$	0\％	0\％	\％	\％\％
7712	84，52， 19	－other	5	NT1	4\％	4\％	4\％	3\％	3\％	${ }^{2 \%}$	${ }^{2 \%}$	\％	0\％	0\％	\％	0\％	0\％	0\％	\％	\％	\％	0\％	\％	\％
${ }^{7113}$	84，52，091	Arms and beds；stands with or without centre frames；flywheels；belt guards；treadles or pedals	5	NT1	4\％	4\％	4\％	3\％	${ }^{3 \%}$	2\％	${ }^{2 \%}$	\％	0\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	0\％
${ }^{7114}$	84，52，${ }^{\text {a }}$ ，	\cdots Furiture，bases and covers and parts thereof	5	v1	4\％	4%	4%	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	0\％	0\％	0\％	0\％	\％	\％	0\％	0%	0\％	\％	0\％	\％	\％
7715	84，529，099	－－Other	5	HSL	5\％	5\％	5\％	5\％	5\％	5\％	5\％	5\％	5\％	5\％	5%	5\％	5\％	5\％	5\％	${ }^{5 \%}$	${ }^{5 \%}$	${ }^{5 \%}$	5\％	5\％
${ }^{7116}$	${ }^{8453510.10}$	－EEceticially peratied	5	NT1	4%	4%	$4{ }^{4 \%}$	${ }^{3 \%}$	${ }^{\text {3\％}}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	0\％	\％	\％	0\％	\％	\％	\％	0\％	\％	\％	\％	\％
717	${ }^{8453,1020}$	－－ 0 eteercticaly opeated	5	NT1	4\％	4\％	4\％	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	0\％	0\％	\％	\％	\％	\％	\％	\％	\％	0\％	\％	0\％	0\％
$7{ }^{7118}$	84，53， 10	－Eecrically operated	5	NT1	4\％	4\％	4\％	${ }^{3 \%}$	3\％	${ }^{2 \%}$	${ }^{2 \%}$	0\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％
7719	84，53，2020	－－ototectrically operated	5	NT1	4\％	4\％	4\％	3\％	3\％	2\％	2%	\％\％	0\％	0\％	\％	\％	0\％	0\％	\％	\％	\％	\％	\％	\％
7172	84，58，010	－－Electricaly opeated	5	NT1	4\％	4\％	4\％	3\％	3\％	2\％	2\％	\％	\％\％	0\％	\％	0\％	0\％	0\％	\％	\％	\％	\％	\％	\％
$7{ }^{7121}$	84，58，0，20		5	V1	4%	4%	4%	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％\％	\％	\％	\％	\％	\％	\％	0\％	\％	\％	\％	\％
$7{ }^{7122}$	84，53，000	－Pars	5	V1	$4{ }^{4}$	4\％	4\％	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	0\％	\％	\％	0\％	0\％	0\％	\％	\％	0\％	0\％	0\％	\％	\％
$7{ }^{7123}$	8，544，000	－Coneeras	5	V1	4\％	4\％	4\％	${ }^{3 \%}$	${ }^{3 \%}$	2\％	${ }^{2 \%}$	0\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	0\％	\％	\％
$7{ }^{7124}$	84，52，200	－ －ngot mouls and hades	5	NT1	4\％	4\％	4\％	${ }^{3 \%}$	3\％	${ }^{2 \%}$	2%	0\％	\％	\％	\％	\％	\％	0\％	\％	\％	\％	\％	\％	\％
${ }^{7125}$	84，58，000	－Casting mactines	5	NT1	4%	4\％	4%	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	0\％	\％	\％	\％	0\％	0\％	0\％	0\％	\％	\％	\％	0\％
${ }^{7126}$	84，599，000	－Pars	5	NT1	4%	4%	4%	3\％	3\％	${ }^{2 \%}$	${ }^{2 \%}$	0\％	0\％	0\％	0\％	0\％	0\％	0\％	\％	\％	0\％	0\％	0\％	0\％
$7{ }^{7127}$	84，55，000	－Twe mils	5	NT1	4%	4%	4%	${ }^{3 \%}$	3\％	${ }^{2 \%}$	${ }^{2 \%}$	\％	0\％	\％	\％	\％	\％	\％	\％	0\％	\％	\％	\％	\％
7	84，55，100	－- oto combinaion no a ard cold	5	${ }^{\text {NT1 }}$	4\％	4%	4\％	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	0\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％
$7{ }^{7129}$	84，552，200	－Cold	5	NT1	4\％	4\％	4\％	${ }^{3 \%}$	3\％	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％
77130	84，55，000	－Rols foroming mils	5	NT1	4\％	4\％	4\％	${ }^{3} \%$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％\％	\％\％	\％	\％	0\％	\％	\％	\％	\％	\％	\％	\％	\％
${ }^{7131}$	${ }^{84,559,000}$	－Oner pats	5	NT1	4\％	4\％	4\％	3\％	3\％	2%	${ }^{2 \%}$	0\％	0\％	0\％	0\％	\％\％	0\％	0\％	\％	0\％	\％	0\％	\％	\％
$7{ }^{7132}$	84，561，000		${ }^{5}$	NT1	${ }^{4 \%}$	4\％	4\％	3\％	3\％	2\％	2\％	0\％	0\％	0\％	\％	\％	0\％	\％	0\％	0%	\％	\％	\％	\％
7713	84，562，000	－－peraled b y utrasonic proceses	5	V1	${ }^{4 \%}$	4%	4%	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％	\％	\％	\％	\％	\％	\％	0\％	\％	\％	0\％
7	84，66，000	－Operated byelectro discharase processes	5	NT1	${ }^{4 \%}$	4%	4\％	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％	\％	\％	\％	\％	\％	0\％	\％	\％	\％	\％
${ }^{77^{7135}}$	2．569，010	- Machine tools，numerically controlled，for working any material by removal ol material，by plasma arc processes，for the manufacture of printed circuit boards or printed miring boards - Wet processing equipments for the application by	5	NT1	4\％	4\％	4\％	3\％	3\％	2\％	2%	0\％	0\％	\％\％	\％	\％\％	\％	0\％	\％\％	0\％	\％	\％	0\％	\％\％
${ }^{7136}$	2，569，20	Wet processing equipments for the application by immersion of electro－chemical solutions，for the purpose of removing material on printed circuit boards or printed wiring boards	5	NT1	4\％	4\％	4\％	3\％	3\％	2\％	2\％	0\％	\％\％	\％\％	\％	\％	\％	\％	\％\％	\％	\％	\％	0\％	\％
7137	88，56，090	－－omer	5	HSL	5\％	5\％	5\％	5\％	5\％	5\％	5\％	5\％	5\％	5\％	5\％	5\％	5\％	5\％	5\％	5\％	5\％	5\％	5\％	5\％
${ }^{71788}$	88，57，000	－Machining centres	5	NT1	4%	4\％	4%	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％	\％	\％	\％\％	\％	\％\％	\％	\％	\％	\％	\％
7173	88，572，000	－Unito onstrucion machines（single sation）	5	NT1	4\％	4%	4\％	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％\％	0\％	\％	\％	\％	\％	\％	\％	\％	0\％	\％	0\％	0\％
7714	88，57，000	－Mulitsaion transer machines	5	NT1	4\％	4\％	4\％	${ }^{3 \%}$	3\％	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％
$7{ }^{7141}$	88，58，100	－Numerically onfolled	5	NT1	4%	4%	4\％	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	0\％	\％	\％	\％	0\％	\％	0\％	0\％	\％	\％	\％	\％
${ }^{7142}$	84，51，910	$\begin{aligned} & \text {-- - With the distance between the main spindle } \\ & \text { centre and the bed not exceeding } 300 \mathrm{~mm} \end{aligned}$	5	NT1	4\％	4\％	4%	${ }^{3 \%}$	3\％	2\％	2\％	0\％	0\％	\％	0\％	0\％	0\％	0\％	\％	0\％	\％	\％	\％	\％
$7{ }^{7143}$	84，58，990	－－oner	5	NT1	4\％	4\％	4%	3\％	3\％	${ }^{2 \%}$	${ }^{2 \%}$	0\％	0\％	0\％	0\％	0\％	0\％	0\％	0\％	0\％	0\％	0\％	0\％	0\％
$7{ }^{7144}$	84，59，100	－Numeneralaly onfololed	5	NT1	4\％	4\％	4\％	3\％	3\％	2%	2%	0\％	\％	\％	\％	0\％	\％	0\％	\％	0\％	\％	\％	\％	\％
7714	88，59，910	－－With the distance between the main spindle centre and the bed not exceeding 300 mm	${ }^{5}$	NT1	4\％	4\％	4\％	${ }^{3 \%}$	${ }^{3} \%$	${ }^{2 \%}$	2\％	0\％	\％	\％	\％	0\％	\％	0\％	\％	0\％	\％	\％	\％	\％
$7{ }^{7146}$	84，59，990	－other	5	NT1	4\％	4\％	4%	${ }^{3 \%}$	${ }^{3 \%}$	2\％	2\％	0\％	0\％	0\％	0\％	0\％	0\％	0\％	0\％	\％\％	\％	${ }_{0} \%$	${ }^{\circ}$	0\％
7147	8859.10 .10	－Electricall opeated	5	NT1	4\％	4\％	4\％	${ }^{3 \%}$	3\％	${ }^{2 \%}$	${ }^{2 \%}$	\％\％	0\％	0\％	\％	\％	0\％	0\％	\％	\％	\％	\％	\％	\％
7748	8459．10．20	－－ote electrially pearaed	5	NT1	$4{ }^{4}$	4\％	4\％	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％
7714	84，592，100	－Numericalis ontroled	5	NT1	4%	4\％	$4{ }^{4 \%}$	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	0\％	0\％	\％	\％	\％	\％	\％	\％	\％	0\％	\％	0\％	0\％
7150	84，52，910	\cdots Electically opeated	5	NT1	4%	4%	4\％	${ }^{3 \%}$	${ }^{\text {3\％}}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	0\％	\％	\％	\％\％	0\％	0\％	\％	\％	\％	\％	\％	0\％
7175	${ }^{88,592920}$	${ }^{- \text {Note electically opeated }}$	5	${ }^{\text {NT1 }}$	4\％	4%	4\％	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	0\％	\％	\％	\％	0\％	\％	\％	\％	\％	\％	\％	0\％
775	88，59，100	－Numeicilly contolled	5	NT1	4%	4%	$4{ }^{4 \%}$	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	0\％	0\％	0\％	\％	0\％	\％	0\％	\％	\％	0\％	0\％	\％	\％
7	88，59，9，90	－Electricaly opeated	5	NT1	4%	4%	4%	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	0\％	\％	0\％	\％	0\％	\％	\％\％	0\％	\％	\％	\％	\％
715	84，593，920	\cdots No electrially operated	5	NT1	4%	4%	$4{ }^{4 \%}$	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	0\％	\％	0\％	\％	0\％	\％	\％	\％	\％	\％	\％	\％
$7{ }^{7} 15$	84，59，010	－－Electricaly perated	5	NT1	4\％	4\％	4%	${ }^{3 \%}$	3\％	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％
$7{ }^{7156}$	88，54，020	－－ote electrically pearaed		Nr1	4%	4%	$4{ }^{4 \%}$	3\％	3\％	2%	2%	0\％	\％	0\％	0\％	0\％	0\％	0\％	\％	\％	\％	\％	\％	0\％
77157	88，59，100	－Numerically onfololed	5	NT	4%	4%	4%	3\％	3\％	2\％	2\％	\％	0\％	\％	\％	0\％	\％	0\％	\％	\％\％	\％	\％	\％	\％
${ }^{71588}$	88，59，9，90	EEatrically opeated	5	NT1	$4{ }^{4 \%}$	4\％	$4{ }^{4 \%}$	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％\％	\％	\％	\％	\％	\％	\％\％	\％	\％	\％	\％	\％	\％
7715	88，59，920	\cdots Notelectically operated	5	NT1	$4{ }^{4 \%}$	4\％	4%	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％
7160	84，56， 100	－Numerically contoloded	5	NT1	4%	4%	4%	${ }^{3 \%}$	3\％	${ }^{2 \%}$	${ }^{2 \%}$	0\％	0\％	0\％	0\％	0\％	0\％	0\％	0\％	0\％	0\％	\％	\％	\％
7171	88，56，9，90	－Eecricicaly operaled	5	NT1	4%	4\％	4%	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	0\％	\％	0\％	\％	0\％	\％	0\％	0\％	\％	\％	\％	\％
7118	84，56，920	\cdots Not electricaly operated	5	NT1	4\％	4\％	4%	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	0\％	0\％	0\％	0\％	0\％	0\％	\％\％	0\％	0\％	0\％	\％	0\％	0\％
7163	88，59，010	－－Eecticially peratied	5	NT1	4%	4%	$4{ }^{4 \%}$	3\％	3\％	${ }^{2 \%}$	${ }^{2 \%}$	\％	0\％	\％	\％	0\％	\％	\％	\％	\％	\％	\％\％	\％	\％
7118	84，59，020	－No etectricaly operated	5	${ }^{\text {NT1 }}$	${ }^{4 \%}$	4%	$4{ }^{4 \%}$	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	0\％	\％	0\％	\％	0\％	\％	\％	\％	\％	\％	\％	0\％
$7{ }^{7165}$	84，60，100	－Numerically contoled		${ }^{\text {NT1 }}$	${ }^{4 \%}$	4\％	$4{ }^{4 \%}$	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	0\％	\％	\％	\％	0\％	\％	\％	\％	\％	\％	\％	0\％
7176	84，60，910	－Electricall operated	5	NT1	4\％	4\％	4\％	3\％	3\％	2%	2%	\％	0\％	0\％	\％	0\％	\％	0\％	0\％	0\％	\％	\％	0\％	\％
${ }^{71167}$	84，60，，20	${ }^{-}$Not electically operated	5	NT1	4\％	4\％	${ }^{4 \%}$	3\％	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	0\％	0\％	0\％	0\％	0\％	0\％	\％\％	\％	0\％	0\％	\％	\％	0\％
${ }^{71168}$	84，62，100	－－Numenically onfololed	5	NT1	${ }^{4 \%}$	4%	$4{ }^{4 \%}$	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	0\％	0\％	0\％	0\％	0\％	0\％	0\％	0\％	0\％	\％	\％	\％	\％\％
7169	88，62，910	－Electrically opealed	5	NT1	$4{ }^{4 \%}$	4\％	4%	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％\％
7770	84，602，920	Notelecticalaly oepalied	5	NT1	$4{ }^{4}$	4%	4\％	${ }^{3 \%}$	${ }^{3}$	2\％	${ }^{2 \%}$	\％	\％	\％\％	0\％	0\％	\％	\％\％	\％	\％	0\％	0\％	\％	0\％
777	84，60， 110	Machine tools，numerically controlled，for sharpening carbide drilling bits with a shank diameter not exceeding 3.175 mm ，provided with fixed collets and having a power not exceeding 0.74 kW	5	NT1	4\％	4\％	4\％	3\％	3\％	2\％	2\％	0\％	0\％	0\％	0\％	0\％	0\％	0\％	0\％	0\％	0\％	\％	0\％	\％
7772	84，60， 190	－OMmer	5	${ }^{\text {NT1 }}$	4\％	4\％	4\％	3\％	3\％	2\％	2\％	0\％	\％	0\％	\％	0\％	\％	0\％	0\％	0\％	\％	\％	\％	\％
${ }^{7773}$	84，603，910	－Elecrically peerated	5	${ }^{\text {NT1 }}$	${ }^{4 \%}$	${ }^{4 \%}$	4\％	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	0\％	\％	\％	\％	\％	\％	\％	\％	\％	0\％	\％	0\％	\％
${ }^{7174}$	84，60， 2 20	－Not elertricaly operated	5	NT1	4%	4\％	4\％	3\％	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％\％	\％	0\％	\％	0\％	0\％	\％	\％	0\％	\％	\％	\％	0\％
7775	84，64，0，00	－EElecrically oerated	5	NT1	4%	4%	4%	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％	\％	\％	\％	\％	\％	0\％	\％	\％	\％	\％
7776	84，604，020	－－ote electrially pearaed	5	NT1	4%	4\％	4\％	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％	\％	\％	0\％	\％	\％	\％	\％	\％	\％	\％
${ }^{7177}$	$84,6090,010$	－Electrically perated	5	${ }^{\text {NT1 }}$	${ }^{4 \%}$	${ }_{4 \%}$	4%	3\％	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％\％	0\％	0\％	0\％	\％\％	\％	\％\％	\％	0\％	\％	\％	\％	\％

香港•ASEAN FTAにかかる調査報告書
 別添2－4 原産地品の関税撤廃スケジュール

（ラオス）

7717	［84，60， 202	－Noteestricaly operated	5	NT1	4%	${ }^{4 \%}$	4\％	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％\％	\％	\％	\％	0\％	\％	\％	\％	\％	\％	\％	0\％	\％
7779	88，612，010	Elecrically operated	5	NT1	4%	4%	4%	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	0\％	\％\％	\％	\％\％	0\％	\％	\％	\％	\％	\％	\％	\％	0\％
7780	88，612，020	－No etectricaly operated	5	NT1	4%	${ }^{4 \%}$	4%	${ }^{3 \%}$	${ }^{\text {\％}}$	${ }^{2 \%}$	2\％	0\％	0\％	\％	\％	\％	\％	\％	0\％	0\％	\％	\％	\％	\％
7781	84，613，010	Felectrially pepaled	5	N1	4%	4\％	${ }^{4 \%}$	3\％	3\％	2\％	2\％	\％	\％	\％	\％	\％	0\％	\％	\％	\％	\％	\％	\％	\％
7182	88，613，020	－Note electricaly operated	5	NT	4\％	4\％	4%	${ }^{3 \%}$	${ }^{3 \%}$	2\％	${ }^{2 \%}$	0\％	0\％	\％	0\％	0\％	0\％	\％	\％	\％	\％\％	\％	\％	0\％
7783	88，614，010	Electricall operated	5	T1	4\％	4\％	4\％	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	0\％	\％	0\％	0\％	0\％	0\％	0\％	\％	\％	\％	0\％	0\％	\％
7184	88，614，020	－No eteetricaly operated	5	V1	4%	${ }^{4 \%}$	$4{ }^{4 \%}$	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	2\％	0\％	\％	\％	\％	\％	\％	\％	0\％	0\％	\％	\％	\％	\％
7785	88，615，010	－Electicaly operated	5	V1	4%	4\％	4%	${ }^{3 \%}$	${ }^{3} \%$	${ }^{2 \%}$	${ }^{2 \%}$	0\％	\％	\％\％	\％	\％	\％	\％	\％	\％	\％\％	\％	\％	\％
7186	88，615，020	－No etectricaly operated	5	NT1	4%	4\％	${ }^{4 \%}$	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	0\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％
7787	84，69，011	－Paling matines	5	NT1	4%	4\％	4%	3\％	3\％	2\％	2\％	0\％	0\％	\％	\％	0\％	0\％	0\％	0\％	0\％	\％\％	0\％	\％	0\％
7788	88，69，019	Onher	5	V1	4%	4%	4%	${ }^{3 \%}$	${ }^{\text {3\％}}$	${ }^{2 \%}$	${ }^{2 \%}$	0\％	\％	0\％	0\％	\％	\％	\％	\％	\％	\％	\％	\％	\％\％
7189	88，6，69，091	－Paling mactines	5	V1	4\％	4\％	4%	3\％	3\％	2\％	${ }^{2 \%}$	0\％	0\％	\％	\％	\％	\％	\％	0\％	0\％	\％	\％	\％	\％
77190	84，69，099	Other	5	N1	4%	4\％	4%	3\％	3\％	2\％	2\％	\％	0\％	\％	0\％	0\％	0\％	\％	\％	0\％	0\％	\％	\％	\％
7191	886210.10	－Electricaly operated	5	V1	4%	4\％	4%	3\％	3\％	${ }^{2 \%}$	2\％	0\％	0\％	0\％	0\％	0\％	0\％	\％	0\％	0\％	\％	0\％	\％	0\％
77192	8862.10 .20	－Note eecticaly operaled	5	T1	4%	4\％	4%	3\％	3\％	2\％	2\％	0\％	0\％	\％	\％	0\％	\％	\％	0\％	0\％	\％	\％	\％	0\％
7193	88，62，100	－Numeically controled	5	V1	4%	${ }^{4 \%}$	${ }^{4 / 8}$	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％	0\％	0\％	\％	\％	0\％	\％	\％	0\％	0\％	0\％
7194	84，62，910	－Electrially peeated	5	T1	4\％	${ }^{4 \%}$	4%	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	0\％	\％	\％	\％	\％	\％	0\％	0\％	\％	\％	\％	\％	0\％
7195	88，62，920	Notetectricaly operated	5	T1	4%	4%	$4{ }^{4 \%}$	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％	\％\％	\％	\％	\％	0\％	\％	\％	\％	\％	0\％
7796	84，623，100	－Numeicially controled	5	HSL	5\％	5\％	5\％	5\％	5\％	5\％	5\％	5\％	5\％	5\％	5\％	5\％	5\％	5\％	5\％	5\％	5\％	5\％	5\％	5\％
7197	84，62，9，90	－Electically operated	5	NT1	4%	${ }^{4 \%}$	4%	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	2%	0\％	\％	\％	\％	0\％	\％	0\％	0\％	\％	\％	\％	\％	0\％
7198	84，623，920	Notelectricaly operated	5	NT1	4%	4\％	$4{ }^{4 \%}$	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％	\％	\％	0\％	\％	0\％	0\％	\％	\％	\％	0\％
7799	84，624，100	Numericall controled	5	NT1	4%	4\％	4%	3\％	3\％	2\％	2\％	0\％	0\％	\％	0\％	\％	0\％	\％	\％	0\％	\％	0\％	0\％	0\％
7200	84，62，9，90	FEecrically opealed	5	N1	4%	4\％	4%	3\％	3\％	${ }^{2 \%}$	2\％	0\％	0\％	\％	0\％	0\％	0\％	\％	\％	0\％	\％	0\％	\％	\％
7201	88，624，920	－${ }^{\text {a }}$ etecticially operated	5	V1	$4{ }^{4 \%}$	$4{ }^{4 \%}$	4%	${ }^{3 \%}$	${ }^{3 \%}$	2\％	${ }^{2 \%}$	\％	\％	\％	\％	\％	\％	0\％	\％	\％	\％	0\％	\％	0\％
7202	88，62，100	Hydraulic peseses	5	V1	4%	4%	${ }^{4 \%}$	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％	0\％	0\％	\％	\％	\％	0\％	\％	0\％	0\％	0\％
7203	88，62，910	．－Machines tor the manufacture of boxes，cansand simiar continers of tin plate，electrically operated	${ }^{5}$	T1	4%	4\％	4\％	3\％	3\％	${ }^{2 \%}$	${ }^{2 \%}$	\％	0\％	\％	0\％	\％	\％	\％	\％	0\％	\％	\％	\％	\％\％
7204	88，629，920	－－Machines for the manufacture of boxes，cans and similar containers of tin plate，not electrically operated	${ }^{5}$	V1	4%	4\％	4\％	3\％	3\％	${ }^{2 \%}$	${ }^{2 \%}$	0\％	0\％	\％	\％\％	0\％	0\％	\％	\％	\％	\％	\％	\％	\％
7205	84，629，950	－．Onere，electricaly operated	5	V1	4%	4\％	$4{ }^{4 \%}$	3\％	${ }^{3 \%}$	2\％	2\％	\％	0\％	\％\％	0\％	0\％	\％\％	0\％	，	0\％	\％	0\％	\％	0\％
7206	84，629，960	－Other，note electically operated	5	NT1	4%	4%	4%	${ }^{3 \%}$	3\％	${ }^{2 \%}$	${ }^{2 \%}$	0\％	0\％	\％	\％	0\％	0\％	0\％	0\％	0\％	0\％	0\％	\％	0\％
7207	8863.10 .10	－Eecricicaly operated	5	NT1	4%	4%	4%	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	0\％	\％	\％	\％	0\％	0\％	0\％	0\％	\％\％	0\％	0\％	\％	0\％
7208	8863.1020	－Note elerricaly operated	5	NT1	4%	4\％	${ }^{4 \%}$	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	0\％	\％	\％	\％	0\％	0\％	\％	0\％	\％	\％	\％	\％	\％
7209	88，63，010	－Electicaly operated	5	NT1	4\％	4\％	4%	3\％	3\％	${ }^{2 \%}$	${ }^{2 \%}$	\％	0\％	\％\％	\％	\％	\％	\％	\％	0\％	\％	\％	\％	\％
7210	84，63，020	－Notetectrically opealed	5	NT1	4%	4\％	4%	3\％	3\％	${ }^{2 \%}$	2\％	0\％	0\％	\％	0\％	0\％	0\％	\％	\％	\％\％	\％	0\％	\％	\％
7211	84，63，010	－EEectrially operated	5	V1	4\％	4\％	4\％	3\％	3\％	2\％	2\％	\％	\％	\％	\％	\％	\％	\％\％	\％	\％	\％	\％	\％	\％\％
7212	88，63，020	－No etectricaly operated	5	V1	4%	4\％	${ }_{4}{ }^{4}$	3\％	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	0\％	0\％	0\％	0\％	\％	0\％	\％	\％	0\％	\％	\％	0\％
7213	88，63，010	－Electically pepaled	5	NT1	4\％	4\％	4%	3\％	3\％	2\％	${ }^{2 \%}$	\％	0\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％
7214	88，69，020	－No etectricaly operated	5	NT1	4%	${ }^{4 \%}$	${ }^{4 \%}$	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	0\％	\％	\％	\％	\％	\％	\％	0\％	\％	\％	\％	\％	\％
7215	8864．10．10	－Eeactically operaed	5	NT1	4%	4%	4%	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	2\％	0\％	0\％	0\％	\％	\％	0\％	0\％	0\％	0\％	0\％	0\％	\％	0\％
7216	${ }^{8864.1020}$	－Notelecticilly operaled	5	NT1	4%	4%	4%	${ }^{3 \%}$	3\％	${ }^{2 \%}$	${ }^{2 \%}$	0\％	\％	\％	\％	\％	\％	0\％	0\％	\％	0\％	\％\％	\％	0\％
${ }^{217}$	88，642，010	－Electicaly operaled	5	${ }^{\text {N11 }}$	$4{ }^{4 \%}$	4\％	${ }^{4 \%}$	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	0\％	\％	\％	\％	0\％	\％	\％	0\％	\％	\％	\％	\％	\％
7218	88，424，020	－Notetedricaly operated	5	NT1	4%	4\％	4%	3\％	3\％	2\％	2\％	\％	0\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％
7219	88，64，010	－Electricaly operated	5	NT1	4%	4\％	4%	3\％	3\％	2\％	2\％	0\％	0\％	\％	\％	0\％	\％	\％	\％	\％\％	\％	0\％	0\％	0\％
7220	84，649，020	－Not etectrically operated	5	V1	4%	4%	${ }^{4 \%}$	3\％	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	0\％	\％\％	\％\％	\％	\％\％	0\％	0\％	\％	\％\％	0\％	0\％	\％	0\％
7221	84，65，000	－Machines which can carry out different types of machining operations without tool change between such operations	${ }_{5}$	V1	4%	4%	4%	3\％	3\％	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	0\％	0\％	\％	\％	\％	0\％	\％	\％	\％	\％	0\％
7222	84，65，110	－－Of a kind used for scoring printed circuit boards or printed wiring boards or printed circuit board or printed wiring board substrates，electrically operated	5	NT1	4\％	4\％	4\％	3\％	3\％	2\％	2\％	0\％	\％	\％	0\％	0\％	\％	0\％	\％	\％	\％	0\％	0\％	\％\％
7223	88，69，120	Onee，elecrically operated	5	NT1	4%	$4{ }^{4}$	4\％	${ }^{3 \%}$	${ }^{3} \%$	${ }^{2 \%}$	${ }^{2 \%}$	0\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％\％	\％	\％
7224	88，65，190	Onher	5	NT1	4%	4%	4\％	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	0\％	\％	\％	\％	\％\％	\％	\％	\％	\％	\％	\％	\％	0\％
7225	84，65，210	－－For routing printed circuit boards or printed wiring boards or printed circuit board or printed wiring board substrates，accepting router bits with a shank diameter not exceeding 3.175 mm ，for scoring printed circuit boards or printed wiring boards or printed circuit board or printed wiring board substrates	5	NT1	4\％	4%	4\％	3\％	${ }^{3 \%}$	2\％	2\％	0\％	\％\％	\％	\％	\％	\％\％	\％\％	\％	0\％	\％	\％	0\％	\％
7226	84，699220	－Other，eleticicaly operated	5	V1	4%	${ }^{4 \%}$	4\％	3\％	3\％	${ }^{2 \%}$	${ }^{2 \%}$	0\％	\％	\％	\％	0\％	0\％	\％\％	0\％	0\％	0\％	\％\％	\％	0\％
7227	88，69，290	－omer	5	${ }^{\text {N11 }}$	4%	$4{ }^{4 \%}$	${ }^{4 \%}$	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	0\％	\％	\％	\％	0\％	\％	\％	\％	\％	\％	\％	\％	\％
7228	84，65，310	－－Electrically opeated	5	${ }^{\text {NT1 }}$	4%	4\％	4\％	3\％	3\％	${ }^{2 \%}$	2%	\％	\％	\％	\％	\％	\％	\％\％	\％	\％	\％	\％	\％	0\％
7229	84，65，930	－Notesecticialy operated	5	V1	$4{ }^{4 \%}$	4\％	4\％	3\％	3\％	2\％	2%	0\％	0\％	\％	\％	0\％	\％	\％	\％	\％	\％\％	\％	\％	\％
7230	${ }^{84,659,410}$	\cdots Electriclly operated	5	V1	$4{ }^{4 \%}$	4%	4\％	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	0\％	0\％	0\％	\％	\％	\％ 0	0\％	\％	\％	\％	\％	\％	\％\％
7231	88，69，420	Notelectrically operaled	5	NT1	4%	4\％	4\％	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％	0\％	0\％	\％	0\％	\％	\％	\％	\％	0\％	${ }_{0} \%$
232	84，69，510		5	NT1	4\％	4\％	4\％	3\％	3\％	2\％	2\％	0\％	0\％	\％	0\％	0\％	\％	0\％	\％	0\％	\％\％	0\％	0\％	0\％
7238	88，69，530	Ver，electricaly operia	5	NT1	4%	4\％	4\％	3\％	3\％	2\％	2\％	\％	0\％	\％\％	\％	\％	\％	\％	\％	0\％	0\％	\％	\％	\％
7234	84，69，590	Onter	5	NT1	4%	4\％	4\％	3\％	3\％	2\％	${ }^{2 \%}$	0\％	0\％	0\％	0\％	0\％	0\％	0\％	0\％	\％	0\％	0\％	0\％	0\％
1235	84，65，610	－－Electically operaled	5	NT1	4%	4%	4\％	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	2\％	0\％	\％	\％	\％\％	\％	\％	0\％	\％$\%$	\％\％	0\％	\％	\％	0\％
1236	88，65，620	Not etectricaly operated	5	NT1	4%	4%	4\％	3\％	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	0\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	0\％
7237	84，65，930	－Lates，electricaly operaled	5	${ }^{\text {N11 }}$	4%	4\％	4\％	${ }^{3} \%$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	0\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％
$7{ }^{7238}$	84，69，940	－Latas，note tectically pepaled	5	NT1	4%	4\％	4\％	3\％	3\％	2\％	${ }^{2 \%}$	\％	\％	\％	\％	\％	0\％	\％	\％	\％	\％	0\％	\％	\％
${ }^{2739}$	84，65，950	Machines for deburring the surfaces of printed circuit boards or printed wiring boards during manufacturing；machines for scoring printed circuit boards or printed wiring boards or printed circuit board or printed wiring board substrates；laminating presses for the manufacture of printed circuit boards or printed wiring boards	5	NT1	4\％	4\％	4\％	3\％	3\％	2\％	2\％	\％	0\％	\％	0\％	0\％	0\％	0\％	0\％	0\％	\％\％	\％	\％	0\％
1240	88，69，960	－Onere，electricall operaled	5	NT1	4%	4\％	4\％	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％	\％	\％	0\％	0\％	0\％	\％	\％	\％	\％	0\％
${ }^{1241}$	84，65，990	Onter	5	NT1	4%	4%	4\％	3\％	3\％	2\％	${ }^{2 \%}$	0\％	0\％	\％\％	0\％	0\％	0\％	0\％	\％\％	0\％	0\％	0\％	0\％	0\％
${ }^{242}$	8466.10 .10		5	NT1	$4{ }^{4 \%}$	4%	4\％	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	0\％	\％	\％	\％	0\％	\％	\％	\％	\％	0\％	0\％	\％
$1{ }^{2243}$	84，661，090	－other	5	NT1	4%	4\％	4\％	${ }^{3 \%}$	3\％	2\％	${ }^{2 \%}$	\％	0\％	\％	0\％	\％\％	0\％	0\％	\％	0\％	\％	0\％	\％	0\％
$1{ }^{1244}$	84，66，010		5	NT1	4%	4%	4\％	3\％	${ }^{3} \%$	${ }^{2 \%}$	${ }^{2 \%}$	\％	0\％	\％	\％	\％	0\％	\％	\％	\％	\％	\％	\％	\％
1245	84，662，090	－－omer	5	NT1	4%	4\％	4\％	3\％	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％\％	0\％	\％\％	0\％	0\％	0\％	0\％	0\％	\％	0\％	0\％	0\％	0\％
${ }^{246}$	84，66，010		5	NT1	4\％	4\％	4\％	3\％	3\％	${ }^{2 \%}$	${ }^{2 \%}$	\％	0\％	\％	\％	\％	\％	\％	\％\％	\％	\％	\％	\％	\％
724	88，66，090	－－other	5	NT1	4\％	4%	4\％	${ }^{3 \%}$	${ }^{3 \%}$	2\％	${ }^{2 \%}$	\％	0\％	\％	0\％	\％	0\％	\％\％	\％	0\％	\％	\％	\％	0\％
$1{ }^{2248}$	84，69，900	－For machines of theading 8.64	5	NT1	4%	4\％	4\％	3\％	3\％	2\％	2\％	\％	0\％	0\％	\％	\％	0\％	\％	\％	\％	\％	0\％	\％	0\％
${ }^{2249}$	88，69，210	．．．．For the machinin tools of subheading $8465.91 .10,8465.92 \cdot 10,8465.95 .10$ 8465．99．50	5	${ }^{\text {NT1 }}$	4%	4\％	4\％	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％	\％	\％	0\％	\％	\％	\％	\％	\％	\％	\％

香港•ASEAN FTAにかかる調査報告書
 別添2－4 原産地品の関税撤廃スケジュール

（ラオス）

1250	［84，66，290	Other	5	NT1	4\％	4\％	4\％	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	2\％	\％	0\％	0\％	\％	0\％	\％	\％	\％	\％	\％	\％	\％\％	${ }^{\circ}$
7251	84，69，320	For machines of subheading 8456．90．10， 8456.90 .20 or 8460.31 .10	5	NT1	4\％	4\％	${ }^{4 \%}$	${ }^{3}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％	0\％	0\％	0\％	0\％	\％	\％	\％	\％	\％	\％
725	4，669，390	－．other	5	NT1	${ }^{4 \%}$	$4{ }^{4 \%}$	${ }^{4 \%}$	3\％	${ }^{3 \%}$	${ }^{2 \%}$	2\％	0\％	0\％	0\％	0\％	\％	0\％	0\％	\％	\％	0\％	0\％	\％	\％
7253	88，69，900	－For machines of teading 8.62 20884．63	5	NT1	4%	4%	4%	3\％	3\％	${ }^{2 \%}$	${ }^{2 \%}$	\％	0\％	\％	\％	0\％	\％	\％	0\％	\％	\％	\％	\％	\％\％
${ }^{1254}$	88，67，100	$\begin{aligned} & - \text { - Rotary type (including combined rotary- } \\ & \text { percussion) } \end{aligned}$	5	N1	4%	4\％	${ }^{4 \%}$	3\％	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	0\％	\％	0\％	0\％	\％	0\％	0\％	\％	\％	0\％	\％	\％	\％\％
72	84，67，．900	－－oter	5	NT1	${ }^{4 \%}$	4\％	4\％	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	0\％	0\％	0\％	0\％	0\％	\％\％	0\％	0\％	0\％	0\％	\％\％	0\％	\％
7256	88，672，100	－Dills of alkinins	5	NT1	4%	4%	4\％	${ }^{\text {3\％}}$	${ }^{\text {3\％}}$	${ }^{2 \%}$	${ }^{2 \%}$	0\％	\％	\％	\％	\％	\％	0\％	\％	0\％	\％\％	\％	\％	\％
7257	84，672，200	－Saws	5	NT1	4\％	4\％	4\％	3\％	3\％	2\％	2\％	\％\％	\％	\％\％	\％	\％\％	0\％	\％	\％	\％	\％\％	\％	\％	\％
$7{ }^{2258}$	${ }^{88,6,62,900}$	－Oner	5	NT1	4\％	4\％	4\％	${ }^{3 \%}$	3\％	2%	2%	0\％	0\％	\％\％	\％	\％	0\％	0\％	\％	\％\％	\％	\％	\％	\％
7259	88，68， 100	－Chan saws	5	NT1	4%	4%	4\％	${ }^{3 \%}$	3\％	2\％	${ }^{2 \%}$	\％\％	\％	\％	\％	0\％	0\％	\％	\％	\％	\％	0\％	0\％	0\％
7280	88，68，900	－－oter	5	NT1	4%	4\％	4\％	${ }^{3}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％	\％	\％	\％	0\％	\％	\％	\％	0\％	\％	\％
7261	84，67，110	Of elecromemeranacaly ype	5	NT1	4\％	4%	4\％	3\％	3\％	2\％	${ }^{2 \%}$	0\％	0\％	\％\％	\％	\％	0\％	0\％	\％	\％	0\％	\％\％	\％	\％\％
7262	88，67，190	－other	5	NT1	4\％	4\％	4%	\％	3\％	2%	2\％	0\％	\％	0\％	\％	\％	\％	\％	\％	\％	\％\％	\％	\％	\％\％
7263	88，679，200	－-1 proumaicic ools	5	V1	${ }^{4 \%}$	${ }^{4 \%}$	${ }^{4 \%}$	3\％	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	0\％	0\％	0\％	0\％	\％	\％	0\％	\％	0\％	0\％	\％	0\％	\％\％
7264	88，67，9，90	$\begin{array}{\|l\|} \hline \text {.... Of goods of subheading 8467.21.00, } \\ \text { 8467.22.00 or 8467.29.00 } \\ \hline \end{array}$	${ }^{5}$	NT1	4\％	4%	4\％	3\％	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	0\％	\％	\％\％	\％	0\％	0\％	\％	\％	\％	\％	\％	\％${ }^{0}$	\％
1226	88，679，990	－－Other	5	NT1	4%	4%	4\％	3\％	${ }^{3 \%}$	2%	${ }^{2 \%}$	\％\％	\％\％	0\％	\％	\％	\％	0\％	0\％	0\％	\％	\％	\％	\％\％
7266	24，88，000	－Hanc．red ${ }^{\text {bow pipes }}$	5	NT1	4\％	4\％	4\％	${ }^{3 \%}$	3\％	${ }^{2 \%}$	2%	0\％	0\％	0\％	\％	\％	0\％	0\％	\％	\％\％	\％	\％	\％	\％
1227	8，682，010	$\begin{aligned} & \text {--Hand-pperated (not hand-helald) gas welding or } \\ & \text { brazing appliances for metal } \end{aligned}$	5	NT1	4\％	4%	4\％	${ }^{3 \%}$	3\％	2\％	${ }^{2 \%}$	0\％	0\％	\％\％	0\％	\％	0\％	0\％	\％	0\％	0\％	\％\％	\％	\％
7288	24，682，900	－－other	5	NT1	4%	${ }^{4 \%}$	${ }^{4 \%}$	${ }^{\text {3\％}}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％\％	0\％	\％	0\％	\％	0\％	\％	0\％	\％	0\％	0\％	\％	\％\％
7269	88，68，000	－Oher machineer and apparaus	5	NT1	4\％	4\％	4\％	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	0\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	0\％
7270	88，689，010	－Ot gooss of subheading 8468．10．00	5	NT1	4\％	4\％	4\％	${ }^{3} \%$	${ }^{3 \%}$	2\％	2\％	0\％	0\％	\％	\％	\％	0\％	\％	\％	\％	0\％	\％	\％	\％
${ }^{2271}$	88，689，020	－- f goods of subtrading 8468． 20.10	5	N1	${ }^{4 \%}$	4%	4\％	3\％	3\％	${ }^{2 \%}$	2\％	\％\％	\％\％	\％\％	\％	0\％	0\％	0\％	\％	\％	\％	\％	0\％	\％
7272	88，68，9，90	－Other	5	V1	${ }^{4 \%}$	$4{ }^{4}$	${ }^{4 \%}$	3\％	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	0\％	0\％	0\％	0\％	\％	0\％	\％	0\％	0\％	\％	0\％	\％	\％
7273	84，90，010	－Wordipocossing machines	5	NT1	4\％	$4{ }^{4}$	4\％	${ }^{3 \%}$	${ }^{3} \%$	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％	0\％	\％	\％	0\％	\％	\％	\％	0\％	\％	\％
${ }^{1274}$	84，69，090	－omer	5	NT1	${ }^{4 \%}$	4\％	4\％	3\％	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％\％	\％	0\％	\％	\％	0\％	\％	\％	\％	\％	\％	\％	\％
7275	4，70，000		5	NT1	4\％	4\％	4\％	3\％	3\％	2\％	2\％	\％\％	\％\％	\％	\％	\％\％	\％\％	\％\％	\％\％	\％\％	\％	\％	0\％	\％
7276	84，72，100	－－mooporating aprining device	5	NT1	4\％	4\％	${ }^{4 \%}$	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	0\％	0\％	0\％	\％	0\％	0\％	0\％	\％	\％	\％\％	\％	\％	\％\％
727	84，72，2000	－ooner	5	NT1	4\％	4\％	4\％	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	0\％	0\％	\％	\％	\％	\％	\％	\％	\％	\％	\％
${ }^{2788}$	${ }^{84,73,000}$	－Oner caluluaing machines	5	NT1	4\％	4\％	4\％	3\％	3\％	2\％	${ }^{2 \%}$	0\％	0\％	\％	\％	0\％	\％\％	\％	\％\％	\％	\％	\％\％	0\％	0\％
7279	84，75，000	－Cashregisers	5	NT1	4\％	$4{ }^{4}$	${ }^{4 \%}$	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	2\％	0\％	0\％	0\％	\％	0\％	\％	\％	\％	\％	\％	\％	0\％	\％
7280	88，70，0，00	－Postagetranking machines	5	NT1	4\％	4%	4%	3\％	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	0\％	0\％	0\％	0\％	0\％	\％	0\％	\％	\％	\％	\％	\％
7281	84，70，020	－Acouning madines	5	NT1	4\％	4%	4\％	3\％	${ }^{3 \%}$	2\％	${ }^{2 \%}$	\％	\％	0\％	\％	\％	\％	0\％	\％	0\％	0\％	\％	\％	\％
7282	4，709，090	－Other	5	NT1	4\％	4\％	4%	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％
7283	4，773，010	- －Handheld computers including palmtops and personal digital assistants（PDAs）	${ }^{5}$	NT1	4\％	4\％	4\％	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	0\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	0\％	\％	\％\％
$7{ }^{284}$	84，713，020	－Laploss inculding noteoots and subrocteooks	5	NT1	${ }^{4 \%}$	${ }^{4 \%}$	${ }^{4 \%}$	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	0\％	\％	\％	\％	\％	\％	\％	\％\％	\％	0\％	\％	\％	\％
7285	88，71，090	－other	5	NT1	4\％	$4{ }^{4 \%}$	${ }^{4 \%}$	${ }^{3 \%}$	${ }^{3} \%$	${ }^{2 \%}$	${ }^{2 \%}$	0\％	0\％	0\％	\％	\％	0\％	0\％	0\％	\％	\％	\％\％	\％	\％
${ }^{7286}$	88，74，410	－Personal computers excluding portable computers of subheading 8471.30	${ }^{5}$	HSL	5\％	5\％	5\％	5\％	5\％	5\％	5\％	5\％	5\％	5\％	5\％	5\％	5\％	5\％	${ }^{5 \%}$	${ }^{5 \%}$	${ }^{5 \%}$	5\％	5\％	${ }^{5 \%}$
7287	88，74，190	－Other	5	V1	4%	4%	${ }^{4 \%}$	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％	0\％	\％	\％	\％	\％	\％	\％	0\％	\％	0\％
7288	88，74，9，10	- Personal computers excluding portable computers of subheading 8471.30	${ }^{5}$	HsL	5\％	5\％	5\％	5\％	5\％	5\％	5\％	5\％	${ }^{5 \%}$	5\％	5\％	5\％	5\％	${ }^{5 \%}$	${ }^{5 \%}$	${ }^{5 \%}$	${ }^{5 \%}$	5\％	${ }^{5 \%}$	${ }^{5 \%}$
7289	8，744，990	－－omer	5	NT1	4%	4%	${ }^{4 \%}$	${ }^{3 \%}$	${ }^{3 \%}$	2%	${ }^{2 \%}$	\％\％	\％	0\％	\％	\％	\％	0\％	\％	0\％	0\％	\％	0\％	\％
7230	88，75，010	－－Processing units for personal（ including portable） computers	${ }^{5}$	NT1	4\％	4\％	4\％	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	0\％	0\％	\％	0\％	0\％	0\％	${ }^{0 \%}$	${ }^{0 \%}$	${ }^{\text {\％\％}}$	\％\％	\％	\％	\％
7291	88，75，9090	－Onter	5	NT1	4\％	4\％	4\％	${ }^{3 \%}$	3\％	${ }^{2 \%}$	2\％	0\％	\％	0\％	\％	0\％	0\％	\％	0\％	\％\％	\％	0\％	0\％	\％
7292	88，76，030	－Compueremepoads	5	NT1	4\％	4\％	4\％	${ }^{3 \%}$	3\％	2\％	2%	0\％	0\％	0\％	\％	0\％	0\％	0\％	0\％	0\％	\％	0\％	0\％	\％
7293	84，716，040	－－X－Y coordinate input devices，including mouses， light pens，joysticks，track balls，and touch sensitive screens	${ }_{5}$	NT1	4\％	4\％	4\％	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	0\％	0\％	0\％	\％	\％	0\％	0\％	0\％	0\％	\％	\％	\％	\％
7294	4，771，090	－－omer	5	NT1	4\％	4%	${ }^{4 \%}$	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％	\％	\％	\％	\％	0\％	\％	0\％	0\％	\％	\％
7295	88，77，010	\cdots	5	NT1	4\％	4\％	4\％	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％	0\％	\％	\％	\％	\％	\％	\％	\％	0\％	0\％
7296	88，77，020	－－Hard diskdives	5	NT1	4\％	4%	4%	${ }^{3 \%}$	${ }^{3 \%}$	2%	2\％	0\％	0\％	0\％	\％	0\％	0\％	0\％	0\％	0\％	0\％	0\％	0\％	\％
${ }^{297}$	${ }^{88,77,030}$	${ }^{- \text {－Tape dives }}$	5	NT1	4\％	4%	4\％	3\％	3\％	2\％	2\％	\％\％	\％	0\％	\％	\％\％	0\％	0\％	\％	\％	\％	\％	\％	\％
7298	4，717，040	－Optical disk drives，including CD－ROM drives， DVD drives and CD－R drives	5	v1	4\％	4\％	4\％	3\％	3\％	${ }^{2 \%}$	2\％	\％	\％	\％	\％	\％	\％	\％	0\％	\％	\％	\％	\％	\％
7299	717，50		5	NT1	4\％	4\％	4\％	3\％	3\％	2\％	2\％	\％	0\％	0\％	\％	\％\％	0\％	\％\％	\％\％	0\％	\％\％	\％\％	0\％	\％
7300	88，77，091	\cdots Aluomaed backup sssems	5	NT1	4\％	4\％	4\％	3\％	3\％	2\％	${ }^{2 \%}$	0\％	0\％	\％\％	0\％	\％	\％	0\％	\％	0\％	0\％	\％\％	0\％	\％
7301	88，77，099	\cdots	5	NT1	4\％	4\％	$4{ }^{4 \%}$	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％	0\％	\％	\％	\％	\％	\％	\％	\％	\％	\％
7302	88，78，010	－－Contoloand adaporo units	5	NT1	4\％	4%	4\％	${ }^{3 \%}$	${ }^{3 \%}$	2\％	${ }^{2 \%}$	\％	\％	\％	\％\％	\％	\％	0\％	\％	\％	\％	\％	\％	\％
7303	88，78，070	－－Sund cards orvideo cards		NT1	4\％	4\％	4\％	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	0\％	0\％	\％	\％	\％	\％	\％	\％	\％	\％	\％
7304	88，781，090	－Other	5	NT1	4\％	4\％	4\％	${ }^{3 \%}$	3\％	2\％	2%	0\％	0\％	0\％	\％	0\％	0\％	0\％	\％\％	\％\％	\％	\％\％	\％	\％\％
7305	${ }^{88,79,0,010}$	－－${ }^{\text {ar coder raderes }}$	${ }^{5}$	NT1	4\％	4\％	4\％	3\％	3\％	2\％	2%	\％\％	\％	\％\％	\％	\％\％	\％\％	\％	\％	0\％	\％	\％	\％	\％
77^{7006}	8，719，020	$\begin{aligned} & - \text { Optical character readers, document or image } \\ & \text { scanners } \end{aligned}$	5	HSL	5\％	5\％	5\％	5\％	${ }^{5 \%}$	${ }^{5 \%}$	${ }^{5 \%}$	5\％	${ }^{5 \%}$	5\％	5\％	5\％	5\％	${ }^{5 \%}$	${ }^{5 \%}$	5\％	${ }^{5 \%}$	5\％	5\％	${ }^{5 \%}$
7307	88，79，9090	－－oter	5	NT1	4\％	4%	${ }^{4 \%}$	${ }^{3 \%}$	${ }^{3}$	${ }^{2 \%}$	${ }^{2 \%}$	0\％	0\％	\％\％	0\％	0\％	\％	0\％	\％	0\％	0\％	\％	\％	\％\％
7308	8472．10．10	－Electrically operaled	5	NT1	4\％	4%	4\％	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	0\％	\％	\％	\％\％	0\％	0\％	\％	\％	\％	\％	0\％	\％	\％
7309	${ }^{8772.1020}$	－No teestricaly operaled	5	NT1	4\％	4\％	4\％	${ }^{3 \%}$	${ }^{3 \%}$	2\％	2%	0\％	0\％	\％	0\％	0\％	0\％	0\％	0\％	0\％	\％	0\％	0\％	\％\％
7310	88，72，0，10	－Electrically opeated	5	NT1	4%	4%	4\％	3\％	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	0\％	0\％	0\％	\％\％	0\％	0\％	0\％	0\％	0\％	\％	\％\％	0\％	\％\％
${ }_{7311}$	88，72， 202	－Note electrialy operated	5	NT1	4%	4\％	4\％	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％	\％\％	\％	\％	\％	\％	\％	\％\％	\％	\％	\％
${ }^{7312}$	84，729，010	－Aluomaicie elerer matines	5	${ }^{\text {NT1 }}$	$4{ }^{4 \%}$	4\％	4\％	${ }^{3 \%}$	${ }^{3}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％	\％\％	\％	\％	\％\％	\％	\％	\％	\％	\％	\％
${ }^{2313}$	${ }^{84,729,020}$		5	NT1	4\％	4\％	4%	${ }^{3 \%}$	${ }^{3 \%}$	2\％	2%	0\％	0\％	0\％	0\％	0\％	0\％	0\％	0\％	\％\％	0\％	0\％	0\％	0\％
${ }^{7314}$	${ }^{88,729,030}$	－Othe，elecricicaly opeated	${ }^{5}$	${ }^{\text {NT1 }}$	4%	$4{ }^{4 \%}$	4\％	${ }^{3 \%}$	3\％	2%	${ }^{2 \%}$	\％	\％	\％	\％	0\％	0\％	\％	\％	\％\％	0\％	\％	\％	0\％
7315	88，72，9，900	－Onter，note lectrically peratiod	${ }^{5}$	NT1	4%	4%	4%	3\％	${ }^{3 \%}$	${ }^{2 \%}$	2%	\％	0\％	0\％	\％	\％	0\％	0\％	\％	\％\％	0\％	\％	\％	\％
${ }^{316}$	${ }^{73.10 .10}$	$\begin{array}{\|l} \hline- \text { Printed dircuit assemblies for word- processing } \\ \hline \text { machines } \\ \hline \end{array}$	${ }^{5}$	NT1	4%	4\％	4\％	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	0\％	\％	0\％	\％	\％	0\％	0\％	\％	\％	0\％	\％	\％	\％\％
${ }_{7317}$	88，73，0，90	－－other	5	NT1	4%	4\％	4\％	${ }^{3 \%}$	${ }^{3} \%$	2\％	${ }^{2 \%}$	0\％	\％	0\％	\％\％	0\％	\％	0\％	0\％	\％\％	0\％	0\％	0\％	\％
${ }^{7318}$	84，73，100		5	NT1	4%	4\％	4\％	3\％	3\％	2\％	${ }^{2 \%}$	0\％	0\％	\％	0\％	0\％	\％	0\％	\％	0\％	0\％	0\％	0\％	0\％
7319	84，72，900	－－oner	5	NT1	4\％	4\％	4%	${ }^{3 \%}$	${ }^{3 \%}$	2\％	${ }^{2 \%}$	\％\％	\％	\％	\％\％	\％	\％	0\％	\％	0\％	\％\％	\％	\％	\％
7320	84，73，010	－Assembed pinined circiut boards	5	${ }^{\text {NT1 }}$	$4{ }^{4 \%}$	4\％	4\％	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％	\％\％	\％	\％	\％	\％	\％	\％	\％\％	\％	\％
73	${ }^{\text {84，733，990 }}$	－Other	5	${ }^{\text {HSL }}$	5\％	5\％	${ }^{5 \%}$	${ }^{5 \%}$	${ }^{5 \%}$	5\％	5\％	5\％	${ }^{5 \%}$	5\％	5\％	5\％	5\％	${ }^{5 \%}$	${ }^{5 \%}$	5\％	5\％	5\％	5\％	${ }^{5 \%}$
$7{ }^{732}$	88，734，011	Parts，including printed circuit assemblies for automatic teller machines	${ }^{5}$	NT1	4\％	4%	4\％	3\％	3\％	${ }^{2 \%}$	${ }^{2 \%}$	0\％	\％	0\％	\％	\％	0\％	\％	\％	\％	0\％	\％	\％	\％
7323	88，734，019	－－omer	5	NT1	4\％	4%	4\％	3\％	${ }^{3 \%}$	2\％	${ }^{2 \%}$	0\％	0\％	0\％	\％\％	0\％	0\％	0\％	\％	\％\％	0\％	0\％	0\％	\％\％
${ }^{1324}$	${ }^{88,734,020}$	－For ronemeatricall operated machines	5	NT1	4\％	4\％	4\％	${ }^{3 \%}$	3\％	2\％	2%	0\％	0\％	0\％	\％	\％	0\％	0\％	\％	\％	0\％	0\％	\％	\％
7325	735，011		${ }^{5}$	NT1	4\％	4\％	4\％	3\％	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	0\％	0\％	\％\％	\％	\％	0\％	\％	\％	\％	\％	\％	\％	\％
7326	4，735，019	－－Onter	5	NT1	4%	4\％	4\％	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％	\％\％	0\％	\％	0\％	\％	\％	\％\％	0\％	\％	\％
7327	88，75，020	－For ononelecricilly operated machines	5	NT1	4%	$4{ }^{4 \%}$	${ }^{4 \%}$	${ }^{3 \%}$	${ }^{3 \%}$	2\％	${ }^{2 \%}$	0\％	\％	0\％	\％\％	0\％	0\％	0\％	0\％	\％	0\％	0\％	0\％	\％
$1{ }^{1328}$	474．10．10	Electricaly operated	5	NT1	4%	4%	4\％	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％	\％	\％	\％	0\％	\％	0\％	0\％	\％	\％	\％
7329	8747．10．20	${ }^{-}$－ 0 eteatrically operated	5	NT1	4%	4\％	4\％	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％
${ }^{7330}$	84，742011	－Forstone	5	NT1	4\％	4\％	4\％	${ }^{3 \%}$	3\％	${ }^{2 \%}$	2%	\％	0\％	\％	\％	\％	0\％	\％	\％	0\％	\％	\％	\％	\％

香港•ASEAN FTAにかかる調査報告書

別添2－4 原産地品の関税撤廃スケジュール
（ラオス）

$\longdiv { 3 3 1 }$	$188,72,019$	Other	5	NT1	4\％	${ }^{4 \%}$	4\％	${ }^{3 \%}$	3\％	${ }^{2 \%}$	2\％	\％	\％	\％	\％	\％	\％	0\％	\％	\％\％	\％	0\％	\％	\％\％
${ }^{7332}$	88，72，021	\cdots	5	NT1	4%	4%	4\％	3\％	${ }^{3 \%}$	2\％	${ }^{2 \%}$	0\％	0\％	0\％	0\％	0\％	\％	0\％	0\％	\％\％	0\％	0\％	0\％	0\％
${ }_{7}^{7333}$	88，742029	－other	5	NT1	$4{ }^{4 \%}$	4%	$4{ }^{4 \%}$	3\％	${ }^{3 \%}$	${ }^{2 \%}$	2%	\％\％	\％	\％	0\％	\％\％	0\％	\％	\％\％	\％	\％\％	\％	\％	0\％
$7{ }^{7334}$	88，73，10	Electricaly opeated	5	NT1	$4{ }^{4 \%}$	4%	4\％	${ }^{\text {3\％}}$	${ }^{3}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	0\％	\％	\％
${ }^{17335}$	88，74，120	Notetecticaly operaled	5	NT1	4%	4\％	4\％	3\％	3\％	${ }^{2 \%}$	${ }^{2 \%}$	0\％	0\％	0\％	\％	\％	0\％	\％	\％	\％\％	0\％	\％	\％	0\％
${ }^{7336}$	88，743，211		5	NT	4%	$4{ }^{4 \%}$	4\％	3\％	3\％	2%	${ }^{2 \%}$	0\％	0\％	\％	0\％	0\％	0\％	0\％	\％	0\％	\％	\％	\％	0\％
${ }^{1337}$	88，73，219	Oner	5	N1	4\％	4\％	4\％	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	0\％	0\％	\％	\％	0\％	0\％	0\％	0\％	0\％	\％	\％\％
${ }^{7338}$	88，73，221	Ot a outut capacily 0 te exceeding 80 th	5	NT1	$4{ }^{4 \%}$	4\％	4%	3\％	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	0\％	0\％	0\％	0\％	\％	\％	\％	\％	\％	0\％	\％	\％
7339	${ }^{88,74,229}$	Other	5	NT1	4%	${ }^{4 \%}$	${ }^{4 \%}$	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	0\％	\％	\％	\％	\％\％	0\％	0\％	0\％	\％	\％	\％\％
7340	88，74，9，90	－Electically operaed	5	NT1	4\％	4\％	4\％	${ }^{3 \%}$	3\％	2\％	${ }^{2 \%}$	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％
${ }^{7341}$	88，74，920	Not etectricaly operated	5	NT1	4%	4\％	4\％	3\％	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％
${ }^{7342}$	88，78，010	－Eecerically pepalad	5	${ }^{\text {NT1 }}$	$4{ }^{4 \%}$	4\％	4\％	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％	0\％	\％	\％	\％	\％	\％	\％	0\％	\％	0\％
7^{7343}	88，78，020	－Noteestricall operaled	5	NT1	4%	4%	4%	3\％	3\％	${ }^{2 \%}$	2\％	0\％	\％	\％	\％	\％	\％	\％	\％	0\％	0\％	0\％	\％	0\％
${ }^{2344}$	88，74，010	－of elecrically opeated macines	5	${ }^{\text {NT1 }}$	$4{ }^{4 \%}$	4%	4%	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	0\％
${ }^{2345}$	88，74，020	－or noneleactically operated machines	5	NT1	4%	4\％	4\％	${ }^{3 \%}$	3\％	${ }^{2 \%}$	${ }^{2 \%}$	0\％	\％	\％	\％	\％	\％	\％	0\％	\％	\％	\％	\％	0\％
${ }^{7346}$	8775．00．10	－Electricaly operaled	5	V1	4%	4\％	4%	3\％	3\％	2\％	${ }^{2 \%}$	0\％	0\％	0\％	\％	\％	\％	0\％	0\％	\％	\％	0\％	0\％	0\％
${ }^{7347}$	${ }^{8475.1020}$	－Not etectrically operated	5	v1	$4{ }^{4 \%}$	4%	4\％	${ }^{3 \%}$	${ }^{3 \%}$	2%	2%	\％\％	0\％	\％	0\％	0\％	0\％	0\％	\％	0\％	\％\％	0\％	\％\％	0\％
${ }^{7348}$	84，75，100	－Meachines ior making opiciaf fibese and pretioms	5	V1	4%	$4{ }^{4 \%}$	4%	${ }^{3 \%}$	3\％	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％	0\％	\％\％	\％	\％	\％	\％	\％	\％	\％	\％\％
7349	88，75，900	－－Other	5	NT1	$4{ }^{4 \%}$	${ }^{4 \%}$	4\％	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％	\％	\％	0\％	\％	0\％	\％	0\％	\％	\％	0\％
7350	84，75，010	－of elecricall opeated machines	5	NT1	4%	4\％	4\％	3\％	${ }^{3 \%}$	${ }^{2 \%}$	2\％	\％	\％	0\％	\％	\％	\％	\％	\％	\％	\％	0\％	0\％	\％
${ }^{7351}$	84，759，020	－of nonelectricaly opeated machines	5	NT1	4%	4%	4\％	3\％	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％	0\％	\％	\％	\％	\％	\％\％	0\％	\％	\％\％	\％
7352	84，762，100	－Incorporaing heating or eritigeating devices	5	NT1	4%	4%	4%	3\％	3\％	2\％	2\％	0\％	0\％	0\％	0\％	0\％	0\％	0\％	0\％	0\％	0\％	0\％	\％	0\％
${ }^{7333}$	88，72，2900	Other	5	NT1	4%	4\％	4\％	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	2\％	\％	\％	\％	\％	0\％	\％	0\％	0\％	\％$\%$	\％	0\％	\％	0\％
$7{ }^{7554}$	88，76，100	－Mrooporaing heaing of refigigeating devices	5	NT1	4\％	4\％	4\％	3\％	${ }^{3} \%$	2\％	${ }^{2 \%}$	\％	\％	\％	0\％	\％	\％	\％	\％	\％	\％	\％	\％	\％
${ }^{7355}$	88，78，900	－Oner	5	NT1	4\％	4\％	4\％	3\％	3\％	2\％	2\％	0\％	\％	\％	0\％	\％	\％	\％	\％	\％\％	\％	\％	\％	\％
7356	84，76，000	－Pars	5	V1	4%	4%	4\％	3\％	3\％	2\％	2\％	0\％	0\％	\％	0\％	0\％	\％	0\％	\％	\％\％	0\％	\％	\％	\％
${ }^{7357}$	${ }^{\text {8477．10．10 }}$	－For mouling nuber	5	V1	$4{ }^{4 \%}$	$4{ }^{4 \%}$	4%	${ }^{\text {3\％}}$	${ }^{3 \%}$	${ }^{2 \%}$	2%	\％\％	\％	\％	\％	0\％	\％	0\％	\％	\％	\％	0\％	\％\％	\％
${ }^{7358}$	8877．10，31		5	N1	4\％	4\％	${ }^{4 \%}$	${ }^{3 \%}$	3\％	${ }^{2 \%}$	${ }^{2 \%}$	\％	0\％	\％	\％	\％	\％	\％	\％	${ }^{0 \%}$	\％	\％	\％	\％\％
7359	$88,71,039$	Ontrer	${ }^{5}$	V1	$4{ }^{4 \%}$	4\％	4\％	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％	\％\％	\％	\％	\％	\％	\％	\％\％	\％	\％	\％
7360	88，72，010	－Forexturing ubber	5	NT1	4%	4\％	4\％	3\％	3\％	${ }^{2 \%}$	2\％	\％	\％	\％	0\％	\％	\％	\％	\％	\％	\％	\％	\％	\％
${ }^{7361}$	88，72，020	－－Forextuding pasaics	5	NT1	$4{ }^{4 \%}$	4\％	4\％	3\％	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％	\％\％	\％	\％	\％	\％	\％	\％	0\％	\％	0\％
${ }^{7362}$	88，73，000	－Bow mouding madines	5	NT1	$4{ }^{4 \%}$	4%	4%	3\％	3\％	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％	\％	\％\％	\％	\％	\％	0\％	0\％	0\％	\％	0\％
${ }^{7363}$	88，74，010	\cdots－For moulding of roming nuber	5	NT1	$4{ }^{4 \%}$	4%	4%	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	0\％	0\％	\％\％	0\％	\％	0\％	0\％	\％	0\％	0\％	0\％	0\％
${ }^{7364}$	88，74，020	－For moulding of forming plasits	5	NT1	4%	4\％	4\％	3\％	3\％	2\％	2\％	0\％	\％	\％	0\％	\％	\％	\％	\％	\％	\％	\％	\％	\％
${ }^{7365}$	88，75，100	－－For moulding or retreading pneumatic tyres or for moulding or otherwise forming inner tubes	5	NT1	4\％	4\％	4\％	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	0\％	0\％	0\％	0\％	\％	\％	0\％	0\％	\％	0\％	0\％	\％	0\％
${ }^{7366}$	84，75，910	－Forruber	5	NT1	4%	4\％	4%	3\％	3\％	2\％	2\％	\％	\％	0\％	0\％	0\％	\％	0\％	\％	\％\％	0\％	\％\％	\％	\％\％
${ }^{7367}$	84，75，920	－FFor pasasics	5	V1	$4{ }^{4 \%}$	4%	4%	3\％	3\％	${ }^{2 \%}$	${ }^{2 \%}$	\％\％	\％	0\％	0\％	0\％	\％	0\％	\％	\％\％	0\％	\％	\％	\％
${ }^{7368}$	88，78，010	－－For working rubber or for the manufacture of products from rubber，electrically operated	${ }^{5}$	V1	${ }^{4 \%}$	${ }^{4 \%}$	${ }^{4 \%}$	${ }^{\text {3\％}}$	3\％	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％	0\％	${ }^{0 \%}$	\％	\％	\％	\％	\％	\％	${ }^{0 \%}$	
7369	88，78，020	－－For working rubber or for the manufacture of products from rubber，not electrically operated	5	V1	4\％	4\％	4\％	3\％	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	0\％	0\％	\％	\％	\％	\％\％	\％	\％	\％	\％	\％
7370	88，78，031	－－Lamination presses for the manufacture of printed circuit boards or printed wiring boards	${ }^{5}$	NT1	4\％	4\％	4\％	${ }^{3 \%}$	3\％	${ }^{2 \%}$	${ }^{2 \%}$	0\％	\％	0\％	\％	\％	\％	\％	\％	\％	0\％	\％	\％	\％
${ }^{7371}$	88，78，039	－－other	5	NT1	$4{ }^{4 \%}$	4%	4%	3\％	${ }^{3 \%}$	2\％	${ }^{2 \%}$	0\％	0\％	0\％	0\％	\％	0\％	0\％	0\％	\％	0\％	0\％	0\％	0\％
${ }^{1732}$	88，78，040	－－For working plastics or for the manufacture of products from plastics，not electrically operated	5	NT1	4\％	4\％	4\％	3\％	${ }^{3 \%}$	2\％	2\％	0\％	0\％	\％	0\％	\％	\％	0\％	0\％	0\％	0\％	0\％	\％	\％
${ }^{7373}$	88，79，010	－－Of electrically operated machines for working rubber or for the manufacture of products from rubber	5	V1	4\％	4\％	4\％	3\％	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	0\％	\％	0\％	\％	0\％	\％	0\％	\％\％	0\％	0\％	0\％	\％\％	\％\％
$\sqrt{7374}$	79，020	－－Of non－electrically operated machines for working rubber or for the manufacture of products from rubber	5	NT1	4\％	4\％	4\％	3\％	3\％	2%	2\％	\％	\％	\％	\％	0\％	\％	\％	\％	\％\％	\％	\％	\％	\％
${ }^{7375}$	88，79，032	－－Parts of lamination presses for the manufacture of printed circuit boards or printed wiring boards	5	NT1	4\％	4\％	4\％	3\％	${ }^{3 \%}$	${ }^{2 \%}$	2\％	0\％	\％	0\％	\％	\％	\％	\％	\％	\％	0\％	\％	\％	\％
$\sqrt{7376}$	88，79，039	Oher	5	NT1	4%	4%	4\％	3\％	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％	\％\％	\％\％	\％	\％	\％	0\％	0\％	\％	\％	\％
${ }^{1377}$	88，77，040	－－Of non－electrically operated machines for working plastics or for the manufacture of products from plastic materials	5	NT1	4\％	4\％	4\％	3\％	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％	0\％	\％\％	\％	0\％	0\％	0\％	\％	\％	\％	\％
${ }^{7378}$	8787．10．10	－－Electrically peataed	5	NT1	4\％	4\％	4\％	3\％	3\％	${ }^{2 \%}$	2\％	\％	\％	\％	\％	\％\％	\％	\％	\％	0\％	\％\％	\％	\％	\％
17379	8787．1020	－－${ }^{\text {a }}$ electricaly opeated	5	NT	4%	$4{ }^{4 \%}$	4\％	3\％	3\％	2\％	2\％	0\％	\％	\％	0\％	\％	\％	\％	0\％	0\％	0\％	0\％	\％	\％
7380	84，78，010	－－of fectricaly perated machines	5	v1	4%	4\％	4\％	${ }^{3 \%}$	3\％	2\％	2%	0\％	\％	\％	0\％	\％	\％	\％	\％	\％	0\％	\％	\％	\％\％
7381	84，78，020	－－Ot onomeacrically opeated machines	5	N1	4%	$4{ }^{4 \%}$	4\％	${ }^{3 \%}$	${ }^{3 \%}$	2\％	${ }^{2 \%}$	0\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％
7382	8799．10．10	－Eecricaly operated	5	NT1	4%	4\％	4\％	${ }^{3}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	0\％	\％	0\％	0\％	\％	0\％	\％	\％	\％	\％	\％	0\％
${ }^{7383}$	8799．1020	－Notetecticaly operaled	5	NT1	4%	4\％	4\％	3\％	${ }^{3} \%$	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％	\％\％	\％	\％	0\％	0\％	\％\％	0\％	0\％	0\％	0\％
7384	88，72，010	－Electicaly operated	5	NT1	$4{ }^{4 \%}$	4\％	4\％	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	2\％	\％	\％	\％	0\％	\％	\％	\％	\％	\％	\％	0\％	\％	\％
${ }^{7385}$	88，729，020	－Note tectrically operated	5	NT1	4%	4\％	4%	3\％	${ }^{3 \%}$	${ }^{2 \%}$	2\％	0\％	\％	0\％	\％	\％\％	\％	0\％	0\％	\％	\％	\％	\％	0\％
${ }^{7386}$	88，73，010	－Electically peparaed	5	NT1	$4{ }^{4 \%}$	4\％	4\％	${ }^{3}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	0\％	\％	\％	\％	\％	0\％	\％	\％	\％	0\％	\％	\％
${ }^{7387}$	84，73，020	－Note eecticaly poperaled	5	NT1	4%	4\％	4\％	3\％	3\％	2\％	2\％	0\％	\％	\％	0\％	\％	\％	0\％	0\％	0\％	\％	0\％	\％	0\％
${ }^{7388}$	84，74，010	－Ebercrially pearated	5	NT1	4%	4\％	4\％	3\％	3\％	2\％	${ }^{2 \%}$	0\％	\％	\％	0\％	\％	\％	0\％	\％	\％\％	\％	0\％	0\％	0\％
${ }^{7389}$	84，74，020		5	NT1	$4{ }^{4 \%}$	${ }^{4 \%}$	${ }_{4}^{4 \%}$	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	2%	\％\％	\％	\％	\％	0\％	\％	0\％	\％	\％	\％	0\％	\％\％	0\％
7390	88，79，000	－Industrial robots，not elsewhere specified or included	${ }^{5}$	V1	4%	4\％	4\％	3\％	3\％	2\％	2%	\％	0\％	0\％	0\％	\％	0\％	0\％	0\％	0\％	0\％	\％	\％	\％
7391	88，79，000	－Evaporaive air colers	5	NT1	4%	${ }^{4 \%}$	4\％	${ }^{3}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	0\％	\％	\％	0\％	\％	0\％	\％	0\％	\％	\％	\％	\％
${ }^{7392}$	84，79，100	－ota kind sesed in aipors	5	NT1	$4{ }^{4 \%}$	4\％	${ }^{4 \%}$	3\％	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	0\％	0\％	0\％	\％	0\％	\％	\％	\％	0\％	\％	\％
${ }^{7393}$	84，797，900	－omer	5	NT1	4%	4\％	4\％	3\％	${ }^{3} \%$	2%	${ }^{2 \%}$	0\％	\％	\％	0\％	0\％	\％	\％	0\％	0\％	0\％	\％	0\％	0\％
7394	88，78，110	－－Electricall operaled	5	NT1	4%	4%	4%	3\％	3\％	2\％	${ }^{2 \%}$	0\％	0\％	0\％	0\％	0\％	0\％	\％	0\％	0\％	0\％	0\％	\％	0\％
${ }^{7395}$	88，78，120	Noteectricaly operaled	5	NT1	4%	4%	4%	3\％	${ }^{3 \%}$	${ }^{2 \%}$	2\％	\％	\％	\％	\％	\％	\％	0\％	0\％	\％	\％	\％	\％	0\％
${ }^{7396}$	84，78，210	－Electricaly opeated	5	NT1	4%	4%	4\％	3\％	3\％	2\％	2\％	\％	\％	\％	\％\％	\％	\％	\％	\％	\％	\％	\％	\％	\％
${ }^{7397}$	88，78，220	Not electrically opealed	${ }^{5}$	NT1	4%	4\％	4%	3\％	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	0\％	\％	\％
${ }^{7398}$	84，798，920		5	NT1	4\％	4\％	4\％	3\％	3\％	2\％	2\％	\％	0\％	0\％	0\％	0\％	0\％	\％	\％\％	\％\％	0\％	0\％	0\％	0\％
7399	88，78，930	－Other，eletrically opeated	5	NT1	4\％	4\％	4\％	3\％	3\％	2\％	2\％	\％	\％	\％	0\％	\％	\％	\％	\％	\％	0\％	\％	\％	\％
7400	88，78，990	Onerer not etectricaly opeated	5	NT1	$4{ }^{4 \%}$	4\％	4\％	${ }^{3}$	${ }^{3} \%$	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	0\％	\％	\％
7401	88，799，020	－Of goods of subleading 8479.99 .20	5	NT1	$4{ }^{4 \%}$	4\％	4\％	3\％	3\％	${ }^{2 \%}$	${ }^{2 \%}$	\％\％	\％	\％	0\％	\％	\％	\％	\％	0\％	\％	\％	\％	0\％
7402	88，79，030	－Ot other electricall opeated machines	5	${ }^{\text {NT1 }}$	$4{ }^{4 \%}$	4\％	4%	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％	0\％	\％	\％	\％	\％	\％	0\％	0\％	0\％	0\％
7403	84，79，040	－Of nonelectically pepaled machines	5	${ }^{\text {NT1 }}$	$4{ }^{4 \%}$	4\％	4\％	3\％	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	0\％	\％	\％
7804	84，80，000	－Mouding boxes or meat foundy	5	NT1	4%	4\％	4\％	${ }^{3 \%}$	3\％	2\％	2\％	0\％	\％	0\％	0\％	\％	0\％	\％	0\％	0\％	\％	0\％	\％	0\％
${ }^{7} 705$	88，82，000	－Moul bases			4%	4%	4\％	3\％	3\％	2%	2\％	\％	\％	\％\％	\％	\％	\％	\％	\％	\％	0\％	\％	\％\％	\％

$\sqrt{706}$	［84，03，010	Of coper	5	N1	${ }^{4 \%}$	${ }^{4 \%}$	${ }^{4 \%}$	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％\％	\％	\％	0\％	\％\％	\％	\％\％	\％	\％	\％	0\％	\％\％
7407	84，80，3090	Onter	5	NT1	4\％	4%	$4{ }^{4}$	${ }^{3} \%$	3\％	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	0\％	0\％	0\％	\％	\％	\％	0\％	\％	0\％	\％	\％
7708	38，80， 100	－Ijection or compression ypes	5	N1	4\％	4%	4%	${ }^{3 \%}$	3\％	${ }^{2 \%}$	2\％	\％	\％	\％	0\％	\％	\％	0\％	\％	\％	\％\％	0\％	\％	\％
7709	84，804，900	－other	5	N1	4\％	4\％	4\％	3\％	3\％	2\％	${ }^{2 \%}$	\％	\％	\％	0\％	\％	\％\％	\％	\％	\％	0\％	\％	\％	\％
7410	84，85，000	Moust tor gass	5	NT1	4\％	4%	4\％	${ }^{3 \%}$	3\％	${ }^{2 \%}$	2\％	\％	\％	0\％	0\％	\％	\％	\％	\％	\％	\％	\％	\％	\％
7411	88，06，000	Mouss tor mineal maeienas	5	NT1	4%	4\％	4%	${ }^{3 \%}$	3\％	${ }^{2 \%}$	${ }^{2 \%}$	\％	0\％	0\％	\％	\％	\％	\％	\％	\％	\％	\％\％	\％	\％
$7{ }^{7412}$	84，807，10	－Mousis tor foomear soles	5	NT1	4\％	4\％	4\％	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	0\％	0\％	0\％	0\％	\％	\％	\％	\％	0\％	\％	\％	\％	\％
$7{ }^{7413}$	84，80，190	－Oner	5	${ }^{\text {NT1 }}$	4\％	4\％	4\％	${ }^{3 \%}$	3\％	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	0\％	\％	\％	\％	\％	\％	0\％	\％	\％	\％	\％
774	84，80，9，90	－Moulds or foomear soles	5	NT1	4\％	4\％	4\％	${ }^{3 \%}$	3\％	2\％	${ }^{2 \%}$	\％	\％	\％	0\％	\％	\％	0\％	\％	0\％	\％	\％	0\％	\％
7415	84，807，990	Oner	5	NT1	4\％	4\％	4\％	3\％	3\％	2\％	${ }^{2 \%}$	\％	\％	0\％	\％\％	\％	0\％	0\％	\％	\％	\％	0\％	\％	\％
$7{ }^{746}$	3888．10：11	$\begin{aligned} & \text { - - - Manually operated sluice or gate valves with } \\ & \text { inlets or outlets of an internal diameter exceeding } \\ & 5 \mathrm{~cm} \text { but not exceeding } 40 \mathrm{~cm} \end{aligned}$	5	NT1	4\％	4\％	4\％	3\％	3\％	2\％	2\％	\％	\％	\％	\％	\％	\％	0\％	\％	\％	\％	\％	\％	\％
	${ }^{3881.10,19}$	－－Oner	5	NT1	4\％	4%	4%	${ }^{3 \%}$	3\％	${ }^{2 \%}$	2\％	\％	\％	\％	0\％	\％	\％	\％	\％	\％	\％	\％	\％	\％
$7{ }^{7418}$	3888．1022		5	NT1	4\％	$4{ }^{4 \%}$	4\％	${ }^{3 \%}$	3\％	${ }^{2 \%}$	2\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	0\％	\％	\％
7719	${ }^{3881.1022}$	\cdots Wit an inemal diameter 0 tover 2.5 cm	5	NT1	4\％	4\％	4%	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	2\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％
7420	84，81，091		${ }^{5}$	NT1	4\％	4\％	4\％	${ }^{3 \%}$	${ }^{3 \%}$	2\％	2\％	0\％	\％	0\％	0\％	\％	\％\％	\％	\％	0\％	\％	0\％	\％	\％
7721	88，811，099	Onher	5	NT1	4\％	4\％	4\％	3\％	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％	0\％	\％	\％\％	\％\％	0\％	\％	\％	0\％	\％	\％\％
7422	88，812，010	$\begin{aligned} & -- \text { Manually operated sluice or gate valves with inlets } \\ & \text { or outlets of an internal diameter exceeding } 5 \mathrm{~cm} \text { but } \\ & \text { not exceeding } 40 \mathrm{~cm} \end{aligned}$	5	NT1	4\％	4\％	4\％	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	2\％	\％	0\％	\％	\％	\％	0\％	\％	\％	\％	\％	\％	\％	\％
$7{ }^{7223}$	84，412，020	- －Of copper or copper alloys，with an internal diameter of 2.5 cm or less，or of plastics，with an internal diameter of not less than 1 cm and not more than 2.5 cm	5	NT1	4\％	4\％	4\％	3\％	${ }^{3} \%$	2\％	2%	\％	\％	\％	\％\％	\％\％	\％\％	0\％	0\％	\％\％	\％\％	\％\％	\％	\％
$7{ }^{1724}$	84，812，090	－－omer	5	N1	4\％	4\％	4\％	3\％	3\％	2\％	${ }^{2 \%}$	0\％	0\％	0\％	0\％	0\％	\％\％	0\％	0\％	0\％	0\％	\％\％	\％	0\％
724	84，81，010		${ }^{5}$	NT1	4\％	4\％	4\％	3\％	${ }^{3 \%}$	2\％	2\％	0\％	0\％	0\％	0\％	0\％	0\％	\％	\％	\％	\％	\％	\％	\％
7726	38，81，020	－－Of copper or copper alloys，with an internal diameter of 2.5 cm or less	5	N1	${ }^{4 \%}$	$4{ }^{4 \%}$	${ }^{4 \%}$	3\％	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	0\％	\％	\％	0\％	\％	0\％	\％	0\％	\％	\％	\％	\％	0\％
${ }^{7227}$	13，030	－Of plastics，with an internal diameter of not less than 10 cm and not more than 25 cm	5	N1	${ }^{4 \%}$	${ }^{4 \%}$	${ }^{4 \%}$	${ }^{3 \%}$	${ }^{3} \%$	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％	0\％	\％	0\％	\％	\％	\％	\％	\％	\％	0\％
7728	38，813，090	－－other	5	N1	$4{ }^{4 \%}$	4%	4%	${ }^{3 \%}$	${ }^{3 \%}$	2%	${ }^{2 \%}$	\％	0\％	0\％	0\％	0\％	0\％	0\％	0\％	0\％	0\％	\％	\％\％	0\％
7729	84，84，0010	－－Of copper or copper alloys，with an internal diameter of 2.5 cm or less	${ }^{5}$	N1	4\％	$4{ }^{4 \%}$	${ }^{4 \%}$	${ }^{\text {3\％}}$	3\％	${ }^{2 \%}$	${ }^{2 \%}$	\％	0\％	0\％	0\％	\％	\％	0\％	0\％	\％	\％	\％	\％	\％
7730	84，84，020	-- Of plastics，with an internal diameter of not less than 10 cm and not more than 25 cm	5	NT1	${ }^{4 \%}$	${ }^{4 \%}$	4\％	${ }^{\text {\％}}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％	0\％	\％	\％	\％	\％	\％	\％	\％	\％	${ }^{0 \%}$
7731	38，814，090	－－other	5	N1	4%	4%	4%	3\％	${ }^{3}$	2\％	2\％	\％	\％	\％	\％\％	\％	\％	\％	\％	\％	\％	0\％	\％	\cdots
7332	88，88，011	－Of copper r copoperalioys	5	NT1	4%	4\％	$4{ }^{4 \%}$	${ }^{3 \%}$	${ }^{3} \%$	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	0\％
7733	84，88，012	－O other materias	5	NT1	4%	4%	4\％	${ }^{3 \%}$	3\％	2%	2\％	0\％	\％	\％	0\％	\％	\％	0\％	\％	\％	\％	\％	\％	\％
$7{ }^{734}$	84，88，013	\cdots Ofopoer or copperalups	5	NT1	4%	4\％	4\％	3\％	3\％	2\％	2%	\％	\％	\％	0\％	\％	\％\％	\％	\％	\％	\％	\％	\％	\％
7735	38，88，014	\cdots Ofother maeieias	5	v11	$4{ }^{4 \%}$	$4{ }^{46}$	$4{ }^{4 \%}$	3\％	3\％	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％\％	0\％	0\％	\％	\％	\％\％	\％	\％	\％	\％	\％	\％
${ }^{7} 736$	84，88，021	－－－Having inlet or outlet internal diameters not exceeding 2.5 cm	5	N1	$4{ }^{46}$	${ }^{4 \%}$	4\％	3\％	3\％	2\％	2\％	0\％	\％	\％	\％	\％	\％	0\％	\％	\％	\％	\％	\％	\％
7737	88，818，022		5	NT1	4\％	${ }^{4 \%}$	4%	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	0\％	\％	\％	\％	\％	0\％	\％	\％	\％	\％	\％	0\％
7738	88，88，0，30	－－Cocks and valves，whether or not fitted with piezo－electric igniters，for gas stoves or ranges	${ }^{5}$	N1	${ }^{4 \%}$	${ }^{4 \%}$	${ }^{4 \%}$	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	0\％	\％	0\％	0\％	\％	\％	\％	\％	0\％	\％	0\％	0\％	\％
7739	88，88，041		${ }^{5}$	v1	$4{ }^{4 \%}$	${ }^{4 \%}$	${ }^{4 \%}$	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	0\％	0\％	\％	\％	\％	\％\％	\％	\％	\％\％	\％	\％
7740	38，88，049	－－other	5	NT1	4%	4%	4%	${ }^{3 \%}$	\％	2\％	2\％	\％	0\％	0\％	0\％	0\％	0\％	0\％	0\％	0\％	0\％	0\％	\％	\％
$7{ }^{741}$	88，88，0，51	－－Of plastics and of not less than 1 cm and not more than 2.5 cm in internal diameter	${ }^{5}$	NT1	${ }^{4 \%}$	4\％	4\％	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	0\％	0\％	\％	\％	0\％	\％	\％	\％	\％	\％	\％	\％	\％
$7{ }^{742}$	${ }^{84,8818,059}$	\cdots	5	N1	$4{ }^{4 \%}$	4\％	4\％	3\％	${ }^{\circ}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	0\％	\％	0\％	\％\％	\％\％	\％\％	\％	0\％	\％	\％	\％	\％\％
$7{ }^{743}$	88，88，061	－－－Manually operated gate valves with an internal diameter exceeding 5 cm but not exceeding 40 cm	5	NT1	4\％	4\％	4\％	3\％	${ }^{3 \%}$	${ }^{2 \%}$	2\％	0\％	0\％	0\％	0\％	\％	\％	0\％	\％	\％	\％	\％	\％	\％
$7{ }^{744}$	88，88，0，02	Oher	5	NT1	4\％	4\％	4\％	${ }^{3 \%}$	3\％	${ }^{2 \%}$	2\％	\％	0\％	0\％	0\％	0\％	0\％	\％	\％	\％	\％	0\％	\％	\％
7745	38，881，063	Other	5	NT1	4%	4%	4%	${ }^{3 \%}$	3\％	${ }^{2 \%}$	2\％	\％	0\％	0\％	0\％	\％	\％	0\％	\％	\％	\％	\％	\％	\％
7446	88，88，0，64	-- Of plastics and of not less than 1 cm and not more than 2.5 cm in internal diameter	${ }^{5}$	NT1	4%	4\％	4\％	3\％	${ }^{3 \%}$	2\％	2\％	0\％	0\％	0\％	0\％	\％	0\％	\％	0\％	\％	\％	\％	\％	\％
7747	${ }^{38,888,065}$	－．．otrer	5	N1	4%	${ }^{4 \%}$	4\％	${ }^{3 \%}$	3\％	${ }^{2 \%}$	${ }^{2 \%}$	\％	0\％	\％	0\％	0\％	0\％	0\％	0\％	0\％	0\％	\％\％	\％	0\％
7448	38，81，066	- －Of plastics and of not less than 1 cm and not more than 2.5 cm in internal diameter	5	N1	4\％	4\％	4\％	3\％	3\％	2\％	2\％	\％	\％	0\％	0\％	\％	\％\％	\％	\％	\％	\％	\％	\％	\％
7449	38，88，0，07	－－other	5	NT1	4%	${ }^{4 \%}$	$4{ }^{4 \%}$	${ }^{3 \%}$	3\％	${ }^{2 \%}$	${ }^{2 \%}$	\％	0\％	0\％	0\％	0\％	0\％	0\％	0\％	0\％	0\％	\％	0\％	\％
7450	84，81，071	Of plastics and of not less than 1 cm and not more than 2.5 cm in internal diameter	5	NT1	4\％	4\％	4\％	3\％	3\％	2\％	2%	\％	\％	0\％	0\％	\％	\％\％	\％	\％	\％	\％	\％	\％	\％
7751	88，88，072	－－Other	5	NT1	4%	${ }^{4 \%}$	4%	3\％	3\％	${ }^{2 \%}$	2\％	\％	0\％	0\％	0\％	\％	\％	\％	\％	\％	\％	\％	\％\％	0\％
7752	84，81，073	- －－Having inlet and outlet internal diameters of more than 5 cm but not more than 40 cm	${ }^{5}$	NT1	4\％	4\％	4\％	3\％	3\％	2\％	${ }^{2 \%}$	\％	\％	\％	0\％	\％	\％	0\％	\％	\％	0\％	\％	\％	\％
7753	84，88，074	--- Having inlet and outlet internal diameters of more than 40 cm	5	NT1	4\％	${ }^{4 \%}$	${ }^{4 \%}$	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	0\％	0\％	\％	0\％	\％	0\％	0\％	\％	\％	0\％	\％	\％
7754	84，88，075	Of plastics and of not less than 1 cm and not more than 2.5 cm in internal diameter	5	$\stackrel{ }{\text { N1 }}$	4\％	4\％	${ }^{4 \%}$	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2} \%$	${ }^{2 \%}$	\％	\％	\％	0\％	${ }^{0 \%}$	${ }^{0 \%}$	0\％	\％	0\％	\％	\％	\％	\％
7745	88，88，0，76	\cdots	5	NT1	4\％	4\％	4%	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	0\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％
${ }^{7456}$	34，8，8，081	－－－Of plastics and of not less than 1 cm and not more than 2.5 cm in internal diameter	${ }^{5}$	N1	4%	4%	4\％	3\％	3\％	2\％	2\％	\％	\％	\％	0\％	0\％	0\％	\％	\％	\％\％	\％	\％	\％	\％\％
7477	88，881，082	\cdots	5	NT1	4\％	4\％	4\％	${ }^{3 \%}$	3\％	${ }^{2 \%}$	2\％	0\％	\％	0\％	0\％	0\％	0\％	\％	\％	\％	\％	\％	\％	\％
$7{ }^{7588}$	84，88，083		5	NT1	4\％	4\％	4\％	3\％	3\％	2\％	${ }^{2 \%}$	0\％	\％	\％	0\％	\％	\％	\％	\％	\％	\％	\％	\％	\％
7749	84，88，084		${ }^{5}$	N1	${ }^{4 \%}$	4\％	4\％	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％	\％\％	0\％	\％\％	\％\％	\％\％	\％	0\％	\％	0\％	0\％
7740	${ }^{84,888,087}$	－－－－Fuel cut－off valves for vehicles of heading $87.02,87.03$ or 87.04	5	N1	${ }^{4 \%}$	${ }^{4 \%}$	$4{ }^{4 \%}$	3\％	3\％	${ }^{2 \%}$	${ }^{2 \%}$	0\％	\％	\％	\％	\％	0\％	0\％	0\％	\％	\％	0\％	\％	\％
$7{ }^{761}$	38，88， 8 ，88	－Onner	5	NT1	4%	4%	4%	${ }^{3 \%}$	3\％	${ }^{2 \%}$	2\％	\％	\％\％	0\％	\％	0\％	\％	0\％	\％	\％	\％	0\％	\％	\％
7462	84，881，089	－－Other，manually operated，weighing less than 3 kg, surface treated or made of stainless steel or nickel	${ }_{5}$	NT1	$4{ }^{4 \%}$	4\％	4\％	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	0\％	\％	\％	0\％	\％	\％	\％	\％	\％	\％	\％
$7{ }^{763}$	88，88，091	－－－Water taps of copper or copper alloy，with an internal diameter of 2.5 cm or less	${ }^{5}$	NT1	4%	${ }^{4 \%}$	${ }^{4 \%}$	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％	\％	\％	${ }^{\text {\％}}$	\％	\％	${ }^{\text {\％}}$	${ }^{0 \%}$	\％	\％	0\％
7764	84，81，092	$-\cdots-$ Fuel cut－off valves for vehicles of heading $87.02,87.03$ or 87.04	${ }^{5}$	NT1	4\％	${ }^{4 \%}$	${ }^{4 \%}$	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％	0\％	\％	\％ 0	\％	\％	\％	\％	${ }^{0 \%}$	\％	\％
7465	84，888，099	－Oiner	5	NT1	4%	4\％	4\％	${ }^{3 \%}$	3\％	2\％	${ }^{2 \%}$	0\％	0\％	0\％	0\％	0\％	0\％	\％\％	0\％	\％	0\％	\％	\％\％	0\％
$7{ }^{766}$	38，89，9010	－－Housings for sluice or gate valves with inlet or outlet of an internal diameter exceeding 50 mm but not exceeding 400 mm	${ }_{5}$	NT1	4%	${ }^{4 \%}$	4%	${ }^{3} \%$	3\％	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％
${ }^{7467}$	84，819，021	－－Bodies tor waler taps	5	${ }^{\text {NT1 }}$	4%	${ }^{4 \%}$	4\％	${ }^{3 \%}$	3\％	${ }^{2 \%}$	${ }^{2 \%}$	\％\％	0\％	\％\％	0\％	\％\％	\％\％	0\％	0\％	\％	0\％	\％	0\％	0\％
7468	88，89，022	－－Bodies，for liquefied petroleum gas（LPG） cylinder valves	${ }^{5}$	NT1	4%	4\％	4\％	${ }^{3 \%}$	3\％	2\％	2\％	0\％	0\％	0\％	0\％	0\％	0\％	\％	\％	\％	\％	\％	\％	\％
7469	88，89，023	\cdots Bodies，oter	5	NT1	4%	4\％	4\％	${ }^{3 \%}$	3\％	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％	0\％	\％	0\％	\％\％	\％	\％	\％	\％	\％\％	\％
77^{770}	88，89，029	－Oner	5	NT1	$4{ }^{4 \%}$	4%	4\％	${ }^{3 \%}$	3\％	${ }^{2 \%}$	2\％	\％	\％	\％\％	0\％	\％	\％	\％	\％	\％	\％	\％	0\％	\％
7^{7471}	88，89，0，031	－Ot copere or coperealloys	5	NT1	4%	4%	4%	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％	\％	\％	\％	\％	\％	0\％	\％	\％	\％	\％
7772	88，89，0，39	－．Other	5	${ }^{\text {NT1 }}$	$4{ }^{4 \%}$	4\％	4\％	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	0\％	\％	\％	\％	0\％	\％	\％	\％	\％	\％	\％	\％	0\％
7^{773}	84，89，041	－Of copere or copperaliols	5	NT1	$4{ }^{4 \%}$	4%	4%	${ }^{3 \%}$	3\％	${ }^{2 \%}$	${ }^{2 \%}$	0\％	0\％	0\％	0\％	0\％	0\％	0\％	0\％	\％	0\％	\％	0\％	0\％
${ }^{7474}$	${ }^{88,89,0,49}$	－－Other	5	NT1	4%	4%	4%	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％
7775	88，89，0900	－oner	5	${ }^{\text {NT1 }}$	$4{ }^{4 \%}$	4\％	${ }^{4 \%}$	${ }^{3 \%}$	${ }^{3} \%$	${ }^{2 \%}$	${ }^{2 \%}$	\％	0\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％
${ }^{7776}$	${ }^{84,821,000}$	－Balbeaings	5	${ }^{\text {NT1 }}$	$4{ }^{4 \%}$	${ }^{4 / 6}$	4%	3\％	${ }^{3 \%}$	2%	${ }^{2 \%}$	\％	\％	\％	\％	\％\％	\％\％	0\％	\％	\％	\％	\％	\％	0\％
${ }^{7477}$	84，82，200	Trapered oller bearings，including cone and tapereded roler assembies	${ }^{5}$	NT1	4%	${ }^{4 \%}$	4%	${ }^{3 \%}$	3\％	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％	\％	\％	\％	0\％	\％	\％	\％	\％	\％	\％
${ }^{7778}$	88，823，000	－Spheicalalioler bearings	5	N1	4\％	${ }^{4 \%}$	${ }^{4 \%}$	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％	\％	\％	\％	\％	0\％	\％	\％	\％\％	\％	\％
7779	38，824，000	Needil eroler beaings	${ }^{5}$	NT1	$4{ }^{4 \%}$	$4{ }^{46}$	4%	${ }^{3 \%}$	3\％	2\％	2\％	\％\％	\％\％	0\％	\％\％	\％	\％	\％\％	\％	\％	0\％	\％	\％	\％
7880	38，825，000	－Ohere cyliniciala olore bearing	5	NT1	4%	${ }^{4 \%}$	4%	3\％	3\％	${ }^{2 \%}$	${ }^{2 \%}$	\％	0\％	\％	\％	\％	\％	\％	\％	0\％	\％	\％	\％	\％
7781	${ }^{8,8,888}$	Ohter，inculuing combined balvoler beaming	5	NT1	${ }^{4 \%}$	${ }_{4}^{4 \%}$	4\％	3\％	3\％	${ }^{2 \%}$	2\％	\％	0\％	0\％	0\％	0\％	0\％	\％	\％	\％	\％	0\％	\％	\％

香港•ASEAN FTAにかかる調査報告書
 別添2－4 原産地品の関税撤廃スケジュール

（ラオス）

7482	${ }^{88,829,100}$	Balls，needes and ollers	5	｜NT1	${ }^{4 \%}$	${ }^{4 \%}$	4\％	3\％	${ }^{3 \%}$	${ }^{2 \%}$	2\％	0\％	0\％	0\％	0\％	0\％	0\％	0\％	0\％	0\％	0\％	0\％	0\％	\％
7883	88，82，9900	Other	5	v1	4\％	4%	4\％	3\％	3\％	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％
7884	8883．10．10	－－For madiney of heading 84.29 or 8 4，30	5	NT	4%	$4{ }^{4 \%}$	${ }^{4 \%}$	3\％	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％
7885	${ }^{8483.10 .24}$	－Forvenicles of reading 87.11	5	V1	4%	4%	4%	3\％	\％\％	${ }^{2 \%}$	${ }^{2 \%}$	0\％	\％	\％	\％	\％	0%	\％	\％	\％	\％	\％	\％	\％
7786	． 10.25	－－For vehicles of a cylinder capacity not exceeding $2,000 \mathrm{cc}$	5	V1	4\％	4\％	${ }^{4 \%}$	${ }^{\text {3\％}}$	${ }^{\text {3\％}}$	${ }^{2 \%}$	${ }^{2 \%}$	0\％	\％	0\％	0\％	0\％	0\％	0\％	0\％	\％	0\％	0\％	\％	\％
${ }^{787}$	483.10 .26	－－－For vehicles of a cylinder capacity exceeding $2,000 \mathrm{cc}$ but not exceeding $3,000 \mathrm{cc}$	5	vr1	4\％	${ }^{4 \%}$	4\％	${ }^{3 \%}$	${ }^{3 \%}$	2\％	${ }^{2 \%}$	0\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	0\％	0\％	\％
${ }^{7888}$	10.27	－．．．．For ve vicies of a colinider capacity execesing	5	V1	${ }^{4 \%}$	4\％	4\％	3\％	${ }^{3 \%}$	${ }^{2 \%}$	2\％	0\％	\％	0\％	0\％	0\％	0\％	\％	\％	0\％	\％	\％	0\％	0\％
7889	${ }^{8883.10 .31}$		5	NT1	${ }^{4 \%}$	4%	$4{ }^{4 \%}$	3\％	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	0\％	0\％	0\％	0\％	0\％	0\％	0\％	0\％	0\％	0\％	0\％	\％	0\％
7490	88，83，0，39	Other	5	vT1	4\％	4%	${ }^{4 \%}$	3\％	3\％	2\％	2\％	0\％	\％	\％	0\％	0\％	\％	\％	0\％	\％	0\％	\％	\％	\％
7491	${ }^{88,83,090}$	－－omer	5	NT1	4%	${ }^{4 \%}$	${ }^{4 \%}$	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％\％	\％	0\％	\％	\％\％	\％\％	\％	\％\％	0\％	\％	\％	\％	\％
7492	88，83，2020	－FFor machiney of heaing 84.29 or 84.30	5	v11	4%	${ }^{4 \%}$	4%	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	0\％	\％	0\％	0\％	0\％	\％	0\％	\％	0\％	\％	0\％
7993	${ }^{88,83,030}$	－Fore engines of venides of Chapere 87	5	NT1	4\％	$4{ }^{4 \%}$	4%	${ }^{3 \%}$	3\％	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	0\％
7794	${ }^{88,82,090}$	－－other	5	NT1	4%	4%	4\％	3\％	3\％	${ }^{2 \%}$	${ }^{2 \%}$	\％	0\％	\％	0\％	0\％	\％	0\％	0\％	\％	\％	0\％	0\％	\％\％
7995	88，83，020	\cdots For machiney of theaing 84.29 or84，30	5	${ }^{\text {NT1 }}$	4%	4\％	${ }^{4 \%}$	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％\％	0\％	\％	\％	\％	\％	\％	\％	\％	\％\％	\％	\％	\％
7496	84，83，030	－Forengines of venides of C Chapere 87	5	NT1	4\％	4\％	4\％	3\％	3\％	2\％	${ }^{2 \%}$	\％	\％	\％	\％	\％	0\％	\％	\％	\％	\％	\％	\％	\％
7497	${ }^{84,83,909}$	－Onter	5	VT1	4%	4\％	$4{ }^{4 \%}$	${ }^{3 \%}$	${ }^{3 \%}$	2\％	${ }^{2 \%}$	0\％	\％\％	\％	\％	\％\％	0\％	\％	\％	\％\％	0\％	\％	0\％	0\％
7498	84，83，0，20	\cdots－For maine vessels	5	V1	4\％	4%	${ }^{4 \%}$	${ }^{\text {3\％}}$	3\％	${ }^{2 \%}$	2\％	\％	\％	0\％	\％	\％\％	\％	0\％	\％\％	\％	\％	\％\％	\％	\％
7499	88，83，0，30	\cdots－For madiney of theaing 84.29 or 84.30	5	NT1	4\％	4\％	4\％	3\％	3\％	2\％	${ }^{2 \%}$	\％	\％	\％	\％	0\％	\％	\％	\％	0\％	\％	\％	\％	\％
7500	84，84，0，90	－－other	5	NT1	4%	4\％	4\％	3\％	3\％	2\％	${ }^{2 \%}$	0\％	0\％	0\％	0\％	0\％	\％	0\％	0\％	0\％	\％\％	0\％	0\％	0\％
7501	${ }^{8,8,85,000}$	－Fipheels and pulues，in inuluing puley blocks	5	NT1	4\％	4\％	4\％	${ }^{3}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	0\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	0\％
7502	88，88，000	－Clutches and shaft couplings（including universal	5	NT1	${ }^{4 \%}$	$4{ }^{4 \%}$	${ }^{4 \%}$	3\％	3\％	${ }^{2 \%}$	${ }^{2 \%}$	0\％	0\％	0\％	0\％	0\％	0\％	0\％	0\％	0\％	0\％	0\％	\％	\％
7503	88，83，011	－Fortraciors of stubheading 870．1．10 or 8701.90	5	V1	4\％	$4{ }^{4 \%}$	4%	${ }^{3 \%}$	3\％	${ }^{2 \%}$	${ }^{2 \%}$	0\％	0\％	\％	0\％	0\％	0\％	0\％	0\％	\％	\％	\％	0\％	\％
7504	88，83，013	－For oner r tactors of heading 87.01	5	T1	4%	$4{ }^{4 \%}$	4%	3\％	3\％	2\％	2\％	0\％	\％	0\％	0\％	0\％	0\％	0\％	0\％	0\％	0\％	0\％	\％	\％
7505	${ }^{88,83,014}$	－For goods of heading 87．11	5	V1	4\％	${ }^{4 \%}$	4%	3\％	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％	\％	\％	\％	0\％	\％	\％	\％	\％	\％	\％
7506	88，83，015	$\stackrel{-F o r o t e r e ~ f o o d s ~ o f ~ C h a p e r e ~}{87}$	5	V1	4%	4\％	${ }^{4 \%}$	3\％	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％	\％	\％	\％	0\％	\％	\％	\％	\％	\％\％	\％
7507	88，83，0，19	Other	5	NT1	4%	4%	4\％	3\％	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	0\％	\％	0\％	\％	\％	\％	\％	\％	\％\％	\％	0\％	\％
$7{ }^{7508}$	${ }^{88,83,091}$	－For goods of stubeading 870.10 or 8701.90	5	NT1	4%	4\％	4\％	3\％	3\％	${ }^{2 \%}$	${ }^{2 \%}$	\％	0\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	0\％	\％
7509	88，83，093	For onere racours of heading 8.01	5	v1	4\％	4\％	$4{ }^{4}$	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％	\％	\％	\％	0\％	\％	0\％	\％	0\％	\％	0\％
7510	${ }^{8,4,83,094}$	\cdots For goods of heading 87.11	5	NT1	4\％	4\％	4\％	${ }^{3 \%}$	3\％	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％	\％	\％	0\％	\％	\％	\％\％	\％	\％	\％	\％
7511	${ }^{88,83,095}$	－For ofter goods of Chapere 87	5	VT1	4%	4\％	$4{ }^{4 \%}$	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	0\％	\％\％	0\％	\％	\％	\％\％	0\％	\％	\％\％	\％\％	\％	0\％	0\％
7512	88，83，099	－－Oher	5	NT1	${ }^{4 \%}$	4\％	${ }^{4 \%}$	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	0\％	0\％	0\％	0\％	0\％	0\％	0\％	0\％	0\％	0\％	0\％	0\％	\％
$7{ }^{7513}$	841，00	－Gaskets and similar joints of metal sheeting combined with other material or of two or more layers of metal	${ }^{5}$	V1	4\％	4\％	4\％	${ }^{3 \%}$	${ }^{3} \%$	2\％	${ }^{2 \%}$	\％	\％	\％	\％	\％\％	0\％	\％	\％	0\％	0\％	\％	\％	\％
7514	34，842，000	－Mechanical seals	5	v1	4%	4\％	4\％	3\％	3\％	2\％	${ }^{2 \%}$	\％	0\％	0\％	\％\％	0\％	\％\％	0\％	0\％	0\％	\％	0\％	0\％	\％
7515	88，89，900	－Oner	5	vT1	4%	4%	4\％	${ }^{3 \%}$	3\％	2\％	${ }^{2 \%}$	\％	0\％	\％	0\％	\％	\％	\％	0\％	\％	\％	\％	0\％	\％
7516	${ }^{8868.10,10}$	－A Appataus tor rapid heating of semiconductor	${ }^{5}$	NT1	4\％	4\％	4%	3\％	3\％	2\％	${ }^{2 \%}$	\％	0\％	0\％	0\％	\％\％	\％	0\％	\％	\％\％	\％	0\％	\％	0\％
${ }^{7517}$	0.20	－－Spind dyers sor somiconductor waler focosessing	5	V1	4%	${ }^{4 \%}$	4%	3\％	${ }^{3 \%}$	${ }^{2 \%}$	2\％	\％	0\％	0\％	0\％	\％	0\％	\％	\％	\％	\％	\％\％	\％\％	\％
${ }^{7518}$	8846．10．30	－－Machines for working any material by removal of material，by laser or other light or photon beam in the production of semiconductor wafers	5	${ }^{\text {NT1 }}$	4%	4%	${ }^{4 \%}$	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	0\％	\％	\％	0\％	\％	0\％	\％	\％\％	\％	0\％	\％	\％
${ }^{7519}$	88，861，040	－Machines and apparaus sior seswing monorysal	5	VT1	${ }^{4 \%}$	${ }^{4 \%}$	${ }^{4 \%}$	${ }^{3 \%}$	3\％	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％	\％	\％	\％	\％	\％\％	\％	\％	\％\％	\％	\％
7520	88，86，1，50	－－Grinding，polishing and lapping machines for processing of semiconductor wafers	5	vT1	4%	4\％	4\％	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	0\％	\％	\％	\％	0\％	0\％	0\％	\％	\％	\％	\％	\％
${ }^{7521}$	61，060	－－Apparatus for growing or pulling monocrystal semiconductor boules	${ }^{5}$	V1	4\％	${ }^{4 \%}$	4\％	3\％	3\％	2\％	${ }^{2 \%}$	\％	\％	\％	\％	\％	\％	\％	0\％	\％	\％	\％	\％	0\％
752	${ }^{88,861,090}$	－－Oher	5	NT1	4%	4\％	4\％	3\％	3\％	2\％	${ }^{2 \%}$	0\％	\％	\％\％	0\％	\％\％	0\％	0\％	0\％	0\％	0\％	\％	0\％	\％
75	88，86，0011	－－Chemical vapour deposition apparatus for semiconductor production	5	NT1	4\％	${ }^{4 \%}$	4%	${ }^{3} \%$	${ }^{3 \%}$	2\％	${ }^{2 \%}$	\％	\％	\％	\％	\％	\％	\％	\％	0\％	0\％	\％	\％	\％
$7{ }^{7524}$	862，012	－－－Epitaxial deposition machines for semiconductor wafers；spinners for coating photographic emulsions on semiconductor wafers	5	NT1	4\％	4\％	4\％	3\％	3\％	${ }^{2 \%}$	${ }^{2 \%}$	\％	0\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	0\％	0\％
${ }^{7525}$	88，86，013	－－－Apparatus for physical deposition by sputtering on semiconductor wafers；physical deposition apparatus for semiconductor production	5	V1	4\％	4\％	${ }^{4 \%}$	3\％	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	0\％	0\％	\％\％	\％	\％\％	\％	\％	\％\％	\％	\％	\％	\％
75	${ }^{88,86,019}$	－Other	5	vT1	4\％	${ }^{4 \%}$	4%	3\％	${ }^{3 \%}$	2\％	${ }^{2 \%}$	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	0\％	\％	\％
${ }^{7527}$	${ }^{8,468,021}$	$\begin{aligned} & \text {-- - Ion implanters for doping semiconductor } \\ & \text { materials } \end{aligned}$	${ }^{5}$	VT1	4\％	${ }^{4 \%}$	4\％	3\％	3\％	2\％	${ }^{2 \%}$	\％	0\％	0\％	\％	\％	0\％	\％	\％\％	\％	0\％	\％	${ }^{0 \%}$	0\％
$7{ }^{7528}$	2，882，029	\cdots	${ }^{5}$	NT1	4\％	${ }^{4 \%}$	4\％	3\％	${ }^{3 \%}$	2\％	${ }^{2 \%}$	\％\％	\％	\％	\％\％	\％	\％\％	\％	\％	\％\％	\％	\％	\％	\％
29	${ }^{8,482,031}$		5	NT1	4\％	4\％	4\％	3\％	3\％	2\％	2\％	0\％	0\％	0\％	0\％	\％\％	0\％	\％\％	0\％	0\％	0\％	\％	0\％	\％
7550	${ }^{8,4682,032}$		${ }^{5}$	vT1	4\％	4\％	4\％	3\％	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	0\％	\％	0\％	\％	0\％	0\％	0\％	0\％	\％	\％	0\％
	${ }^{84,682033}$	$\begin{aligned} & \text {-- Apparatus for wet etching, developing, stripping } \\ & \text { or cleaning semiconductor wafers } \end{aligned}$	${ }^{5}$	V1	${ }^{4 \%}$	$4{ }^{4 \%}$	${ }^{4 \%}$	3\％	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	0\％	0\％	0\％	\％	\％	0\％	0\％	0\％	\％\％	0\％	0\％	\％	0\％
7532	${ }^{88,882,039}$	－Ooter	5	NT	4%	4\％	4\％	${ }^{3 \%}$	3\％	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	0\％	\％	\％\％	\％	\％\％	0\％	\％\％	\％	\％\％	\％	\％
753	88，86，0411	－Diect witeornemereraparatus	5	NT1	4%	4\％	4\％	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	0\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％
75	${ }^{88,68,042}$	－Step and fepeat aligners	5	NT1	4%	4%	4%	3\％	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	0\％	\％	\％	0\％	\％	\％	0\％	\％	\％	0\％	0\％	\％
75	${ }^{88,862,049}$	－other	5	NT1	4%	4%	4\％	3\％	3\％	2\％	${ }^{2 \%}$	\％	0\％	0\％	0\％	0\％	0\％	0\％	0\％	\％\％	\％	0\％	0\％	\％\％
$7{ }^{756}$	88，88，2051	－－Dicing machines for scribing or scoring semiconductor wafers	5	${ }^{\text {NT1 }}$	4\％	$4{ }^{4 \%}$	${ }^{4 \%}$	${ }^{3 \%}$	3\％	${ }^{2 \%}$	2\％	\％	0\％	\％	0\％	\％	0\％	\％	\％	\％	0\％	0\％	0\％	0\％
753	${ }^{8,4,82,059}$	－Onter	5	NT1	4%	4%	4\％	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	0\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％
${ }^{7538}$	88，862，091	－－－Lasercutters for cutting contacting tracks in semiconductor production by laser beam	${ }^{5}$	NT1	4\％	4\％	\％	3\％	3\％	2\％	${ }^{2 \%}$	0\％	0\％	0\％	\％	\％	\％\％	\％	\％	\％	\％	\％	\％	\％\％
7539	88，862，992	－－Machines for bending，folding and straightening semiconductor leads	5	v1	4%	4\％	4\％	\％	${ }^{3 \%}$	2\％	${ }^{2 \%}$	\％	\％	\％	0\％	\％	\％	0\％	\％	\％\％	\％	\％	0\％	\％
$7{ }^{7540}$	88，86，${ }^{\text {，993 }}$	－－Resistance heated furnaces and ovens for the manufacture of semiconductor devices on semiconductor wafers	5	NT1	4\％	${ }^{4 \%}$	$4{ }^{4 \%}$	3\％	3\％	${ }^{2 \%}$	${ }^{2 \%}$	0\％	0\％	0\％	\％	\％	\％	\％	0\％	\％\％	\％	0\％	${ }^{\text {\％}}$	${ }^{0 \%}$
754	88，68， 094	－－－Inductance or dielectric furnaces and ovens for the manufacture of semiconductor devices on semiconductor wafers	5	Nr1	4\％	4\％	4\％	${ }^{3 \%}$	3\％	2\％	${ }^{2 \%}$	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％
$7{ }^{7542}$	88，68，209	－－Automated machines for the placement or the removal of components or contact elements on semiconductor materials	${ }^{5}$	NT1	4\％	4\％	4\％	3\％	${ }^{3}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	0\％	\％	\％\％	\％	0\％	\％	\％	\％	\％	0\％	\％	\％
${ }^{7543}$	88，862，099	－－Other	5	NT1	4%	4\％	4\％	3\％	3\％	2\％	2\％	0\％	0\％	0\％	0\％	0\％	0\％	0\％	0\％	0\％	\％	0\％	0\％	\％\％
75	88，86，${ }^{\text {a }}$	－－Apparatus for dry etching patterns on flat panel display substrates	${ }^{5}$	NT1	4\％	4\％	4\％	${ }^{3 \%}$	${ }^{3 \%}$	2\％	2\％	\％	0\％	\％	\％	\％	0\％	0\％	\％	\％	\％	0\％	0\％	0\％
${ }^{7545}$	84，86，020		${ }^{5}$	NT1	4\％	4\％	${ }^{4 \%}$	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	0\％	\％	\％	0\％	\％	\％	\％	\％	0\％	0\％	\％	\％	\％
${ }^{7546}$	84，86，030		5	NT1	4\％	4%	4\％	3\％	3\％	2\％	2\％	\％\％	\％	\％	\％\％	0\％	\％\％	\％	\％\％	\％\％	\％\％	\％	0\％	\％
${ }^{7547}$	88，86，090	－－Oher	5	NT1	4%	4\％	4\％	3\％	3\％	2\％	${ }^{2 \%}$	\％\％	\％	0\％	\％\％	0\％	\％\％	\％	0\％	0\％	0\％	\％	0\％	\％
${ }^{7548}$	84，864，010		5	N1	4\％	4\％	${ }^{4 \%}$	3\％	3\％	${ }^{2 \%}$	${ }^{2 \%}$	0\％	\％	\％	\％	\％	\％	\％	\％	0\％	\％	\％	\％	\％

${ }^{7549}$	88，86，020	－Die attach apparatus，tape automated bonders， wire bonders and encapsulation equipment for the assembly of semiconductors；automated machines for transport，handling and storage of semiconductor wafers，wafer cassettes，wafer boxes and other materials for semiconductor devices	5	NT1	4%	4\％	4\％	3\％	3\％	2\％	2\％	0\％	0\％	0\％	\％\％	\％	0\％	\％	0\％	0\％	\％	\％\％	0\％	\％\％
$7{ }^{750}$	84，884，030	－Mouss tor manutactur of semiconductor deveces	5	NT1	${ }^{4 \%}$	4\％	4\％	3\％	3\％	${ }^{2 \%}$	${ }^{2 \%}$	0\％	\％	\％	0\％	\％	0\％	0\％	\％	0\％	\％	\％\％	0\％	0\％
$7{ }^{751}$	88，86，040	Optical stereoscopic microscopes fitted with equipment specifically designed for the handling and transport of semiconductor wafers or reticles	5	${ }^{\text {NT1 }}$	4\％	4\％	4\％	3\％	3\％	2\％	2\％	0\％	0\％	0\％	\％	\％	0\％	0\％	\％	\％	0\％	\％	\％	\％
$7{ }^{752}$	88，864，550	- Photomicrographic microscopes fitted with equipment specifically designed for the handling and transport of semiconductor wafers or reticles	5	NT1	4\％	4\％	4\％	3\％	3\％	2\％	2\％	0\％	0\％	0\％	\％	0\％	0\％	\％	\％	\％	\％	\％	\％	\％
$7{ }^{7533}$	84，86，060	－－Electron beam microscopes fitted with equipment specifically designed for the handling and transport of semiconductor wafers or reticles	5	NT1	${ }^{4 \%}$	${ }^{4 \%}$	${ }^{4 \%}$	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	0\％	\％	0\％	0\％	0\％	\％	\％	\％	\％	\％	0\％	\％	0\％
7754	88，86，070	－Pattern generating apparatus of a kind used for producing masks or reticles from photoresist coated substrates	${ }^{5}$	NT1	4\％	4\％	4\％	3\％	3\％	${ }^{2 \%}$	2\％	\％\％	0\％	0\％	\％	0\％	\％\％	\％	\％	\％	0\％	\％	\％	\％
755	${ }^{8,8,86,990}$	－－Onter	5	NT1	4\％	4\％	4\％	3\％	3\％	2\％	2%	0\％	0\％	0\％	0\％	0\％	0\％	0\％	0\％	0\％	\％\％	\％\％	\％\％	0\％
7556	8，8，89，011	wor apparaus tor rapid heasingo isemiconducior	${ }^{5}$	NT1	4%	4%	4%	${ }^{3 \%}$	3\％	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％	\％	0\％	\％	\％	0\％	0\％	\％	\％	\％	\％
7557	8，869，012	$\underset{\text { processing }}{\cdots}$ O Ifyers for semiconductor water	5	NT1	${ }^{4 \%}$	4\％	${ }^{4 \%}$	${ }^{3 \%}$	${ }^{3 \%}$	2\％	${ }^{2 \%}$	\％	0\％	\％	0\％	\％	0\％	\％	\％	\％	\％	\％	\％	\％
$7{ }^{7588}$	88，86，013		5	NT1	4%	4%	4\％	3\％	3\％	2\％	2\％	\％	0\％	\％	0\％	0\％	0\％	\％\％	0\％	\％\％	\％	\％	0\％	\％
7559	88，86，014	．．．．Tool holdders and selfi－penining dieneads；work holders，dividing heads and others special attachments for machine tools	5	NT1	4\％	4\％	4\％	3\％	3\％	${ }^{2 \%}$	2\％	0\％	\％	0\％	\％	\％\％	0\％	0\％	\％	\％	\％\％	\％	\％	0\％
7560	88，86，015	－Other	5	NT1	4\％	4\％	4\％	3\％	3\％	2\％	${ }^{2 \%}$	0\％	0\％	\％	\％\％	\％	0\％	0\％	0\％	\％	\％	0\％	\％	\％\％
$7{ }^{7561}$	8，8，89，016	$\begin{array}{\|l\|} \hline \cdots \text { Of giniding, polishing and lapping machines for } \\ \text { processing of semiconductor wafers } \end{array}$	5	NT1	4\％	4\％	4\％	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％	\％\％	\％	\％	\％	\％	\％	\％	\％	\％	\％
${ }^{7562}$	84，889，017	－OO apparatus for growing or puling monocrystal	5	NT	${ }^{4 \%}$	4%	${ }^{4 \%}$	3\％	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	0\％	\％	0\％	0\％	\％	0\％	\％	\％	\％	\％	\％	0\％	0\％
7563	8，8，89，019	－onter	5	NT1	4\％	4\％	4%	3\％	3\％	2\％	2\％	0\％	0\％	\％	\％	\％	0\％	\％	0\％	\％	\％	0\％	0\％	\％\％
$7{ }^{764}$	8，8，89，021	\cdots Of chemical vapour depostion apparatus for semiconductor production	5	NT1	$4{ }^{4 \%}$	4\％	4\％	3\％	3\％	${ }^{2 \%}$	2\％	\％	0\％	0\％	0\％	0\％	0\％	0\％	\％	\％	\％	\％	\％	\％\％
7565	88，86，022	- Of epitaxial deposition machines for semiconductor wafers；of spinners for coating photographic emulsions on semiconductor wafers	5	NT1	4\％	4\％	4\％	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％	\％	0\％	0\％	0\％	\％	0\％	0\％	\％	\％	0\％
${ }^{7566}$	88，86，023	\cdots Of ion implanters for dopping semiconductor materials；of apapparatus for physical deposititon by sputtering on semiconductor wafers；of physical deposition apparatus for semiconductor provuction； of direct write－on－water apparatus，step and repeat aligners and other lithography equipment	5	NT1	4\％	4\％	4\％	3\％	3\％	2\％	2\％	\％	\％	0\％	\％	\％	0\％	\％	\％\％	0\％	0\％	\％\％	0\％	\％
$7{ }^{7567}$	88，86， 24	－－－Tool holders and self－opening dieheads；work holders；dividing heads and other special attachments for machine tools	${ }^{5}$	NT1	4\％	4\％	4\％	${ }^{3 \%}$	${ }^{3 \%}$	2\％	2%	\％	\％	0\％	0\％	\％	0\％	0\％	0\％	\％	\％	\％	\％\％	\％
7568	8，8，89，025	－－Oner	5	NT1	4%	4%	$4{ }^{4}$	3\％	3\％	2\％	2\％	0\％	0\％	\％	\％\％	0\％	0\％	0\％	0\％	\％	\％	0\％	\％	\％
7569	88，86，026	－Tool holders and self－opening dieheads；workholders；dividing heads and other special attachments for machine tools	5	NT1	4%	${ }^{4 \%}$	4\％	${ }^{3 \%}$	3\％	2%	${ }^{2 \%}$	\％	\％	\％	\％	\％	0\％	\％	\％	\％	\％	0\％	\％	0\％
7570	88，86，027	－－－omer	5	NT1	4%	4%	4\％	3\％	3\％	2\％	2\％	0\％	0\％	\％	\％	\％	0\％	0\％	\％	\％	0\％	0\％	0\％	\％\％
757	8，4，89，028	Of resistance heated furnaces and ovens for the manufacture of semiconductor devices on semiconductor wafers；of inductance or dielectric furnaces and ovens for the manufacture of semiconductor devices on semiconductor wafers	5	${ }^{\text {NT1 }}$	4\％	4\％	4\％	3\％	3\％	2\％	2\％	\％	\％	0\％	\％	\％	0\％	\％	0\％	\％	0\％	\％\％	\％\％	\％
7572	88，89，0，29	Other	5	NT1	4\％	${ }^{4 \%}$	4\％	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％	\％\％	0\％	\％\％	0\％	\％	\％\％	\％	\％	\％	\％\％
${ }^{7573}$	8，4，86，031	Of apparatus for dry etching patterns on flat panel display substrates	5	NT1	4\％	4\％	4\％	3\％	3\％	${ }^{2 \%}$	2\％	0\％	\％	0\％	\％	\％	0\％	0\％	\％	\％	\％	\％	\％	\％
757	84，86，032		5	NT1	4\％	4\％	4\％	${ }^{3 \%}$	3\％	${ }^{2 \%}$	2\％	0\％	0\％	0\％	0\％	0\％	0\％	0\％	\％	0\％	\％	\％	\％	\％\％
7575	8，4，86，033	．．．．other	5	NT1	4\％	4%	4\％	3\％	3\％	2\％	2\％	0\％	0\％	0\％	0\％	0\％	0\％	0\％	0\％	\％	0\％	\％	\％\％	0\％
757	8，4，86，034	－－－Of chemical vapour deposition apparatus for flat panel display production	${ }^{5}$	NT1	4\％	4%	4%	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％	\％	\％	0\％	\％	\％	\％	\％\％	\％	\％	0\％
75	${ }^{8,8,86,035}$	\cdots	5	NT1	4\％	4%	4\％	${ }^{3 \%}$	${ }^{3 \%}$	2\％	2%	0\％	\％	0\％	0\％	0\％	0\％	0\％	0\％	0\％	0\％	\％\％	\％\％	0\％
7578	8，4，89，036		${ }^{5}$	NT1	4\％	4%	4%	${ }^{3 \%}$	3\％	2\％	${ }^{2 \%}$	\％	\％	\％	0\％	\％	\％	\％	\％	${ }^{0}$	\％	\％	${ }^{0 \%}$	\％\％
757	84，869，039	\cdots	5	NT1	${ }^{4 \%}$	4\％	${ }^{4 \%}$	${ }^{3} \%$	${ }^{3}$	2\％	2\％	\％\％	0\％	\％\％	\％\％	\％	0\％	\％	0\％	\％	0\％	\％\％	\％\％	0\％
7580	869，041	Of focused ion beam milling machine to produce or repair masks and reticles for patterns on semiconductor devices	5	NT1	4\％	4\％	4\％	${ }^{3 \%}$	${ }^{3} \%$	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％	\％	0\％	0\％	0\％	\％	\％	\％	\％	\％	\％
7581	88，86，042	－－Of die attach apparatus，tape automated bonders，wire bonders and of encapsulation equipment for assembly of semiconductors	5	NT1	4\％	${ }^{4 \%}$	4\％	${ }^{\text {3\％}}$	3\％	${ }^{2 \%}$	${ }^{2 \%}$	\％	0\％	0\％	\％	\％	\％	\％	\％	\％	\％	\％	\％\％	0\％
7582	88，86，043	- Of automated machines for the transsoort， handling and storage of semiconductor waers， wafer cassettes，wafer boxes and other materials for semiconductor devices	5	NT1	4\％	4\％	4\％	3\％	3\％	2\％	2\％	\％	0\％	\％\％	0\％	\％	0\％	\％	0\％	0\％	\％	0\％	0\％	\％
$7{ }^{753}$	88，86，004		5	NT1	4\％	4\％	4\％	3\％	3\％	2\％	2\％	\％\％	0\％	\％	\％\％	\％	\％	\％	\％	0\％	\％	\％	\％\％	\％
${ }^{7584}$	88，86，${ }^{\text {a }}$	- Of electron beam microscopes fitted with equipment specifically designed for the handing and transport of semiconductor wafers or reticles	5	NT1	4\％	4\％	4%	3\％	${ }^{3 \%}$	2\％	2\％	\％	\％	\％\％	0\％	\％	\％	\％	\％	\％	\％\％	\％\％	\％\％	\％
7585	88，86，046	\cdots Of pattern generating apparatus of a kind used for producicing masks or reticless from photoresist coated substrates，including printed circuit assemblies	${ }^{5}$	NT1	4\％	4%	4\％	3\％	3\％	2\％	2\％	0\％	0\％	\％\％	0\％	\％	0\％	\％\％	0\％	\％	\％	\％	\％	\％
${ }^{7566}$	${ }^{8,8,86,949}$	－．Other	5	NT1	4\％	4\％	4\％	3\％	${ }^{3 \%}$	2\％	2\％	0\％	0\％	0\％	0\％	0\％	0\％	0\％	0\％	\％	0\％	\％\％	\％	\％\％
757	84，87，000	$\begin{aligned} & \text { - Ships' or boats' propellers and blades } \\ & \text { therefor } \end{aligned}$	${ }^{5}$	NT1	4\％	4%	4%	3\％	3\％	${ }^{2 \%}$	${ }^{2 \%}$	\％	0\％	0\％	\％	\％	\％	0\％	0\％	\％	0\％	\％	\％	0\％
7588	${ }^{88,879,000}$	－Other	${ }^{5}$	NT1	4\％	4%	4\％	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	0\％	0\％	\％	\％	\％	\％\％	\％	\％	\％	\％	\％\％	0\％	\％\％
759	${ }^{8501.10 .21}$	Of a kind used for the goods of heading 84．15， 84．18，84．50， 85.09 or 85.16	5	NT1	4\％	4\％	4\％	${ }^{3 \%}$	3\％	${ }^{2 \%}$	${ }^{2 \%}$	\％	0\％	\％	\％	0\％	0\％	0\％	\％	\％	\％	0\％	\％	0\％
7590	8501．10，29	Other	5	NT1	4\％	4\％	4\％	3\％	3\％	${ }^{2 \%}$	${ }^{2 \%}$	0\％	0\％	\％	0\％	\％	0\％	0\％	0\％	\％	0\％	0\％	\％	0\％
759	${ }^{8501.10,30}$	－Spinile molors	${ }^{5}$	NT1	4\％	4%	4%	3\％	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％\％	\％	0\％	\％\％	\％	0\％	0\％	0\％	\％	0\％	0\％	0\％	0\％
7592	${ }^{85,011,041}$	-- －Of a kind used for the goods of heading 84.15, $84.18,84.50,85.09$ or 85.16	5	NT1	4\％	4\％	4\％	3\％	${ }^{3 \%}$	2\％	${ }^{2 \%}$	0\％	\％	\％	0\％	\％	\％	\％	\％	\％	0\％	0\％	\％	0\％
7593	85，01，049	Other	5	NT1	4\％	4%	4%	3\％	3\％	${ }^{2 \%}$	${ }^{2 \%}$	\％	0\％	\％	\％	0\％	0\％	0\％	0\％	\％	0\％	0\％	\％	\％\％
759	${ }^{85,011,051}$		5	${ }^{\text {NT1 }}$	4\％	4\％	4\％	3\％	3\％	2\％	2\％	\％	0\％	0\％	\％	\％\％	\％	0\％	\％	\％	\％	\％	\％	0\％
7595	${ }^{85,011,059}$	Onher	5	NT1	4\％	4\％	4\％	3\％	3\％	2\％	2%	0\％	0\％	0\％	\％	0\％	\％	\％	\％	\％	0\％	\％\％	\％\％	0\％
7596	${ }^{85,011,060}$	－Spinile molors	5	NT1	4\％	4%	4%	3\％	3\％	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％	\％	0\％	\％	0\％	\％	\％	0\％	\％	\％	\％\％
${ }^{7597}$	${ }^{85,011,091}$	\ldots Of a kind dsed for the goods of heading 84.15, $88.18,84.50$, ， 55.09 or 85.16	5	${ }^{\text {NT1 }}$	${ }^{4 \%}$	${ }^{4 \%}$	${ }^{4 \%}$	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	0\％	0\％	0\％	\％	0\％	\％	0\％	\％	\％	\％	\％	\％	\％
7598	85，011，099	－omer	5	NT1	4\％	4\％	4%	${ }^{3 \%}$	3\％	${ }^{2 \%}$	${ }^{2 \%}$	0\％	\％	0\％	0\％	0\％	0\％	\％	0\％	0\％	\％	\％	，	\％
759	85，01，012	．．．OfOf kind used for the goods of heading 84.15 ， $84.18,84.50,85.09$ or 85.16	5	${ }^{\text {NT1 }}$	4\％	4\％	4%	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％	\％	\％	0\％	\％	\％	0\％	\％	\％	\％	\％

香港•ASEAN FTAにかかる調査報告書
 別添2－4 原産地品の関税撤廃スケジュール

（ラオス）

560	${ }^{85,012,019}$	Other	5	NT1	${ }^{4 \%}$	${ }^{4 \%}$	${ }^{4 \%}$	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	0\％	0\％	0\％	0\％	0\％	0\％	0\％	0\％	0\％	0\％	0\％	\％	\％
7601	5，012，021	-- Of a kind used for the goods of heading 84.15, $84.18,84.50,85.09$ or 85.16	5	T1	4%	4%	4\％	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％
702	85，012，029	－other	5	V1	4%	4\％	4\％	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％	\％	\％	\％	\％	0\％	\％	\％	\％	\％	\％
7603	8，0，13，130	$\begin{aligned} & -- \text { - Motors of a kind used for the goods of heading } \\ & 84.15,84.18,84.50,85.09 \text { or } \\ & 85.16 \end{aligned}$	5	NT1	4\％	${ }^{4 \%}$	${ }^{4 \%}$	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％	0\％	\％	\％	\％	\％	0\％	\％	\％	\％	\％
7604	${ }^{85,013,140}$	－Oheremotors	5	N1	4%	${ }^{4 \%}$	4%	${ }^{3 \%}$	3\％	${ }^{2 \%}$	${ }^{2 \%}$	0\％	0\％	\％	\％	\％\％	\％	\％	\％	\％	0\％	0\％	\％	0\％
7605	${ }^{85,013,150}$	Geneatas	5	V1	4%	4%	4\％	3\％	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％	\％	\％	\％	\％	\％	，	\％	\％	\％	\％
7806	85，13，21		5	NT1	4%	4\％	4\％	3\％	3\％	${ }^{2 \%}$	2\％	0\％	\％\％	0\％	0\％	\％	0\％	\％	\％	\％	0\％	\％	\％\％	0\％
7807	${ }^{85,013,212}$	Oner molos	5	V1	4\％	4\％	4\％	${ }^{3 \%}$	${ }^{3 \%}$	2\％	2%	0\％	0\％	\％\％	\％	\％\％	0\％	0\％	\％	0\％	0\％	0\％	\％	0\％
7808	${ }^{85,013,213}$	Geneatas	5	NT	4%	4\％	4\％	3\％	3\％	2\％	2\％	0\％	0\％	\％\％	0\％	0\％	0\％	0\％	0\％	0\％	0\％	0\％	0\％	0\％
7809	．013，291		5	NT1	4\％	4\％	4\％	3\％	3\％	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％\％	\％	\％	\％	0\％	\％	\％	\％	\％	0\％	\％	\％
276	${ }^{85,013,292}$	Onter molors	5	V1	$4{ }^{4}$	${ }^{4 \%}$	${ }^{4 \%}$	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	0\％	\％	\％	\％	\％	\％	\％	\％	\％	0\％	\％	\％	0\％
7611	${ }^{85,013,293}$	Geneatos	5	V1	4\％	4\％	4\％	3\％	3\％	2\％	2\％	\％	\％	\％\％	0\％	\％	\％	\％	\％	0\％	0\％	0\％	\％	\％
${ }^{7612}$	${ }^{8,013,300}$		${ }^{5}$	NT1	4\％	4\％	4\％	${ }^{3 \%}$	3\％	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％	0\％	\％	\％\％	\％	0\％	\％	\％	\％	0\％	0\％
$7{ }^{7613}$	85，01，400	－Otan oupute exceding 375 kN	5	N1	4\％	$4{ }^{4 \%}$	4%	3\％	3\％	2\％	${ }^{2 \%}$	\％	\％\％	0\％	\％	\％	0\％	\％	\％\％	0\％	0\％	0\％	\％	0\％
$7{ }^{7614}$	$8{ }^{85,04,0011}$		5	NT1	${ }^{4 \%}$	${ }^{4 \%}$	${ }^{4 \%}$	3\％	3\％	${ }^{2 \%}$	${ }^{2 \%}$	0\％	\％\％	0\％	\％	\％	0\％	\％	\％	0\％	\％	\％	\％	\％
776	85，04，019	…Oner	5	NT1	${ }^{4 \%}$	$4{ }^{4 \%}$	${ }^{4 \%}$	${ }^{3 \%}$	${ }^{3 \%}$	2\％	${ }^{2 \%}$	0\％	0\％	0\％	0\％	0\％	0\％	0\％	\％	0\％	0\％	0\％	\％	0\％
${ }^{7616}$	85，01，021	-- －Of a kind used for the goods of heading 84.15, $84.18,84.50,85.09$ or 85.16	5	NT1	4\％	4\％	4\％	3\％	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	0\％	\％	\％	\％	0\％	\％	\％	0\％	\％	\％	\％	\％	\％
${ }^{7667}$	85，04， 2 ，29	\cdots Oner	5	V1	4\％	4\％	4\％	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	0\％	\％\％	\％	0\％	0\％	0\％	\％	\％	\％\％	0\％	\％	0\％
$7{ }^{7618}$	85，05，111	-- －Of a kind used for the goods of heading 84.15, $84.18,84.50,85.09$ or 85.16	5	T1	4\％	4%	4%	${ }^{3 \%}$	3\％	${ }^{2 \%}$	${ }^{2 \%}$	0\％	\％	\％	0\％	0\％	0\％	\％	\％	\％	\％	0\％	\％	\％
7619	${ }^{85,05,119}$	－other	5	V1	4\％	4\％	4\％	3\％	3\％	2\％	2\％	0\％	0\％	0\％	0\％	0\％	0\％	0\％	0\％	0\％	0\％	0\％	0\％	0\％
7820	${ }^{85,015,211}$		5	NT1	4\％	4\％	4\％	3\％	3\％	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	0\％	0\％	\％	\％	\％	0\％	\％	0\％	\％	\％	\％
7621	${ }^{85,015,219}$	\cdots－．．ter	5	V1	4%	${ }^{4 \%}$	${ }^{4 \%}$	3\％	3\％	${ }^{2 \%}$	${ }^{2 \%}$	0\％	\％\％	0\％	\％	\％	\％	0\％	0\％	0\％	0\％	0\％	0\％	0\％
762	${ }^{85,015,221}$		5	NT1	4\％	4\％	4\％	3\％	3\％	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％\％	0\％	\％	\％	0\％	\％	\％	\％	\％	\％	0\％
7823	85，015，29	－－Oher	5	NT1	4\％	4\％	4\％	3\％	3\％	${ }^{2 \%}$	2\％	\％	\％	0\％	0\％	\％	\％	\％	\％	\％	0\％	0\％	\％	\％
${ }^{624}$	${ }^{85,015,231}$		${ }^{5}$	V1	4\％	4\％	4\％	3\％	3\％	${ }^{2 \%}$	2\％	\％	0\％	0\％	0\％	\％	0\％	0\％	\％	\％	\％	\％	\％	\％\％
78	${ }^{85,015,239}$	\cdots Oner	5	NT1	4\％	4\％	${ }^{4 \%}$	3\％	3\％	2\％	${ }^{2 \%}$	0\％	0\％	0\％	\％	0\％	\％	\％	\％	0\％	0\％	\％	\％	0\％
786	${ }^{85,015,300}$	Of a outupuexceeding 75 kN	5	V1	4%	4%	$4{ }^{4 \%}$	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	0\％	0\％	\％\％	0\％	\％	\％	\％	\％	\％	\％	\％	\％\％	\％
7827	${ }^{85,016,110}$		5	V1	$4{ }^{4 \%}$	${ }^{4 \%}$	${ }^{4 \%}$	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	0\％	\％	0\％	0\％	\％	\％	\％	\％	${ }^{0}$	\％	\％	\％	0\％
7828	${ }^{85,06,120}$		5	NT1	4%	4%	4%	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％	\％	0\％	\％	\％	0\％	\％	\％	\％	\％	\％
7629	85，01，210	－－Of an output exceeding 75 kVA but not exceeding 150 kVA	5	NT	4\％	$4{ }^{4}$	4\％	3\％	${ }^{3 \%}$	${ }^{2 \%}$	2\％	0\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	0\％	\％	0\％
7830	35，16，290		5	T1	4\％	${ }^{4 \%}$	$4{ }^{4 \%}$	${ }^{3 \%}$	3\％	${ }^{2 \%}$	${ }^{2 \%}$	0\％	\％	0\％	\％	\％	0\％	\％	0\％	0\％	0\％	\％	0\％	0\％
7781	85，01，300	－－Of an output exceeding 375 kVA but not exceeding 750 kVA	5	T1	4\％	${ }^{4 \%}$	${ }^{4 \%}$	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	2\％	\％	0\％	0\％	\％	\％	\％	\％	\％	\％	\％	0\％	\％	\％
$7{ }^{763}$	${ }^{85,06,4,400}$	－Ot a outuretexeeding 750 KVA	5	N1	4\％	4\％	4\％	${ }^{3 \%}$	3\％	2\％	${ }^{2 \%}$	0\％	0\％	0\％	0\％	0\％	0\％	0\％	0\％	0\％	0\％	0\％	0\％	0\％
763	${ }^{85,021,100}$	－Ot an outuput 0 te xceeding 75 KVA	5	NT1	$4{ }^{4 \%}$	4%	4%	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	0\％	0\％	0\％	\％	0\％	\％	\％	0\％	0\％	0\％	0\％
${ }^{783}$	${ }^{8502 \cdot 12.10}$	－Ot a oluput rote exceeding 125 KVA	5	NT1	4\％	4\％	4\％	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％\％	\％	0\％	\％	\％	\％	0\％	\％	\％	\％	0\％
7835	${ }^{8502,12.20}$		5	NT1	4\％	4\％	4\％	3\％	${ }^{3 \%}$	2\％	${ }^{2 \%}$	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	0\％	\％	\％
$7{ }^{786}$	${ }^{8,021,310}$	Of a output of $12,50 \mathrm{KVA}(10,00 \mathrm{KW})$ or	5	V1	4\％	4%	4\％	3\％	3\％	2\％	${ }^{2 \%}$	\％	0\％	\％	0\％	\％	0\％	\％	0\％	\％	\％	\％	0\％	\％
$7{ }^{7637}$	85，021，390	\cdots	5	N1	4%	${ }^{4 \%}$	${ }^{4 \%}$	3\％	${ }^{3 \%}$	2\％	2\％	0\％	0\％	\％	\％	0\％	0\％	\％	\％	0\％	0\％	\％	\％	0\％
$7{ }^{7688}$	${ }^{85,02,010}$	－Of a outuput notexeseding 75 KVA	5	ISL	5\％	5\％	5\％	5\％	5\％	5\％	5\％	${ }^{5 \%}$	5\％	5\％	5\％	${ }^{5 \%}$	5\％	${ }^{5 \%}$	${ }^{5 \%}$	${ }^{5 \%}$	5\％	${ }^{5 \%}$	${ }^{5 \%}$	5\％
763	85，02，2020	- －Of an output exceeding 75 kVA but not exceeding 100 kVA	${ }^{5}$	V1	${ }^{4 \%}$	4\％	4\％	3\％	${ }^{\text {3\％}}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％\％	0\％	\％	\％\％	\％	\％	\％\％	0\％	\％	0\％	\％
7840	85，02， 3030	－－Of an output exceeding 100 kVA but not exceeding $10,000 \mathrm{kVA}$	5	N1	${ }^{4 \%}$	4\％	${ }^{4 \%}$	${ }^{3 \%}$	3\％	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％	0\％	\％	\％	0\％	\％	\％	0\％	\％	\％	${ }^{0}$
${ }^{7641}$	${ }^{85,022,041}$	－－－Of an output of $12,500 \mathrm{kVA}(10,000 \mathrm{~kW})$ or more	${ }^{5}$	N1	4%	4\％	${ }^{4 \%}$	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	0\％	\％\％	\％	0\％	\％	\％	\％	\％	\％	0\％	\％	\％	0\％
$7{ }^{7642}$	${ }^{85,02,049}$	\cdots Oner	5	V1	4%	4\％	4%	3\％	${ }^{3 \%}$	2\％	${ }^{2 \%}$	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％
${ }^{7643}$	${ }^{85,02,110}$	Of a nouput notexeesing 10.000 kVA	5	NT1	4%	4\％	4%	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％	\％	\％	\％	\％	0\％	\％	\％	0\％	\％	\％
${ }^{7644}$	${ }^{85,023,120}$	－Of an ouput exceeding 10，000 KVA	5	V1	4\％	4\％	4\％	${ }^{3 \%}$	${ }^{3 \%}$	2\％	${ }^{2 \%}$	0\％	0\％	\％\％	0\％	0\％	0\％	0\％	0\％	0\％	0\％	0\％	\％\％	0\％
7645	${ }^{85,02,9,90}$	Ot an outuput 0 te exceding 10 KVA	5	NT	4%	4%	4%	3\％	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	0\％	0\％	0\％	0\％	\％	0\％	\％	0\％	0\％	0\％	0\％	\％
${ }^{7646}$	$8{ }^{8,02,920}$	\cdots Of an ouputereceding 10 KVA but not	5	NT1	$4{ }^{4 \%}$	4\％	$4{ }^{4 / 8}$	3\％	3\％	2\％	2%	0\％	0\％	0\％	0\％	\％	0\％	－	\％	\％	\％	\％	\％	\％
${ }^{7647}$	85，02，931		5	T1	${ }^{4 \%}$	4\％	${ }^{4 \%}$	${ }^{\text {3\％}}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	0\％	0\％	0\％	0\％	\％	\％	\％	${ }^{0 \%}$	${ }^{0 \%}$	0\％	\％	0\％	0\％
${ }^{7648}$	${ }^{85,02,939}$	\cdots	5	NT1	4%	4\％	4\％	${ }^{3 \%}$	${ }^{3} \%$	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％	\％\％	0\％	0\％	\％	\％	0\％	\％	\％	\％	0\％
7849	85，024，000	Electicic Iolay converas	5	NT1	4\％	4\％	4\％	3\％	3\％	2\％	2\％	0\％	0\％	\％	\％	\％	\％	0\％	\％	\％	0\％	\％	\％	0\％
$7{ }^{760}$	85，030，010	－Parts used in the manufacture of electric motors of heading 85.01 ；parts of generators of heading 85.01 or 85.02 of an output of $10,000 \mathrm{~kW}$ or more	5	NT1	4\％	4\％	4\％	3\％	${ }^{3 \%}$	2\％	2\％	\％	\％	\％	\％	\％	\％	\％\％	\％	\％	0\％	0\％	\％	\％
755	${ }^{85,030,990}$	Other	5	NT1	4%	4\％	${ }^{4 \%}$	3\％	3\％	2\％	2%	0\％	0\％	0\％	\％\％	0\％	0\％	0\％	0\％	0\％	\％\％	\％	\％	0\％
$7{ }^{7} 5$	${ }^{8,04,000}$	Balas tor dischays lampo or tubes	5	NT1	4%	4%	4\％	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％\％	\％	0\％	\％	0\％	0\％	\％	0\％	\％	0\％	0\％	\％
$7{ }^{763}$	35，022，110	$\begin{aligned} & \text {-- - Step-voltage regulators (auto transformers); } \\ & \text { instrument transformers with a power handling } \\ & \text { capacity not exceeding } 5 \mathrm{kVA} \end{aligned}$	${ }^{5}$	NT1	4\％	4\％	4\％	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％
7764	85，92，192		5	V1	4%	4\％	4\％	3\％	${ }^{3 \%}$	${ }^{2 \%}$	2\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％
77^{765}	85，042，193		${ }^{5}$		4\％	4\％	4\％	3\％	3\％	2\％	2\％	0\％	0\％	0\％	0\％	0\％	\％	\％	\％	0\％	0\％	\％	\％	\％
$7{ }^{7656}$	${ }^{85,022,199}$	Onher	5	NT1	4\％	4\％	4\％	${ }^{3 \%}$	${ }^{3 \%}$	2%	${ }^{2 \%}$	\％	\％\％	0\％	0\％	\％	0\％	0\％	0\％	0\％	0\％	0\％	0\％	\％
$7{ }^{765}$	${ }^{85,042,211}$	Of tigh side volage of 66 kV or more	5	NT1	4\％	4\％	4\％	${ }^{3 \%}$	3\％	${ }^{2 \%}$	${ }^{2 \%}$	0\％	0\％	0\％	0\％	0\％	0\％	0\％	0\％	\％	0\％	0\％	0\％	0\％
$7{ }^{7688}$	${ }^{85,042,219}$	Onher	5	NT1	4%	4\％	4%	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	0\％	\％	\％	\％	0\％	\％	\％	\％	0\％	\％	\％	\％	\％
7659	${ }^{85,042 \times 292}$	－．－．Of a high side volage of 110 kVor more	5	NT1	4\％	4\％	4\％	3\％	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％\％	\％	\％
7860	$8{ }^{8,042293}$	\cdots O．Ot ahig side volage of 6 gkv or move，but	${ }^{5}$	NT1	4\％	4\％	4\％	3\％	3\％	2\％	2\％	0\％	0\％	\％	\％	\％	0\％	\％	\％	\％	0\％	\％	\％	\％
${ }^{7661}$	${ }^{85,042,299}$	－other	5	V1	4\％	4\％	4\％	${ }^{3 \%}$	${ }^{3 \%}$	2\％	2%	0\％	0\％	\％\％	0\％	0\％	0\％	0\％	0\％	0\％	0\％	0\％	0\％	0\％
7662	85，042，310		${ }^{5}$	NT1	4\％	4\％	4\％	3\％	3\％	2%	2%	0\％	0\％	\％\％	0\％	\％	0\％	\％	${ }^{0 \%}$	\％	0\％	\％	\％	\％
7663	${ }^{55,042,321}$	\cdots Note exeeding 20，000 KVA	5	NT1	4\％	4\％	4\％	3\％	3\％	${ }^{2 \%}$	${ }^{2 \%}$	0\％	0\％	0\％	0\％	0\％	\％	\％	\％	\％	\％\％	0\％	\％	\％
7664	85，042，322	3．．．．Ecoeding 20.000 KVA but not exceeding 30．	${ }^{5}$	NT1	$4{ }^{4 \%}$	4\％	${ }^{4 \%}$	3\％	3\％	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	0\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	${ }^{0 \%}$
7665	${ }^{85,042,329}$	Oner	5	NT1	4\％	4\％	4\％	3\％	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	0\％	\％	0\％	\％	0\％	\％	\％	\％	\％	\％	\％	\％	\％
766	${ }^{85,04,111}$	With a volage eating of 110 kVor more	5	NT1	4%	4%	4%	3\％	3\％	${ }^{2 \%}$	${ }^{2 \%}$	\％	0\％	0\％	\％	\％	\％	\％	\％	\％	0\％	0\％	\％	\％
7667	5043，12		${ }^{5}$	NT1	4%	4\％	4\％	${ }^{3 \%}$	${ }^{3 \%}$	2%	${ }^{2 \%}$	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	0\％	\％	\％
7668	003，113		${ }^{5}$	NT1	$4{ }^{4 \%}$	${ }^{4 \%}$	4\％	3\％	${ }^{3 \%}$	2\％	${ }^{2 \%}$	\％	\％	\％	\％	\％	\％	\％	\％	0\％	\％\％	\％	\％	0\％
766	${ }^{85,043,119}$	Onher	5	V1	4%	4\％	4%	${ }^{3 \%}$	3\％	2%	${ }^{2 \%}$	0\％	0\％	0\％	0\％	0\％	0\％	0\％	0\％	0\％	0\％	0\％	0\％	0\％
7870	85，043，121	－．－Ring gurunentransiomers win a volatage	5	NT1	4\％	$4{ }^{4 \%}$	4\％	${ }^{3 \%}$	3\％	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％\％	0\％	\％	\％	\％	\％	\％	0\％	0\％	\％	\％	\％
$7{ }^{7671}$	${ }^{85,04,122}$	－Other	5	NT1	${ }^{4 \%}$	${ }^{4 \%}$	${ }^{4 \%}$	${ }^{3 \%}$	${ }^{3 \%}$	2\％	${ }^{2 \%}$	\％	\％\％	\％	0\％	\％	\％	0\％	0\％	\％	0\％	0\％	0\％	0\％
778	${ }^{85,043,123}$		5	NT1	4\％	4%	4\％	3\％	3\％	2\％	2\％	\％	\％	\％\％	\％\％	\％	\％	\％	\％	\％	0\％	\％	\％	0\％

$7{ }^{7673}$	${ }^{\text {85，043，124 }}$		5	NT1	${ }^{4 \%}$	4\％	4\％	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	0\％	0\％	0\％	0\％	0\％	0\％	0\％	0\％	\％	\％	\％	\％\％	${ }^{0 \%}$
77	［043，129	Other	5	${ }^{\text {NT1 }}$	4\％	4\％	4\％	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	0\％	\％	\％
776	${ }^{35,04,130}$	Fyback tanstomes	5	NT	${ }^{4 \%}$	${ }^{4 \%}$	$4{ }^{4 \%}$	${ }^{3 \%}$	3\％	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	0\％	\％\％	\％	0\％	0\％	\％	\％	0\％	0\％	0\％	\％\％
676	${ }^{85,04,140}$	Inemediale fequency trastomers	5	V1	4%	4%	4%	3\％	3\％	2\％	${ }^{2 \%}$	0\％	\％	0\％	0\％	0\％	\％	\％	0\％	\％	0\％	\％	0\％	\％\％
7877	85，04，191		5	T1	${ }^{4 \%}$	${ }^{4 \%}$	${ }^{4 \%}$	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	0\％	0\％	0\％	0\％	0\％	0\％	\％	0\％	\％	0\％	\％	\％	\％\％
7678	85，04，192	－other matching tansiomels	5	N1	4%	4\％	${ }^{4 \%}$	${ }^{3 \%}$	3\％	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％\％	\％	0\％	\％	\％	\％	0\％	\％	\％	\％	\％	\％\％
7767	85，04， 199	Other	5	NT1	$4{ }^{4 \%}$	4%	${ }^{4 \%}$	3\％	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％	\％\％	\％	0\％	\％	\％	\％	\％	\％	\％\％	\％\％
7880	85，04，211	${ }^{\text {－Machingrantasomers }}$	5	NT1	4\％	4\％	4\％	3\％	3\％	2\％	2\％	\％	0\％	\％	\％\％	\％	\％	\％\％	0\％	0\％	\％	\％	\％\％	\％\％
7881	85，043，219	\cdots Other	5	NT1	4%	4%	$4{ }^{4 \%}$	3\％	3\％	${ }^{2 \%}$	2\％	0\％	\％	\％	0\％	\％	\％	\％	\％	0\％	\％\％	\％	\％	0\％
7882	85，043，220	Other，of a kind used with toys，scale models or similar recreational models	5	${ }^{\text {NT1 }}$	4\％	4\％	4\％	3\％	3\％	2\％	${ }^{2 \%}$	0\％	\％	\％	\％	\％	0\％	\％	\％\％	0\％	\％	\％	0\％	\％
7883	${ }^{55,043,230}$	－Ontrer，having a minimum treutency 3 3 MHz	5	V1	${ }^{4 \%}$	${ }^{4 \%}$	${ }^{4 \%}$	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	0\％	0\％	0\％	0\％	0\％	\％	0\％	0\％	${ }^{\text {\％}}$	0\％	0\％	\％	\％
7864	${ }^{55,043,241}$	Maching transomers	5	NT1	4\％	4\％	${ }_{4} 46$	3\％	3\％	${ }^{2 \%}$	${ }^{2 \%}$	0\％	0\％	\％	\％	\％	\％\％	\％	\％	0\％	\％	\％	\％	\％
7865	85，04，249	Other	5	${ }^{\text {NT1 }}$	4\％	4\％	$4{ }^{4 \%}$	3\％	${ }^{3 \%}$	2\％	2\％	\％	0\％	\％	0\％	\％	\％	\％\％	\％	\％	\％	\％	\％	\％
7886	85，04，3，51	Maching transomers	5	${ }^{\text {NT1 }}$	4%	4\％	4%	3\％	3\％	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％	0\％	\％	\％	\％	0\％	\％	\％	\％	\％	\％
7887	${ }^{85,043,259}$	－other	5	${ }^{\text {NT1 }}$	4\％	${ }_{4}^{4 \%}$	${ }^{4 \%}$	3\％	${ }^{3} \%$	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	0\％
${ }^{7688}$	85，04，311	Maccing transiomets	5	V1	$4{ }^{4 \%}$	${ }^{4 \%}$	${ }^{4 \%}$	${ }^{3 \%}$	${ }^{3}$	${ }^{2 \%}$	${ }^{2 \%}$	0\％	0\％	0\％	0\％	\％	0\％	0\％	\％	0\％	0\％	0\％	0\％	0\％
7889	85，04，3，39	Onher	5	V1	4%	$4{ }^{4 \%}$	${ }^{4 \%}$	3\％	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％
7690	${ }^{85,04,391}$	Macting tansiomers	5	NT1	$4{ }^{4 \%}$	4%	4%	3\％	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	0\％	\％	\％	\％	\％\％	\％	\％	\％	\％\％	\％\％	\％	\％	0\％
7691	${ }^{35,043,399}$	Other	5	NT1	$4{ }^{4 \%}$	4%	4%	3\％	3\％	2\％	2%	\％	0\％	\％	\％	\％	0\％	0\％	\％	0\％	\％	\％	\％	0\％
7692	${ }^{\text {85，04，4，41 }}$	Maching tanstomers	5	V1	4%	4%	4%	3\％	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	0\％	0\％	\％	\％\％	\％	0\％	\％	0\％	\％	\％\％	0\％	0\％	0\％
${ }^{2693}$	${ }^{35,03,4,42}$	Other	5	${ }^{\text {N11 }}$	$4{ }^{4 \%}$	$4{ }^{4 \%}$	4%	3\％	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％	\％	\％	\％	\％	\％	0\％	\％	0\％	\％	0\％
7694	${ }^{85,04,4,43}$	Macting tansomemers	5	${ }^{\text {NT1 }}$	4\％	4\％	4／8	3\％	${ }^{3} \%$	2\％	${ }^{2 \%}$	\％	\％	\％	\％\％	\％	\％	\％\％	\％\％	\％	\％	\％	\％	\％
7695	35，043，414	Other	5	NT1	4\％	4\％	$4{ }^{46}$	3\％	3\％	${ }^{2 \%}$	2\％	0\％	0\％	\％	0\％	\％	0\％	0\％	\％\％	0\％	\％	\％	0\％	0\％
7696	85，04，422	－Macting tansomemes	5	V1	4\％	4\％	4\％	3\％	3\％	2\％	${ }^{2 \%}$	\％	\％\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％
7697	${ }^{85,04,4,43}$	Onter	5	N1	4%	${ }^{4 \%}$	${ }^{4 \%}$	${ }^{3 \%}$	3\％	${ }^{2 \%}$	${ }^{2 \%}$	0\％	\％	\％	\％	0\％	\％	\％	0\％	0\％	\％	0\％	${ }^{\circ} \%$	\％
7698	85，04，424	－Macting transomem	5	NT1	${ }^{4 \%}$	4\％	4\％	3\％	3\％	${ }^{2 \%}$	2\％	0\％	\％	\％	\％	\％	\％	\％	\％	0\％	\％	\％	\％	\％
7699	85，04，4，29	Onter	5	NT	$4{ }^{4 \%}$	$4{ }^{4 \%}$	$4{ }^{4}$	3\％	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％	\％	\％	\％	\％	\％	0\％	\％	\％	\％	\％
7700	85，04，011	Unineruped power supplies（TPS）	5	NT1	4\％	4\％	4\％	3\％	3\％	2%	2\％	\％	0\％	\％	0\％	\％	\％	\％	\％	0\％	\％	\％	0\％	0\％
7701	85，04，019	\cdots Oner	5	NT1	$4{ }^{4 \%}$	4%	4%	3\％	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	0\％	0\％	0\％	\％	\％	\％	\％\％	\％	\％	0\％	0\％	0\％	\％
7702	85，04，020	Kkatey charges having a ating exceeding 100	5	NT1	4\％	4\％	$4{ }^{4 \%}$	${ }^{\text {3\％}}$	3\％	${ }^{2 \%}$	${ }^{2 \%}$	0\％	0\％	\％	\％	\％	\％	\％\％	\％\％	\％	0\％	\％	\％	0\％
7703	85，04，030	－－omer rectifers	5	${ }^{\text {N11 }}$	$4{ }^{4 \%}$	4\％	${ }^{4 / 8}$	${ }^{3 \%}$	3\％	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％\％	\％	0\％	\％	\％	\％	\％	\％	0\％	\％	\％	0\％
7704	85，04，0，00	－Iveretas	5	NT1	4\％	4\％	4\％	3\％	3\％	2\％	2\％	0\％	0\％	\％	0\％	\％	0\％	0\％	\％	0\％	\％	\％	\％	0\％
7705	85，04，0，00	－other	5	NT1	4\％	4\％	4%	3\％	3\％	2\％	2\％	0\％	\％	\％	0\％	0\％	0\％	0\％	\％	0\％	\％	\％	\％	\％
${ }^{7706}$	35，04，010	－－Inductors for power supplies for automatic data processing machines and units thereof，and for telecommunications apparatus	5	${ }^{\text {NT1 }}$	4\％	4\％	${ }^{4 \%}$	3\％	${ }^{3} \%$	2\％	2\％	0\％	\％	\％	\％	\％	\％\％	\％\％	\％\％	\％	\％	\％	\％	\％
7707	85，94，020	－－Chip tye fived inductors	5	V1	4%	4\％	$4{ }^{4 \%}$	3\％	3\％	2\％	2\％	0\％	0\％	\％	\％\％	\％\％	0\％	\％	\％	0\％	0\％	0\％	0\％	\％\％
7708	85，04，093	2．5．Having ka a power handing capacity note exceeding	5	${ }^{\text {NT1 }}$	4%	4\％	${ }^{4 \%}$	${ }^{3 \%}$	3\％	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	0\％	\％	\％	\％	\％	\％	0\％	\％	\％	\％	\％
7709	85，04，094	- －Having a power handling capacity exceeding 2,500 kVA but not exceeding 10,000 kVA	5	NT1	4\％	4%	${ }^{4 \%}$	3\％	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	0\％	\％	\％	\％	\％	\％	\％	\％	0\％	\％	\％	\％	\％
7710	85，04，095	－－Having a power handling capacity exceeding $10,000 \mathrm{kVA}$	5	N1	${ }^{4 \%}$	4\％	4%	3\％	3\％	${ }^{2 \%}$	${ }^{2 \%}$	0\％	0\％	\％	\％	\％	0\％	0\％	\％	\％	\％	\％	\％	\％\％
7711	85，94，010	－－Of goods of subleading of 854.10	5	NT1	4\％	4\％	4%	3\％	3\％	${ }^{2 \%}$	${ }^{2 \%}$	0\％	\％	\％	\％\％	0\％	\％	\％\％	\％	\％	\％\％	\％	\％	\％
7^{7712}	85，94，020		${ }^{5}$	NT1	4%	4\％	4%	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	0\％	0\％	0\％	\％	\％	\％	\％	\％	0\％	0\％	\％	\％	\％
${ }^{7713}$	85，94，031	－－Radiator panels；flat tube radiator assemblies of a kind used for distribution and power transformers	5	NT1	4%	4%	${ }^{4 \%}$	3\％	3\％	${ }^{2 \%}$	2\％	0\％	0\％	\％	\％\％	\％	\％	\％	\％	\％	0\％	\％	\％	\％
7714	85，04，039	－－Onmer	5	${ }^{\text {NT1 }}$	4	4\％	${ }^{4 \%}$	3\％	3\％	2\％	2\％	0\％	\％	\％	0\％	\％	\％	\％	\％\％	0\％	\％	\％	\％	\％
${ }^{7715}$	85，049，041	－－Radiator panels；flat tube radiator assemblies of a kind used for distribution and power transformers	5	NT1	4\％	4\％	4\％	${ }^{3 \%}$	3\％	${ }^{2 \%}$	${ }^{2 \%}$	\％	0\％	\％	0\％	\％	\％	\％\％	\％	0\％	\％	\％	\％	0\％
7716	85，04，049	Oher	5	${ }^{\text {N11 }}$	4%	4\％	4\％	3\％	3\％	2%	${ }^{2 \%}$	0\％	\％	0\％	\％\％	0\％	\％	\％	\％	0\％	0\％	0\％	0\％	0\％
7717	85，04，0，50		5	NT1	4\％	4\％	4\％	3\％	3\％	2\％	2\％	0\％	\％	\％	0\％	\％	\％	\％	\％	0\％	\％	\％	\％	0\％
${ }^{7718}$	85，94，0，60	－Other，for inductors of a capacity exceeding 2，500 kVA	5	NT	4\％	${ }^{4 \%}$	${ }^{4 \%}$	3\％	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	0\％	\％	0\％	\％	\％	0\％	\％	\％	\％	0\％	0\％	0\％
7719	85，04，090	－Oner	5	NT1	4%	4\％	4\％	3\％	${ }^{3} \%$	2\％	2\％	0\％	\％	0\％	0\％	0\％	0\％	0\％	\％	0\％	\％	\％	\％	0\％
727	$88.51,100$	－－ot meal	5	V1	4%	4\％	4%	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	0\％	0\％	0\％	\％\％	0\％	\％	0\％	0\％	0\％	0\％	\％	\％	\％
7721	85，05，1900	－Oner	5	V1	4%	4%	4\％	${ }^{3 \%}$	3\％	2\％	2\％	\％	\％\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％
7722	85，05，200	－Elecrommagnelic coupligs，Culches and bazes	5	T1	4\％	4%	${ }^{4 \%}$	3\％	3\％	${ }^{2 \%}$	${ }^{2 \%}$	0\％	\％	\％	\％	\％	\％	0\％	\％	\％	\％	\％	\％	\％
7723	85，59，000	－Oner，incluing part	5	${ }^{\text {NT1 }}$	$4{ }^{4 \%}$	${ }^{4 \%}$	$4{ }^{4 \%}$	${ }^{3 \%}$	${ }^{3 \%}$	2\％	${ }^{2 \%}$	0\％	\％	\％	\％	\％	\％	\％\％	\％	\％	\％	\％	\％	\％
$7{ }^{724}$	8506．10，10	－Having an exemal volume not exceeding s 300	${ }^{5}$	NT1	4%	4%	4\％	3\％	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％	\％	0\％	\％	\％	\％	\％	\％	\％	\％	0\％
7725	85，06，090	－Oner	5	NT1	4%	4\％	$4{ }^{4 \%}$	3\％	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	0\％	\％	\％	\％\％	0\％	\％\％	\％	\％	0\％	\％	\％	\％	0\％
${ }^{7276}$	85，06，000	－Mercuric oxde	5	NT1	4\％	4\％	4\％	3\％	3\％	2\％	2%	\％	0\％	\％	0\％	\％	\％	\％	\％	0\％	0\％	\％	\％	0\％
${ }^{7277}$	85，064，000	－siver oxde	5	NT1	4%	$4{ }^{4 \%}$	4%	3\％	3\％	2\％	${ }^{2 \%}$	0\％	0\％	0\％	0\％	0\％	\％	0\％	\％\％	0\％	0\％	0\％	0\％	0\％
7728	85，06，000	－Lhtum	5	NT1	4%	4%	4%	${ }^{3 \%}$	3\％	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	0\％
7729	10	－Havivg a exexemal voume note exceeding 300	5	${ }^{11}$	4\％	4\％	4\％	${ }^{3 \%}$	3\％	${ }^{2 \%}$	2\％	0\％	\％	0\％	\％	\％	\％	\％	\％	\％	\％	0\％	\％	0\％
7730	85，06，090	－Omer	5	${ }^{\text {NT1 }}$	4\％	4%	4\％	3\％	3\％	${ }^{2 \%}$	${ }^{2 \%}$	0\％	\％	0\％	\％\％	\％	\％	0\％	\％	0\％	\％	\％	\％	\％
${ }^{773}$	85，06，010		${ }^{5}$	${ }^{\text {NT1 }}$	4\％	4\％	${ }^{4 \%}$	${ }^{3 \%}$	3\％	${ }^{2 \%}$	2\％	\％	0\％	\％	\％	\％	\％	\％	\％	\％	0\％	\％	\％	0\％
7^{732}	85，06，020	－Zinc caboon，having an exemanavoume exceeding	5	NT	${ }^{4 \%}$	${ }^{4 \%}$	${ }^{4 \%}$	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	0\％	0\％	\％	0\％	0\％	\％	0\％	0\％	0\％	\％	0\％	\％	\％
${ }^{7733}$	85，06，091	сm3 －Haing a exeemal volume note xceeding 300	5	T1	${ }^{4 \%}$	${ }^{4 \%}$	${ }^{4 \%}$	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	0\％	0\％	\％	0\％	0\％	0\％	0\％	\％	\％	\％	0\％	\％	\％
7734	${ }^{35,06,099}$	\cdots	5	V1	4\％	${ }^{4 \%}$	${ }^{4 \%}$	${ }^{3 \%}$	3\％	${ }^{2 \%}$	2\％	\％	\％\％	\％	\％	\％	\％	\％	\％\％	\％	\％	\％	\％	\％
7735	85，06，000	－Pats	5	V1	$4{ }^{4}$	4%	${ }^{4 \%}$	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％\％	\％	\％\％	\％	\％	\％	\％	\％	\％	\％	\％	\％
7736	8507．10．10	－－Of k kid Used to a a icrath	10	NT2	9\％	9\％	${ }^{8}$	${ }^{8} \%$	6\％	6\％	5\％	5\％	4\％	4%	${ }^{3 \%}$	${ }^{3 \%}$	2%	${ }^{2 \%}$	\％	0\％	\％	\％	\％	\％
${ }^{7737}$	85，77，，092	－－－Of a height（excluding terminals and handles） not exceeding 13 cm	${ }^{10}$	${ }^{\text {sL }}$	0\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	${ }^{8 \%}$	${ }^{7} \%$	6\％	5\％	4\％	${ }^{3 \%}$	${ }^{2 \%}$	1\％	\％	\％	\％	\％\％
7738	85，07，093	Other	10	st	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	${ }^{8 \%}$	${ }^{7} \%$	6\％	5\％	4%	${ }^{3 \%}$	2\％	1\％	0\％	\％	0\％	\％
7739	85，77，094		${ }^{10}$	${ }^{\text {sL }}$	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	${ }^{8 \%}$	${ }^{7} \%$	6\％	5\％	4%	3\％	${ }^{2 \%}$	1\％	\％	\％	\％	\％
7740	85，77，099	Oher	10	st	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10%	${ }^{8 \%}$	7\％	6\％	5\％	4\％	3\％	${ }^{2 \%}$	1\％	0\％	\％	0\％	0\％
7741	${ }^{85,02,010}$	－Of a kind used tora alicat	10	N2	9\％	9\％	8%	8\％	6\％	6\％	5\％	5\％	4%	4%	3\％	3\％	2\％	${ }^{2 \%}$	\％	0\％	\％	\％	\％	0\％
7742	85，072，091	$-\cdots$ Of a height（excluding terminals and handles） exceeding 13 cm but not exceeding 23 cm	10	sL	10\％	10\％	10\％	${ }^{10 \%}$	10\％	10\％	10\％	10\％	8%	${ }^{7 \%}$	6\％	5\％	4\％	3\％	${ }^{2 \%}$	1\％	\％	\％	\％	0\％
774	85.072092	－－＞oner	10	sL	10\％	10\％	${ }^{10 \%}$	10\％	10\％	10\％	10\％	10\％	8\％	${ }^{7 \%}$	6\％	5\％	4\％	3\％	${ }^{2 \%}$	1\％	\％	\％	\％	\％
774	85，072，093	－－－Of a height（excluding terminals and handles） exceeding 13 cm but not exceeding 23 cm	10	${ }^{\text {sL }}$	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	${ }^{8 \%}$	${ }^{7}$	6\％	5\％	4\％	3\％	${ }^{2 \%}$	${ }^{1 \%}$	\％	\％	\％	\％
${ }^{7745}$	85.72	Onher	10	st	${ }^{10 \%}$	${ }^{10 \%}$	${ }^{10 \%}$	10\％	${ }^{10 \%}$	${ }^{10 \%}$	10\％	10\％	${ }^{8 \%}$	7\％	6\％	${ }^{5 \%}$	${ }^{4 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	1\％	0\％	0\％	\％	0\％
${ }^{7746}$	85，07，010	－Of a kind sesed of a arcant	10	${ }^{\text {T2 }}$	${ }^{9 \%}$	${ }^{\text {\％}}$	${ }^{8 \%}$	8\％	6\％	6%	5\％	${ }^{5 \%}$	4\％	4%	3\％	${ }^{3}$	2%	${ }^{2 \%}$	\％	\％	\％\％	\％	\％	\％
7747	85，07，090	－Other	10	st	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	${ }^{8 \%}$	7\％	6\％	${ }^{5 \%}$	4%	${ }^{3 \%}$	${ }^{2 \%}$	1\％	0\％	\％	\％	0\％
${ }^{7748}$	85，74，010	－Ofa kind used tora icratt	10	st	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	${ }^{8 \%}$	${ }^{7 \%}$	6\％	5\％	4\％	3\％	${ }^{2 \%}$	1\％	0\％	\％\％	\％	\％\％
7749	85，74，090	－Oner	10	st	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	${ }^{8 \%}$	${ }^{7} \%$	6\％	5\％	4%	${ }^{3 \%}$	${ }^{2 \%}$	1\％	\％	\％	\％	\％
7750	85，75，000	－Nckelmelat hydide	10	st	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	${ }^{8 \%}$	7\％	6\％	5\％	4\％	3\％	2\％	1\％	0\％	\％	\％	0\％
${ }^{775}$	5，076，010		10	${ }^{\text {sL }}$	10\％	10\％	10\％	10\％	${ }^{10 \%}$	10\％	10\％	10\％	8\％	${ }^{\text {\％}}$	6\％	${ }^{5 \%}$	${ }^{4 \%}$	3\％	${ }^{2 \%}$	${ }^{1 \%}$	\％	\％	\％	\％
${ }^{7752}$	85，076，090	－－other	10	${ }^{\text {NT2 }}$	\％	\％	\％	${ }^{8 \%}$	6\％	6\％	${ }^{5 \%}$	${ }^{5 \%}$	4\％	$4{ }^{4 \%}$	${ }^{3 \%}$	3\％	2\％	2\％	\％\％	0\％	\％	\％	\％	\％

753	${ }^{85,78,010}$	used for arcarat	10	sL	10\％	10%	10\％	10\％	10\％	${ }^{10 \%}$	10\％	10%	${ }^{8 \%}$	${ }^{\text {\％}}$	6\％	${ }^{5 \%}$	${ }^{4 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{1 \%}$	0\％	\％	\％	\％
${ }^{7754}$	85，78，091	\cdots Oir and dused for hapopos indưing notesooks and subnotebooks	10	sL	0\％	10\％	10\％	\％ 0	10\％	10\％	${ }^{10 \%}$	10\％	${ }^{8 \%}$	${ }^{7 \%}$	${ }^{6 \%}$	5\％	4%	3\％	${ }^{2 \%}$	${ }^{1 \%}$	\％	\％	\％	0\％
775	85，78，099	－－．oner	10	st	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	${ }^{8}$	${ }^{7}$	${ }^{6 \%}$	5\％	${ }^{4 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{1 \%}$	\％	\％	\％	\％
${ }^{7756}$	．079，011	$\begin{aligned} & --- \text { Of goods of subheading } 8507.10 .92, \\ & 8507.10 .93,8507.10 .94 \text { or } 8507.10 .99 \end{aligned}$	10	sL	10\％	10\％	0\％	10\％	10\％	10\％	10\％	${ }^{10 \%}$	${ }^{8 \%}$	${ }^{7 \%}$	6\％	${ }^{5 \%}$	4\％	3\％	${ }^{2 \%}$	${ }^{1 \%}$	\％	\％	\％	0\％
775	${ }^{85,07,012}$		10	sL	10\％	10%	10\％	\％\％	10\％	10\％	10\％	10%	${ }^{8 \%}$	${ }^{7 \%}$	6\％	${ }^{5 \%}$	${ }^{4 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	1\％	\％	0\％	\％	0\％
${ }^{7758}$	85，79，019	Onter	10	st	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	${ }^{\text {\％}}$	${ }^{7} \%$	${ }^{6 \%}$	\％	，	3\％	${ }^{2 \%}$	1\％	\％	O\％	\％	\％
7759	85，79，091	－Ofa kno used for arcrath	10	sL	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	8%	7\％	${ }^{6 \%}$	5\％	${ }^{4 \%}$	3\％	${ }^{2 \%}$	1\％	\％	\％	\％	\％
7760	85，79，092	－－Battery separators，ready for use，of materials other than poly（vinyl chloride）	10	sL	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	${ }^{8 \%}$	7\％	6\％	5\％	4\％	${ }^{3 \%}$	2\％	1\％	\％	0\％	\％	\％
${ }^{7761}$	85，79，093	-- Other，of goods of subheading 8507．10．92， $8507.10 .93,8507.10 .94$ or 8507.10 .99	10	N2	${ }^{\text {\％}}$	${ }^{9 \%}$	${ }^{8 \%}$	${ }^{8 \%}$	6\％	6\％	${ }^{5 \%}$	5\％	${ }^{4 / 8}$	4\％	${ }^{3 \%}$	${ }^{3}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	0\％	\％	\％	\％	\％
7762	85，79，099	－－Oner	10	N2	9\％	9\％	8\％	8%	${ }^{6 \%}$	${ }^{6 \%}$	${ }^{5 \%}$	5\％	${ }^{4 \%}$	${ }^{4 \%}$	${ }^{\text {3\％}}$	${ }^{3}$	${ }^{2 \%}$	2\％	0\％	\％	\％	\％\％	\％	0\％
7763	85，08，100	- －Of a power not exceeding 1，500 W and having a dust bag or other receptacle capacity not exceeding	10	st	10\％	10\％	10\％	${ }^{10 \%}$	10\％	10\％	10\％	10\％	${ }^{\text {8\％}}$	7\％	6\％	5\％	4%	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{1 \%}$	\％	\％	\％	\％
778	85，08，910	．－OTa kind s suitabe tor domesicic se	10	N2	\％	9\％	8\％	8\％	6\％	6\％	5\％	5\％	4\％	4\％	3\％	3\％	${ }^{2 \%}$	2\％	\％	\％	0\％	0\％	\％	0\％
7765	85，08，990	Oner	10	N2	\％	\％	8\％	8\％	6\％	6\％	5\％	${ }^{5 \%}$	4%	4\％	3\％	3\％	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％	\％	\％	\％
${ }^{7766}$	85，08，000	Ohter vacum cleaners	${ }^{10}$	NT2	${ }^{9 \%}$	9\％	8%	${ }_{8 \%}$	6\％	6\％	5\％	${ }^{5 \%}$	${ }^{4 \%}$	4%	${ }^{3 \%}$	3\％	${ }^{2 \%}$	${ }^{2 \%}$	\％	0\％	\％	0\％	\％	0\％
7767	85，87，010	－－Of vacuum cleaners of subheading 8508.11 .00 or 8508.19 .10	${ }^{10}$	sL	0\％	10\％	\％	10\％	10\％	10\％	10%	10\％	${ }^{8 \%}$	${ }^{7 \%}$	${ }^{6 \%}$	${ }^{5 \%}$	${ }^{4 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{1 \%}$	\％\％	\％	\％	\％
7768	85，07，090	－－omer	10	st	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	8\％	${ }^{7 \%}$	6\％	5\％	4\％	3\％	2\％	1\％	0\％	\％	0\％	0\％
7769	85，04，000	－Food grinders and mixers；fruit or vegetable juice extractors	10	st	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	\％	\％	\％	0\％	0\％	\％	\％	\％	\％	\％	\％	
7770	85，98，010	－FFor polishers	10	st	10\％	0\％	10\％	10\％	10\％	10\％	10\％	10\％	8\％	${ }^{7}$	6\％	5\％	${ }^{4 \%}$	3\％	${ }^{2 \%}$	1\％	0\％	\％\％	0\％	0\％
${ }^{7771}$	85，98，020	－Kicteren waste disoseses	10	st	10\％	10\％	${ }^{10 \%}$	${ }^{10 \%}$	${ }^{10 \%}$	10\％	10\％	10\％	${ }^{8 \%}$	${ }^{7 \%}$	6\％	${ }^{5 \%}$	4%	${ }^{3 \%}$	${ }^{2 \%}$	1\％	0\％	0\％	\％	\％
777	85，98，090	－－Other	10	st	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	8\％	\％	6\％	5\％	4\％	3\％	${ }^{2 \%}$	1\％	0\％	0\％	0\％	\％
7773	35，09，0，10	．－Of soods O subheading 850.80 .10	10	st	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	${ }^{8 \%}$	7\％	6\％	5\％	${ }^{4 \%}$	3\％	${ }^{2 \%}$	10\％	0\％	0\％	0\％	\％
777	85，09，090	－－omer	10	s	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	8\％	7\％	6\％	5\％	${ }^{4 \%}$	${ }^{3}$	${ }^{2 \%}$	1\％	\％	\％	\％	\％
7775	85，01，000	－Shavers	10	ग2	\％	9\％	8\％	8\％	6\％	6\％	5\％	5\％	${ }^{4 \%}$	4\％	3\％	3\％	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％	\％	\％	\％
${ }^{7776}$	${ }^{\text {85，102，000 }}$	－Hair lipears	${ }^{10}$	N2	9\％	${ }^{9 \%}$	8\％	8%	${ }^{6 \%}$	6\％	5\％	${ }^{5 \%}$	${ }^{4 \%}$	4\％	${ }^{3 \%}$	${ }^{\text {3\％}}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％\％	\％	\％	\％	0\％
77	85，103，000	Haliremoving appl	10	st	0\％	10\％	0\％	\％ 0	10\％	0\％	10\％	10\％	8\％	\％	6\％	${ }^{5 \%}$	4\％	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{1 \%}$	\％	0\％	\％	${ }_{0} \%$
7778	85，109，000	－Pars	10	sL	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	${ }^{\text {\％}}$	${ }^{7} \%$	6\％	5\％	${ }^{4 \%}$	3\％	2%	${ }^{1 \%}$	0\％	\％	\％	\％
7779	3511．10．10	－ota kinds sutabele toraicrate engines	5	V1	4%	4\％	4%	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	0\％	\％	\％\％	\％	\％	\％	0\％	0\％	0\％	0\％	0\％	\％
7880	8511.1020	－Ot a kind sutiable tor motor venicie engines	5	N1	4%	4%	4%	3\％	3\％	${ }^{2 \%}$	2\％	0\％	\％	0\％	0\％	0\％	\％\％	\％	\％	0\％	0\％	0\％	0\％	\％
${ }^{7781}$	${ }^{85,11,0,090}$	Other	5	V1	4%	4\％	4%	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％	\％	\％	\％	\％	\％	0\％	0\％	0\％	0\％	\％
${ }^{7882}$	${ }^{35,12,010}$		5	V1	4%	4\％	4\％	3\％	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％	0\％	\％	0\％	\％	\％	\％	\％	\％	\％	\％
7783	85，12，021	Unassembled	5	V1	4\％	4\％	4\％	3\％	${ }^{3} \%$	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％	\％	\％	0\％	\％	\％	\％	\％	\％	\％	\％
7884	${ }^{35,112,029}$	Onter	5	VT1	4%	4\％	4\％	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	0\％	\％
7785	85，112，091	－Unassembled	5	N1	4\％	4\％	4\％	3\％	3\％	${ }^{2 \%}$	2\％	0\％	\％	\％	\％	\％	\％	\％	\％	0\％	\％	0\％	\％	\％
${ }^{7786}$	${ }^{85,12,0,099}$	Onter	5	V1	$4{ }^{4}$	4\％	${ }^{4 \%}$	${ }^{3 \%}$	${ }^{\text {3\％}}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	0\％	0\％	0\％	0\％	\％	0\％	\％	\％	\％$\%$	\％	\％	0\％
${ }^{7887}$	85，11，3，30	－Of a kno sutibele tor aricate engines	5	V1	4\％	4\％	4\％	3\％	3\％	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％	\％	0\％	0\％	\％	\％	\％	\％	0\％	\％	\％
${ }^{7788}$	${ }^{35,13,041}$	Unassembled	5	V1	4%	4\％	4\％	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％
7789	35，113，499	\cdots	5	VT1	4%	$4{ }^{4 \%}$	$4{ }^{4 \%}$	3\％	3\％	${ }^{2 \%}$	2%	\％	0\％	0\％	0\％	\％	0\％	0\％	0\％	0\％	0\％	0\％	0\％	\％
7790	85，11，091	Unassembled	5	V1	4%	4\％	4\％	${ }^{3} \%$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	0\％	0\％	\％	\％	\％	\％	\％	0\％	\％	0\％	0\％	0\％	\％
7791	${ }^{85,113,099}$	－OMer	5	V1	4%	4\％	4\％	3\％	${ }^{3} \%$	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％	0\％	\％	\％	\％	\％	\％\％	\％	\％	\％	\％
7792	85，14，0010	－－Of kind sued fora icratat engines	5	N1	4\％	4%	4%	3\％	3\％	2\％	2\％	\％	0\％	\％	0\％	0\％	0\％	\％	\％	\％	0\％	0\％	0\％	\％
${ }^{7793}$	85，14，021		5	V1	4%	4\％	4\％	3\％	3\％	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％	0\％	\％	\％	\％	\％	\％	\％	\％	\％	\％
7794	85，14，029	－．－other	5	VT	${ }^{4 \%}$	4\％	4\％	3\％	${ }^{3 \%}$	${ }^{2 \%}$	2%	0\％	\％	0\％	0\％	0\％	\％	0\％	0\％	0\％	0\％	0\％	\％\％	0\％
7795	${ }^{35,14,0,31}$	Forengines frvenicies of theding 87.01	5	V1	$4{ }^{4}$	4\％	4\％	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	2\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	0\％
${ }^{7796}$	${ }^{85,14,032}$		${ }^{5}$	V1	4%	4\％	4\％	3\％	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％
7797	${ }^{85,14,0,03}$	\cdots For engines of venicies of heaining 8.05	5	V1	4%	4\％	4\％	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	0\％	0\％	\％	\％	\％	\％	\％	\％	\％\％	\％\％	\％	\％	\％
7798	85，14，091		5	V1	4%	4\％	4\％	3\％	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	0\％	\％	\％	0\％	\％	0\％	\％	0\％	0\％	\％	\％	0\％	\％
7799	85，14，099	－other	5	N1	${ }^{4 \%}$	4%	4\％	3\％	3\％	${ }^{2 \%}$	${ }^{2 \%}$	0\％	\％	0\％	0\％	\％	\％	\％	0\％	\％	0\％	\％\％	0\％	\％
7800	${ }^{35,115,010}$	－－OTa knd used ioraicrate engines	5	V1	4%	4%	4\％	3\％	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	0\％	0\％	\％
7801	85，15，021		5	V1	4\％	4\％	4\％	3\％	3\％	${ }^{2 \%}$	${ }^{2 \%}$	0\％	0\％	0\％	0\％	0\％	0\％	\％	\％	\％	\％	0\％	\％	\％
7802	85，15，029	－－other	5	V1	4\％	4\％	4\％	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％	\％	\％	0\％	\％	\％	\％	\％	\％	\％	0\％
7803	${ }^{35,15,031}$	\cdots For engines of venicices of theading 87.01	5	V1	4%	4\％	4\％	3\％	3\％	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％	0\％	0\％	\％	0\％	\％	\％	0\％	\％	\％	0\％
7804	${ }^{85,115,032}$	$\underset{\sim}{\text { or } 8 \text { For engines of trencices of theading } 87.02, ~ 8, ~ 8703}$	5	NT	4\％	4\％	$4{ }^{4 \%}$	${ }^{3 \%}$	3\％	${ }^{2 \%}$	2\％	0\％	\％	\％\％	\％	0\％	\％	\％	0\％	0\％	\％	\％\％	\％	\％$\%$
7805	35，15，033	－Fore engines of venicies of heading 87.05	5	NT	4\％	4%	4\％	3\％	3\％	2\％	2\％	0\％	\％	\％	\％	\％	\％	0\％	0\％	0\％	\％	\％	0\％	\％
7806	${ }^{85,115,091}$		5	N1	$4{ }^{4 \%}$	4\％	$4{ }^{4 \%}$	3\％	3\％	${ }^{2 \%}$	${ }^{2 \%}$	0\％	0\％	0\％	0\％	\％	\％	\％	\％	\％	\％	\％	\％	\％
7807	85，15，099	－．Oner	5	V1	4%	4\％	4\％	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	0\％	0\％	\％	0\％	0\％	0\％	\％	\％	${ }^{0}$	\％	\％	\％	\％
7808	${ }^{\text {85，118，010 }}$	－Of a kind ssed tor aricate engines	5	N1	4%	4%	4\％	3\％	3\％	${ }^{2 \%}$	2%	0\％	0\％	0\％	0\％	\％	\％	\％	0\％	0\％	\％\％	\％\％	0\％	\％
7809	85，118，202	OTa k ind s sulabel tor motor vencices engines	5	NT1	4%	${ }^{4 \%}$	4\％	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	2%	0\％	0\％	0\％	\％	\％\％	\％	\％	0\％	\％\％	0\％	0\％	0\％	\％
7810	85，118，090	－Oner	5	N1	4%	4%	4%	3\％	3\％	${ }^{2 \%}$	2\％	0\％	\％	0\％	\％	0\％	0\％	0\％	\％	0\％	0\％	0\％	\％	\％
7811	${ }^{35,119,010}$	－Of a kind used for aicratie engines	5	NT1	4%	4%	4\％	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	0\％	\％	\％	\％	\％	\％	\％	0\％	\％	0\％	\％\％	\％	\％
${ }^{7812}$	85，19，020		5	${ }^{\text {NT1 }}$	4%	$4{ }^{4 \%}$	$4{ }^{4 \%}$	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％	\％\％	0\％	0\％	\％	\％	\％\％	0\％	\％	\％	\％
7813	35，19，009	－omer	5	NT1	4\％	4\％	4\％	3\％	3\％	2\％	2\％	0\％	0\％	0\％	0\％	0\％	0\％	\％	\％	0\％	0\％	0\％	0\％	\％
7814	35，12，1000	－Lighting or visual signalling equipment of a kind used on bicycles	5	NT1	4\％	${ }^{4 \%}$	4\％	3\％	3\％	${ }^{2 \%}$	2\％	\％	0\％	0\％	\％	\％	\％	\％	\％	\％	\％	\％	0\％	0\％
${ }^{7815}$	35，12，020	－－Unassembled lighting or visual signalling equipment	${ }^{5}$	T1	${ }^{4 \%}$	4\％	4\％	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	2\％	\％	\％	0\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％
${ }_{7816}$	85，12，091	\cdots For motorycles	${ }^{5}$	NT1	$4{ }^{46}$	4\％	4\％	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％\％	0\％	\％	\％	0\％	\％	\％	\％	\％	\％	\％\％	\％	\％
${ }_{7817}$	85，122，099	－other	5	NT1	4%	${ }_{4}^{4 \%}$	${ }^{4 \%}$	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％\％	\％	\％	\％	\％\％	\％\％	\％	\％	0\％	\％	\％	0\％	\％
${ }^{7818}$	${ }^{85,123,010}$	－Hons and sirens，assembled	5	NT1	${ }^{4 \%}$	${ }^{4 \%}$	4\％	3\％	${ }^{3 \%}$	2\％	${ }^{2 \%}$	0\％	0\％	\％	0\％	\％	\％	\％	\％	\％	\％	\％	0\％	\％
7819	85，123，202	－Unassembed s sund stgaling equipment	5	NT1	4\％	4\％	${ }^{4 \%}$	${ }^{3 \%}$	${ }^{3 \%}$	2\％	2%	0\％	0\％	0\％	\％\％	0\％	0\％	\％	0\％	0\％	0\％	0\％	\％	0\％
7820	5，123，091		5	v1	4%	4\％	4\％	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％	\％	\％	0\％	\％	\％	\％	\％	0\％	0\％	\％
7821	85，123，099	－－other	5	N1	4\％	4%	4%	3\％	3\％	2\％	2\％	0\％	\％	0\％	\％	0\％	0\％	\％	0\％	\％	0\％	0\％	0\％	\％
7822	85，124，000	－Winscreen wipes，deforseses and demisiers	5	NT1	$4{ }^{4 \%}$	4%	4%	3\％	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	0\％	\％	\％	\％	\％	\％	\％	0\％	\％	0\％	\％\％	\％	\％
7823	85，12，010	－Of goods of stubeading 8512.10	5	${ }^{\text {NT1 }}$	4%	4\％	$4{ }^{4 \%}$	3\％	3\％	2\％	2\％	\％	\％	\％	0\％	\％	\％	\％	\％	\％\％	\％	\％	\％	\％
7824	85，12，020		5	${ }^{\text {N1 }}$	${ }^{4 \%}$	4\％	${ }^{4 \%}$	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	${ }^{0}$	\％	0\％	\％	\％	\％	\％	\％	\％	${ }^{\text {\％}}$	${ }^{\text {\％}}$	\％	${ }^{0 \%}$
7825	8513．10．10	－－Minest hemet lamps	10	N2	9\％	\％\％	8%	8\％	6\％	6\％	5\％	5\％	4%	4\％	3\％	3\％	2\％	${ }^{2 \%}$	\％	\％	\％\％	0\％	\％	\％\％
788	${ }^{3513.1020}$	－－Ouarmensis lams	${ }^{10}$	${ }^{\text {sL }}$	10\％	10\％	${ }^{10 \%}$	${ }^{10 \%}$	10\％	10\％	10\％	${ }^{10 \%}$	${ }^{8 \%}$	${ }^{7} \%$	${ }^{6 \%}$	${ }^{5 \%}$	${ }^{49}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{1 \%}$	\％\％	\％\％	0\％	\％
7827	85，131，090	－Other	10	st	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	8\％	7\％	6\％	5\％	4%	3\％	${ }^{2 \%}$	1\％	\％	0\％	\％	\％
7828	85，13，010	－of minest hemet lamp of cuarmmeris lamps	10	sL	10\％	10\％	10\％	10\％	${ }^{10 \%}$	10\％	10\％	10\％	${ }^{8}$	${ }^{7} \%$	${ }^{6 \%}$	5\％	${ }^{4 \%}$	${ }^{3}$	2%	${ }^{1 \%}$	\％	\％	\％	\％
7829	85，13，0，30	－F Fastighin rellecolos：Ilastigigh switich sidides of	10	N2	${ }^{9} \%$	9\％	8\％	${ }^{8 \%}$	6\％	6\％	5\％	5\％	4\％	4\％	${ }^{3 \%}$	3\％	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	0\％	\％	\％	\％
7830	35，13，090	－other	10	st	10\％	10\％	10\％	${ }^{10 \%}$	10\％	10\％	10\％	10\％	${ }^{8 \%}$	\％	6\％	5\％	4\％	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{1 \%}$	\％\％	0\％	\％	\％
783	85，14，1000	－Ressiance healed tumacs and ovens	5	NT1	4%	4\％	4\％	3\％	3\％	2\％	2\％	0\％	0\％	\％\％	0\％	\％\％	0\％	\％	0\％	0\％	\％\％	0\％	0\％	0\％
7832	35，142，020	－－Electric furnaces or ovens for the manufacture of printed circuit boards／printed wiring boards or printed circuit assemblies	5	NT1	${ }^{4 / 8}$	4\％	4\％	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	0\％	\％	\％\％
7833	85，142，090	－Oner	5	NT1	${ }^{4 \%}$	4\％	4\％	${ }^{3 \%}$	${ }^{3 \%}$	2%	2%	\％	\％	\％	\％\％	\％\％	\％	\％	\％	\％	0\％	0\％	0\％	\％
7834	35，143，020	－－Electric furnaces or ovens for the manufacture of printed circuit boards／printed wiring boards or printed circuit assemblies	${ }_{5}$	NT1	4\％	4\％	4\％	3\％	3\％	2%	2\％	0\％	\％	\％	0\％	0\％	\％	\％	\％	0\％	\％	0\％	\％	\％
${ }^{7835}$	85，143，090	－other	5	NT1	${ }^{4 \%}$	4\％	4%	3\％	3\％	2\％	2%	0\％	0\％	0\％	\％\％	\％\％	\％\％	\％	0\％	0\％	0\％	0\％	\％	\％

${ }^{836}$	$]^{85,144,000}$	OOtrer equipment ior thin heal treatment of materias	5	NT1	${ }^{4 \%}$	${ }^{4 \%}$	${ }^{4 \%}$	${ }^{3 \%}$	${ }^{3 \%}$	2\％	${ }^{2 \%}$	0\％	0\％	0\％	0\％	0\％	0\％	0\％	0\％	0\％	0\％	0\％	\％	\％\％
78	85，149，020		5	NT1	4%	4%	4\％	3\％	3\％	2\％	2\％	\％	\％	\％	\％	\％	\％	\％\％	\％	\％	\％\％	\％\％	0\％	\％
7838	${ }^{85,149,090}$	－Other	5	N1	$4{ }^{4 \%}$	4\％	4\％	3\％	3\％	${ }^{2 \%}$	2\％	\％\％	\％	0\％	0\％	\％	\％	0\％	0\％	0\％	0\％	0\％	0\％	0\％
7839	${ }^{85,151,100}$	－Soldeing ions and guns	5	NT	4\％	$4{ }^{4 \%}$	4\％	3\％	3\％	2%	${ }^{2 \%}$	\％\％	0\％	0\％	0\％	\％\％	0\％	0\％	\％	\％\％	\％\％	\％	\％	0\％
7840	85，51，90	－－－Machines and apparatus for soldering components on printed circuit boards／printed wiring boards	5	NT1	${ }^{46}$	4%	4\％	3\％	3\％	2\％	${ }^{2 \%}$	\％	0\％	\％	\％	\％	0\％	\％	\％	\％	\％	0\％	\％	\％
${ }^{7841}$	${ }^{85,151,980}$	\cdots	5	NT1	$4{ }^{4 \%}$	4\％	${ }^{4 \%}$	3\％	${ }^{3 \%}$	${ }^{2 \%}$	2%	0\％	\％	\％	\％	0\％	0\％	0\％	\％	0\％	0\％	0\％	0\％	0\％
7842	${ }^{85,152,100}$	FFulyo or patly automaic	5	NT1	$4{ }^{4 \%}$	4\％	4\％	3\％	3\％	2\％	2\％	0\％	\％	0\％	0\％	\％	\％	\％	0\％	0\％	\％	\％	\％	\％
7843	85，152，900	－other	5	N1	$4{ }^{46}$	4%	4%	3\％	3\％	2\％	2\％	\％	\％	0\％	\％	0\％	\％	\％	\％	0\％	0\％	\％	\％	\％
84	${ }^{85,153,100}$	FFuly or patly automaic	5	V1	${ }_{4}^{4}$	${ }^{4 \%}$	${ }^{4 \%}$	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	0\％	0\％	0\％	\％	0\％	0\％	\％	\％	\％	\％	\％\％
7845	${ }^{85,153,910}$	\cdots AC arc weless，transiome	5	V1	$4{ }^{4 \%}$	4%	4\％	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	0\％	0\％	\％	0\％	0\％	0\％	0\％	0\％	0\％	\％	\％	\％	0\％
${ }^{7846}$	${ }^{85,153,990}$	－－Oher	5	NT1	4%	$4{ }^{4}$	4\％	${ }^{3 \%}$	${ }^{3 \%}$	2\％	${ }^{2 \%}$	\％	0\％	\％	\％	0\％	\％	\％	\％	\％	\％	0\％	\％	\％
7847	${ }^{85,158,010}$	－－Electric machines and apparatus for hot spraying of metals or sintered metal carbides	5	NT1	4\％	4\％	4\％	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	0\％	\％	0\％	\％	0\％	\％	\％	\％	\％	\％	0\％
7^{7848}	85，158，900	－Other	5	V1	4\％	$4{ }^{4 \%}$	4%	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	0\％	0\％	0\％	\％	0\％	0\％	\％	\％	0\％	\％	0\％
7849	85，159，010	Of $A C$ ac wedess，trasiomer tyee	5	NT	4%	4%	4%	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	0\％	\％	\％
850	85，159，20		5	NT1	${ }^{4 \%}$	4\％	4%	${ }^{3 \%}$	${ }^{3} \%$	${ }^{2 \%}$	${ }^{2 \%}$	0\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	0\％
7851	85，159，090	－Other	5	N1	4\％	4\％	4\％	3\％	3\％	2\％	2\％	0\％	\％	\％	\％	0\％	0\％	0\％	\％	0%	\％\％	\％	\％	\％
$7{ }^{7} 5$	${ }^{85616.0 .10}$	－Insananeous or storage water heaelers	10	st	10\％	0\％	\％\％	0\％	10\％	10\％	10\％	10\％	${ }^{8 \%}$	7\％	6\％	5\％	${ }^{4 \%}$	3\％	${ }^{2 \%}$	${ }^{1 \%}$	\％	\％	\％	\％
7853	${ }^{\text {8516．0．0．30 }}$	${ }^{\text {Immesion neaeies }}$	10	${ }^{\text {sL }}$	0\％	0\％	\％	\％\％	\％\％	\％\％	0\％	10\％	${ }^{8 \%}$	${ }^{7} \%$	${ }^{6 \%}$	${ }^{\text {5\％}}$	${ }^{4 \%}$	3\％	${ }^{2 \%}$	1\％	\％	\％	\％	\％
7854	${ }^{85,162,100}$	－Sorage heaing radialos	10	sL	10\％	0\％	0\％	0\％	10\％	10\％	10\％	10\％	${ }^{8}$	${ }^{7} \%$	6\％	${ }^{\text {5\％}}$	${ }^{4 \%}$	${ }^{3}$	${ }^{2 \%}$	${ }^{1 \%}$	\％	\％	\％	0\％
7855	${ }^{85,162,900}$	－other	10	IsL	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	${ }^{10 \%}$	${ }^{10 \%}$	\％	${ }^{10 \%}$	0\％	\％	10\％	10\％	\％	\％\％	\％	\％
${ }^{7856}$	${ }^{85,163,100}$	－Hair dees	10	st	10\％	${ }^{10 \%}$	10\％	10\％	10\％	10\％	10\％	10\％	${ }^{8 \%}$	${ }^{7} \%$	6\％	5\％	${ }^{4 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	1\％	0\％	0\％	0\％	0\％
7857	${ }^{85,163,200}$	－Other haid．fessing apparatus	10	st	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	8\％	${ }^{7} \%$	6\％	5\％	4\％	3\％	${ }^{2 \%}$	1\％	0\％	\％	\％	0\％
$7{ }^{758}$	${ }^{85,163,300}$	Hand．dying apparaus	10	sL	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	${ }^{8 \%}$	7\％	6\％	5\％	${ }^{4 \%}$	3\％	${ }^{2 \%}$	${ }^{1 \%}$	\％	\％	\％	\％
7859	${ }^{85,164,010}$		10	sL	10\％	10\％	\％	\％\％	\％\％	10\％	10\％	10\％	8\％	7\％	6\％	5\％	${ }^{4 \%}$	3\％	${ }^{2 \%}$	1\％	\％	0\％	\％	0\％
7860	85，164，900	－Other	10	${ }^{\text {sL }}$	10\％	0\％	\％	\％	0\％	\％	10\％	10\％	${ }^{8 \%}$	${ }^{7 \%}$	6\％	5\％	${ }^{4 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	1\％	0\％	0\％	\％\％	0\％
7861	${ }^{85,165,000}$	Mcowave ovens	${ }^{10}$	${ }^{\text {sL }}$	10\％	0\％	10\％	\％	10\％	10\％	${ }^{10 \%}$	${ }^{10 \%}$	${ }^{8 \%}$	${ }^{7 \%}$	6\％	5\％	${ }^{4 \%}$	3\％	${ }^{2 \%}$	${ }^{1 \%}$	\％	0\％	\％	0\％
882	${ }^{85,166,010}$	－Rice cookers	10	st	10\％	0\％	0\％	0\％	0\％	0\％	10\％	10\％	${ }^{8 \%}$	${ }^{7}$	${ }^{6 \%}$	5\％	${ }^{4 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{1 \%}$	\％	0\％	\％	\％
${ }^{7863}$	85，66，900	－Other	10	sL	10\％	0\％	10\％	0\％	10\％	10\％	10\％	10\％	${ }^{8 \%}$	\％	${ }^{6 \%}$	${ }^{5 \%}$	4%	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{1 \%}$	\％	\％	\％	0\％
7884	${ }^{55,167,100}$	－Cofteo ortea makers	${ }^{10}$	st	${ }^{10 \%}$	${ }^{10 \%}$	${ }^{10 \%}$	${ }^{10 \%}$	${ }^{10 \%}$	${ }^{10 \%}$	${ }^{10 \%}$	${ }^{10 \%}$	${ }^{8 \%}$	${ }^{7 \%}$	6\％	${ }^{5 \%}$	${ }^{4 / 8}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{1 \%}$	\％\％	0\％	\％	0\％
7865	${ }^{\text {85，167，200 }}$	－Toases	10	${ }^{\text {sL }}$	10\％	${ }^{10 \%}$	10\％	10\％	${ }^{10 \%}$	10\％	10\％	10\％	${ }^{8 \%}$	${ }_{7}{ }^{7}$	6\％	${ }^{5 \%}$	${ }^{4 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	1\％	0\％	\％	0\％	0\％
7866	${ }^{85,167,90}$	－Kentes	10	sL	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	${ }^{8 \%}$	${ }^{7} \%$	6\％	5\％	${ }^{4 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{1 \%}$	0\％	\％	\％	0\％
7867	${ }^{85,167,90}$	Other	10	sL	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	${ }^{8 \%}$	7\％	6\％	5\％	${ }^{4 \%}$	3\％	${ }^{2 \%}$	1\％	\％	\％	\％	0\％
7868	${ }^{85,168,010}$	－－For type－founding or type－setting machines；for industrial furnaces	10	${ }^{\text {sL }}$	10\％	\％\％	10\％	10\％	0\％	\％	10\％	10\％	8\％	7%	6\％	5\％	${ }^{4 \%}$	3\％	${ }^{2 \%}$	${ }^{1 \%}$	\％	\％	\％	0\％
7869	85，168，30	－－Fordomesicicapplanes	10	${ }^{\text {sL }}$	10\％	0\％	10\％	0\％	10\％	10\％	10\％	10\％	${ }^{8}$	${ }^{7 \%}$	6\％	5\％	${ }^{4 \%}$	3\％	${ }^{2 \%}$	${ }^{1 \%}$	\％	\％	\％	\％
${ }^{7870}$	${ }^{85,168,000}$	－Other	${ }^{10}$	${ }^{\text {sL }}$	10\％	0\％	10\％	${ }^{10 \%}$	10\％	10\％	10\％	${ }^{10 \%}$	${ }^{8 \%}$	${ }^{7 \%}$	6\％	5\％	${ }^{4 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	1\％	\％	\％\％	\％\％	0\％
887	${ }^{85,169,021}$	Sealed hopl	${ }^{10}$	${ }^{\text {sL }}$	10\％	0\％	10\％	0\％	10\％	${ }^{10 \%}$	10\％	${ }^{10 \%}$	${ }^{8 \%}$	${ }^{7} \%$	6\％	${ }^{5 \%}$	${ }^{4 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{1 \%}$	\％	0\％	0\％	\％
7872	${ }^{85,169,29}$	\cdots	10	st	10\％	10\％	10\％	10\％	10\％	10\％	10\％	${ }^{10 \%}$	${ }^{8 \%}$	7\％	${ }^{6 \%}$	${ }^{5 \%}$	$4{ }^{4 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{1 \%}$	\％	0\％	\％	\％
${ }^{7873}$	${ }^{85,169,30}$	－of goods of stubeading 8516.10	10	sL	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	8\％	${ }^{7} \%$	6\％	5\％	$4{ }^{4 \%}$	3\％	${ }^{2 \%}$	1\％	\％\％	\％	\％	0\％
7874	85，169，040		10		10\％	10\％	10\％	10\％	10\％	10\％	\％\％	10\％	\％	\％	\％	0\％	\％	\％	\％	\％	\％	\％	\％	0\％
7875	${ }^{85,169,000}$	－omer	10	sL	10\％	10\％	10\％	0\％	10\％	10\％	10\％	${ }^{10 \%}$	8%	7\％	6\％	5\％	${ }^{4 \%}$	3\％	2%	1\％	\％	\％\％	0\％	0\％
${ }^{7876}$	${ }^{85,771,100}$		10		10\％	10\％	${ }^{10 \%}$	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	${ }^{10 \%}$	10\％	10\％	10\％	10\％	10\％	10%	10\％	\％
${ }_{7877}$	${ }^{85,171,200}$	－Telephones for cellular networks or for other	10	т2	\％	9\％	${ }^{8 \%}$	8\％	6\％	6\％	5\％	5\％	${ }^{4 \%}$	4%	3\％	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	0\％	0\％	\％	0\％	0\％	\％
${ }^{7878}$	${ }^{85,771,800}$	－Ooter	10	IsL	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10%	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％
7879	85，176，100	Base saions	10	NT2	\％	9\％	8\％	${ }_{8} 8$	6\％	6\％	5\％	5\％	4%	4%	3\％	3\％	${ }^{2 \%}$	2\％	\％	0\％	\％	\％	\％	\％
7880	85，176，210	－－－Radio transmitters and radio receivers of a kind used for simultaneous interpretation at multilingual conferences	10	NT2	${ }^{9}$	9\％	8\％	${ }^{8 \%}$	6\％	6\％	5\％	5\％	4\％	4\％	3\％	3\％	${ }^{2 \%}$	2%	\％	0\％	0\％	\％	\％	\％
7881	85，176，21		10	T2	${ }^{9}$	${ }^{9 \%}$	${ }^{8 \%}$	${ }^{8 \%}$	\％	${ }^{6 \%}$	${ }^{5 \%}$	5\％	${ }^{4 \%}$	4\％	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	0\％	\％\％	\％	0\％	\％	\％
7882	${ }^{85,176,229}$	\cdots－Onter	${ }^{10}$	st	10\％	10\％	10\％	${ }^{10 \%}$	${ }^{10 \%}$	10\％	\％	${ }^{10 \%}$	${ }^{8 \%}$	${ }^{\text {\％\％}}$	6\％	5\％	${ }^{4 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	1\％	\％	0\％	0\％	0\％
7888	${ }^{85,176,230}$	Telephonic orteegraphic swiciniga apaatus	10	HsL	10\％	10\％	10\％	10\％	10\％	0\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	0\％	10\％	10\％	0\％	0\％	10\％
7884	${ }^{85,176,241}$	Caras Modems inculing cable modens and modem	10	${ }_{\text {st }}$	10\％	\％	10\％	10\％	10\％	10\％	10\％	10\％	0\％	\％\％	\％	10\％	0\％	0\％	\％	\％	10\％	0\％	\％	0\％
7885	${ }^{85,17,17,242}$	\cdots Concentraics or muliplexers	10	${ }_{\text {ISL }}$	10\％	0\％	10\％	10\％	10\％	10\％	10\％	${ }^{10 \%}$	10\％	10\％	\％\％	${ }^{10 \%}$	10\％	10\％	10\％	\％	10\％	10\％	10\％	10\％
7886	${ }^{85,176,249}$	Oner	10	${ }^{\text {IsL }}$	10\％	${ }^{10 \%}$	10\％	${ }^{10 \%}$	${ }^{10 \%}$	${ }^{10 \%}$	10\％	10\％	${ }^{10 \%}$	10\％	\％\％	10\％	10\％	10\％	10\％	0\％	${ }^{10 \%}$	10\％	${ }^{10 \%}$	\％
7887	${ }^{85,176,251}$	Wiress Lans	10	N2	9\％	9\％	${ }^{8 \%}$	8\％	6\％	6%	5\％	5\％	4%	$4{ }^{4 \%}$	3\％	${ }^{3 \%}$	${ }^{2 \%}$	2\％	\％\％	0\％	0\％	0\％	\％	0\％
${ }^{7888}$	85，176，52		10	N2	${ }^{\text {\％}}$	9\％	${ }^{8 \%}$	${ }_{8 \%}$	6\％	\％\％	${ }^{5 \%}$	5\％	${ }^{4 \%}$	4\％	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％	\％	\％	0\％
7889	76，233	- －－Other transmission apparatus for radio－ telephony or radio－telegraphy	${ }^{10}$	${ }^{\text {sL }}$	10\％	10\％	${ }^{10 \%}$	\％\％	${ }^{10 \%}$	\％	10\％	${ }^{10 \%}$	${ }^{8 \%}$	${ }^{7 \%}$	${ }^{6 \%}$	${ }^{5 \%}$	${ }^{4 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{1 \%}$	\％	\％	\％	\％
7890	${ }^{55,176,259}$	\cdots	${ }^{10}$	${ }^{\text {sL }}$	10\％	10\％	${ }^{10 \%}$	10\％	10\％	10\％	10\％	10%	${ }^{8 \%}$	7%	6\％	5\％	${ }^{4 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	1\％	0\％	0\％	0\％	0\％
789	${ }^{85,176,261}$		10	${ }^{\text {sL }}$	10\％	0\％	${ }^{10 \%}$	${ }^{10 \%}$	${ }^{10 \%}$	10\％	${ }^{10 \%}$	${ }^{10 \%}$	${ }^{8 \%}$	${ }^{7 \%}$	6\％	5\％	${ }^{4 / 6}$	3\％	${ }^{2 \%}$	${ }^{1 \%}$	\％	\％	\％	0\％
7892	${ }^{85,176,299}$	Onher	${ }^{10}$	st	10\％	10\％	${ }^{10 \%}$	${ }^{10 \%}$	${ }^{10 \%}$	10\％	10\％	10\％	${ }^{8 \%}$	${ }^{7 \%}$	6\％	5\％	${ }^{4 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{1 \%}$	\％\％	\％	\％	0\％
7893	${ }^{85,176,291}$	$\begin{aligned} & \text {--- Portable receivers for calling, alerting or paging } \\ & \text { and paging alert devices, including pagers } \end{aligned}$	10	${ }^{\text {st }}$	\％	\％	10\％	10\％	0\％	\％	10\％	10\％	${ }^{\text {\％\％}}$	${ }^{7} \%$	6\％	5\％	${ }^{4 \%}$	3\％	${ }^{2 \%}$	${ }^{1 \%}$	\％	\％	\％	\％
7894	${ }^{85,176,292}$	\cdots For raio－reeppony or raioo－telegaphy	10	HL	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％
7895	${ }^{85,176,299}$	－Oner	10	sL	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	${ }^{8 \%}$	${ }^{7}$	6\％	5\％	${ }^{4 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{1 \%}$	\％\％	\％	\％	\％
7896	${ }^{85,17,900}$	－Other	10	st	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	$8{ }^{8}$	7\％	6\％	5\％	${ }^{4 \%}$	3\％	${ }^{2 \%}$	1\％	0\％	0\％	0\％	0\％
7897	${ }^{85,177,010}$	Of contiol and adaidor unis in incuining gaieways，	10	т2	9\％	9\％	${ }^{8 \%}$	${ }_{8 \%}$	${ }^{6 \%}$	6\％	5\％	5\％	${ }^{4 \%}$	4\％	3\％	3\％	${ }^{2 \%}$	2\％	\％	0\％	\％	0\％	\％	\％
7898	${ }^{85,177,021}$	－－0t celluar tepephones	10	st	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	$8{ }^{\text {\％}}$	\％	6\％	5\％	${ }^{4 \%}$	3\％	2\％	1\％	\％	\％	\％	\％
7899	85，177，29	Oher	10	IsL	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％
7900	${ }^{85,177,031}$	－of soods tor fine etelephony of ine etegraphy	10	${ }^{\text {sL }}$	10\％	10\％	10\％	${ }^{10 \%}$	${ }^{10 \%}$	10\％	10\％	10\％	${ }^{8 \%}$	${ }^{7 \%}$	${ }^{6 \%}$	5\％	${ }^{4 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	1\％	\％\％	0\％	0\％	0\％
7901	${ }^{85,177,032}$	toods	10	T1	${ }^{9 \%}$	${ }^{8 \%}$	6\％	5\％	4\％	${ }^{3 \%}$	${ }^{2 \%}$	\％	\％	0\％	\％	\％	\％	\％	\％	0\％	0\％	0\％	0\％	0\％
7902	${ }^{85,177,39}$	‥Oner	${ }^{10}$	st	10\％	10%	10\％	${ }^{10 \%}$	${ }^{10 \%}$	${ }^{10 \%}$	10\％	10\％	${ }^{10 \%}$	10\％	10\％	${ }^{10 \%}$	${ }^{10 \%}$	10%	10\％	\％\％	10%	10\％	0\％	\％
7903	${ }^{85,177,040}$	－－Aerials or antennae of a kind used with apparatus for radio－telephony and radio－telegraphy	10	${ }^{\text {sL }}$	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	${ }^{8 \%}$	${ }^{7 \%}$	${ }^{6}$	${ }^{5 \%}$	${ }^{4 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{1 \%}$	\％	0\％	\％	\％
7904	${ }^{85,177,091}$	Of goos iof in ine teephony or ine etegegaphy	${ }^{10}$	${ }^{\text {sL }}$	${ }^{10 \%}$	${ }^{10 \%}$	10\％	${ }^{10 \%}$	${ }^{10 \%}$	${ }^{10 \%}$	${ }^{10 \%}$	${ }^{10 \%}$	${ }^{8 \%}$	${ }^{7 \%}$	${ }^{6 \%}$	${ }^{5 \%}$	${ }^{4 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{1 \%}$	\％	0\％	\％\％	0\％
7905	${ }^{85,177,092}$		10	${ }^{\text {sL }}$	10\％	\％o\％	\％	10\％	10\％	10\％	10\％	10\％	${ }^{8 \%}$	${ }^{7}$	\％	${ }^{5 \%}$	${ }^{4}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{1 \%}$	0%	${ }^{0 \%}$	${ }^{0 \%}$	0\％
7906	${ }^{85,177,099}$	Other	10	N2	${ }^{9 \%}$	${ }^{\text {9\％}}$	${ }^{8 \%}$	${ }^{8 \%}$	${ }^{6 \%}$	6\％	5\％	${ }^{5 \%}$	${ }^{4 \%}$	4\％	3\％	3\％	${ }^{2 \%}$	${ }^{2 \%}$	0\％	0\％	\％	\％	\％\％	0\％
7907	${ }^{8518.10 .11}$	－－－Microphones having a frequency range of 300 Hz to $3,400 \mathrm{~Hz}$ ，with a diameter not exceeding 10 mm and a height not exceeding 3 mm ，for telecommunication use	10	sL	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	${ }^{8 \%}$	7\％	6\％	5\％	4\％	${ }^{3 \%}$	2\％	1\％	0\％	0\％	\％	\％
7908	518．8．0．19	\cdots	10	st	10\％	10\％	10\％	10\％	${ }^{10 \%}$	10\％	10\％	10\％	${ }^{8 \%}$	${ }^{7 \%}$	6\％	${ }^{5 \%}$	${ }^{4 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	1\％	\％	0\％	\％	0\％
7299	${ }^{85,181,090}$	－Other	10	s	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	${ }^{8}$	7\％	6\％	5\％	4%	3\％	${ }^{2 \%}$	1\％	\％	\％	\％	0\％
7910	${ }^{85,182,10}$	－Box spaeaer type	10	Ist	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	${ }^{10 \%}$	10\％	10\％	10\％	10\％	10\％	10\％	10\％	${ }^{10 \%}$	10\％	${ }^{10 \%}$	10\％
2911	${ }^{85,182,190}$	－Other	10	st	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	${ }^{8}$	${ }^{7} \%$	6\％	5\％	4\％	3\％	${ }^{2 \%}$	${ }^{1 \%}$	\％	\％	0\％	\％
7912	${ }^{85,1822,20}$	－Bos speaker trpe	10	st	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	${ }^{8 \%}$	${ }^{7 \%}$	6\％	5\％	${ }^{4 \%}$	3\％	${ }^{2 \%}$	${ }^{1 \%}$	\％	\％	\％	\％
2913	${ }^{85,182,290}$	…oner	10	sL	10%	10%	10\％	10%	10%	10%	10%	10%	${ }^{8 \%}$	${ }^{7 \%}$	6\％	5\％	4%	${ }^{3 \%}$	${ }^{2 \%}$	1\％	\％	\％	\％\％	\％

${ }^{7914}$	35，182，290	- Loudspeakers，without enclosure，having a frequency range of 300 Hz diameter not exceeding dian telecommunication use	10	st	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	${ }^{8 \%}$	7\％	6\％	5\％	4\％	3\％	2\％	1\％	\％	\％	\％	\％
7915	${ }^{35,182,990}$	－Oner	10	sL	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	${ }_{8 \%}$	${ }^{7} \%$	6\％	5\％	4\％	3\％	${ }^{2 \%}$	1\％	\％	\％	0\％	\％
7996	85，183，010	－Headonones	10	st	10\％	10\％	10\％	10\％	\％	10\％	10\％	10\％	${ }^{8 \%}$	${ }^{7 \%}$	${ }^{6 \%}$	${ }^{5 \%}$	${ }^{4 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{1 \%}$	0\％	0\％	0\％	0\％
297	85，18，3，20	－Eaphones	10	st	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	${ }^{8 \%}$	${ }^{7} \%$	6\％	5\％	4\％	${ }^{3 \%}$	${ }^{2 \%}$	1\％	\％	\％	0\％	\％
7918	35，18，3，40	－Line eieplono handsels	10	st	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	${ }^{8} \%$	${ }^{7} \%$	6\％	5\％	4\％	${ }^{3 \%}$	${ }^{2 \%}$	1\％	\％	\％	\％\％	\％\％
7919	85，18，3，51	\cdots	10	st	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	${ }^{8}$	${ }^{7} \%$	6\％	${ }^{5 \%}$	4%	${ }^{3 \%}$	${ }^{2 \%}$	1\％	\％	\％	\％	\％
7920	85，18，3，59	…Other	10	st	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	${ }^{8 \%}$	7\％	6\％	5\％	$4{ }^{4 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	1\％	0\％	\％	\％	0\％
7921	85，18，3，900	－Other	10	sL	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	${ }^{8 \%}$	${ }^{7}$	6\％	5\％	4%	${ }^{3 \%}$	${ }^{2 \%}$	1\％	\％	\％\％	\％	0\％
7922	85，18，0，20	－Useda as repeates in inie tiepprony	10	st	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	${ }^{8 \%}$	${ }^{7} \%$	6\％	5\％	4\％	3\％	2\％	1\％	\％	\％	\％	\％
792	85，184，030	－Used as repeaters in telephony other than line telephony	${ }^{10}$	${ }^{\text {sL }}$	10\％	${ }^{10 \%}$	10\％	10\％	\％	10\％	\％	10\％	${ }^{8 \%}$	${ }^{7 \%}$	6\％	${ }^{5 \%}$	4\％	3\％	${ }^{2 \%}$	${ }^{1 \%}$	\％	\％	\％	\％
7924	85，184，040	Other，having 6 or more input signal lines，with or without elements for capacity amplifiers	${ }^{10}$	${ }^{\text {st }}$	10\％	10\％	10\％	10\％	0\％	10\％	10\％	10\％	${ }^{8 \%}$	${ }^{7 \%}$	6\％	${ }^{5 \%}$	4\％	3\％	${ }^{2 \%}$	1\％	\％	0\％	\％	\％
7925	85，184，909	－－other	10	st	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	0\％	10\％	10\％	10\％	10\％	0\％	10\％	${ }^{10 \%}$	10\％	10\％	0\％
7926	85，185，010	－－Having a power raingo ot 240 W or more	10	st	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	8%	${ }^{7}$	6\％	5\％	4\％	${ }^{3 \%}$	${ }^{2 \%}$	1\％	0\％	\％	0\％	0\％
7927	35，185，20	－Other，with houdspeakers，of a kind suitable for broadcasing，having voltage rating of 50 V or more but not exceeding 100 V	10	sL	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	${ }_{8 \%}$	${ }^{7 \%}$	6\％	5\％	4\％	3\％	${ }^{2 \%}$	${ }^{1 \%}$	\％	\％	${ }^{0 \%}$	\％
7928	85，185，900	－－other	10	st	10%	10%	10\％	10%	0\％	\％\％	10%	10\％	8%	${ }^{7 \%}$	6\％	${ }^{5 \%}$	4\％	${ }^{3 \%}$	${ }^{2 \%}$	1\％	\％	\％\％	\％	\％\％
7293	5，18，010	- Of goods of subheading $8518.10 .111,8518.29 .20$, B518．30．40 or s588．40．20， including p pinted circuit assemblies	10	st	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	${ }^{8 \%}$	7\％	6\％	5\％	4\％	3\％	${ }^{2 \%}$	${ }^{1 \%}$	\％	\％	\％	0\％
7930	85，189，020	－．Of goods of subleading 8518.40 .40	10	st	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	8\％	${ }^{7}$	6\％	5\％	4%	3\％	2\％	1\％	\％	0\％	\％	\％\％
7931	85，18，9，30		${ }^{10}$	st	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	${ }^{8 \%}$	${ }^{7} \%$	6\％	${ }^{5 \%}$	4\％	${ }^{3 \%}$	${ }^{2 \%}$	1\％	\％	\％	\％	\％
7932	85，189，940	－－Ot goods of stubeading 851.82 .9 .90	10	sL	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	${ }_{8 \%}$	${ }^{7}$	6\％	5\％	4\％	3\％	${ }^{2 \%}$	1\％	\％	\％	\％	\％
7933	85，18，9090	－Other	10	st	0\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	${ }^{8 \%}$	${ }^{7} \%$	${ }^{6 \%}$	5\％	4\％	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{1 \%}$	\％	\％	\％	\％
7793	85，12，0010	－－Cons or discopeneated record players	20	EL	\checkmark	\bigcirc	\bigcirc	U	\bigcirc	\bigcirc	\bigcirc	U	\bigcirc	\bigcirc	U	¢	U	\bigcirc	\bigcirc	\bigcirc	\checkmark	U	U	\bigcirc
7935	85，12，020	－Onter	${ }^{20}$	EL	U	－	U	U	U	U	U	U	U	0	\bigcirc	U	U	U	U	\bigcirc	\bigcirc	U	\bigcirc	－
7936	85，193，000	－Tumabes（reocrideers）	${ }^{20}$	EL	0	0	0	U	U	0	0	0	0	－	0	0	0	0	\bigcirc	\bigcirc	U	U	U	\bigcirc
7937	85，195，000	－Telephone answeing madines	${ }^{20}$	EL	U	O	－	0	U	\bigcirc	－	－	－	－	ט	\bigcirc	U	U	ט	\bigcirc	U	U	U	0
7938	85，198，110		${ }^{20}$	EL	U	\bigcirc	－	ט	0	－	\bigcirc	ט	U	U	U	\bigcirc	U	－	0	\bigcirc	\bigcirc	ט	U	\checkmark
7939	5，198，120	Cassette recorders，with built in amplifiers and one or more built in loudspeakers，operating only with an external source of power	${ }^{20}$	EL	\checkmark	\bigcirc	U	－	u	U	u	U	U	u	\checkmark	U	U	U	U	\checkmark	\checkmark	U	u	U
7940	35，19， 130	－－Compact dis payeris	${ }^{20}$	EL	\bigcirc	，	0	0	U	\bigcirc	U	U	U	u	U	\bigcirc	u	，	U	－	0	0	U	\bigcirc
7941	85，19，141	$\underset{\text { broadcasting }}{\ldots}$ Of kind sutable for co cinematography or	${ }^{20}$	EL	${ }^{\circ}$	ט	${ }^{\circ}$	${ }^{\circ}$	U	${ }^{\circ}$	ט	${ }^{\circ}$	${ }^{\circ}$	${ }^{\circ}$	${ }^{\circ}$	－	${ }^{\circ}$	${ }^{\circ}$	0	${ }^{\circ}$	${ }^{\circ}$	${ }^{\circ}$	U	\bigcirc
7942	${ }^{85,198,149}$	\cdots	${ }^{20}$	EL	${ }^{\circ}$	${ }^{\circ}$	${ }^{\circ}$	${ }^{\circ}$	${ }^{4}$	${ }^{\circ}$	${ }^{\circ}$	${ }^{\circ}$	${ }^{\circ}$	${ }^{\circ}$	${ }^{\circ}$	${ }^{*}$	${ }^{\circ}$	${ }^{\circ}$	${ }^{\circ}$	${ }^{\circ}$	${ }^{\circ}$	${ }^{\circ}$	${ }^{\circ}$	\checkmark
7943	85，19，150	Dictating machines not capable of operating without an external source of power	${ }^{20}$	EL	＂	O	0	U	O	O	U	U	¢	O	0	0	U	U	U	\bigcirc	U	U	U	U
794	85，198，61		${ }^{20}$	EL	\bigcirc	U	\bigcirc	U	U	0	\bigcirc	U	\bigcirc	U	\bigcirc	${ }^{\circ}$	U	${ }^{\circ}$	U	\bigcirc	${ }^{0}$	ט	U	\bigcirc
7945	85，198，169	－．．o．Oher	${ }^{20}$	EL	U	\bigcirc	U	\bigcirc	U	\bigcirc	ט	U	\bigcirc	\checkmark	0	\bigcirc	U	U	U	\checkmark	\checkmark	ט	\bigcirc	\bigcirc
${ }^{7946}$	85，198，771		${ }^{20}$	EL	\bigcirc	\bigcirc	0	0	U	${ }^{0}$	ט	＂	U	\bigcirc	U	\bigcirc	${ }^{0}$	U	U	－	\bigcirc	\bigcirc	\bigcirc	\bigcirc
${ }^{7947}$	85，198，179	－－Oner	${ }^{20}$	${ }^{\text {EL }}$	U	\checkmark	\bigcirc	0	U	\bigcirc	ט	\bigcirc	\bigcirc	U	\checkmark	\checkmark	\bigcirc	0		\bigcirc	\bigcirc	\bigcirc	0	\bigcirc
7948	［85，18，191		${ }^{20}$	EL	0	0	U	U	U	0	U	O	O	O	0	O	O	O	0	O	U	U	U	U
${ }^{7949}$	85，198，199	Oher	${ }^{20}$	EL	\bigcirc	\bigcirc	－	U	U	ט	ט	U	ט	ט	\bigcirc	－	U	－	U	\bigcirc	\bigcirc	ט	U	\bigcirc
7950	${ }^{\text {85，198，911 }}$	\cdots For film ora widh of lest han 16 mm	${ }^{20}$	${ }^{\text {EL }}$	\bigcirc	\bigcirc	U	0	－	\bigcirc	－	－	U	U	U	－	U	\bigcirc	U	\bigcirc	U	U	\bigcirc	\bigcirc
7951	85，198，912	－－．．For film of a widthot 16 mmor more	${ }^{20}$	EL	U	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	U	U	\bigcirc	U	\bigcirc	U	\bigcirc	\bigcirc	U	0	\bigcirc
7952	85，19，920	\cdots Recocrpplayers whio r whtout louspeakers	${ }^{20}$	EL	\bigcirc	\bigcirc	－	\bigcirc	0	0	0	0	0	0	ט	0	0	\bigcirc	U	\bigcirc	ט	0	0	0
$7{ }^{7953}$	85，198，390		${ }^{20}$	${ }^{\text {EL }}$	U	U	\bigcirc	U	U	U	ט	U	U	U	U	\bigcirc	U	U	U	U	\checkmark	0	U	0
7954	85，19，990	－ Om orer	${ }^{20}$	EL	\bigcirc	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U
7955	${ }^{8521.10,10}$	－Of a kind used in cinematography or television	${ }^{20}$	EL	O	0	U	＂	U	＂	ט	0	＂	0	＂	＂	＂	＂	0	＂	－	－	O	\bigcirc
7956	85，21，090	－－other	${ }^{20}$	${ }^{\text {EL }}$	\bigcirc	\bigcirc	－	U	U	\bigcirc	，	${ }^{\circ}$	\bigcirc	－	\bigcirc	\bigcirc	－	\bigcirc	－	\bigcirc	U	¢	U	0
${ }^{7957}$	85，219，011	- －Of a kind used in cinematography or television broadcasting	${ }^{20}$	EL	\bigcirc	0	O	U	O	\bigcirc	－	O	${ }^{0}$	\bigcirc	0	－	${ }^{0}$	${ }^{\circ}$	0	\bigcirc	${ }^{\circ}$	－	${ }^{\circ}$	${ }^{\circ}$
7958	85，219，019	\cdots Oner	${ }^{20}$	EL	\bigcirc	U	－	0	U	0	ט	U	\bigcirc	U	U	U	U	0	0	U	U	－	0	\bigcirc
7759	85，219，091	-- Of a broadcasting	${ }^{20}$	EL	\bigcirc	\bigcirc	\bigcirc	U	\bigcirc	0	ט	U	0	0	0	－	\checkmark	0	U	\bigcirc	\checkmark	－	U	U
7960	85，219，099	－－Oner	${ }^{20}$	EL		\bigcirc	${ }^{\circ}$	\bigcirc	${ }^{\circ}$	\bigcirc	，	\bigcirc	${ }^{\circ}$	\bigcirc	0	\bigcirc	${ }^{\circ}$	${ }^{\circ}$	0	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
7296	85，22，000	－Pick－ip cartidges	${ }^{20}$	${ }^{\text {EL }}$	U	U	－	U	U	\bigcirc	－	ט	\bigcirc	U	U	－	U	U	U	ט	\bigcirc	－	U	0
7962	85，29，020	- Printed circuit board assemblies tor telephone answering machines	${ }^{20}$	EL	0	0	ט	0	U	\bigcirc	0	0	0	${ }^{\circ}$	${ }^{\circ}$	0	\bigcirc	U	${ }^{\circ}$	0	－	\bigcirc	U	\bigcirc
7963	85，29，0，30	－－Printed circuit board assemblies for	${ }^{20}$	EL	\checkmark	U	U	\bigcirc	\bigcirc	\bigcirc	U	U	\checkmark	U	U	\bigcirc	\bigcirc	\bigcirc	，	\bigcirc	ט	\bigcirc	－	\bigcirc
7764	85，229，040	－Audio or video tapedecks and compact disc mechanisms	${ }^{20}$	EL	\bigcirc	u	U	u	\bigcirc	u	ט	ט	0	U	U	u	U	\checkmark	\checkmark	0	u	U	U	0
7796	85，22，9050	Audio or video reproduction heads，magnetic type；magnetic erasing heads and rods	${ }^{20}$	${ }^{\text {EL }}$	\bigcirc	U	－	\bigcirc	ט	\bigcirc	U	U	\bigcirc	U	\bigcirc	\bigcirc	－	－	\bigcirc	－	－	ט	U	\bigcirc
7966	29，091		${ }^{20}$	EL	\bigcirc	\bigcirc	U	\checkmark	ט	U	ט	－	－	ט	U	－	\bigcirc	U	0	\bigcirc	\bigcirc	\bigcirc	\checkmark	\bigcirc
${ }^{796}$		prans of telephone a answeing machines	${ }^{20}$	${ }^{\text {EL }}$	\bigcirc	－	U	U	U	U	${ }^{\circ}$	u	U	U	\bigcirc	U	\bigcirc	\bigcirc	U	\bigcirc	\bigcirc	U	\bigcirc	\bigcirc
7968	5，229，093	O．ther parts and accessories for goods of subheading 8519.81 or heading 85.21	${ }^{20}$	${ }^{\text {EL }}$	${ }^{\circ}$	\bigcirc	U	${ }^{\circ}$	U	${ }^{\circ}$	U	\bigcirc	u	U	U	－	U	U	U	${ }^{\circ}$	U	U	U	\bigcirc
7969	85，29，099	－－oother	${ }^{20}$	EL	U	\bigcirc	U	－	\checkmark	\bigcirc	\bigcirc	\bigcirc	\checkmark	U	U	\bigcirc	\bigcirc	\bigcirc	U	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\cup
7970	${ }^{85,23,110}$	－Uneocorded	${ }^{20}$	EL	0	\bigcirc	0	\bigcirc	0	0	0	U	\bigcirc	0	0	0	\bigcirc	U	0	0	0	0	\bigcirc	\bigcirc
${ }^{7971}$	${ }^{85,23,190}$	Other	${ }^{20}$	${ }^{\text {EL }}$	U	\bigcirc	\bigcirc	U	\bigcirc	\bigcirc	\bigcirc	ט	\bigcirc	U	U	U	U	U	U	\bigcirc	\bigcirc	U	U	\bigcirc
7972	${ }^{85,232,911}$	Compuer tapes	${ }^{20}$	${ }^{\text {ISL }}$	20\％	20\％	20\％	20\％	20\％	20\％	${ }^{20 \%}$	${ }^{20 \%}$	${ }^{20 \%}$	${ }^{20 \%}$	${ }^{20 \%}$	${ }^{20 \%}$	${ }^{20 \%}$	${ }^{20 \%}$	${ }^{20 \%}$	20\％	20\％	${ }^{20 \%}$	20\％	${ }^{20 \%}$
7973	${ }^{85,232919}$	Onher	${ }^{20}$	st	20\％	20\％	20\％	20\％	20\％	${ }^{20 \%}$	20\％	20\％	20\％	20\％	20\％	${ }^{20 \%}$	${ }^{20 \%}$	20\％	${ }^{20 \%}$	20\％	20\％	20\％	20\％	20\％
7974	${ }^{85,23,292}$	－Videotapes	${ }^{20}$	EL	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	U	\bigcirc	\bigcirc	\bigcirc	U	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\checkmark	\bigcirc	\bigcirc
7975	${ }^{85,23,2929}$	Oner	${ }^{20}$	HsL	20\％	20\％	20\％	20\％	20\％	20\％	20\％	20\％	20\％	20\％	20\％	20\％	20\％	20\％	20\％	20\％	20\％	20\％	20\％	20\％
7976	${ }^{85,23,931}$	Compuef tapes	${ }^{20}$	IsL	20\％	20\％	20\％	20\％	20\％	20\％	20\％	20\％	20\％	20\％	20\％	20\％	20\％	20\％	20\％	20\％	20\％	20\％	20\％	20\％
${ }^{7977}$	${ }^{85,232,933}$	－Vidootapes	${ }^{20}$	st	20\％	20\％	20\％	20\％	${ }^{20 \%}$	20\％	${ }^{20 \%}$	${ }^{20 \%}$	${ }^{20 \%}$	${ }^{20 \%}$	20\％	${ }^{20 \%}$	20\％	${ }^{20 \%}$	${ }^{20 \%}$	${ }^{20 \%}$	20\％	${ }^{20 \%}$	20\％	20\％
7978	${ }^{85,32,939}$	－other	${ }^{20}$	tst	20\％	20\％	20\％	${ }^{20 \%}$	${ }^{20 \%}$	${ }^{20 \%}$	20\％	${ }^{20 \%}$	20\％	${ }^{20 \%}$	20\％	${ }^{20 \%}$	${ }^{20 \%}$	${ }^{20 \%}$	${ }^{20 \%}$	${ }^{20 \%}$	${ }^{20 \%}$	${ }^{20 \%}$	${ }^{20 \%}$	${ }^{20 \%}$
7979	${ }^{85,232,941}$	Computer tapes	${ }^{20}$	1st	20\％	20\％	20\％	${ }^{20 \%}$	20\％	20\％	20\％	${ }^{20 \%}$	${ }^{20 \%}$	${ }^{20 \%}$	${ }^{20 \%}$	${ }^{20 \%}$	${ }^{20 \%}$	${ }^{20 \%}$	${ }^{20 \%}$	20\％	20\％	20\％	${ }^{20 \%}$	20\％
7980	${ }^{85,32,942}$		${ }^{20}$	${ }^{\text {EL }}$	\bigcirc	\bigcirc	${ }^{\circ}$	${ }^{\text {u }}$	，	\bigcirc	－	${ }^{\circ}$	－	0	\bigcirc	\bigcirc	${ }^{\circ}$		\bigcirc	U	\bigcirc	\bigcirc	\bigcirc	\bigcirc
${ }^{7981}$	${ }^{85,23,243}$	\cdots Oner vide tapes	${ }^{20}$	${ }^{\text {EL }}$	U	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	U	ט	\bigcirc	U	U	\bigcirc	U	\bigcirc	ט	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\checkmark
7982	${ }^{85,32,949}$	－otner	${ }^{20}$	HSL	20\％	20\％	20\％	20\％	20\％	20\％	${ }^{20 \%}$	${ }^{20 \%}$	20\％	${ }^{20 \%}$	20\％	20\％	20\％	20\％	20\％	20\％	20\％	${ }^{20 \%}$	20\％	20\％
7983	${ }^{85,232,951}$	Compueferapes	${ }^{20}$	HSL	20\％	20\％	20\％	20\％	20\％	20\％	20\％	20\％	20\％	20\％	20\％	20\％	20\％	20\％	20\％	20\％	20\％	20\％	20\％	20\％
7984	${ }^{85,32,952}$	－Vdootapes	${ }^{20}$	HsL	20\％	20\％	20\％	20\％	20\％	20\％	${ }^{20 \%}$	20\％	20\％	20\％	20\％	20\％	20\％	20\％	20\％	20\％	20\％	20\％	20\％	20\％
7985	${ }^{85,23,959}$	Other	${ }^{20}$	IsL	20\％	20\％	20\％	${ }^{20 \%}$	20\％	20\％	20\％	${ }^{20 \%}$	${ }^{20 \%}$	20\％	20\％	${ }^{20 \%}$	20\％	20\％	${ }^{20 \%}$	${ }^{20 \%}$	20\％	20\％	20\％	20\％
${ }^{7986}$	88，23，961		${ }^{20}$	HSL	20\％	20\％	20\％	20\％	20\％	20\％	20\％	20\％	20\％	20\％	20\％	20\％	20\％	20\％	20\％	20\％	20\％	20\％	20\％	20\％
${ }^{7987}$	${ }^{85,232,962}$		${ }^{20}$	HSL	20\％	20\％	20\％	20\％	20\％	20\％	${ }^{20 \%}$	${ }^{20 \%}$	${ }^{20 \%}$	${ }^{20 \%}$	${ }^{20 \%}$	${ }^{20 \%}$	${ }^{20 \%}$	${ }^{20 \%}$	20%	${ }^{20 \%}$	${ }^{20 \%}$	${ }^{20 \%}$	${ }^{20 \%}$	${ }^{20 \%}$
7988	85，23，993	．－．．OMerer wieo tapes	${ }^{20}$	HsL	20\％	${ }^{20 \%}$	${ }^{20 \%}$	20\％	20\％	20\％	$2{ }^{20 \%}$	20\％	20\％	20\％	20\％	${ }^{20 \%}$	20\％	20%	20%	20\％	20\％	$2{ }^{20 \%}$	20%	20\％

香港•ASEAN FTAにかかる調査報告書
 別添2－4 原産地品の関税撤廃スケジュール

（ラオス）

1789	${ }^{85,232,969}$	Other	${ }^{20}$	${ }^{\text {ISL }}$	20\％	20\％	20\％	${ }^{20 \%}$	20\％	${ }^{20 \%}$	${ }^{20 \%}$	${ }^{20 \%}$	20\％	${ }^{20 \%}$	20\％	20\％	20\％	${ }^{20 \%}$	［20\％	20\％	${ }^{20 \%}$	${ }^{20 \%}$	${ }^{20 \%}$	${ }^{20 \%}$
990	85，232，971	Compuet hard disks and dsketes	${ }^{20}$	HL	20\％	20\％	20\％	20\％	20\％	20\％	20\％	20\％	20\％	20\％	20\％	20\％	20\％	20\％	20\％	20\％	20\％	20\％	20\％	20\％
7991	85，232，979	－－Oner	${ }^{20}$	HLL	20\％	20\％	20\％	20\％	20\％	20\％	20\％	20\％	20\％	20\％	20\％	20\％	20\％	20\％	20\％	20\％	20\％	20\％	20\％	20\％
7992	${ }^{8,232,981}$	．－． O a kna stitabel for computer sue	${ }^{20}$	EL	U	U	U	U	U	0	\bigcirc	0	\bigcirc	\bigcirc	\bigcirc	O	O	U	0	0	\bigcirc	U	U	U
7993	85，232，982	－Other	${ }^{20}$	EL	0	U	U	U	U	0	U	O	¢	U	U	U	U	U	U	U	¢	U	U	U
7994	85，23，983	－．．．－Other，of a kind used for reproducing representations of instructions，data，sound and image，recorded in a machine readable binara form， and capabole of being manipulataded or providing interactivity to a user，by means of an automatic data processing machine；proprietary format storage （recorded）media	20	EL	u	\checkmark	\checkmark	u	\checkmark	\checkmark	u	\checkmark	\checkmark	\checkmark	\checkmark	\cup	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
7995	85，23，984	Ofner，of a kins suliabe for crinematogaphy	${ }^{20}$	EL	U	U	U	U	U	0	U	U	U	U	U	U	U	ט	U	U	U	U	ט	\bigcirc
7996	85，232，989	Oher	${ }^{20}$	EL	U	0	U	U	0	U	0	U	0	U	U	U	－	\checkmark	U	U	U	0	\bigcirc	U
7997	85，232，991	Of a kind suliabe for compuler use	${ }^{20}$	EL	U	0	U	U	U	U	0	U	0	U	U	U	U	ט	U	U	0	0	U	U
7998	85，232，992	－other	${ }^{20}$	EL	0	¢	0	U	－	U	U	U	¢	0	¢	U	－	U	U	U	0	0	ט	\bigcirc
7999	85，232，993	－Of k knd sutubal tor computer sse	${ }^{20}$	EL	ט	\bigcirc	O	¢	O	U	U	¢	O	U	U	U	0	U	，	U	U	－	U	U
8200	85，232，994	－Oner	${ }^{20}$	EL	U	U	0	U	U	u	0	0	U	0	u	U	U	0	U	U	u	0	U	\bigcirc
8001	85，23，995		${ }^{20}$	EL	\checkmark	\checkmark	\checkmark	\cup	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	u	\checkmark	u	\checkmark	\checkmark	\cup	\checkmark	\checkmark
8002	${ }^{8,232,999}$	\cdots	${ }^{20}$	${ }^{\text {EL }}$	\bigcirc	\bigcirc	U	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\checkmark	\bigcirc	U	U	U	\bigcirc	\bigcirc	\checkmark	\bigcirc	\bigcirc	\bigcirc	U	\bigcirc
$8{ }^{803}$	85，23， 110	－Of a kind suluabe for computer use	10	st	10\％	10\％	0\％	10\％	10\％	10\％	10\％	10\％	${ }_{8 \%}$	\％	6\％	${ }^{5 \%}$	4%	${ }^{3 \%}$	${ }^{2 \%}$	1\％	\％	0\％	\％	\％
8304	${ }^{85,234,190}$	\cdots Onter	10	st	10\％	10\％	10\％	10\％	10\％	10\％	10\％	${ }^{10 \%}$	${ }_{8} \%$	7\％	6\％	5\％	4\％	3\％	2\％	1\％	\％	\％	\％	\％
8005	85，24，9，911		10	sL	10\％	0\％	10\％	10\％	10\％	10\％	10\％	10\％	${ }^{8 \%}$	7\％	6\％	5\％	${ }^{4 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	1\％	0\％	\％	\％\％	\％
8006	85，234，912	and．．．．Educational，technical，scientific，historical or cultura dicics	10	sL	10\％	10\％	10\％	${ }^{10 \%}$	${ }^{10 \%}$	\％\％	10\％	\％ 0	${ }^{\text {8\％}}$	${ }^{7 \%}$	6\％	5\％	4\％	3\％	${ }^{2 \%}$	1\％	0\％	\％	\％	\％
8807	85，23，9，913	－．．．．other	10	st	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	8\％	7\％	6\％	5\％	4\％	3\％	2\％	1\％	0\％	\％	\％	0\％
8008	85，23，9，94		10	sL	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	8\％	7\％	6\％	5\％	4\％	3\％	2\％	1\％	0\％	0\％	\％	\％\％
8009	85，24，9，99	Onter	10	sL	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	${ }^{8 \%}$	${ }^{7 \%}$	${ }^{6 \%}$	${ }^{5 \%}$	$4{ }^{4 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	1\％	\％	\％	\％	\％
8010	85，33，991	$\begin{array}{\|l} \hline \begin{array}{l} \text { O. Of a kind used for reproducing phenomena } \\ \text { other than sound or image } \\ \hline \end{array} \\ \hline \end{array}$	10	sL	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	${ }^{8 \%}$	7\％	6\％	5\％	4\％	3\％	2\％	1\％	\％	\％	\％	0\％
81	${ }^{85,34,992}$		10	st	\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	\％	0\％	0\％	0\％	0\％	${ }^{10 \%}$	\％	10\％	\％	\％\％	0\％	10\％
$8{ }^{8012}$	85，23，993	－O－Other，of a kind used for reproducing representations of instructions，data，，osund and image，recorded in a machine readable binary form， and capabal of being manipulated or providing interactivity to a usser，by means of an automatic data processing machine；propritary tormat storage （recorded）media	10	NT1	\％	8\％	6\％	5\％	4\％	3\％	2%	0\％	0\％	0\％	\％	0\％	0\％	0\％	\％	0\％	0\％	0\％	\％	\％
$8{ }^{8013}$	85，24，9999	Onher	10	sL	10\％	10\％	10\％	10\％	10\％	${ }^{10 \%}$	10\％	${ }^{10 \%}$	${ }^{8 \%}$	\％	6\％	5\％	4%	3\％	2\％	1\％	0\％	\％	\％	0\％
83014	85，23，111	－Of k kind sutiabe io co compule rse	10	st	10\％	10\％	10\％	10\％	10\％	10\％	10\％	${ }^{10 \%}$	${ }^{8 \%}$	7\％	6\％	${ }^{5 \%}$	4%	3\％	2\％	1\％	\％	0\％	\％	\％
8015	${ }^{85,235,119}$	\cdots Oner	10	st	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	${ }^{8 \%}$	7\％	6\％	${ }_{5 \%}$	4\％	3\％	2%	1\％	\％	\％	\％	\％
8016	$8{ }^{8,23,121}$	－．Ora kind sutubibe for computer rse	10	st	10\％	10\％	10%	10\％	10\％	10\％	10\％	10\％	${ }_{8 \%}$	7\％	6\％	5\％	4\％	3\％	2\％	1\％	\％	0\％	\％	0\％
88017	${ }^{85,23,129}$	Onner	${ }^{10}$	sL	10\％	${ }^{10 \%}$	10\％	10\％	10%	10%	10\％	10\％	${ }^{8 \%}$	${ }^{7 \%}$	6\％	5\％	4%	3\％	${ }^{2 \%}$	${ }^{1 \%}$	\％	0\％	\％	\％
$8{ }^{8018}$	85，23， 130	－．．Other，of a kind used for reproducing representations of instructions，data，sound and image，recorded in a machine readable binary form， and capable of being manipulated or providing interactivity to a usser，by means of an autumatic data processing machine；proprietary format storage （recorded）media	10	HSL	10\％	0\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10%	10%	10\％	10\％	10%	10\％	10\％	10\％	10\％	10\％	10\％
819	${ }^{55,235,190}$	－－Oner	10	sL	10\％	10\％	${ }^{10 \%}$	10\％	10\％	${ }^{10 \%}$	10\％	10\％	${ }^{8 \%}$	\％	6\％	5\％	4%	3\％	2\％	${ }^{1 \%}$	\％	\％	\％	0\％
820	${ }^{85,25,200}$	－＇smar caras＇	10	T2	${ }^{9 \%}$	${ }^{9 \%}$	${ }^{8 \%}$	${ }^{8 \%}$	6\％	6%	${ }^{5 \%}$	${ }^{5 \%}$	4\％	${ }^{4 \%}$	3\％	${ }^{3 \%}$	2%	${ }^{2 \%}$	\％	0\％	\％	\％	\％	0\％
8021	${ }^{85,23,910}$	\cdots Proxitity cards and tags	10	N2	9\％	9\％	8\％	8\％	6\％	6\％	5\％	5\％	4\％	$4{ }^{4 \%}$	3\％	3\％	2\％	${ }^{2 \%}$	0\％	0\％	\％	0\％	\％	\％\％
8022	${ }^{55,23,921}$	．－．－Oa kind sutiabe for compuer use	10	st	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	${ }^{8 \%}$	${ }^{7} \%$	6\％	5\％	4%	3\％	${ }^{2}$	1\％	\％	\％	\％	\％
8802	85，23，929	Oner	10	HsL	10\％	10\％	10\％	10\％	10\％	${ }^{10 \%}$	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％
${ }^{8024}$	85，23，930		10	sL	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	8\％	7\％	6\％	5\％	4\％	3\％	${ }^{2 \%}$	1\％	\％	0\％	\％	0\％
8802	85，23，940		10	HSL	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％
88026	${ }^{85,23,990}$	Onter	10	${ }^{\text {sL }}$	10\％	10\％	10\％	10\％	10\％	10%	10\％	10\％	${ }^{8 \%}$	7\％	6\％	5\％	${ }^{4 \%}$	3\％	${ }^{2 \%}$	1\％	0\％	0\％	\％	0\％
8802	${ }^{8,28,980}$	－Gramopono recoords	10	sL	10\％	10\％	\％	\％	10\％	10\％	10\％	10\％	${ }^{8 \%}$	${ }^{7 \%}$	6\％	${ }^{5 \%}$	${ }^{4 \%}$	3\％	${ }^{2 \%}$	1\％	\％	\％	\％\％	\％
8028	85，28，051	－OO a kind sutuabe for compuler sue	10	st	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	${ }_{8}^{8 \%}$	7\％	6\％	5\％	4%	3\％	2\％	1\％	\％	0\％	\％	\％
8202	85，28，059	－other	10	st	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	${ }^{8 \%}$	7\％	6\％	5\％	4%	3\％	2\％	1\％	\％	0\％	\％	0\％
8030	85，28，091	－－Of a kind used for reproducing phenomena other than sound or image	10	st	10\％	10\％	\％\％	10\％	10\％	${ }^{10 \%}$	10\％	10\％	${ }^{8}$	7\％	6\％	5\％	4\％	${ }^{3}$	2\％	1\％	\％	0\％	\％	\％
${ }^{8031}$	85，23，092		10	HSL	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％
83032	${ }^{8,28,099}$	－Oner	10	st	10\％	10\％	10\％	10\％	10\％	10\％	10%	10\％	8\％	\％	6\％	5\％	4%	3\％	${ }^{2 \%}$	${ }^{1 \%}$	\％	0\％	\％	\％
$8{ }^{8033}$	85，25，000	－Transmision apparaus	5	NT1	${ }^{4 \%}$	4%	4\％	${ }^{3 \%}$	3\％	${ }^{2 \%}$	2%	\％	0\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％
8034	85，256，000	－Transmission apparatus incorporating reception apparatus	5	NT1	4\％	4\％	4\％	3\％	3\％	${ }^{2 \%}$	${ }^{2 \%}$	\％\％	\％	\％	\％	\％\％	\％\％	0\％	\％	\％	\％	0\％	\％	\％
$8{ }^{8035}$	85，28，010	－Weocameas	5	N1	4%	4%	4%	3\％	3\％	2\％	2%	0\％	0\％	\％	0\％	0\％	0\％	0\％	\％	0\％	0\％	\％	\％	0\％
83036	85，25，031	\cdots ．．．fa kind used inbloadasasing	5	NT	4%	4%	4%	3\％	3\％	2%	2%	\％	0\％	0\％	0\％	0\％	0\％	0\％	\％	\％	\％	\％	\％	\％
${ }^{8037}$	85，25，039	\cdots－oner	5	NT1	${ }^{4 \%}$	${ }^{4 \%}$	$4{ }^{46}$	3\％	3\％	2\％	2%	0\％	0\％	\％	0\％	\％	0\％	\％	0\％	0\％	\％	\％	\％	\％
8038	${ }^{85,25,040}$	－Televison cameas	5	NT1	4\％	4\％	4\％	3\％	3\％	2\％	2%	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％
8839	8， 58,5050	－Onter digita cameras	5	NT1	$4{ }^{4 \%}$	4\％	4\％	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％	\％	0\％	\％	\％	0\％	0\％	\％	0\％	\％	0\％
8040	8582.10 .10	Radar apparatus，ground based，or of a kind for use in civil aircraft，or of a kind used solely on sea－ going vessels	${ }_{5}$	NT1	4\％	4\％	4%	3\％	3\％	${ }^{2 \%}$	2%	\％	0\％	\％	\％	\％	\％	0\％	\％	0\％	\％	\％	\％	\％
8041	85，66，090	－Other	5	NT1	$4{ }^{4 \%}$	4%	4%	3\％	3\％	2\％	2\％	0\％	0\％	0\％	\％	0\％	\％	\％	\％	0\％	\％	0\％	0\％	\％
8042	85，26， 110	．．Ratio navigational aid apparatus，of a kind for use in iviver aircati，o o of a kind used soley on sea－ going vessels	${ }_{5}$	NT1	4\％	4\％	4\％	3\％	3\％	${ }^{2 \%}$	2%	0\％	0\％	0\％	0\％	\％	\％	0\％	\％	\％	0\％	0\％	\％	0\％
$8{ }^{8043}$	85，26，190	…Oner	5	NT1	${ }^{4 \%}$	$4{ }^{4 \%}$	4\％	${ }^{3 \%}$	${ }^{3 \%}$	2\％	2\％	0\％	0\％	0\％	0\％	\％	0\％	\％	0\％	0\％	\％	0\％	\％	0\％
8044	${ }^{85,26,200}$	－Radio remole conto a apparaus	5	NT1	${ }^{4 \%}$	4\％	4\％	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	2%	0\％	0\％	\％	\％	\％	\％	\％	\％	0\％	\％	0\％	\％	\％
8845	$85,27,200$	－Pocketsze radio casselepplayers	${ }^{20}$	EL	\bigcirc	U	\checkmark	U	0	0	0	\bigcirc	\bigcirc	\bigcirc	O	0	0	\bigcirc	\checkmark	\checkmark	\checkmark	\bigcirc	\bigcirc	\bigcirc
${ }^{8046}$	${ }^{8,271,310}$	\cdots	${ }^{20}$	${ }^{\text {EL }}$	－	－	\bigcirc	U	U	－	－	U	U	U	U	U	U	\bigcirc	\bigcirc	U	U	0	\bigcirc	\bigcirc
8807	${ }^{85,27,390}$	－other	${ }^{20}$	EL	U	U	\bigcirc	－	－	\checkmark	－	－	${ }^{\circ}$	U	－	－	${ }^{\circ}$	\bigcirc	－	U	U	\bigcirc	\bigcirc	U
${ }^{8048}$	85，27，911	\cdots	${ }^{20}$	EL	\bigcirc	U	U	\bigcirc	ט	\bigcirc	0	U	U	\bigcirc	U	\bigcirc	\bigcirc	0	U	U	U	U	\bigcirc	U
389	85，27，919	Other	${ }^{20}$	EL	－	－	U	U	\bigcirc	\bigcirc	U	－	－	－	U	U	U	－	U	，	－	\bigcirc	－	－
8950	${ }^{85,27,991}$	－－Porable	${ }^{20}$	EL	U	U	U	U	ט	0	U	ט	U	\bigcirc	U	U	U	U	0	U	\bigcirc	ט	ט	\bigcirc
8051	85，27，999	Onher	${ }^{20}$	EL	\bigcirc	U	\bigcirc	U	－	U	\bigcirc	－	\bigcirc	\bigcirc	U	U	U	\bigcirc	\bigcirc	U	\bigcirc	\bigcirc	\bigcirc	\bigcirc

香港•ASEAN FTAにかかる調査報告書

別添2－4 原産地品の関税撤廃スケジュール
（ラオス）

0052	$]^{85,272,100}$		${ }^{20}$	EL	U	u	\bigcirc	U	\bigcirc	U	U	U	U	\bigcirc	U	－	U	U	\bigcirc			0		U
8053	5，272，900	－－other	${ }^{20}$	Is	20\％	20\％	20\％	20\％	20\％	20\％	20\％	20\％	20\％	20\％	20\％	20\％	20\％	20\％	20\％	20\％	20\％	20\％	20\％	20\％
${ }^{2054}$	88，27，110	\cdots	${ }^{20}$	EL	U	U	U	U	U	U	¢	0	U	，	O	¢	0	U	U	U	U	U	U	U
8055	85，27，190	－Other	${ }^{20}$	EL	\bigcirc	\checkmark	U	U	\bigcirc	U	U	0	U	\bigcirc	\bigcirc	\bigcirc	U	－	\bigcirc	U	0	U	U	\bigcirc
${ }^{2056}$	${ }^{85,279,210}$	－Poralale	${ }^{20}$	${ }_{\text {EL }}$	U	U	\bigcirc	U	\bigcirc	U	－	U	U	\bigcirc	0	\bigcirc	U	U	\bigcirc	U	U	U	U	\bigcirc
82057	88，29，291	\cdots Mins opeated	${ }^{20}$	EL	\bigcirc	\bigcirc	U	U	U	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\checkmark	\bigcirc	\bigcirc	\bigcirc	\checkmark	U	U	U	\bigcirc
${ }^{2058}$	85，27，299	\cdots Other	${ }^{20}$	EL	U	\bigcirc	0	\bigcirc	ט	\bigcirc	U	U	－	\bigcirc	\bigcirc	\bigcirc	U	\bigcirc	U	\bigcirc	\bigcirc	U	－	\bigcirc
8059	85，27，9，90	－Potable	${ }^{20}$	${ }^{\text {EL }}$	\bigcirc	O	O	ט	ט	ט	－	\bigcirc	U	ט	U	ט	\bigcirc	U	U	ט	U	U	U	－
8060	85，27，991	${ }^{\text {Mans opeataed }}$	${ }^{20}$	EL	ט	ט	ט	ט	ט	ט	U	ט	ט	ט	ט	U	ט	ט	U	ט	O	U	U	\bigcirc
8061	85，27，9999	\cdots	${ }^{20}$	EL	¢	O	U	U	0	U	U	U	U	－	U	U	U	－	ט	U	U	U	U	\bigcirc
2062	${ }^{85,28,110}$	Colour	${ }^{20}$		U	ט	U	U	U	U	\bigcirc	\bigcirc	0	\bigcirc	0	U	U	0	0	U	U	\bigcirc	U	\bigcirc
${ }^{2063}$	85，24，120	Monochome	${ }^{20}$	EL	\bigcirc	\bigcirc	0	0	\bigcirc	\bigcirc	0	0	0	0	0	U	U	0	\bigcirc	U	0	U	U	\bigcirc
2064	85，24，9，90	Colour	${ }^{20}$	EL	\bigcirc	0	U	0	U	\bigcirc	U	\bigcirc	U	U	\bigcirc	U	U	U	\bigcirc	U	U	U	U	\bigcirc
2065	${ }^{85,24,9,20}$	－Monochome	${ }^{20}$	EL	\bigcirc	\bigcirc	U	ט	U	\bigcirc	\bigcirc	U	\bigcirc	0	\bigcirc	\bigcirc	U	\bigcirc	ט	U	U	U	U	0
${ }^{2066}$	${ }^{85,25,110}$	－－Proiection typer flat panel dispala unis	${ }^{20}$	EL	\bigcirc	ט	U	U	－	\bigcirc	ט	\bigcirc	U	0	－	ט	U	\bigcirc	U	－	U	U	U	\bigcirc
${ }^{2007}$	${ }^{85,25,120}$	\cdots Oner，colour	${ }^{20}$	EL	\bigcirc	\bigcirc	\checkmark	\checkmark	\bigcirc	\bigcirc	\bigcirc	\checkmark	\checkmark	\bigcirc	\checkmark	U	U	\bigcirc	ט	U	\checkmark	\checkmark	\checkmark	\bigcirc
${ }^{2068}$	${ }^{85,25,130}$	Oner，monochome	${ }^{20}$	EL	－	U	U	U	U	O	U	\bigcirc	U	U	ט	0	\bigcirc	U	U	O	U	U	U	\bigcirc
8069	85，28，9，90	Colour	${ }^{20}$	EL	\bigcirc	\bigcirc	\bigcirc	ט	\bigcirc	\bigcirc	\bigcirc	0	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\checkmark	U	\bigcirc	U	0	\bigcirc	\bigcirc
880	85，28，920	－Nonochome	${ }^{20}$	EL	\bigcirc	ט	\bigcirc	\bigcirc	\bigcirc	\bigcirc	¢	\bigcirc	\bigcirc	\bigcirc	\bigcirc	ט	\bigcirc	\bigcirc	\bigcirc	ט	\bigcirc	\bigcirc	U	\bigcirc
8871	85，28， 110	－Fatapanel ispaly ype	${ }^{20}$	EL	0	U	0	0	0	0	U	\bigcirc	U	\bigcirc	0	U	U	0	\bigcirc	U	U	U	U	\bigcirc
8872	85，28，190	－other	20	EL	ט	U	ט	0	U	\bigcirc	U	U	U	U	U	U	U	U	U	U	U	U	U	U
8073	85，28，990	．．Having the capabily of projecting on a screen of	${ }^{20}$	EL	\bigcirc	U	U	－	－	0	0	U	U	－	\bigcirc	0	U	\bigcirc	U	ט	\bigcirc	U	U	\bigcirc
$8{ }^{8074}$	${ }^{85,286,990}$	－．－other	${ }^{20}$	EL	\bigcirc	\bigcirc	U	U	0	U	\bigcirc	\bigcirc	\bigcirc	U	U	0	U	\bigcirc	U	U	0	U	U	\bigcirc
${ }^{8075}$	${ }^{85,88,111}$	Mains operated	${ }^{20}$	st	20\％	20\％	20\％	20\％	${ }^{20 \%}$	20\％	20\％	20\％	${ }^{20 \%}$	20\％	${ }^{20 \%}$	${ }^{20 \%}$	${ }^{20 \%}$	${ }^{20 \%}$	20\％	20\％	20\％	${ }^{20 \%}$	20\％	20\％
$8{ }^{8076}$	${ }^{85,28,119}$	\cdots Other	${ }^{20}$	HsL	20\％	20\％	20\％	20\％	20\％	20\％	20\％	20\％	20\％	20\％	${ }^{20 \%}$	${ }^{20 \%}$	20\％	20\％	20\％	20\％	20\％	20\％	20\％	20\％
8877	85，28，7，191	Mains opeatad	${ }^{20}$	ist	20\％	20\％	20\％	20\％	20\％	20\％	20\％	20\％	20\％	0\％	20\％	20\％	20\％	20\％	\％\％	20\％	20\％	20\％	20\％	20\％
$8{ }^{8078}$	85，28，199	Oner	${ }^{20}$	Ist	20\％	20\％	20\％	20\％	20\％	20\％	20\％	20\％	${ }^{20 \%}$	0\％	20\％	20\％	20\％	20\％	0\％	20\％	20\％	20\％	20\％	20\％
8879	85，88，210	－Batere opeated	${ }^{20}$	Ist	20\％	20\％	20\％	20\％	20\％	20\％	20\％	20\％	20\％	0\％	20\％	20\％	20\％	${ }^{20 \%}$	20\％	20\％	20\％	20\％	${ }^{20 \%}$	20\％
82080	85，88，291	Caanode ray wee tye	${ }^{20}$	HsL	20\％	20\％	20\％	20\％	20\％	20\％	20\％	20\％	20\％	20\％	20\％	${ }^{20 \%}$	20\％	20\％	20\％	20\％	20\％	20\％	20\％	20\％
${ }^{2081}$	${ }^{85,88,292}$		${ }^{20}$	HSL	20\％	20\％	20\％	20\％	20\％	20\％	20\％	20\％	20\％	0\％	0\％	20\％	20\％	20\％	0\％	20\％	20\％	20\％	20\％	20\％
${ }^{2082}$	${ }^{85,287,299}$	－Other	${ }^{20}$	HsL	20\％	20\％	20\％	20\％	${ }^{20 \%}$	${ }^{20 \%}$	${ }^{20 \%}$	20\％	20\％	0\％	${ }^{20 \%}$	${ }^{20 \%}$	20\％	${ }^{20 \%}$	0\％	20\％	20\％	${ }^{20 \%}$	20\％	20\％
${ }^{2083}$	${ }^{85,887,300}$	－Oner，monochome	${ }^{20}$	EL	U	\bigcirc	ט	0	U	\bigcirc	\bigcirc	U	\bigcirc	0	0	－	\bigcirc	\bigcirc	U	\bigcirc	ט	\bigcirc	\bigcirc	0
${ }^{2084}$	${ }^{5529.10 .21}$	${ }^{- \text {Fortieusion recepion }}$	10	st	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	${ }^{8 \%}$	${ }^{7} \%$	6\％	5\％	${ }^{4 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{1 \%}$	\％	\％	\％	\％
2085	${ }^{8529.10,29}$	－．－other	${ }^{10}$	st	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	${ }^{8 \%}$	${ }^{7} \%$	${ }^{6 \%}$	${ }_{5 \%}^{5 \%}$	${ }^{4 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{1 \%}$	\％	\％	\％	\％
${ }^{2086}$	${ }^{8529.10 .30}$	－－Telescopic，rabbit and dipole antennae for television or radio receivers	10	${ }^{\text {sL }}$	10\％	0\％	10\％	0\％	0\％	0\％	10\％	10\％	${ }^{8 \%}$	${ }^{7 \%}$	6\％	5\％	${ }^{4 \%}$	3\％	${ }^{2 \%}$	1\％	${ }^{\text {\％}}$	\％	${ }^{0}$	\％
${ }^{2087}$	85，291，040		10	${ }^{\text {sL }}$	0\％	\％\％	\％\％	\％	${ }^{10 \%}$	10\％	${ }^{10 \%}$	10\％	${ }^{8 \%}$	${ }^{7 \%}$	${ }^{6 \%}$	${ }^{5 \%}$	${ }^{4 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{1 \%}$	0\％	${ }^{0 \%}$	\％\％	\％
${ }^{2088}$	${ }^{85,29,060}$	－Feod hons（wave gude）	${ }^{10}$	${ }^{\text {sL }}$	0\％	10\％	10\％	0\％	${ }^{10 \%}$	10\％	${ }^{10 \%}$	10\％	${ }^{8 \%}$	${ }^{7} \%$	6\％	5\％	${ }^{4 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	1\％	\％	\％	\％	\％
${ }^{\text {P089 }}$	85，29，092	－－Of a kind used with transmission apparatus for adio－broadcasting or television	${ }^{10}$	sL	10\％	0\％	\％\％	10\％	0\％	10\％	10\％	10\％	${ }^{8 \%}$	7\％	6\％	5\％	${ }^{4 \%}$	3\％	${ }^{2 \%}$	1\％	\％	\％	0\％	\％
8090	85，29，099	－．－Other	10	HLL	10\％	10\％	10\％	10\％	0\％	10\％	10\％	10\％	10\％	0\％	10\％	10\％	10\％	\％	0\％	10\％	\％	10\％	\％\％	0\％
${ }^{2091}$	85，29，020	－Ofdeocoles	10	st	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	8%	7\％	${ }^{6 \%}$	5\％	$4{ }^{4 \%}$	3\％	2\％	1\％	\％	0\％	\％	\％
8092	85，29，040	－Of digita cameras or video camear recorders	10	${ }^{\text {st }}$	10\％	10\％	10\％	${ }^{10 \%}$	10\％	${ }^{10 \%}$	10\％	${ }^{10 \%}$	${ }^{8 \%}$	${ }^{7} \%$	${ }^{6 \%}$	5\％	${ }^{4 / 8}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{1 \%}$	\％	\％	\％	\％
${ }^{2093}$	290，51	－For goods of stubeading 8525.50 or 8525.60	10	T1	9\％	${ }^{8 \%}$	6\％	5\％	${ }^{4 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	\％	\％	0\％	\％	0\％	\％	0\％	\％	\％	\％	\％	\％	\％
8304	299，052	－－For goods of subheading $8527.13,8527.19$, $8527.21,8527.29,8527.91$ or 8527.99	10	V1	9\％	${ }^{8 \%}$	6\％	5\％	4\％	3\％	2\％	\％	0\％	\％	\％	0\％	\％	0\％	\％	\％	\％	0\％	\％	\％
8095	85，29，0，53	．．．．For flat panelisispays	10	st	10\％	0\％	10\％	10\％	10\％	10\％	10\％	10\％	8\％	7\％	6\％	5\％	4%	3\％	2\％	1\％	0\％	0\％	0\％	\％
${ }^{2096}$	85，29，0，54	\cdots Olnerf forteevison reeevers	10	V1	9\％	8%	6\％	5\％	4%	3\％	2%	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％
8097	85，29，0，55	\cdots Oner	10	sL	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	${ }_{8 \%}$	${ }^{7} \%$	6\％	5\％	${ }^{4 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	1\％	\％	\％	\％	\％
8098	85，29，0，59	－omer	10	NT1	9\％	8%	6\％	5\％	4\％	3\％	2\％	0\％	\％	\％	\％	\％	\％	0\％	\％	\％	\％	\％	\％	\％
8099	${ }^{85,29,091}$	\cdots For feevison receserers	${ }^{10}$	NT	${ }^{9 \%}$	${ }^{8 \%}$	6\％	5\％	4%	${ }^{3 \%}$	${ }^{2 \%}$	0\％	0\％	\％	0\％	\％	\％	0\％	0\％	\％	\％	\％	\％	\％
8100	85，29，0，04	－For tlat panel dispays	10	N2	9\％	9\％	${ }^{8 \%}$	${ }^{8 \%}$	6\％	6\％	${ }^{5 \%}$	${ }^{5 \%}$	${ }^{4 \%}$	4%	${ }^{\text {3\％}}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％	\％	\％	\％
8101	85，29，909	－OMner	10	N2	${ }^{9}$	${ }^{9}$	${ }^{8}$	${ }^{8 \%}$	6\％	${ }^{6 \%}$	5\％	5\％	4%	4%	3\％	3\％	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％	\％	\％	\％
8102	88，30，，000	－Equiment tor riliwas ortanways	5	NT1	4\％	4%	4\％	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	0\％	\％	\％
${ }^{8103}$	88，30，000	－Other equipment	5	N1	4%	4%	4%	3\％	3\％	2\％	2\％	0\％	\％	0\％	0\％	0\％	0\％	\％	\％	\％	0\％	\％	\％	0\％
${ }^{8104}$	88，30，000	－Pars	5	V1	4\％	4%	4%	${ }^{3 \%}$	${ }^{3 \%}$	2\％	${ }^{2 \%}$	\％	\％	\％	\％	\％	\％	\％	0\％	\％	\％	0\％	\％	\％
8105	${ }^{8533.10 .10}$	－－Burgaralams	5	V1	4%	$4{ }^{4 \%}$	4%	${ }^{3 \%}$	${ }^{3 \%}$	2\％	${ }^{2 \%}$	\％	\％	\％	\％	\％	\％	\％	0\％	\％	\％	\％	\％	\％
${ }^{8106}$	${ }^{8551.1020}$	－－Frie alams	5	N1	4\％	4\％	4\％	3\％	3\％	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	0\％	\％	0\％	\％	0\％	0\％	\％\％	\％	\％	\％	\％
8107	1853.1 .10 .30		5	NT1	4\％	4\％	4\％	3\％	3\％	2%	2\％	0\％	0\％	\％	\％	0\％	\％	0\％	0\％	\％	\％	0\％	0\％	\％
${ }^{8108}$	85，31，，990	－－other	5	NT	${ }^{4 \%}$	4\％	4\％	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	0\％	0\％	0\％	0\％	\％	\％	\％	0\％	0\％	0\％	0\％	0\％	0\％
8109	85，32，000	－Indicator panels incorporating liquid crystal devices （LCD）or light emitting diodes（LED）	5	NT	4\％	4\％	4\％	3\％	3\％	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	0\％	\％	0\％	\％	0\％	\％	${ }^{\text {\％}}$	${ }^{0 \%}$	\％	\％	${ }^{0 \%}$
811	${ }^{85,318,011}$	－－Door bells and other door sound signalling apparatus	${ }^{5}$	NT	4\％	${ }^{4 \%}$	${ }^{4 \%}$	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％
${ }^{8111}$	${ }^{88,3818,019}$	－other	5	NT1	4\％	${ }^{4 \%}$	4\％	3\％	3\％	${ }^{2 \%}$	2\％	\％	\％	0\％	\％	\％\％	\％	0\％	0\％	\％	\％	\％	0\％	\％
${ }^{8112}$	${ }^{85,318,021}$	－Vacuum fuorescent dispay panals	5	V1	4\％	${ }^{4 \%}$	${ }^{4 \%}$	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	0\％	0\％	0\％	0\％	\％	0\％	\％	\％	0\％	\％	\％
${ }^{8113}$	${ }^{85,518,029}$	－other	5	NT	$4{ }^{4 \%}$	$4{ }^{4 \%}$	4%	3\％	3\％	${ }^{2 \%}$	2\％	0\％	\％	0\％	\％	0\％	\％	\％	0\％	\％	\％	\％	\％	0\％
${ }^{8114}$	85，38，0，90	－－oner	5	NT1	4\％	4%	4%	${ }^{3 \%}$	${ }^{3 \%}$	2\％	${ }^{2 \%}$	\％\％	\％	0\％	\％	0\％	0\％	0\％	\％	\％	0\％	0\％	0\％	0\％
${ }^{8115}$	88，39，010	$\begin{array}{\|l} \hline \text { - - Parts including printed circuit assemblies of } \\ \text { subheading } 8531.20, \\ 8531.80 .21 \text { or } 8531.80 .29 \\ \hline \end{array}$	5	${ }^{\text {NT1 }}$	$4{ }^{4 \%}$	4\％	4%	3\％	3\％	2\％	${ }^{2 \%}$	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％
8116	88，391，020	$\begin{aligned} & \text { Opparaus bells or other coor sunnd s sinaling } \\ & \text { and } \end{aligned}$	${ }^{5}$	NT1	4\％	4\％	${ }^{4 \%}$	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	0\％	\％	0\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％
${ }^{817}$	${ }^{85,519,030}$	－Oo ther bells of sound Signaing appatus	5	N1	4\％	${ }^{4 \%}$	${ }^{4 \%}$	3\％	3\％	${ }^{2 \%}$	2\％	\％	\％	0\％	\％	0\％	\％	0\％	0\％	\％	\％	\％	\％	\％
${ }^{8118}$	85，319，090	－other	5	N1	${ }^{4 \%}$	${ }^{4 \%}$	4\％	3\％	3\％	${ }^{2 \%}$	2%	\％	\％	0\％	\％	0\％	0\％	0\％	0\％	\％	\％	0\％	\％	\％
${ }^{8119}$	88，32，000	－Fixed capacitors designed for use in $50 / 60 \mathrm{~Hz}$ circuits and having a reactive power handling capacity of not less than 0.5 kvar（power capacitors）	5	NT1	4\％	4\％	4\％	3\％	3\％	2\％	2\％	\％	\％	\％\％	0\％	0\％	0\％	\％	\％\％	0\％	0\％	\％	0\％	\％
8120	85，32， 100	－Tanaum	5	V1	4%	${ }^{4 \%}$	${ }_{4}^{4 \%}$	${ }^{3 \%}$	3\％	${ }^{2 \%}$	${ }^{2 \%}$	\％	0\％	0\％	\％	0\％	\％	0\％	0\％	\％	\％	0\％	\％	\％
${ }^{8121}$	${ }^{85,32,200}$	－Aluminium elecrovic	5	${ }^{\text {NT1 }}$	4%	$4{ }^{4 \%}$	4%	${ }^{3 \%}$	${ }^{3}$	2\％	${ }^{2 \%}$	\％	\％	\％	0\％	\％	\％	\％	0\％	\％	\％	\％	\％	\％
${ }^{8122}$	${ }^{85,32,300}$	－Ceramic idiecericic，singel lajer	5	NT1	4%	4%	4%	${ }^{3 \%}$	${ }^{3 \%}$	2\％	2\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	0\％	\％	\％
${ }^{8123}$	${ }^{85,32,400}$	－Ceramic didecticic，muliayer	5	NT	$4{ }^{4 \%}$	${ }^{4 \%}$	${ }^{4 \%}$	${ }^{3 \%}$	${ }^{3 \%}$	2\％	${ }^{2 \%}$	0\％	0\％	0\％	0\％	0\％	0\％	\％	0\％	\％	\％	0\％	\％	0\％
${ }^{8124}$	${ }^{85,32,500}$	－Dieiecticic of paper or plasics	5	NT1	4%	4%	4%	${ }^{3 \%}$	${ }^{3 \%}$	2\％	${ }^{2 \%}$	\％	0\％	\％	\％	\％	0\％	0\％	\％	\％	\％	0\％	\％	\％
${ }^{8125}$	${ }^{85,32,900}$	－Oner	5	NT1	4%	$4{ }^{4 \%}$	4%	${ }^{3 \%}$	${ }^{3 \%}$	2\％	${ }^{2 \%}$	\％	\％	\％	\％	\％	\％	\％	0\％	\％	\％	\％	\％	\％
${ }^{8126}$	85，32，000		5	V1	4%	4%	${ }^{4 \%}$	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％
${ }^{8127}$	${ }^{\text {85，32，000 }}$	Pans	5	V1	$4{ }^{4 \%}$	$4{ }^{4 \%}$	${ }^{4 \%}$	3\％	3\％	2\％	2\％	0\％	0\％	0\％	0\％	\％	0\％	0\％	0\％	\％	0\％	\％	\％	0\％
${ }^{8128}$	${ }^{5533.10 .10}$	－Surace monted	5	${ }^{\text {NT1 }}$	4%	${ }^{4 \%}$	${ }^{4 \%}$	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％\％	\％	\％	\％	\％\％	\％	\％	\％	\％	\％	\％	\％	\％
${ }^{8129}$	88，33，090	－Other	5	NT1	$4{ }^{4 \%}$	${ }^{4 \%}$	${ }^{4 \%}$	3\％	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	0\％	0\％	0\％	0\％	\％	0\％	0\％	0\％	0\％	0\％	\％	0\％	\％
8^{8130}	，332，100		5	NT1	4%	4\％	${ }^{4 \%}$	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	0\％	\％	\％
${ }^{8131}$	${ }^{85,32,900}$	－－oner	5	NT1	4\％	4%	4\％	3\％	3\％	${ }^{2 \%}$	2%	\％	\％	0\％	\％	0\％	\％	0\％	0\％	0\％	\％	\％	\％	\％
${ }^{8132}$	5，33，100		5	NT	4%	4\％	${ }^{4 \%}$	3\％	${ }^{3} \%$	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％	\％	0\％	\％	\％	\％	\％	0\％	\％	\％	0\％
${ }^{8133}$	5，33，900	－－other	5	NT	4\％	${ }^{4 \%}$	${ }^{4 \%}$	${ }^{3 \%}$	${ }^{3 \%}$	2\％	${ }^{2 \%}$	0\％	0\％	0\％	0\％	0\％	0\％	0\％	0\％	\％	\％	0\％	\％	0\％
${ }^{8134}$	3 3，000		5	NT1	4\％	${ }^{4 \%}$		3\％	3\％	2\％	${ }^{2 \%}$	\％	0\％	0\％	\％	0\％	\％	\％	\％	\％	\％	\％	\％	0\％
${ }^{8135}$	85，33，000	－Pats	5	NT1	${ }^{4 \%}$	4\％	4%	3\％	3\％	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％\％	\％	\％	\％	\％	\％\％	\％	\％	0\％	\％	\％

香港•ASEAN FTAにかかる調査報告書

別添2－4 原産地品の関税撤廃スケジュール
（ラオス）

${ }^{8136}$	${ }^{85,30,010}$	Singes sided	5	NT1	4\％	${ }^{4 \%}$	4\％	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	2\％	0\％	0\％	0\％	\％	0\％	\％\％	0\％	\％	\％	\％	\％	\％	\％
${ }^{8137}$	5，340，020	Doube sided	5	NT1	4%	${ }^{4 \%}$	${ }^{4 \%}$	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	0\％	0\％	0\％	0\％	0\％	0\％	\％	\％	\％	0\％	\％	\％	\％
${ }^{1138}$	85，30，030	－Mulitiay	5	N1	4\％	4\％	4\％	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％
8139	88，30，090	Other	5	T1	4\％	4\％	4\％	3\％	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％	\％	\％	\％	\％	\％	\％	0\％	\％	\％	\％
8140	88，35，000	Fises	5	T1	4%	4%	4%	${ }^{3}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％	\％	\％	\％	\％	0\％	\％	\％	0\％	0\％	\％
8141	${ }^{8,3,35,110}$	－Mouleded case tpe	5	NT	4%	4\％	4\％	${ }^{3 \%}$	${ }^{3}$	${ }^{2 \%}$	${ }^{2 \%}$	0\％	\％	\％	\％	\％	\％	0\％	0\％	\％	\％	\％	\％	0\％
8142	${ }^{8,5,35,190}$	\cdots Oner	5	N1	4\％	4\％	4\％	${ }^{3 \%}$	${ }^{3 \%}$	2\％	${ }^{2 \%}$	\％	\％	\％	\％	\％	\％	\％	0\％	\％	\％	\％\％	0\％	\％
8^{8143}	85，32，900	－Onter	5	N1	4\％	4%	4%	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	0\％	\％	\％	\％	0\％	\％	\％	\％	\％	\％	\％	\％	\％
814	85，35，011		5	T1	4\％	4\％	$4{ }^{4 \%}$	${ }^{3 \%}$	${ }^{3 \%}$	2\％	${ }^{2 \%}$	\％	\％	0\％	\％	\％	\％	0\％	\％	\％	\％\％	\％	\％	\％
${ }^{8145}$	85，53，019	－Onher	5	NT1	4\％	${ }^{4 \%}$	${ }^{4 \%}$	${ }^{3}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％\％	\％	0\％	0\％	\％	\％	0\％	\％	\％	\％	0\％	\％	0\％
8146	85，53，${ }^{\text {，20 }}$	Fora Vollage of 66 kV or more	5	T1	4%	4\％	4\％	3\％	${ }^{3 \%}$	${ }^{2 \%}$	2\％	\％	0\％	\％	\％	\％	0\％	0\％	\％	\％	\％	\％\％	\％	\％
${ }^{8147}$	${ }^{\text {85，35，} 3 \text { ，90 }}$	－ormer	5	－1	4\％	4\％	4\％	3\％	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	0\％	0\％	0\％	0\％	\％	0\％	0\％	\％	0\％	\％	0\％	\％	\％\％
${ }^{8148}$	85，554，000	－Lightning arresters，voltage limiters and surge suppressors	5	NT1	4\％	4\％	4\％	3\％	3\％	${ }^{2 \%}$	${ }^{2 \%}$	0\％	0\％	0\％	\％	\％	0\％	0\％	\％	0\％	0\％	\％	\％	\％
${ }^{8149}$	85，59，010	－－Bushing assemblies and tap changer assemblies for electricity distribution or power transformers	5	－	${ }^{4 \%}$	${ }^{4 \%}$	${ }^{4 \%}$	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	0\％	\％	0\％	\％	\％	\％	\％	\％	\％	\％	\％	${ }^{0 \%}$	\％
8150	85，359，90	－－oner	5	T1	4\％	4\％	4\％	${ }^{\text {\％}}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	0\％	0\％	0\％	\％\％	0\％	0\％	0\％	\％\％	0\％	0\％	\％\％	0\％	\％\％
8351	${ }^{8585.10 .11}$	\cdots For usei in eleaticictans	5	T1	4%	4\％	4\％	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	0\％	\％	\％	\％	\％	\％	\％	0\％	\％	\％	\％	0\％	\％
${ }^{8152}$	${ }^{\text {8556．10．12 }}$	Onter，fora aurenenof fless than 16 A	5	T1	4%	4%	4%	${ }^{3 \%}$	3\％	2\％	2%	0\％	0\％	\％	\％	\％	0\％	0\％	\％	\％	\％	0\％	\％	\％
${ }^{8153}$	${ }^{5565.10 .13}$	－Fuse bloks，ofa kind used ior moor venides	5	T1	4%	4%	4%	3\％	3\％	${ }^{2 \%}$	${ }^{2 \%}$	0\％	\％	\％	\％	0\％	\％	0\％	\％	0\％	0\％	\％\％	\％	\％\％
$8{ }^{154}$	${ }^{\text {8536．00，19 }}$	－－other	5	T1	4\％	4\％	4\％	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％	\％	\％	0\％	\％	\％	\％	\％\％	\％	\％	\％
8155	88，561，091	\cdots For use in ieleatic lans	5	T1	4%	4%	4%	3\％	3\％	${ }^{2 \%}$	${ }^{2 \%}$	0\％	\％	\％	0\％	0\％	0\％	0\％	\％	0\％	\％	0\％	0\％	0\％
${ }^{8156}$	85，361，092	Oher，fora aurrentof less than 16 A	5	T1	4%	4\％	4\％	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％	\％	\％	\％\％	0\％	0\％	0\％	0\％	0\％	\％	0\％
${ }^{8157}$	${ }^{85,36,0,93}$		5	T1	4%	4%	${ }^{4 \%}$	${ }^{3 \%}$	${ }^{3}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	0\％	0\％	0\％	\％	\％	0\％	\％	\％	\％	\％	\％	\％
$8{ }^{8158}$	85，36，099	－other	5	T1	4\％	4\％	4\％	${ }^{3}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	0\％	0\％	0\％	0\％	0\％	\％	0\％	0\％	0\％	\％	0\％	\％	\％
8159	88，362，011	－Fora aurenenot liss than 16 A	5	T1	4\％	4\％	4\％	${ }^{3 \%}$	3\％	2\％	${ }^{2 \%}$	\％	0\％	0\％	\％	\％	0\％	\％	\％	\％	0\％	0\％	\％	\％
8860	${ }^{85,56,012}$		5	T1	4\％	4\％	4%	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	0\％	\％
${ }^{3161}$	${ }^{85,36,013}$	- Fora aurrent 1 I 32 A or more，but not mote than	5	Nr1	4%	${ }^{4 \%}$	${ }^{4 \%}$	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	0\％	0\％	0\％	0\％	0\％	0\％	0\％	\％	\％	\％	\％	\％	0\％
886	85，362，19	－ O Oner	5	T1	4\％	4\％	4\％	3\％	3\％	2\％	2\％	\％	\％	0\％	\％	\％	\％	0\％	\％	\％	0\％	0\％	0\％	0\％
${ }^{363}$	85，36，2020	－Of a kind incorporated into electro－thermic domestic appliances of heading 85.16	5	T1	4\％	4\％	${ }^{4 \%}$	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％	0\％	\％	\％	0\％	\％	0\％	\％	\％	\％	\％
3164	85，36，${ }^{\text {a }}$／	\cdots Fora aurenol fol ess than 16 A	5	T1	4%	${ }^{4 \%}$	4%	3\％	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	0\％	0\％	0\％	0\％	0\％	0\％	0\％	0\％	0\％	0\％	0\％	0\％	\％\％
8865	85，36，（399	－Oner	5	T1	4%	4\％	4%	${ }^{3 \%}$	${ }^{3} \%$	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％	\％	\％	\％	0\％	\％	\％	\％	0\％	\％	\％
$8{ }^{166}$	88，56，0，010	Lighting aresesers	5	T1	4%	4%	4%	3\％	3\％	${ }^{2 \%}$	${ }^{2 \%}$	0\％	0\％	\％	\％	0\％	0\％	0\％	\％	0\％	0\％	\％	\％	\％\％
${ }^{367}$	85，36， 20	$\underset{\text { tans }}{\text { Tot kind used in radio equipmento of in electictic }}$	${ }^{5}$	T1	4\％	4\％	4\％	3\％	3\％	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	0\％	0\％	\％	\％	\％	\％	\％	\％	0\％	\％	\％
8168		－Oner	5	VT1	4\％	4\％	4\％	${ }^{3 \%}$	${ }^{3 \%}$	2%	2%	\％	\％	0\％	0\％	\％	\％	\％	\％	\％	\％	\％	\％	\％
8169	85，564，110	－Digitar reays	5	V1	4\％	4%	4%	3\％	3\％	2\％	2\％	0\％	\％	0\％	0\％	0\％	0\％	0\％	\％	0\％	\％	0\％	\％	\％
8870	${ }^{\text {85，364，120 }}$	－OTa k in ussedi radio equipment	5	v1	4%	4%	4\％	${ }^{3 \%}$	3\％	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％	\％	\％	\％	\％	\％	0\％	\％	0\％	\％	\％\％
8871	${ }^{85,364,130}$	－－Of a kind used in ileateric lans	5	NT1	4\％	4\％	4\％	3\％	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％
8172	${ }^{8,5684,40}$		5	NT	4\％	4\％	4\％	${ }^{3} \%$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％
$8{ }^{8773}$	${ }^{85,564,190}$	－other	5	T1	4\％	4\％	4\％	3\％	3\％	2\％	2\％	\％	0\％	\％	\％	\％	0\％	\％	\％	\％	0\％	\％	\％	\％
8874	${ }^{8,5,36,910}$	－Digiaraleays	5	T1	4\％	4\％	4\％	${ }^{3}$	${ }^{3} \%$	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％\％	\％	\％
$8{ }^{875}$	85，364，990	Other	5	T1	$4{ }^{4 \%}$	4%	${ }^{4 \%}$	${ }^{3 \%}$	3\％	${ }^{2 \%}$	${ }^{2 \%}$	0\％	0\％	\％	\％	0\％	0%	\％	\％	\％	\％	\％	\％\％	\％
${ }^{8176}$	85，96，020	－－Over－current and residual－current automatic switches	${ }^{5}$	T1	4\％	4%	4%	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	0\％	\％	\％	\％	\％	\％	\％	0\％	\％	${ }^{0 \%}$	\％	\％	\％
${ }^{8177}$	85，56，${ }^{\text {，32 }}$	- －Of a kind suitable for use in electric fans or in radio equipment	${ }^{5}$	NT1	4%	4\％	4\％	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％	\％	\％	\％	\％	0\％	\％	0\％	0\％	0\％	\％
${ }^{8178}$	85，36，${ }^{\text {a }}$ 3	Oenter of arated durenen carrying capacaly of	${ }^{5}$	NT1	4\％	${ }^{4 \%}$	${ }^{4 \%}$	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％	\％	\％	\％	0\％	\％	\％	\％	0\％	\％	\％
8879	85，35， 3 ，39	‥Oner	5	，	$4{ }^{4 \%}$	4\％	4\％	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	0\％	\％	\％	\％	\％	0\％	\％	\％	0\％	\％	\％	\％	\％
8180	${ }^{8,5,36,900}$	－－Miniature switches for rice cookers or toaster ovens	${ }^{5}$	V1	4%	4\％	4\％	${ }^{3 \%}$	${ }^{3 \%}$	2\％	${ }^{2 \%}$	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％
${ }^{18181}$	${ }^{8,565,551}$	－－Fora atrenen of foss than 16 A	5	T1	${ }^{4 \%}$	${ }^{4 \%}$	${ }^{4 \%}$	${ }^{3 \%}$	${ }^{3 \%}$	2%	${ }^{2 \%}$	\％	\％	\％	0\％	\％	\％	\％	0\％	0\％	\％	\％	0\％	\％
8882	${ }^{8,5,36,5059}$	－－other	5	V1	4%	4%	4%	3\％	3\％	2\％	${ }^{2 \%}$	0\％	\％	0\％	0\％	0\％	0\％	0\％	0\％	0\％	\％	0\％	\％	\％
8883	${ }^{85,36,5061}$	\cdots	5	V1	$4{ }^{4 \%}$	4%	4%	3\％	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	0\％	0\％	0\％	0\％	0\％	0\％	0\％	\％	0\％	\％	0\％	\％	\％\％
8884	${ }^{8,3,35,069}$	－Onter	5	T1	$4{ }^{4 \%}$	4\％	4\％	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％	0\％	\％	\％	\％	0\％	\％	\％	\％	0\％	0\％
8885	${ }^{85,35,092}$		5	NT1	$4{ }^{4 \%}$	4\％	4\％	3\％	${ }^{3}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％	0\％	\％	0\％	\％	0\％	\％	\％	\％	0\％	\％
${ }^{8186}$	${ }^{85,365,09}$		5	NT1	${ }^{4 \%}$	4%	4\％	${ }^{3 \%}$	3\％	${ }^{2 \%}$	${ }^{2 \%}$	0\％	\％	0\％	\％	0\％	\％	\％	\％	\％	\％\％	\％	\％	\％
8187	${ }^{8,5,36,099}$	－－omer	5	N1	$4{ }^{4}$	4\％	4\％	3\％	3\％	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	0\％	\％	\％	\％	0\％	\％	\％	\％	0\％	\％	\％
${ }^{8188}$	${ }^{\text {85，36，} 110}$	Of a kind used for compact lamps or halogen	5	NT1	${ }^{4 \%}$	4\％	4\％	3\％	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	0\％	0\％	\％\％	0\％	0\％	\％	\％	\％	0\％	\％	\％	0\％	\％
8189	85，36，191	\cdots Fora aurrenot fless than 16A	5	T1	4%	4\％	4\％	3\％	3\％	2\％	2\％	\％	0\％	\％	\％	\％	0\％	\％	0\％	\％	0\％	\％\％	0\％	\％
8890	${ }^{8,566,199}$	Other	5	V1	$4{ }^{4}$	4%	4%	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％
8191	85，36，911	Fora curen of fless tan 16A	5	T1	4%	4\％	4%	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	0\％	0\％	\％	\％	0\％	\％	\％	\％	0\％	0\％	\％\％
8192	85，36，9919	\cdots	5	NT	4\％	4\％	4\％	3\％	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％\％	\％	\％
8193	${ }^{85,36,9,92}$	－Fora aurenenofl foss tran 16A	5	NT1	$4{ }^{4 \%}$	4%	4%	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％	\％	\％	\％	0\％	\％	\％	\％	0\％	0\％	\％\％
8194	${ }^{85,366,929}$	－other	5	N1	4%	4%	4%	3\％	3\％	${ }^{2 \%}$	${ }^{2 \%}$	0\％	\％	0\％	0\％	0\％	0\％	0\％	\％	0\％	0\％	0\％	0\％	\％\％
8195	${ }^{8,5,36,932}$	\cdots Fora aurenem fol tes than 16 A	5	NT1	4%	4\％	4%	3\％	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	0\％	\％	\％	0\％	\％\％	\％	\％	\％	\％	\％	0\％	\％	\％
8196	${ }^{8,566,939}$	Onter	5	NT1	4%	4\％	4\％	3\％	3\％	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％	0\％	\％	\％	\％	\％	\％	\％	\％	0\％	\％
8197	${ }^{85,36,9,92}$	Fora aurenolof fess tran 16 A	5	NT1	4\％	4\％	4\％	${ }^{3} \%$	3\％	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％
8198	85，36，999	\cdots Oner	5	NT1	4%	4\％	4\％	3\％	3\％	2%	${ }^{2 \%}$	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％
8199	185，36，0010	－ot coramics	5	N1	4%	4%	4%	3\％	3\％	2\％	${ }^{2 \%}$	\％	0\％	\％	\％	\％	\％	\％\％	\％	\％	\％\％	\％\％	\％	\％
3200	88，36，020	Of coper	5	V1	$4{ }^{4}$	4%	4%	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％
${ }^{3201}$	${ }^{8,567,090}$	Onter	5	T1	$4{ }^{4 \%}$	4%	4\％	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％	\％	\％	\％	\％	0\％	\％	\％	\％	\％	\％
3822	${ }^{85,36,012}$	－For a curene of lest han 16A	5	NT1	$4{ }^{4 \%}$	4\％	4%	3\％	3\％	${ }^{2 \%}$	${ }^{2 \%}$	0\％	0\％	0\％	\％	0\％	0\％	\％	\％	0\％	\％\％	\％	\％	\％\％
3203	${ }^{8,5989,19}$	－other	5	NT1	${ }^{4 \%}$	4\％	4\％	3\％	3\％	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％	0\％	\％	\％	\％	\％	\％	\％	\％	0\％	\％\％
3204	${ }^{85,56,022}$	－For a currentof fest han 16 A	5	NT1	4%	4%	4%	3\％	3\％	${ }^{2 \%}$	${ }^{2 \%}$	0\％	\％	0\％	0\％	0\％	0\％	0\％	0\％	0\％	\％	0\％	0\％	\％
3205	${ }^{8,569,029}$	－Onter	5	NT1	4%	4\％	4%	3\％	3\％	2\％	${ }^{2 \%}$	0\％	\％	0\％	0\％	0\％	\％	\％\％	\％	\％\％	\％	0\％	\％	\％
${ }^{3206}$	${ }^{8,569,032}$	Fora curen of fless tan 16A	5	NT1	4%	4%	4%	3\％	3\％	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％	0\％	\％	\％	\％	\％	\％	\％	\％	\％	\％
3207	${ }^{85,56,039}$	－omer	5	NT1	4\％	4\％	4\％	3\％	3\％	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％
${ }^{3208}$	85，36，093	－Teoppono pacth panels	5	V1	$4{ }^{4 \%}$	4\％	4%	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％	0\％	\％	\％	\％	\％	\％	\％	\％	\％	\％
${ }^{829}$	${ }^{\text {85，56，0，04 }}$	${ }^{-}$Other	5	T1	$4{ }^{4 \%}$	4%	4%	${ }^{3 \%}$	${ }^{3} \%$	${ }^{2 \%}$	${ }^{2 \%}$	0\％	0\％	0\％	\％	0\％	0\％	\％\％	0\％	0\％	\％	\％\％	\％	\％$\%$
3220	88，36，099	\cdots	5	HL	5\％	5\％	5\％	${ }^{5 \%}$	${ }^{5 \%}$	5\％	5\％	5\％	5\％	5\％	${ }^{5 \%}$	5\％	5\％	5\％	${ }^{5 \%}$	5\％	5\％	5\％	${ }_{5}^{5 \%}$	${ }^{5 \%}$
8211	537，10：1	－－Control panels of a kind suitable for use in distributed control systems	${ }^{5}$	NT1	4%	$4{ }^{4}$	${ }^{4 \%}$	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％
8212	${ }^{8537.10 .12}$	－－Control panels fitted with a programmable processor	${ }^{5}$	NT1	4%	4\％	${ }^{4 \%}$	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	0\％	${ }^{0 \%}$	\％	0\％	\％	${ }^{0 \%}$	\％	\％	\％	${ }^{0 \%}$	\％	\％	\％
${ }^{2213}$	${ }^{8537.10 .13}$	$-\cdots$ Other control panels of a kind suitable for goods of heading $84.15,84.18,84.50,85.08,85.09$ or 85.16	5	V1	4\％	4\％	4\％	3\％	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	0\％	\％	0\％	\％	\％	\％	\％	\％	0\％	\％	\％	0\％	\％
8814	${ }^{5557.10 .19}$	－Onher	5	NT1	4%	4\％	4%	3\％	3\％	${ }^{2 \%}$	2%	0\％	\％\％	0\％	0\％	0\％	0\％	0\％	0\％	0\％	\％\％	0\％	0\％	0\％
${ }^{8215}$	8557．10．20	－－Distribution boards（including back panels and back planes）for use solely or principally with goods of heading $84.71,85.17$ or 85.25	5	NT1	4%	4\％	4\％	${ }^{3 \%}$	${ }^{3} \%$	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％\％	\％	\％\％
${ }^{8216}$	${ }^{8537.10 .30}$	－－Programmable logic controllers for automated machines for transport，handling and storage of dies for semiconductor devices	${ }^{5}$	NT1	$4{ }^{4 \%}$	${ }^{4 \%}$	4\％	3\％	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％\％	\％	\％	\％	\％	\％	\％	\％	\％	\％\％	\％	\％\％
817	，091		5	NT1	${ }^{4 \%}$	4%	4\％	${ }^{3 \%}$	3\％	${ }^{2 \%}$	${ }^{2 \%}$	0\％	\％	0\％	\％	0\％	\％	0\％	\％	\％	\％	0\％	\％	\％
8218	5，371，092		5	NT1	${ }^{4 \%}$	4%	${ }^{4 \%}$	3\％	3\％	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％	\％	\％	\％	\％	0\％	\％	\％	\％	\％	\％

香港•ASEAN FTAにかかる調査報告書

（ラオス）

$8{ }^{827}$	85，43， 202	- Wet processing equipment for the application by immersion of chemical or electrochememical solutions， whether or not for the purpose of removing material on printed dircuit boarddprinted wiring board substrates	5	NT1	4\％	4\％	4\％	3\％	3\％	2\％	2\％	0\％	0\％	\％\％	\％\％	0\％	\％\％	\％\％	\％	0\％	0\％	0\％	0\％	\％
8228	85，43，．900	－Oner	5	NT1	4\％	4\％	4%	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	2\％	0\％	0\％	\％	\％	\％	\％	\％\％	\％	0\％	\％	0\％	\％	\％
㖪	85，437，010	－Electric emence enegigers	5	NT1	4\％	4\％	4%	3\％	3\％	2\％	2\％	\％	0\％	0\％	0\％	0\％	0\％	0\％	0\％	0\％	0\％	\％	\％	\％\％
8300	85，47，020	Remote control apparatus，other than radio remote control apparatus	5	NT1	4\％	4\％	4\％	3\％	${ }^{3 \%}$	2\％	${ }^{2 \%}$	\％	\％	\％	\％	\％	\％	\％	\％	\％	0\％	\％	\％	\％
\％	5，437，030	－－Electrical machines and apparatus with translation or dictionary functions	5	NT	${ }^{4 \%}$	${ }^{4 \%}$	${ }^{4 \%}$	${ }^{3} \%$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	0\％	0\％	\％	\％	\％	\％	\％	\％	\％	0\％	0\％	\％
	85，43，${ }^{\text {a }}$		5	NT1	4\％	4\％	4\％	3\％	3\％	2\％	2\％	0\％	0\％	\％	\％	\％	\％\％	0\％	\％	0\％	0\％	0\％	0\％	\％
8303	35，437，950	Integrated receivers／decoders（IRD）for direct broadcast multimedia systems	5	${ }^{\text {N1 }}$	${ }^{4 \%}$	${ }^{4 \%}$	${ }^{4 \%}$	3\％	3\％	${ }^{2 \%}$	${ }^{2 \%}$	0\％	\％	0\％	0\％	0\％	0\％	\％	0\％	\％	0\％	0\％	0\％	\％
8304	85，43，090	－Onter	5	NT1	4%	4\％	$4{ }^{4 \%}$	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	0\％	0\％	0\％	0\％	0\％	0\％	\％	0\％	0\％	0\％	0\％	\％	\％
8305	${ }^{85,43,0010}$	－Of goods fot subheading 854.10 or 85438.20	5	NT1	4\％	4\％	4\％	${ }^{3 \%}$	3\％	2\％	2\％	\％	0\％	\％	\％	\％	\％	\％\％	\％	\％	\％	\％	\％	\％
8306	$8{ }^{85,43,920}$	－Ot goods of stubeading 8 843．3．3．20	5	NT1	4\％	4\％	4\％	${ }^{3} \%$	3\％	2\％	2\％	\％	0\％	0\％	0\％	\％	\％	0\％	\％	0\％	0\％	\％	\％	\％
830	85，439，30		5	NT1	4\％	4%	4\％	3\％	3\％	2\％	2\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％\％	\％	\％	\％
3308	${ }^{85,43,040}$	Of goos of stubeading 854.7 .70 .40	5	NT1	4\％	$4{ }^{4 \%}$	${ }^{4 \%}$	${ }^{3} \%$	${ }^{3 \%}$	2\％	${ }^{2 \%}$	\％	\％	\％	\％	\％	\％	0\％	${ }^{\text {\％}}$	\％	0\％	0\％	\％	0\％
8309	${ }^{85,43,5950}$	－Ot goods of stubeading 8 543．7．7．50	5	N1	4%	4%	4%	${ }^{3} \%$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	0\％	\％	\％	\％	\％	\％	\％	\％	\％	0\％	\％	\％
8310	${ }^{85,43,930}$	Other	5	NT1	4%	4%	4%	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	0\％	0\％	\％\％	0\％	\％	\％	\％	\％	\％	\％\％	0\％	\％	\％\％
8311	${ }^{\text {8544，1．1．10 }}$	－－With a outer coaing of facure ore enamel	5	Hst	5\％	5\％	5\％	5\％	5\％	5\％	5\％	5\％	5\％	5\％	5\％	5\％	5\％	5\％	5%	5\％	5\％	5\％	5\％	5\％
8312	4.112	With an outer coating or covering of paper textiles or poly（vinyl chloride）	5	HsL	5\％	5\％	5\％	5\％	5\％	5\％	5\％	5\％	5\％	5\％	5\％	5\％	5\％	5\％	5\％	5\％	5\％	5\％	${ }^{5 \%}$	${ }^{5 \%}$
$8{ }^{8313}$	${ }^{85,441,190}$	．．．Oner	5	IsL	5\％	\％	5\％	5%	5\％	5\％	5\％	5\％	${ }^{5 \%}$	5\％	${ }^{5 \%}$	5\％	5\％	${ }^{5 \%}$	5\％	${ }^{5 \%}$	5\％	5\％	${ }^{5 \%}$	${ }^{5 \%}$
8314	${ }^{85,44,900}$	－other	5	NT1	4%	$4{ }^{4 \%}$	4\％	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	0\％	0\％	\％	\％	\％	\％	\％	\％	0\％	\％	0\％	\％	\％
8315	${ }^{85,42,011}$	－Insulade with uberor orlasics	5	N11	4\％	4\％	4\％	3\％	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％	\％	\％	\％	0\％	\％\％	\％	\％\％	\％	\％	\％
8316	85，42，019	Other	5	N1	4\％	4%	4\％	3\％	3\％	2\％	2\％	0\％	0\％	\％	\％	\％	\％	\％\％	\％	0\％	0\％	\％	\％	0\％
833	${ }^{55,42,021}$	－ Insulated with nbere or plasics	5	N1	4%	4%	4%	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	${ }^{\text {\％}}$	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％
8318	${ }^{85,42,029}$	Other	5	N1	4%	4%	4%	3\％	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	0\％	\％	0\％
8319	${ }^{85,42,031}$	－Insulate with ubbero orpasios	5	NT1	4\％	4\％	4\％	3\％	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％	\％	\％	0\％	\％	\％	\％	\％	\％	\％	\％
8320	${ }^{85,42,039}$	Other	5	NT1	4%	4%	4%	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	0\％	0\％	\％	\％	\％	\％	\％	\％	\％	\％	0\％	\％	\％
8321	${ }^{85,42,041}$	－Insulated witruberor oplasics	5	NT1	4\％	4%	4\％	3\％	3\％	2\％	2\％	\％	0\％	0\％	0\％	\％	\％	0\％	\％	0\％	0\％	0\％	0\％	0\％
8322	${ }^{85,42,049}$	Onher	5	NT1	4%	4%	4\％	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	0\％	0\％	0\％	\％	0\％	\％	\％	\％	0\％	\％	\％	0\％	\％
8323	85，443，012	87．．．．For veniciles of heading 87．02，87．03，87．04 or	5	${ }^{\text {NT1 }}$	4\％	4\％	4\％	3\％	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	0\％	\％	\％	\％	\％	0\％	\％	\％\％	0\％	\％	0\％	\％
8324	${ }^{85,44,013}$	－\cdots onter	5	N11	4\％	$4{ }^{4}$	4\％	${ }^{3 \%}$	${ }^{3 \%}$	2\％	2%	\％	\％	\％	0\％	\％	\％	\％\％	0\％	0\％	\％	0\％	\％	0\％
8325	${ }^{8,443,014}$	－．．．For venicles of heading 87．02，87．03，87．04 or	5	NT	4\％	4\％	4\％	${ }^{3 \%}$	3\％	2\％	${ }^{2 \%}$	\％	\％	\％	\％	\％	\％	\％	0\％	\％	\％\％	0\％	\％\％	\％
8326	85，44， 19	－．．．other	5	NT1	4\％	4\％	4\％	${ }^{3} \%$	3\％	2\％	2\％	\％	\％	\％	0\％	\％	0\％	0\％	\％	0\％	0\％	\％	\％	0\％
8327	${ }^{55,44,091}$	${ }^{\text {Insulaled wit rubber or pasicics }}$	5	NT1	4\％	4\％	4%	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	0\％	\％	0\％	0\％	\％	\％\％	\％	0\％	0\％	\％	0\％	0\％
328	85，43，099	\cdots Oner	5	V1	4%	${ }^{4 \%}$	4%	${ }^{3 \%}$	3\％	2\％	${ }^{2 \%}$	\％	\％	\％	\％\％	\％\％	\％\％	\％\％	\％	\％	0\％	\％	\％	0\％
8329	85，44，211	－－－Telephone，telegraph and radio relay cables， submarine	${ }^{5}$	NT	4\％	4\％	${ }^{4 \%}$	3\％	3\％	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％	\％	\％	\％	0\％	\％	\％	\％	\％	\％	\％\％
	85，44， 212	\cdots Telephone，telegraph and radio relay cables，	${ }^{5}$	N1	4\％	${ }^{46}$	4\％	${ }^{3 \%}$	3\％	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％
${ }^{833}$	${ }^{5,444,219}$	\cdots－Oner	5	N11	4%	$4{ }^{4 \%}$	4\％	3\％	3\％	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％\％	0\％	0\％	0\％	0\％	\％	0\％	0\％	0\％	0\％	0\％
833	85，44，${ }^{\text {a } 21}$	submarine Telephone，telegraph and radio relay cables，	5	N1	4%	4%	4%	${ }^{3 \%}$	${ }^{3} \%$	${ }^{2 \%}$	${ }^{2 \%}$	0\％	\％	\％	\％	\％	\％	\％	0\％	\％	\％	0\％	\％	0\％
	44，222	－．－Telephone，telegraph and radio relay cables，	5	N1	${ }^{4 \%}$	${ }^{4 \%}$	4\％	3\％	${ }^{3}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％
${ }^{833}$	${ }^{85,44,229}$	Onher	5	N11	4\％	4\％	$4{ }^{4 \%}$	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	0\％	0\％	0\％	0\％	0\％	\％	\％\％	0\％	0\％	\％	0\％	0\％	0\％
	85，44，232	－．．．For vehicles of heading 87．02，87．03，87．04	5	NT1	4\％	4\％	4%	3\％	3\％	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％	\％	\％	\％	\％	0\％	0\％	\％	0\％	\％	\％\％
${ }^{8336}$	85，44，233	－．．．－Oner	5	N1	4\％	4\％	4\％	3\％	3\％	2\％	2\％	\％	0\％	\％\％	0\％	0\％	\％	0\％	0\％	0\％	0\％	0\％	0\％	0\％
	85，444，234		5	NT1	4\％	4\％	4\％	3\％	3\％	2\％	${ }^{2 \%}$	0\％	\％	\％	\％\％	0\％	\％	\％	0\％	\％	\％\％	0\％	\％	${ }_{0}$
${ }^{8388}$	${ }^{55,444,239}$	－${ }^{\text {－Onher }}$	5	NT1	4%	4\％	4\％	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	0\％	0\％	\％	0\％	\％	\％	\％	\％	\％	0\％	0\％	\％	0\％
8339	${ }^{85,444,291}$	\ldots Electic cables insulated with plastics having a core diameter not exceeding 19.5 mm	5	NT1	4\％	4\％	4\％	${ }^{3} \%$	3\％	2\％	2\％	\％	\％	\％	\％	\％	\％\％	0\％	0\％	\％	\％	\％	\％	0\％
8380	，292	\cdots	5	N1	${ }^{4 \%}$	$4{ }^{46}$	${ }^{4 \%}$	${ }^{3 \%}$	3\％	2\％	2\％	\％	${ }^{0 \%}$	\％	\％\％	\％	0\％	\％	\％	\％	\％	\％	\％	0\％
${ }^{8341}$	${ }^{85,444,299}$	…oner	5	NT1	4\％	4%	4\％	3\％	3\％	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％\％	\％	\％	\％	\％	0\％	\％	\％	\％	\％	0\％
${ }^{834}$	${ }^{85,444,911}$		5	N1	4\％	4\％	4\％	3\％	3\％	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％	\％	\％	\％	\％	0\％	\％	\％	0\％	0\％	0\％
${ }^{8343}$	44，912	－．．．Telephone，telegraph and radio relay cables，	5	${ }^{\text {N1 }}$	$4{ }^{4 \%}$	${ }^{4 \%}$	${ }^{4 \%}$	3\％	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	0\％	0\％	\％	\％	0\％	\％	\％	0\％	\％	0\％	\％	0\％	\％
${ }^{834}$	${ }^{85,44,9,99}$	\cdots	5	NT1	4\％	${ }^{4 \%}$	${ }_{4 \%}$	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	2\％	0\％	0\％	0\％	\％	0\％	0\％	0\％	0\％	\％	0\％	\％	0\％	0\％
	／44，921	．．－Shielded wirie of a kind used it the manufacture of automotive wiring hamesses	5	T1	4%	4\％	4\％	3\％	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	0\％	\％	\％	\％	\％	0\％	0\％	\％	\％	\％	\％	\％	\％\％
\％	5，444，922	－．．．Electric cables insuluted with plastics having a core diameter not exceeding 19.5 mm	5	T1	4\％	${ }_{4}$	4\％	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	0\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	0\％	\％	\％
834	44，923	Oher electicic cabes inulated witp pasisics	5	N1	${ }^{4 \%}$	${ }^{4 \%}$	${ }^{4 \%}$	${ }^{3 \%}$	3\％	${ }^{2 \%}$	${ }^{2 \%}$	0\％	0\％	0\％	0\％	0\％	0\％	\％	0\％	\％	0\％	\％	\％	0\％
${ }^{8348}$	85，44，929	Oner	5	${ }^{\text {NT1 }}$	4\％	4\％	$4{ }^{4 \%}$	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	0\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％\％	\％	0\％
${ }^{834}$	85，44，931		${ }^{5}$	N1	4\％	4%	4\％	${ }^{\text {3\％}}$	${ }^{3} \%$	${ }^{2 \%}$	${ }^{2 \%}$	\％	0\％	\％	\％	\％	\％	\％	\％	\％	\％	0\％	\％	0\％
8350	${ }^{8,444,932}$	－Ohere，insulated with posasics	5	NT1	4%	4%	4\％	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	0\％	0\％	\％\％	0\％	0\％	\％\％	\％\％	\％	0\％	\％	\％	\％	\％
${ }^{3351}$	${ }^{8,444,939}$	Oner	5	NT1	4\％	4%	4\％	3\％	3\％	2\％	2%	\％	\％	\％	\％	\％	\％	\％\％	\％	0\％	0\％	0\％	\％	0\％
8352	${ }^{85,44,941}$	－－Cabases insulate with phasics	5	NT1	4%	4%	4%	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	0\％	0\％	0\％	0\％	0\％	\％	\％	0\％	\％	\％	0\％	\％	0\％
${ }^{8353}$	${ }^{85,449,949}$	Other	5	NT1	4%	4%	4%	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	0\％	0\％	\％	0\％	\％	\％	\％	\％	\％	\％	0\％	\％	\％
${ }^{3354}$	${ }^{85,446,011}$	Cables insulated with plastics having a core diameter of less than 22.7 mm	5	NT1	4\％	4\％	${ }^{4 \%}$	${ }^{3} \%$	3\％	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	0\％	\％	\％\％	\％	\％	\％	\％	\％\％	\％	\％	0\％
8355	85，44，019	\cdots	5	NT1	4\％	4\％	4\％	3\％	3\％	2\％	${ }^{2 \%}$	\％	0\％	0\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％
8356	${ }^{8,446,021}$		${ }^{5}$	N1	4\％	4\％	$4{ }^{4 \%}$	3\％	3\％	2\％	${ }^{2 \%}$	\％	\％	0\％	0\％	\％	\％	\％	0\％	\％	\％	0\％	\％	0\％
8357	85，46，029	－${ }^{\text {ather }}$	5	NT1	4\％	${ }^{4 \%}$	4\％	3\％	3\％	2\％	2\％	0\％	0\％	\％	\％	0\％	\％	\％	\％	\％	\％\％	\％	\％	0\％
${ }^{8358}$	${ }^{85,446,300}$	－For a volage exceeding 66 kV	5	NT1	$4{ }^{4 \%}$	$4{ }^{4 \%}$	4%	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	0\％	0\％	0\％	0\％	\％	0\％	\％	0\％	0\％	\％	0\％	0\％
	85，477，010	－Telephone，telegraph and radio relay cables， submarine	${ }^{5}$	NT1	4%	4%	${ }^{4 \%}$	3\％	3\％	${ }^{2 \%}$	2\％	0\％	0\％	0\％	\％	0\％	\％	0\％	0\％	\％	\％	0\％	\％	\％
8380	${ }^{85,447,090}$	－other	5	NT1	4\％	$4{ }^{4 \%}$	4\％	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	0\％	0\％	0\％	0\％	0\％	0\％	0\％	\％	0\％	\％	0\％	0\％	0\％
${ }^{8361}$	${ }^{85,451,100}$	－Of a knid Used tor fumaces	5	NT1	4\％	4%	4\％	3\％	3\％	2\％	2\％	\％	\％	0\％	0\％	0\％	\％	\％	\％	\％	\％	\％	\％	\％
8362	${ }^{85,45,900}$	－Other	5	NT1	4\％	4%	4\％	${ }^{3 \%}$	${ }^{3 \%}$	2%	2%	\％	\％	0\％	\％	\％	\％	\％	\％	0\％	\％\％	\％	\％	0\％
${ }^{8363}$	${ }^{55,45,000}$	Bushes	5	N11	4%	$4{ }^{4 \%}$	4%	3\％	3\％	2\％	2\％	\％	\％	0\％	0\％	\％	\％	0\％	0\％	0\％	0\％	\％	0\％	0\％
${ }^{8364}$	${ }^{85,45,000}$	Oner	5	NT1	4%	4%	4%	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	0\％	0\％	0\％	\％	\％	\％	\％	0\％	\％	\％	0\％	\％	0\％
${ }^{8365}$	85，46，000	－of lass	5	NT1	4%	$4{ }^{4 \%}$	4%	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	0\％	0\％	\％	0\％	0\％	\％	\％	0\％	0\％	\％	0\％	\％	0\％
8366	${ }^{85,462,010}$		5	NT1	4\％	4\％	${ }^{4 \%}$	3\％	3\％	2\％	2\％	\％	\％	\％	\％	\％	\％	0\％	\％	0\％	0\％	0\％	\％	0\％
${ }^{8367}$	85，462，900	－Other	5	NT1	4\％	4\％	4\％	3\％	3\％	2\％	2\％	\％	\％	\％	\％	\％	\％	0\％	\％	\％	\％	\％	\％	\％
${ }^{8388}$	${ }^{\text {8，469，000 }}$	Oner	5	N1	4\％	4\％	4\％	3\％	${ }^{3 \%}$	2\％	2\％	\％	\％	\％	\％	\％	\％	0\％	\％	0\％	0\％	0\％	\％	0\％
8369	${ }^{\text {85，47，000 }}$	Insuling ytitins of ceramics	5	NT1	4\％	4\％	${ }^{4 \%}$	${ }^{3 \%}$	3\％	${ }^{2 \%}$	${ }^{2 \%}$	\％	0\％	\％\％	0\％	0\％	\％	0\％	\％	0\％	0\％	\％	\％	0\％
8370	${ }^{85,47,000}$	Insulaing titigs of plasics	5	NT1	4%	4\％	${ }^{4 \%}$	${ }^{3 \%}$	3\％	${ }^{2 \%}$	${ }^{2 \%}$	0\％	\％	\％	\％\％	\％	\％	\％	\％	0\％	\％	0\％	\％	\％
${ }^{8371}$	85，47，0010	－－Electric conduit tubing and joints therefor，of base metal lined with insulating material	${ }^{5}$	NT1	4\％	4\％	4%	${ }^{3 \%}$	3\％	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％
8372	${ }^{85,47,990}$	－other	5	NT1	4%	$4{ }^{4 \%}$	4%	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	0\％	\％	0\％	0\％	0\％	0\％	\％\％	\％	\％	0\％	\％\％	\％	\％
${ }^{8373}$	${ }^{\text {8548，10．12 }}$	Of a kind usedid inarcatt	5	NT1	4\％	4%	4\％	3\％	3\％	2\％	2%	\％	\％	\％	\％	\％	\％	\％	\％	0\％	\％\％	\％	\％	0\％
8374	${ }^{8548.00 .19}$	Onher	5	${ }^{\text {NT1 }}$	4%	${ }^{4 \%}$	${ }^{4 \%}$	3\％	3\％	${ }^{2 \%}$	${ }^{2 \%}$	0\％	0\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％

香港•ASEAN FTAにかかる調査報告書

別添2－4 原産地品の関税撤廃スケジュール
（ラオス）

${ }^{8375}$	［5648．0．22	－Of pimay cells and pinamy batereies	5	NT1	${ }^{4 \%}$	${ }^{4 \%}$	${ }^{4 \%}$	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	0\％	0\％	0\％	0\％	\％	\％	0\％	\％\％	\％\％	0\％	\％	0\％	0\％
8376	568．10．23	aicicatter	5	NT1	4%	4\％	${ }^{4 \%}$	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％	\％	\％	\％	0\％	\％	\％	\％	\％	0\％	\％
	${ }^{5548.1029}$	．－Other	5	NT	$4{ }^{4 \%}$	4\％	4\％	3\％	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	0\％	0\％	\％	\％	\％	\％	\％	\％	\％	\％\％	\％	\％	0\％
${ }^{8378}$	85，48，032	－ot pimay cells and pimay batereis	5	NT1	${ }^{4 \%}$	4%	${ }^{4 \%}$	${ }^{3} \%$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％	0\％	\％	0\％	\％	0\％	0\％	\％	\％	\％	\％
8379	85，48，033	－Of electric accumulators of a kind used in aircraft	5	NT1	4\％	4\％	4\％	3\％	3\％	2\％	2\％	0\％	0\％	\％	0\％	\％	\％	\％	\％	0\％	\％	\％	\％	0\％
${ }^{3380}$	85，481，039	－－other	5	NT1	${ }^{4 \%}$	4\％	${ }^{4 \%}$	3\％	3\％	${ }^{2 \%}$	${ }^{2 \%}$	\％	0\％	\％	0\％	\％	0\％	0\％	0\％	\％	0\％	0\％	\％\％	0\％
${ }^{3881}$	85，48，091	\cdots Of primay cells and pimay bateries	5	NT1	4%	4%	4\％	3\％	${ }^{3} \%$	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％	0\％	0\％	\％	\％	\％	\％	\％	\％	\％	\％
8382	85，48，092	－Of electric accumulators of a kind used in aicratt	5	T1	4\％	4\％	4\％	3\％	3\％	2\％	2\％	\％	\％	\％	\％	\％	0\％	\％	\％	\％	\％	0\％	\％	\％
${ }^{8383}$	85，48，099	－Other	5	${ }^{\text {NT1 }}$	4\％	4\％	4\％	3\％	${ }^{3} \%$	2\％	2\％	\％	\％	\％	\％	0\％	0\％	\％	\％	\％	\％	\％	\％	\％
${ }^{8384}$	85，48，010		5	NT1	4%	4\％	4\％	3\％	3\％	2\％	2\％	\％	\％\％	\％	\％	\％	\％	\％\％	\％	\％	\％\％	\％	\％	0\％
8385	85，49，020	－－Printed circuit assemblies including such	5	NT1	$4{ }^{4 \%}$	${ }^{4 \%}$	4\％	3\％	3\％	2\％	${ }^{2 \%}$	0\％	0\％	0\％	0\％	\％	\％	\％	0\％	\％	0\％	\％	\％	0\％
8386	85，48，090	－－other	5	NT1	${ }^{4 \%}$	${ }^{4 \%}$	${ }^{4 \%}$	3\％	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	0\％	\％	\％	0\％	\％	0\％	\％	\％	\％	\％	\％	0\％
${ }^{3887}$	88，01，000	－Poweed fom a e exemal source of felecricity	5	NT1	${ }^{4 \%}$	${ }^{4 \%}$	4\％	3\％	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％	\％	0\％	\％	\％	\％	\％	\％	\％	\％	\％
${ }^{3388}$	88，012，000	－Poweed by elecricic acumulato	5	NT1	4\％	4%	4\％	${ }^{3} \%$	${ }^{3 \%}$	2\％	${ }^{2 \%}$	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％
${ }^{3389}$	88，01，000	－Dieselileatricicoomomotives	5	NT1	4\％	4\％	4\％	3\％	3\％	2\％	2\％	0\％	0\％	\％	\％	\％	0\％	\％	\％\％	\％	\％\％	\％	\％	0\％
${ }^{3390}$	86，02，000	－Other	5	NT1	4\％	$4{ }^{4 \%}$	4\％	3\％	${ }^{3 \%}$	2\％	2\％	0\％	0\％	0\％	0\％	0\％	0\％	0\％	\％	0\％	\％	0\％	0\％	\％
${ }^{3391}$	88，03，000	－Powered tom an exemal surce of feecticily	5	${ }^{\text {NT1 }}$	$4{ }^{4 \%}$	4%	${ }^{4 \%}$	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	0\％	\％	\％	\％	\％	\％	0\％	\％	\％	\％	\％	\％	0\％
${ }^{3392}$	88，03，000	－orner	5	NT1	$4{ }^{4 \%}$	4%	4\％	3\％	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	0\％	\％	\％	\％	\％	0\％	\％	\％	\％	\％	\％	0\％
${ }^{8393}$	88，04，000		5	${ }^{\text {NT1 }}$	4\％	4\％	4\％	${ }^{3 \%}$	${ }^{\text {3\％}}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	0\％	\％	0\％	0\％	\％	0\％	0\％	\％	0\％	0\％	\％
8394	88，05，000		5	NT1	4\％	4\％	4\％	3\％	${ }^{3 \%}$	2\％	2\％	\％	\％	\％	0\％	\％	0\％	\％	0\％	0\％	\％	\％	0\％	0\％
${ }^{3395}$	88，06，000	－Tank wagos and the Ike	5	NT1	$4{ }^{4 \%}$	$4{ }^{4 \%}$	4\％	3\％	3\％	${ }^{2 \%}$	2\％	\％	0\％	0\％	\％\％	\％	0\％	\％	0\％	\％\％	\％\％	\％	\％	0\％
8396	88，06，000	$\begin{aligned} & \text { - Self-discharging vans and wagons, other than } \\ & \text { those of subheading } 8606.10 \end{aligned}$	${ }^{5}$	NT1	4%	4%	4\％	3\％	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％	\％	0\％	0\％	\％	\％	0\％	\％	\％	\％	\％\％
${ }^{839}$	88，09， 100	－Covered and cosed	5	N1	4\％	4\％	${ }^{4 \%}$	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	0\％	0\％	\％	\％	\％	\％	\％	\％	\％	\％	0\％	\％	\％\％
${ }^{3398}$	88，09，200	$\begin{aligned} & \text {-- Open, with non-removable sides of a height } \\ & \text { exceeding } 60 \mathrm{~cm} \end{aligned}$	${ }^{5}$	NT1	4%	4%	4\％	3\％	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	0\％	\％	0\％	\％	\％	0\％	\％	\％	\％	0\％	\％	\％	\％
${ }^{2399}$	88，09，900	－－Oner	5	NT1	4\％	4\％	4\％	3\％	3\％	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％\％	\％	\％\％	\％\％	\％	\％	\％	\％	\％	\％	0\％
${ }^{8400}$	$88.781,100$	－Diving bogies and bssel－ogies	5	NT1	4\％	4\％	4\％	3\％	${ }^{3 \%}$	2\％	${ }^{2 \%}$	0\％	0\％	\％	\％	0\％	0\％	0\％	\％	\％\％	0\％	\％	0\％	0\％
${ }^{8001}$	88，071，200	－－Other bogese and biselboges	5	NT1	4\％	4%	4\％	3\％	3\％	2\％	2\％	0\％	0\％	0\％	0\％	0\％	0\％	0\％	0\％	0\％	0\％	0\％	0\％	0\％
8402	88，07，900	－Ohner，induding pans	5	NT1	4%	$4{ }^{4}$	4\％	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	2\％	\％\％	\％	0\％	\％\％	\％	\％	0\％	\％	\％	0\％	\％	0\％	0\％
${ }^{803}$	88，02，100	－Afrbaxes and parss hereof	5	${ }^{\text {NT1 }}$	${ }^{4 \%}$	$4{ }^{4 \%}$	4\％	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％	\％	\％	\％\％	0\％	\％	\％	\％	\％	0\％	0\％
8804	88，07，200	－－oner	5	NT1	4\％	4\％	4\％	3\％	3\％	2\％	2\％	0\％	0\％	0\％	\％	\％	0\％	0\％	0\％	0\％	0\％	\％	0\％	0\％
8405	88，07，000	${ }^{- \text {Hoorks and onter coupring devices，buffers，and }}$	${ }^{5}$	NT1	${ }^{4 \%}$	4\％	4\％	3\％	3\％	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％	0\％	0\％	0\％	\％	\％	\％	\％	0\％	\％	\％
3806	88，07，100	－－Oftocomolives	5	V1	4\％	${ }^{4 \%}$	4\％	3\％	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	0\％	0\％	\％	0\％	\％	0\％	0\％	0\％	0\％	\％\％	0\％	\％\％	0\％
3407	88，79，900	－－other	5	V1	4%	4%	4%	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	0\％	\％	0\％	\％	\％\％	0\％	\％	\％\％	0\％	0\％	0\％	\％\％
${ }^{8408}$	88，08，020	－Eleatromemanical equipment	5	V1	$4{ }^{4 \%}$	4%	4\％	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％	0\％	\％	\％	\％	\％	\％	\％	\％	\％	\％
8809	88，88，090	－Oner	5	${ }^{\text {NT1 }}$	4%	4\％	4\％	${ }^{3 \%}$	3\％	${ }^{2 \%}$	2\％	\％	\％	\％	\％	0\％	0\％	\％	\％	\％	\％	\％	\％	\％
	88，09，000	Containers（including containers for the transport of fluids）specially designed and equipped for carriage by one or more modes of transport．	${ }^{5}$	NT1	4\％	4%	4\％	3\％	3\％	2\％	2\％	\％	0\％	\％	\％	\％	0\％	\％\％	\％\％	0\％	0\％	\％	\％\％	\％\％
${ }^{8411}$	8801.10 .11	－For agiculural lese	5	NT	4\％	${ }^{4 \%}$	4\％	3\％	3\％	2\％	2\％	0\％	0\％	\％	0\％	\％	0\％	0\％	\％\％	0\％	0\％	0\％	0\％	0\％
${ }^{8412}$	880．10．19	－－Other	5	NT	4%	$4{ }^{4}$	4\％	${ }^{3 \%}$	${ }^{3 \%}$	2\％	${ }^{2 \%}$	0\％	\％	\％	\％	\％\％	\％\％	0\％	\％	\％\％	\％	\％	\％	0\％
${ }^{8413}$	88，01，091	\cdots	5	${ }^{\text {NT1 }}$	${ }^{4 \%}$	${ }^{4 \%}$	${ }^{4 \%}$	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	0\％	\％	\％\％	0\％	\％\％	\％\％	0\％	\％	\％	\％	\％	0\％	0\％
818	$88.01,099$	－－Omer	5	NT1	4\％	4\％	4\％	3\％	3\％	2\％	2\％	\％	\％	\％	\％	0\％	0\％	\％	\％\％	0\％	\％	\％	\％	\％
${ }^{8415}$	87，012，010	－Compealey Koocked Down	10	st	0\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	$8{ }^{8 \%}$	${ }^{7 \%}$	6\％	5\％	4\％	3\％	${ }^{2 \%}$	${ }^{1 \%}$	0\％	\％	0\％	0\％
8416	88，012，090	－－oner	10	st	0\％	10\％	0\％	0\％	10\％	10\％	10\％	10\％	8%	${ }^{7} \%$	6\％	5\％	4%	3\％	2\％	${ }^{1 \%}$	\％	0\％	0\％	0\％
${ }^{8417}$	88，013，000	－Trackiajig tracous	5	T1	4%	${ }^{4 \%}$	4\％	${ }^{3 \%}$	${ }^{3 \%}$	2\％	${ }^{2 \%}$	\％	\％\％	\％	\％	\％	\％	\％	\％	\％	\％\％	\％	\％	\％
${ }^{8418}$	88，09，010	－Agiculuraltracois	10	${ }^{\text {sL }}$	\％	${ }^{0 \%}$	0\％	${ }^{\text {0\％}}$	\％\％	0\％	${ }^{10 \%}$	${ }^{10 \%}$	${ }^{8 \%}$	${ }^{7 \%}$	6\％	${ }^{5 \%}$	4%	${ }^{3 \%}$	${ }^{2 \%}$	1\％	\％	\％	\％	\％
${ }^{8419}$	88，09，090	－Oner	10	${ }^{\text {st }}$	0\％	10\％	10\％	${ }^{10 \%}$	10\％	10\％	10\％	${ }^{10 \%}$	${ }^{8 \%}$	${ }^{7 \%}$	${ }^{6 \%}$	5\％	4\％	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{1 \%}$	\％	\％	\％	\％
8820	880210.10	$\begin{array}{\|l} \hline- \text { - Motor cars (including stretch limousines but not } \\ \text { including coaches, buses, minibuses or vans) } \end{array}$	${ }^{20}$	${ }^{\text {EL }}$	－	U	\bigcirc	\bigcirc	U	U	U	\checkmark	ט	\bigcirc	－	\bigcirc	U	－	\bigcirc	U	ט	\checkmark	－	－
${ }^{8421}$	88，01，041	g．v．w．fat teast 6 tout notexeeding 18t	${ }^{20}$	${ }^{\text {EL }}$	\bigcirc	\checkmark	ט	\checkmark	U	\bigcirc	\bigcirc	0	ט	\bigcirc	\checkmark	\checkmark	\checkmark	U	0	\checkmark	\bigcirc	\bigcirc	\bigcirc	\bigcirc
${ }^{8422}$	88，01，049	－－Onher	${ }^{20}$	${ }^{\text {EL }}$	\bigcirc	\bigcirc	U	0	\bigcirc	\bigcirc	0	0	0	0	－	\bigcirc	\bigcirc	0	0	－	\bigcirc	\bigcirc	\bigcirc	\bigcirc
${ }^{8223}$	88，02，050	Other	${ }^{20}$	EL	\bigcirc	\bigcirc	U	－	U	\bigcirc	\bigcirc	V	U	\bigcirc	U	U	\bigcirc	U	U	U	U	\bigcirc	\bigcirc	\bigcirc
${ }^{822}$	87，01，000		${ }^{20}$	EL	－	－	ט	－	－	－	0	－	，	－	\checkmark	\bigcirc	u	\checkmark	－	－	U	0	－	\bigcirc
${ }^{8225}$	88，021，071	g．vw．fot teast 6 t bu toetexeesing 18 t	${ }^{20}$	EL	0	\bigcirc	\checkmark	\checkmark	－	－		，	0	\bigcirc	\checkmark	\checkmark	\checkmark	\checkmark	\bigcirc	\checkmark		\checkmark	0	\bigcirc
${ }^{8226}$	87，01，079	Onher	${ }^{20}$	${ }^{\text {EL }}$	\bigcirc	\bigcirc	\bigcirc	－	\bigcirc	－	－	\bigcirc	U	0	\bigcirc	\bigcirc	U	\bigcirc	0	－	0	\bigcirc	\checkmark	0
${ }^{8427}$	88，01，081	${ }^{-9 . v . v .0 ~ o f ~ a t ~ l e a s t ~} 6$ but notexeeeding 18 t	${ }^{20}$	${ }^{\text {EL }}$	\bigcirc	U	U	\bigcirc	\bigcirc	ט	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\checkmark	\bigcirc	U	\bigcirc	\bigcirc	\bigcirc	\bigcirc
${ }^{8228}$	88，01，089	Other	${ }^{20}$	${ }^{\text {EL }}$	\bigcirc	\bigcirc	U	\bigcirc	U	ט	\bigcirc	\bigcirc	U	\bigcirc	\bigcirc	\bigcirc	ט	\bigcirc	\bigcirc	\bigcirc	ט	\bigcirc	\bigcirc	\bigcirc
${ }^{8229}$	87，01，090	Other	${ }^{20}$	${ }^{\text {EL }}$	U	U	ט	U	\bigcirc	\bigcirc	\bigcirc	\bigcirc	ט	\bigcirc	\bigcirc	\bigcirc	U	\bigcirc	\bigcirc	U	${ }^{\circ}$	U	U	\bigcirc
3830	88，02，012	$\begin{array}{\|l} \hline- \text { - Motor cars (including stretch limousines but not } \\ \text { including coaches, buses, minibuses or vans) } \end{array}$	${ }^{20}$	${ }^{\text {EL }}$	－	U	U	V	U	\checkmark	\checkmark	\checkmark	\bigcirc	＂	\bigcirc	＂	U	U	U	－	ט	＂	－	\bigcirc
${ }^{2331}$	88，02，013	\cdots For the tassonot of 30 pessons or more	${ }^{20}$	${ }^{\text {EL }}$	ט	\checkmark	ט	ט	ט	\checkmark	\bigcirc	\checkmark	\bigcirc	\bigcirc	\checkmark	\checkmark	ט	\bigcirc	\checkmark	－	\bigcirc	\bigcirc	\bigcirc	U
${ }^{8432}$	88，02，014	\cdots	${ }^{20}$	${ }^{\text {EL }}$	0	0	0	0	U	0	0	0	0	0	U	U	0	0	0	U	0	\bigcirc	0	\bigcirc
${ }^{8433}$	88，02，019	－－Oner	${ }^{20}$	EL	U	\checkmark	U	U	，	U	\bigcirc	－	U	\bigcirc	U	U	\bigcirc	\bigcirc	U	U	\bigcirc	\bigcirc	\bigcirc	\bigcirc
${ }^{8334}$	87，02，092		${ }^{20}$	${ }_{\text {EL }}$	－	－	－	－	\bigcirc	\bigcirc	\bigcirc	－	－	－	\checkmark	\bigcirc	U	\bigcirc	\bigcirc	\bigcirc	ט	\checkmark	ט	U
${ }^{8435}$	87，02，098	\cdots Specally designeed tor sse in inipors	${ }^{20}$	EL	\checkmark	\bigcirc	0	\bigcirc	，	0	，	0	0	ט	U	\bigcirc	\checkmark	U	0	－	，	0	\checkmark	ט
${ }^{8386}$	88，02，094	\cdots	${ }^{20}$	${ }^{\text {EL }}$	0	0	0	0	\bigcirc	\bigcirc	0	，	0	0	0	\bigcirc	0	0	0	0	\bigcirc	0	\bigcirc	\bigcirc
${ }^{8837}$	88，02，095	－Other molor coaches，buses or miniuses	${ }^{20}$	${ }^{\text {EL }}$	U	\checkmark	U	－	\bigcirc	\bigcirc	\bigcirc	\checkmark	U	\bigcirc	\checkmark	\bigcirc	U	\bigcirc	U	\bigcirc	\checkmark	－	U	\bigcirc
${ }^{8348}$	88，02，099	－Onler	${ }^{20}$	${ }^{\text {EL }}$	U	\bigcirc	U	U	\bigcirc	\bigcirc	\bigcirc	\bigcirc	U	\bigcirc	\checkmark	\bigcirc	U	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	－	\bigcirc
${ }^{8439}$	8703．0．10	Golt cass，inctuding off buggies	${ }^{20}$	${ }^{\text {EL }}$	0	\bigcirc	0	0	\bigcirc	\bigcirc	\bigcirc	0	U	\bigcirc	－	\bigcirc	0	0	0		0	0	\bigcirc	\bigcirc
${ }^{8440}$	88，01，090	Oher	${ }^{20}$	${ }^{\text {EL }}$	U	U	U	－	U	U	U	U	U	U	U	U	U	U	U	\checkmark	U	U	U	U
${ }^{8441}$	88，02，110	Gookats	${ }^{20}$	${ }_{\text {EL }}$	U	0	U	U	\bigcirc	\bigcirc	0	0	U	0	U	U	U	U	U	U	0	\bigcirc	0	\bigcirc
${ }^{8442}$	${ }^{88,02,122}$	－Four－wheeldive	40	NT1	35\％	30\％	25\％	20\％	15\％	10\％	5\％	\％	\％	\％	\％\％	\％	0\％	0\％	\％	\％	0\％	\％	\％	0\％
${ }^{8443}$	${ }^{87,02,123}$	Onter	${ }^{40}$	${ }^{\text {NT1 }}$	${ }^{35 \%}$	30%	${ }^{25 \%}$	20\％	15\％	10\％	5\％	\％	\％	\％	\％	\％\％	0\％	0\％	\％	\％	\％	\％	0\％	0\％
${ }^{844}$	${ }^{88,03,124}$	Four－wheedrive	${ }^{40}$	NT1	${ }^{35 \%}$	30\％	25\％	20\％	15\％	10\％	5\％	\％	0\％	\％\％	\％	\％	\％	0\％	0\％	0\％	0\％	0\％	\％	\％
${ }^{8445}$	${ }^{88,02,2129}$	Onher	${ }^{40}$	V1	${ }^{35 \%}$	30\％	25\％	${ }^{20 \%}$	${ }^{15 \%}$	10\％	5%	0\％	0\％	\％	0\％	0\％	0\％	0\％	\％\％	\％	0\％	0\％	0\％	0\％
${ }^{8446}$	${ }^{88,02,131}$	\cdots Four－weeld dive	${ }^{40}$	N1	${ }^{35 \%}$	${ }^{30 \%}$	${ }^{25 \%}$	${ }^{20 \%}$	${ }^{15 \%}$	10\％	5\％	\％	0\％	\％	${ }^{\circ}$	\％	\％	0\％	\％\％	\％	0\％	\％	\％	\％
${ }^{8447}$	${ }^{88,02,139}$	Oner	${ }^{40}$	NT1	${ }^{35 \%}$	30\％	25\％	${ }^{20 \%}$	${ }^{15 \%}$	10\％	5%	\％	0\％	\％	0\％	\％	\％\％	\％\％	\％	\％	\％\％	\％\％	0\％	\％\％
${ }^{8448}$	88，02，191	Ambuanes	40	NT1	${ }^{35 \%}$	30\％	25\％	20\％	${ }^{15 \%}$	10\％	5%	0\％	0\％	0\％	0\％	0\％	\％\％	0\％	0\％	0\％	0\％	0\％	\％	0\％
${ }^{8449}$	88，02，192	Moorthomes	${ }^{40}$	NT1	${ }^{35 \%}$	30\％	25\％	${ }^{20 \%}$	${ }^{15 \%}$	10\％	5%	\％	\％\％	\％	\％	\％	\％\％	0\％	0\％	\％	0\％	0\％	0\％	0\％
${ }^{2450}$	88，02，199	Onter	40	NT1	${ }^{35 \%}$	30\％	25\％	20\％	${ }^{15 \%}$	10\％	5\％	\％	0\％	\％	0\％	0\％	0\％	0\％	\％\％	\％\％	0\％	0\％	\％	0\％
${ }^{8451}$	88.032211	Smpletey Knocked Down	40	${ }^{\text {NT1 }}$	135\％	30\％	25\％	${ }^{20 \%}$	15%	10%	${ }^{5 \%}$	\％	\％\％	\％	0\％	\％	\％	\％	\％	\％	\％\％	\％	\％	\％

香港•ASEAN FTAにかかる調査報告書

別添2－4 原産地品の関税撤廃スケジュール
（ラオス）

${ }^{8452}$	${ }^{88,022,19}$	Other	${ }^{40}$	NT1	${ }^{35 \%}$	30\％	${ }^{25 \%}$	${ }^{20 \%}$	${ }^{15 \%}$	${ }^{10 \%}$	${ }^{\text {5\％}}$	0\％	\％	0\％	\％	0\％	\％	\％\％	\％\％	\％	0\％	\％	\％	\％
$8{ }^{853}$	87，02221	Four－whelalive	${ }^{40}$	NT1	${ }^{35 \%}$	30\％	${ }^{25 \%}$	20\％	15\％	0\％	5\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％
8854	87，022229	Other	${ }^{40}$	NT1	35\％	30\％	${ }^{25 \%}$	20\％	15\％	\％\％	5\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％
$8{ }^{845}$	87，022291	Ambuances	${ }^{40}$	NT1	35\％	30\％	${ }^{25 \%}$	20\％	15\％	10\％	5\％	\％	0\％	0\％	\％	0\％	\％	0\％	\％	\％	0\％	\％	\％	\％
${ }^{8456}$	87，022922	Molor．homes	40	NT1	35\％	30\％	25\％	20\％	15\％	10\％	5\％	\％	\％	0\％	0\％	\％	\％	\％	\％	\％	\％	0\％	\％	\％
${ }^{8457}$	87，022299	Oner	40	NT1	35\％	30\％	25\％	20\％	15\％	10\％	5\％	0\％	0\％	0\％	\％	0\％	0\％	0\％	\％	\％	\％	\％\％	\％	\％
8458	87，02，310	Ambunaes	40	NT1	35\％	30\％	25\％	20\％	15\％	10\％	5\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	0\％	\％	\％
8459	87，02，231	Compleiey Knocked Down	40	NT1	35\％	30\％	25\％	20\％	15\％	10\％	5\％	0\％	0\％	0\％	\％	\％	\％\％	0\％	\％	\％	\％	\％	\％	\％
8860	87，022329	\cdots Onter	40	NT1	${ }^{35 \%}$	30\％	25\％	20\％	15\％	0\％	5\％	0\％	\％	0\％	\％\％	\％	0\％	\％	0\％	0\％	0\％	0\％	0\％	\％
${ }^{8461}$	87，02331	Compleiel Knocred Down	40	NT1	35\％	30\％	${ }^{25 \%}$	20\％	15\％	10\％	5\％	\％	\％	\％	0\％	\％	\％	\％	\％	\％	\％	\％	${ }^{\circ} \%$	\％
8862	87，023239	Oner	40	NT1	${ }^{35 \%}$	30\％	25\％	20\％	15\％	0\％	5\％	0\％	\％	\％\％	\％	0\％	0\％	\％	\％	0\％	\％\％	\％	\％	\％
${ }^{8463}$	87，023，340	Moor－homes	${ }^{40}$	NT1	${ }^{35 \%}$	30\％	${ }^{25 \%}$	20\％	15\％	10\％	5\％	0\％	\％	0\％	0\％	\％	0\％	\％	\％	\％	\％	0\％	\％	\％
${ }^{8464}$	${ }^{88,02,351}$	Of a cyinder capacily notexeeseding 1，800 co	40	NT1	${ }^{35 \%}$	30\％	25\％	${ }^{20 \%}$	${ }^{15 \%}$	10\％	5\％	0\％	0\％	\％	0\％	\％	0\％	0\％	\％	\％	0\％	\％\％	\％	\％
8465	87，022，352	$-\cdots$ Of a cylinder capacity exceeding 1,800 cc but not exceeding 2,000 cc	${ }^{40}$	NT1	${ }^{35 \%}$	30\％	${ }^{25 \%}$	${ }^{20 \%}$	${ }^{15 \%}$	10\％	${ }^{5 \%}$	\％	\％	0\％	\％	\％	0\％	0\％	\％	\％	\％	\％	0\％	\％
${ }^{8466}$	87，02，353	Of a cylinder capacity exceeding 2，000 cc but not exceeding $2,500 \mathrm{cc}$	${ }^{40}$	NT1	${ }^{35 \%}$	${ }^{30 \%}$	25\％	${ }^{20 \%}$	${ }^{15 \%}$	10\％	${ }^{5 \%}$	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	0\％	\％	\％
${ }^{8467}$	87，02，234	\cdots Of a cylineer capalite exceeding 2.500 co	${ }^{40}$	NT1	35\％	30\％	25\％	20\％	15\％	10\％	${ }^{5 \%}$	0\％	\％	0\％	\％	0\％	0\％	0\％	\％	\％	0\％	0\％	0\％	\％
${ }^{8468}$	87，02，361	Of caliner capacity notexeesing 1,800	${ }^{40}$	NT1	${ }^{35 \%}$	30\％	${ }^{25 \%}$	20\％	${ }^{15 \%}$	10\％	5\％	0\％	\％	\％\％	\％	\％	0\％	0\％	0\％	\％	\％	\％	\％	\％
8469	87，02，362	．．．．Of a cylinder capacity exceeding 1,800 cc but not exceeding 2,000 cc	${ }^{40}$	NT1	${ }^{35 \%}$	${ }^{30 \%}$	25\％	${ }^{20 \%}$	${ }^{15 \%}$	10\％	${ }^{5 \%}$	0\％	0\％	0\％	\％	0\％	\％\％	0\％	0\％	\％	\％	\％\％	\％	\％
${ }^{847}$	87，02，363	Of a cylinder capacity exceeding 2，000 cc but	40	NT1	35\％	30\％	25\％	20\％	${ }^{15 \%}$	10\％	${ }^{5 \%}$	\％	\％	0\％	\％	\％	\％	0\％	\％	\％	\％	0\％	\％	\％
8871	87，02，264	－．．－Of a culinder capacily exeeding 2.500 co	40	T1	35\％	30\％	25\％	20\％	15\％	0\％	5\％	0\％	\％	0\％	0\％	0\％	0\％	0\％	\％	0\％	\％	0\％	\％	\％
${ }^{8472}$	${ }^{87,02,371}$	Of colinder caparaty note exeeding 1，800 co	${ }^{40}$	NT1	${ }^{35 \%}$	30\％	25\％	20\％	5\％\％	0\％	${ }^{5 \%}$	\％	\％	\％	0\％	\％	0\％	0\％	\％	\％	0\％	0\％	\％\％	\％
${ }^{8473}$	88，022，372	－．．．．Of a a cyinder capacity exceeding 1,800 cc but not exceeding 2,000 cc	${ }^{40}$	NT1	55\％	30\％	25\％	20\％	15\％	10\％	${ }^{5 \%}$	\％	0\％	0\％	\％	\％	0\％	0\％	\％	\％	\％	0\％	\％	0\％
8874	87，02，373	．．．．Of a cyinder capacity exceeding 2,000 cc but not exceeding 2,500 cc	${ }^{40}$	${ }^{\text {NT1 }}$	${ }^{35 \%}$	${ }^{30 \%}$	${ }^{25 \%}$	${ }^{20 \%}$	${ }^{15 \%}$	${ }^{10 \%}$	${ }^{5 \%}$	\％	\％	${ }^{0 \%}$	${ }^{0 \%}$	\％	${ }^{0 \%}$	\％	${ }^{0}$	${ }^{0 \%}$	\％\％	\％	${ }^{0}$	\％ 0
8475	87，02，374	－Of of cylineer capacily exceesing 2，500 co	${ }^{40}$	NT1	${ }^{35 \%}$	30\％	${ }^{25 \%}$	20\％	${ }^{15 \%}$	10\％	${ }^{5 \%}$	\％\％	0\％	\％\％	\％\％	\％	0\％	\％\％	\％\％	0\％	0\％	\％	0\％	0\％
${ }^{8776}$	87，02，391	Of c clinder capactiy notexeoedin 1,800 co	${ }^{40}$	NT1	${ }^{35 \%}$	30\％	${ }^{25 \%}$	${ }^{20 \%}$	${ }^{15 \%}$	10\％	${ }^{5 \%}$	0\％	\％\％	\％\％	\％\％	\％	0\％	\％\％	0\％	\％	0\％	\％\％	\％	\％
8877	87，02， 392	－．．．Of a cylinder capacity exceeding 1,800 cc but not exceeding 2,000 cc	${ }^{40}$	NT1	35\％	50\％	5\％	20\％	15\％	10\％	5\％	0\％	0\％	\％\％	\％	\％	0\％	\％	\％	\％	0\％	0\％	\％	\％
$8{ }^{878}$	87，022338	－．．．－Of a cyinder capacity exceeding $2,000 \mathrm{cc}$ but not exceeding 2,500 cc	${ }^{40}$	NT1	35\％	30\％	25\％	20\％	${ }^{15 \%}$	0\％	5\％	0\％	0\％	\％	\％	\％	0\％	\％	\％	0\％	0\％	0\％	\％	\％
8479	87，02，394		${ }^{40}$	NT1	35\％	30\％	25\％	20\％	${ }^{15 \%}$	10\％	5\％	0\％	\％	\％\％	0\％	0\％	\％	0\％	0\％	0\％	0\％	0\％	0\％	0\％
8880	87，022410	Ambuances	${ }^{40}$	NT1	35\％	30\％	${ }^{25 \%}$	20\％	15\％	10\％	5\％	\％	\％	\％	\％	0\％	\％	\％	\％	0\％	\％	\％	0\％	\％
${ }^{8881}$	87，024241	${ }^{\text {Compeley Y Knocked Down }}$	${ }^{40}$	NT1	35\％	30\％	25\％	20\％	15\％	10\％	5\％	\％	\％	0\％	0\％	\％	\％	\％	\％	\％	\％	\％	\％	\％
8882	87，024249	Other	40	NT1	35\％	30\％	25\％	20\％	15\％	10\％	5\％	0\％	\％	\％\％	\％	0\％	0\％	\％	\％	\％	\％	0\％	\％	\％
${ }^{8483}$	87，02，431	${ }^{-. C o m p l e t e y ~ K ~ K o c k e d ~ D o w n ~}$	${ }^{40}$	NT1	35\％	30\％	25\％	20\％	${ }^{15 \%}$	10\％	5\％	0\％	0\％	0\％	0\％	0\％	0\％	0\％	0\％	\％	0\％	0\％	\％	\％
${ }^{8884}$	87，02，439	Other	${ }^{40}$	NT1	35\％	30\％	25\％	20\％	${ }^{15 \%}$	10\％	5\％	0\％	\％	0\％	\％	0\％	\％	0\％	\％	\％	\％	\％	\％	\％\％
${ }^{885}$	87，02，441	－Four－weeldive	40	NT1	35\％	30\％	25\％	20\％	15\％	10\％	5\％	0\％	\％	0\％	0\％	\％	\％	\％	\％	\％	\％	\％	\％	\％
${ }^{8886}$	87，02，249	Other	40	NT1	35\％	30\％	${ }^{25 \%}$	20\％	15\％	10\％	5\％	\％	\％	\％	\％	0\％	\％	\％	\％	0\％	\％	\％	\％	\％
${ }^{8887}$	87，02，451	－Four－weel dive	${ }^{40}$	NT1	35\％	30\％	${ }^{25 \%}$	20\％	${ }^{15 \%}$	10\％	5\％	0\％	0\％	0\％	\％	0\％	0\％	0\％	\％	\％	\％\％	\％	\％	0\％
${ }^{8888}$	87，02，459	Oher	${ }^{40}$	NT1	35\％	30\％	${ }^{25 \%}$	20\％	15\％	10\％	5\％	\％	\％	\％	\％	0\％	\％	\％	\％	\％	\％	\％	\％	\％
8889	87，024470	－Moorrhomes	${ }^{40}$	NT1	35\％	30\％	${ }^{25 \%}$	20\％	15\％	10\％	5\％	0\％	\％	0\％	0\％	\％	\％	0\％	\％	\％	\％	\％	\％	\％
8490	87，02，481	－Four－wheeldive	${ }^{40}$	NT1	35\％	30\％	25\％	20\％	15\％	10\％	5\％	0\％	\％	0\％	0\％	0\％	\％	\％	\％	\％	\％	\％	\％	\％
${ }^{849}$	${ }^{88,023,489}$	Other	${ }^{40}$	NT1	35\％	30\％	25\％	20\％	${ }^{15 \%}$	10\％	5\％	\％\％	0\％	\％\％	\％	\％	0\％	0\％	0\％	\％	0\％	\％	\％	\％
8492	87，024，491	－Four－wheoldrive	${ }^{40}$	NT1	35\％	30\％	${ }^{25 \%}$	20\％	15\％	10\％	5\％	\％	\％	0\％	0\％	\％	\％	\％	\％	\％	\％	\％	\％	\％
${ }^{8493}$	87，02，499	Ohner	${ }^{40}$	NT1	35\％	30\％	25\％	20\％	${ }^{15 \%}$	10\％	5\％	0\％	0\％	\％	\％\％	0\％	0\％	0\％	0\％	\％	0\％	0\％	\％	\％
8894	87，03，111	Four－weeldrive	40	NT1	${ }^{35 \%}$	30\％	${ }^{25 \%}$	20\％	15\％	10\％	5\％	\％	\％	\％	\％	0\％	\％	\％	\％	0\％	\％	\％	\％	\％
8845	87，03，119	Other	${ }^{40}$	NT1	35\％	30\％	25\％	20\％	${ }^{15 \%}$	10\％	5\％	0\％	0\％	0\％	0\％	0\％	0\％	0\％	\％	\％	0\％	0\％	0\％	0\％
${ }^{8496}$	87，03， 120	\cdots Motor cars sincluding station wagons，SUVs and sports cars，but not including vans），other	40	${ }^{\text {NT1 }}$	35\％	30\％	25\％	${ }^{20 \%}$	15\％	10\％	5\％	0\％	\％	\％	\％	\％	0\％	\％	\％	\％	\％	\％	\％	\％
8897	88，03， 140	－Ambuances	40	NT1	35\％	30\％	${ }^{25 \%}$	20\％	15\％	10\％	5\％	0\％	0\％	0\％	0\％	\％	0\％	0\％	0\％	0\％	0\％	0\％	\％	\％
8988	87，03， 150	－Moor－homes	${ }^{40}$	NT1	35\％	30\％	25\％	20\％	15\％	10\％	5\％	0\％	\％	0\％	0\％	\％	\％	\％	\％	\％	\％	\％	\％	0\％
8499	87，03， 81	${ }^{- \text {Four－wheeldive }}$	${ }^{40}$	NT1	35\％	30\％	25\％	${ }^{20 \%}$	${ }^{15 \%}$	10\％	5\％	0\％	0\％	\％	\％\％	0\％	0\％	0\％	0\％	\％	\％	\％	\％	\％
8500	87，03，189	Other	${ }^{40}$	NT1	35\％	30\％	25\％	20\％	15\％	0\％	5\％	\％	\％	0\％	0\％	\％	\％	0\％	\％	\％	\％	0\％	\％	\％
8501	87，03，191	Four－Meeld	40	${ }^{\text {NT1 }}$	35\％	30\％	25\％	20\％	15\％	10\％	5\％	\％	\％	\％	0\％	\％	\％	\％	\％	\％	\％	\％	\％	\％
8502	87，03，199	Other	${ }^{40}$	NT1	35\％	30\％	${ }^{25 \%}$	20\％	15\％	10\％	5\％	\％	\％	\％	\％	0\％	\％	\％	\％	\％	\％	\％	\％	\％
8503	87，03，210	${ }^{\text {－Ambuances }}$	${ }^{40}$	NT1	35\％	30\％	${ }^{25 \%}$	20\％	${ }^{15 \%}$	10\％	5\％	0\％	0\％	0\％	\％	\％	0\％	0\％	\％	\％	\％\％	\％	\％	\％
8504	87，03，221	Compleay K Koocked Down	${ }^{40}$	NT1	35\％	30\％	${ }^{25 \%}$	20\％	15\％	10\％	5\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％
8505	87，03，229	Other	${ }^{40}$	${ }^{\text {NT1 }}$	35\％	30\％	25\％	20\％	${ }^{15 \%}$	10\％	5\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％
8506	88，03，231	Compelay K Koocked Down	40	${ }^{\text {NT1 }}$	35\％	30\％	25\％	20\％	15\％	10\％	5\％	0\％	\％	0\％	\％	0\％	\％	\％	\％	\％	\％	\％	\％	\％
8507	87，03，239	Other	${ }^{40}$	${ }^{\text {NT1 }}$	35\％	30\％	25\％	20\％	${ }^{15 \%}$	10\％	5\％	\％	0\％	\％\％	\％	\％	\％	0\％	\％	\％	\％	\％\％	\％	0\％
8508	87，03，242	－Fou－wheeld dive	40	NT1	35\％	30\％	${ }^{25 \%}$	20\％	15\％	10\％	5\％	\％	\％	\％	\％	\％	0\％	\％	\％	\％	\％	\％	\％	\％
8509	87，03，243	Onher	${ }^{40}$	NT1	35\％	30\％	25\％	20\％	${ }^{15 \%}$	${ }^{10 \%}$	5\％	0\％	0\％	\％	\％\％	0\％	0\％	0\％	0\％	\％	0\％	0\％	\％	\％
8510	87，03，244	Four－weeldive	40	NT1	${ }^{35 \%}$	30\％	${ }^{25 \%}$	20\％	15\％	10\％	5\％	\％	\％	\％	\％	0\％	\％	\％	\％	0\％	\％	\％	\％	\％
8511	87，03，249	Other	${ }^{40}$	NT1	35\％	30\％	25\％	${ }^{20 \%}$	${ }^{15 \%}$	10\％	5\％	\％	0\％	0\％	0\％	\％	0\％	0\％	\％	0\％	0\％	0\％	\％	0\％
8512	87，03，252	Four－weeldive	${ }^{40}$	NT1	${ }^{35 \%}$	30\％	${ }^{25 \%}$	20\％	15\％	10\％	5\％	\％	\％	\％	\％	0\％	\％	\％	\％	\％	\％	\％	\％	\％
8513	87，03，253	Onher	40	${ }^{\text {NT1 }}$	35\％	30\％	25\％	20\％	15\％	10\％	5\％	0\％	\％	0\％	\％\％	\％	\％	\％	\％	\％	\％	\％	\％	\％
8514	87，03，254	－Four－wheed dive	40	NT1	35\％	30\％	25\％	${ }^{20 \%}$	15\％	10\％	5\％	0\％	\％	0\％	0\％	\％	\％	\％	0\％	\％	\％	\％	\％	\％
8515	87，03，259	Other	${ }^{40}$	NT1	35\％	30\％	25\％	20\％	${ }^{15 \%}$	0\％	5\％	0\％	\％	\％\％	\％	\％	\％	\％	\％	\％	0\％	0\％	\％	\％
8516	87，03，260	Moioriomes	${ }^{40}$	${ }^{\text {NT1 }}$	${ }^{35 \%}$	30\％	25\％	20\％	${ }^{15 \%}$	10\％	${ }^{5 \%}$	\％	\％	\％	\％	\％	\％	0\％	\％	\％	\％	\％	\％	\％
8517	87，03，271	Fourweeldive	40	NT1	35\％	30\％	${ }^{25 \%}$	20\％	${ }^{15 \%}$	10\％	5\％	\％	\％	\％	\％\％	\％	\％	\％	\％	\％	\％	\％	\％	\％
8518	87，03，272	Oher	${ }^{40}$	${ }^{\text {NT1 }}$	35\％	30\％	25\％	20\％	15\％	10\％	5\％	\％	\％	\％	\％\％	0\％	\％	\％	\％	\％	\％	\％	\％	\％
8519	87，03，273	Fourweeldive	${ }^{40}$	NT1	35\％	30\％	25\％	20\％	${ }^{15 \%}$	10\％	5\％	\％	\％	\％	\％\％	0\％	\％	\％	\％	\％	\％	\％	\％	0\％
8520	87，03，279	Other	${ }^{40}$	${ }^{\text {NT1 }}$	35\％	30\％	25\％	20\％	15\％	10\％	5\％	\％	\％	\％	\％	\％	\％	\％	\％	0\％	\％	0\％	\％	\％
8521	87，03，292	${ }^{- \text {Four－wheeldive }}$	${ }^{40}$	${ }^{\text {NT1 }}$	35\％	30\％	25\％	20\％	${ }^{15 \%}$	10\％	5\％	\％	0\％	0\％	\％\％	\％	0\％	\％\％	0\％	\％	\％\％	\％\％	\％	\％
852	87，03，293	Other	${ }^{40}$	NT1	35\％	30\％	${ }^{25 \%}$	20%	${ }^{15 \%}$	10\％	5\％	0\％	0\％	0\％	\％\％	0\％	0\％	0\％	0\％	0\％	0\％	0\％	0\％	\％
${ }^{8523}$	87，03，294	\cdots F－Four－meetalive	${ }^{40}$	${ }^{\text {NT1 }}$	35\％	30\％	25\％	20\％	15\％	10\％	5\％	0\％	\％	\％	0\％	0\％	\％	\％	\％	\％	\％	\％	\％	\％
${ }^{8524}$	87，03，299	Other	${ }^{40}$	${ }^{\text {NT1 }}$	35\％	30\％	${ }^{25 \%}$	20\％	${ }^{15 \%}$	10\％	${ }^{5 \%}$	\％	\％	0\％	\％	\％	\％	\％\％	\％	0\％	\％	\％	\％	0\％
855	87，03，310	Ambuances	${ }^{40}$	NT1	35\％	30\％	${ }^{25 \%}$	20\％	${ }^{15 \%}$	${ }^{10 \%}$	5\％	0\％	0\％	0\％	\％	\％	0\％	0\％	\％	\％	0\％	\％	\％	\％
${ }^{8526}$	87，03，321	Completely Knocked Down	${ }^{40}$	NT1	33\％	30\％	25\％	20\％	15\％	10\％	5\％	0\％	0\％	0\％	\％	\％	0\％	0\％	0\％	0\％	0\％	0\％	0\％	\％
${ }^{8527}$	87，03，329	Other	40	NT1	35\％	30\％	25\％	20\％	${ }^{15 \%}$	${ }^{10 \%}$	5\％	\％	0\％	\％	\％	\％	0\％	0\％	\％	\％	\％\％	\％	\％	0\％
${ }^{8528}$	87，03，331	Completey Knocked down	${ }^{40}$	${ }^{\text {NT1 }}$	35\％	30\％	${ }^{25 \%}$	20\％	15\％	${ }^{10 \%}$	${ }^{5 \%}$	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％
8529	87，03，339	Other	40	NT1	35\％	30\％	25\％	20\％	${ }^{15 \%}$	10\％	5\％	\％	0\％	\％	\％\％	\％	\％	\％	\％	\％	\％\％	\％	\％	\％
8530	87，03，343	${ }^{-}$Four－wheeld dive	${ }^{40}$	${ }^{\text {NT1 }}$	35\％	30\％	25\％	${ }^{20 \%}$	${ }^{15 \%}$	10\％	5\％	0\％	0\％	0\％	0\％	\％\％	0\％	0\％	\％	\％	0\％	0\％	0\％	\％
${ }^{8531}$	${ }^{88,03,3,34}$	Other	${ }^{40}$	${ }^{\text {NT1 }}$	35\％	30\％	25\％	20\％	${ }^{15 \%}$	10\％	${ }^{5 \%}$	\％\％	\％\％	\％	\％	0%	\％	\％	\％	\％	\％	\％	\％	\％\％
853	88，03，345	Four－weed dive	${ }^{40}$	NT1	35\％	30\％	${ }^{25 \%}$	${ }^{20 \%}$	${ }^{15 \%}$	10\％	5\％	0\％	0\％	0\％	0\％	0\％	0\％	0\％	0\％	\％	0\％	0\％	0\％	\％\％
${ }^{8533}$	87，03，349	Oner	${ }^{40}$	NT1	35\％	30\％	${ }^{25 \%}$	20\％	${ }^{15 \%}$	10\％	5\％	\％	0\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％
${ }^{8534}$	87，03，353	Fur－wheed dive	40	NT1	35\％	30\％	${ }^{25 \%}$	20\％	${ }^{15 \%}$	10\％	5\％	\％	0\％	0\％	0\％	0\％	0\％	0\％	\％	0\％	0\％	\％\％	0\％	0\％
8535	87，03，354	Oner	${ }^{40}$	NT1	35\％	30\％	25\％	20\％	${ }^{15 \%}$	10\％	5\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％
${ }^{8536}$	87，03，355	Four－wheedidive	${ }^{40}$	${ }^{\text {NT1 }}$	35\％	30\％	25\％	20\％	${ }^{15 \%}$	10\％	5\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％
8537	88，03，359	－－omer	${ }^{40}$	${ }^{\text {NT1 }}$	35\％	30\％	25\％	20\％	15\％	10\％	5\％	0\％	\％	\％	0\％	\％	\％	\％	\％	\％	\％	\％	\％	\％
858	87，03，370	Moor－homes		${ }^{\text {NT1 }}$	${ }^{35 \%}$	30\％	$1{ }^{25 \%}$	20%	${ }^{15 \%}$	10%	5\％	\％\％	\％\％	0\％	0\％	\％	0\％	\％\％	0\％	0\％	\％\％	0\％	0\％	\％

${ }^{5359}$	［87，03，381	Fourweeld dive	${ }^{40}$	NT1	${ }^{35 \%}$	${ }^{30 \%}$	${ }^{25 \%}$	20\％	${ }^{15 \%}$	10%	${ }^{5 \%}$	\％	0\％	\％\％	0\％	\％	0\％	0\％	0\％	\％\％	\％	0\％	\％\％	\％
8540	87，03，389	Other	40	NT1	35\％	30\％	${ }^{25 \%}$	20%	15\％	10\％	5\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％
${ }^{8541}$	${ }^{87,03,391}$	$\stackrel{.}{\text { Four－Mheeldive }}$	40	NT1	35\％	30\％	25\％	20%	15\％	10\％	5\％	\％	\％	\％	\％\％	\％	\％	\％	\％	\％	\％	\％	\％	\％\％
${ }^{8542}$	87，03，399	－other	40	NT1	35\％	30\％	${ }^{25 \%}$	20%	${ }^{15 \%}$	10\％	5\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％\％
${ }^{5343}$	87，03，011	${ }^{- \text {Ambuanases }}$	40	NT1	35\％	30\％	25\％	20\％	${ }^{15 \%}$	\％	${ }^{5 \%}$	0\％	\％	\％	0%	．	\％	\％	\％	\％	\％	\％	\％	\％\％
${ }^{8544}$	87，03，012	Gotaras	40	NT1	35\％	30\％	25\％	20\％	${ }^{15 \%}$	10\％	5\％	\％	\％	\％	\％\％	\％	\％	\％	\％	\％	\％	\％	\％	\％
8845	87，03，013	Compeley Knocked Down	40	NT1	35\％	30\％	${ }^{25 \%}$	20\％	${ }^{15 \%}$	10\％	5\％	\％	\％	0\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	0\％
$5{ }^{5546}$	87，03，019	Oher	40	NT1	35\％	30\％	${ }^{25 \%}$	20%	15\％	10\％	5\％	\％	\％	\％	\％	\％	\％	0\％	\％	\％	\％	\％	\％	\％
${ }^{8547}$	87，03，050	－－Motor cars（including station wagons，SUVs and sports cars，but not including vans），Completely Knocked Down	40	NT1	${ }^{35 \%}$	30\％	${ }^{25 \%}$	20%	15\％	10\％	5\％	\％	\％	0\％	0\％	\％	0\％	\％	\％	\％	\％	0\％	\％	\％
${ }^{8548}$	87，03，070	-- Motor cars（including station wagons，SUVs and sports cars，but not including vans），other	${ }^{40}$	NT	${ }^{55 \%}$	30\％	25\％	20\％	${ }^{15 \%}$	\％\％	5\％	\％	\％	\％	\％	\％	\％	0\％	\％\％	\％	\％	\％	\％	\％\％
85	88，03，080	$\cdots{ }^{-}$Onere vencices，Compleiel K Kocked down	40	NT1	35\％	30\％	${ }^{25 \%}$	20\％	15\％	10\％	5\％	\％	0\％	0\％	\％\％	\％	0\％	0\％	\％	\％	\％\％	\％\％	\％\％	\％
${ }^{8550}$	87，03，090	－－Oner	${ }^{40}$	NT1	${ }^{35 \%}$	30\％	${ }^{25 \%}$	20\％	${ }^{15 \%}$	10\％	5\％	\％	\％	0\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％
${ }^{8551}$	8704．0．10，13	${ }^{-9 v . W .0 . ~ n o t e x c e s i n g ~ 5 t ~}$	${ }^{20}$	${ }_{\text {EL }}$	${ }^{\circ}$	0	\bigcirc	U	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	－	\bigcirc	－	－	－	－	\bigcirc	\bigcirc	－	－
8852	8704．0．14	－g．ve．exeeeding 5 tout notexeceding $10 t$	${ }^{20}$	EL	U	0	U	U	U	U	\bigcirc	U	U	0	\bigcirc	U	0	\bigcirc	\bigcirc	U	U	U	U	U
${ }^{8553}$	8704．0．0，15	－g．v．e．exceding 10 totut noe exceeding 20 t	${ }^{20}$	${ }^{\text {EL }}$	0	0	0	0	\bigcirc	\bigcirc	\bigcirc	0	\bigcirc	0	0	0	0	0	0	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
${ }^{8554}$	8704．0．0．16	g．v．e．exceeding 20 b but notexceesing 241	${ }^{20}$	${ }^{\text {EL }}$	U	U	U	U	U	U	U	U	U	U	\checkmark	U	U	U	U	U	\checkmark	\bigcirc	U	\bigcirc
${ }^{8555}$	8704．0．0．17	g．v．e exceeding 24 but note xceesing 45t	${ }^{20}$	${ }^{\text {EL }}$	U	U	U	U	U	U	\checkmark	U	U	U	U	U	U	U	U	U	U	ט	U	\bigcirc
${ }^{8556}$	8804．10．18	－g．v．e exceoding 45t	${ }^{20}$	EL	U	U	U	0	U	U	\bigcirc	U	0	0	U	0	－	\bigcirc	0	0	0	\bigcirc	0	0
${ }^{8557}$	8704．1023		20	${ }^{\text {EL }}$	\bigcirc	0	0	U	U	\bigcirc	－	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	U	U	U	U	0	U	\bigcirc
${ }^{8558}$	8704．1024	－g．v．e．exceeding 5 tut to exexeding 10 t	${ }^{20}$	EL	U	\bigcirc	U	U	0	U	0	U	U	0	0	U	U	U	U	U	U	0	U	0
${ }^{8559}$	8804．0．025	－gV．w．exceoding 10 t but rote exceoding 20 t	${ }^{20}$	${ }^{\text {EL }}$	U	－	ט	ט	\bigcirc	\bigcirc	\bigcirc	－	O	0	－	－	O	\bigcirc	－	U	\bigcirc	\bigcirc	U	\bigcirc
1550	${ }^{8704.1026}$	－g．ve．exceseding 20 t but note exceding 241	${ }^{20}$	${ }^{\text {EL }}$	U	U	－	U	U	\checkmark	U	U	U	\bigcirc	\checkmark	\bigcirc	U	\bigcirc	\bigcirc	U	\bigcirc	\bigcirc	U	\bigcirc
${ }^{8561}$	${ }^{8704.1027}$	－g．v．e．exceding 24 t but note exeeding 45t	${ }^{20}$	EL	U	\bigcirc	\checkmark	－	U	U	\bigcirc	\bigcirc	U	\bigcirc	ט	\bigcirc	－	\bigcirc	\bigcirc	－	\bigcirc	0	U	\bigcirc
${ }^{3652}$	8704．0．028	${ }^{\text {g．v．w．exceesing } 45 t}$	${ }^{20}$	${ }^{\text {EL }}$	U	0	ט	U	ט	\bigcirc	\checkmark	U	\bigcirc	0	\bigcirc	U	\bigcirc	\bigcirc	ט	－	\bigcirc	\bigcirc	U	\bigcirc
${ }^{8653}$	87，02，111	－Refigearaed ofories（tucks）	${ }^{30}$	${ }^{\text {EL }}$	U	－	U	0	U	－	\bigcirc	\bigcirc	－	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	0	\bigcirc	U	\bigcirc	\bigcirc
${ }^{8654}$	87，02，119	－other	${ }^{30}$	EL	O	0	U	ט	U	－	－	0	O	\bigcirc	－	－	U	－	－	O	U	U	O	U
${ }^{8565}$	88，02，121	－Refigearale loriese（tucks）	${ }^{30}$	${ }^{\text {EL }}$	ט	－	U	U	U	\bigcirc	\bigcirc	U	\bigcirc	\bigcirc	\bigcirc	ט	\bigcirc	\bigcirc	ט	U	\bigcirc	U	\bigcirc	U
${ }^{8566}$	87，02，122	－－－Refuse／garbage collection vehicles having a refuse compressing device	${ }^{30}$	${ }^{\text {EL }}$	U	－	U	${ }_{0}$	U	0	－	ט	\bigcirc	U	0	0	0	－	U	U	U	0	O	0
${ }^{8567}$	${ }^{88,02,2123}$	－T．Tankerevenicoss bukkemenellories（tuoks）	${ }^{30}$	${ }^{\text {EL }}$	－	U	U	ט	U	U	U	\checkmark	U	U	－	0	U	U	－	U	U	U	0	\bigcirc
${ }^{8568}$	87，02，124		${ }^{30}$	${ }^{\text {EL }}$	U	u	U	u	u	u	U	\bigcirc	U	U	\checkmark	\checkmark	U	U	\checkmark	u	U	\checkmark	\bigcirc	U
856	88，02，125	－－Hookifit bries（tudeks）	${ }^{30}$	EL	\bigcirc	ט	U	\bigcirc	U	U	0	U	U	\bigcirc	\bigcirc	－	\bigcirc	U	\bigcirc	－	\bigcirc	U	0	\bigcirc
${ }^{5570}$	88，02，129	Other	${ }^{30}$	EL	\bigcirc	\bigcirc	0	\bigcirc	\bigcirc	\bigcirc	\bigcirc	U	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	－	\bigcirc	\bigcirc	\bigcirc	0	0	\bigcirc
8857	87，022：211	Refigearate lories（trucks）	${ }^{30}$	${ }_{\text {EL }}$	U	\bigcirc	U	ט	－	\bigcirc	\bigcirc	U	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	0	\bigcirc	\bigcirc	U	ט	U	\bigcirc
8857	87，042219	－－omer	${ }^{30}$	EL	U	\checkmark	U	U	U	U	U	U	U	U	U	U	\bigcirc	U	U	U	U	U	U	\bigcirc
$8{ }^{8573}$	${ }^{88,024221}$	\cdots－Refigeraled lomese（tucks）	${ }^{30}$	${ }^{\text {EL }}$	U	－	U	－	U	－	－	U	U	－	－	U	U	－	U	U	U	U	U	\bigcirc
${ }^{8574}$	${ }^{88,042,222}$	－－－－Refuse／garbage collection vehicles having a refuse compressing device	${ }^{30}$	${ }^{\text {EL }}$	U	\bigcirc	ט	ט	U	U	\checkmark	\checkmark	\bigcirc	\bigcirc	\bigcirc	\bigcirc	U	\checkmark	0	U	0	U	U	\bigcirc
${ }^{8575}$	${ }^{87,042223}$	$\cdots \cdots$ Tanker venicoss buikememenlories（tucks）	${ }^{30}$	${ }^{\text {EL }}$	U	U	U	U	U	U	\checkmark	${ }^{0}$	U	0_{0}	${ }^{0}$	U	U	\checkmark	\checkmark	U	U	U	U	\bigcirc
${ }^{8576}$	${ }^{88,042224}$	viluades Amoued cargo venicos fortasporoting	${ }^{30}$	${ }^{\text {EL }}$	U	U	${ }^{\circ}$	U	0	U	U	U	U	U	¢	U	U	－	ט	U	U	ט	u	\bigcirc
${ }^{8577}$	88，042225		${ }^{30}$	EL	U	U	U	U	U	U	U	${ }^{\circ}$	－	U	0	U	U	\bigcirc	\bigcirc	U	0	\bigcirc	0	\bigcirc
8857	88，042229	－oner	${ }^{30}$	${ }_{\text {EL }}$	U	U	O	－	U	U	－	\bigcirc	U	\bigcirc	\bigcirc	\bigcirc	U	－	－	U	U	－	U	\bigcirc
8857	88，042，231	Refigerated lories（tucks）	${ }^{30}$	EL	\bigcirc	\bigcirc	U	\bigcirc	\bigcirc	O	ט	U	\bigcirc	ט	ט	ט	ט	ט	ט	\bigcirc	\bigcirc	\bigcirc	U	\bigcirc
8850	87，042239	Oher	${ }^{30}$	${ }^{\text {EL }}$	U	－	U	\bigcirc	U	－	\bigcirc	U	－	－	ט	\bigcirc	\bigcirc	\bigcirc	U	U	\bigcirc	\bigcirc	\bigcirc	\bigcirc
8581	87，042241	Refigeated loreses（tucks）	${ }^{30}$	EL	U	\bigcirc	U	ט	\bigcirc	0	\bigcirc	U		\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	U	U	U	0	\bigcirc
8582	87，02，242	－－－Refuse／garbage collection vehicles having a refuse compressing device	${ }^{30}$	EL	\bigcirc	0	－	${ }^{\circ}$	${ }^{\circ}$	\bigcirc	\bigcirc	U	${ }^{\circ}$	\bigcirc	\bigcirc	\bigcirc	U	\bigcirc	\bigcirc	${ }^{\circ}$	0	U	\bigcirc	\bigcirc
${ }^{8583}$	${ }^{88,042424}$	－－Tanker venicoses bulkemenen lories（tucks）	${ }^{30}$	${ }^{\text {EL }}$	\checkmark	U	U	\checkmark	\bigcirc	u	U	\checkmark	U	U	U	U	U	\checkmark	－	U	\checkmark	\bigcirc	ט	\bigcirc
1854	${ }^{87,02,244}$		${ }^{30}$	EL	U	0	U	U	U	－	U	U	\bigcirc	U	0	－	U	－	－	U	U	U	U	0
${ }^{8555}$	${ }^{88,022,245}$	\cdots Hookititories（tucks）	${ }^{30}$	EL	\bigcirc	0	－	ט	\bigcirc	U	\bigcirc	\bigcirc	－	U	－	0	，	\bigcirc	\bigcirc	U	\bigcirc	U	0	U
${ }^{8566}$	${ }^{88,042,251}$	－g．v．w．exceeding 6 tot note exeeding 10 t	${ }^{30}$	${ }^{\text {EL }}$	\bigcirc	\bigcirc	\checkmark	\bigcirc	\checkmark	\bigcirc	ט	\bigcirc	\bigcirc	\bigcirc	－	\bigcirc	U	0	\bigcirc	－	U	U	U	\bigcirc
${ }^{8887}$	${ }^{87,02,259}$	－Oner	${ }^{30}$	${ }^{\text {EL }}$	\bigcirc	\bigcirc	U	\bigcirc	U	，	\bigcirc	${ }^{\circ}$	，	U	－	\checkmark	\bigcirc	U	\bigcirc	U	U	U	\bigcirc	\bigcirc
8588	88，02，311	－Refigeraled lories（trucks）	${ }^{20}$	${ }^{\text {EL }}$	U	\bigcirc	U	\bigcirc	\bigcirc	\bigcirc	\bigcirc	U	\bigcirc	U	\bigcirc	V	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	U	U	\bigcirc
${ }^{8589}$	${ }^{88,02,319}$	Onter	${ }^{20}$	${ }^{\text {EL }}$	－	\bigcirc	O	\bigcirc	\bigcirc	\bigcirc	\bigcirc	U	\bigcirc	0	\bigcirc	－	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	0	ט	\bigcirc
8590	88，042321	\cdots Refigealaed lories（tueks）	${ }^{20}$	EL	U	\checkmark	U	－	U	U	\checkmark	U	－	U	ט	ט	\bigcirc	U	\checkmark	U	U	U	0	\bigcirc
5591	${ }^{88,042322}$		${ }^{20}$	${ }^{\text {EL }}$	\bigcirc	\bigcirc	U	\bigcirc	\bigcirc	\bigcirc	U	\bigcirc	\bigcirc	\checkmark	\bigcirc	\bigcirc	U	\bigcirc	\bigcirc	\bigcirc	u	U	\bigcirc	\bigcirc
8592	87，02，233		${ }^{20}$	${ }^{\text {EL }}$	U	${ }^{\circ}$	U	\square°	0	${ }^{\circ}$	\checkmark	\bigcirc	${ }^{\circ}$	U	U	0	U	U	\checkmark	${ }^{\circ}$	\checkmark	${ }^{\circ}$	\bigcirc	\bigcirc
${ }^{8593}$	88，04，324		${ }^{20}$	${ }^{\text {EL }}$	u	－	U	U	${ }_{0}$	${ }_{0}$	U	${ }_{0}$	${ }^{\circ}$	0	${ }_{0}$	${ }^{\circ}$	${ }^{\circ}$	${ }^{\circ}$	${ }^{\circ}$	－	－	－	U	0
${ }^{859}$	${ }^{87,02,235}$	\cdots Hokitit ories（tucks）	${ }^{20}$	${ }_{\text {EL }}$	，	\bigcirc	U	0	U	U	0	U	U	0	ט	0	\bigcirc	ט	U	U	\bigcirc	0	\bigcirc	\bigcirc
8859	87，024329	\cdots ．．．ther	${ }^{20}$	EL	U	0	0	ט	\bigcirc	0	\bigcirc	U	\bigcirc	0	ט	0	－	0	U	0	U	0	\bigcirc	\bigcirc
${ }^{5566}$	${ }^{88,04,2351}$	\cdots－Refigealeded lories（trucks）	${ }^{20}$	${ }^{\text {EL }}$	0	0	0	\bigcirc	\bigcirc	0	\bigcirc	0	\bigcirc	\bigcirc	\bigcirc	0	0	\bigcirc	\bigcirc	\bigcirc	0	\bigcirc	\bigcirc	\bigcirc
${ }^{8597}$	${ }^{87,02,359}$	Onher	${ }^{20}$	${ }^{\text {EL }}$	\bigcirc	\checkmark	\checkmark	\bigcirc	\bigcirc	\checkmark	\bigcirc	\bigcirc	\checkmark	\bigcirc	\checkmark	\bigcirc	\checkmark	\bigcirc	\checkmark	\bigcirc	U	U	\checkmark	\bigcirc
${ }^{8598}$	88，042，361	\cdots Refigealaed lomies（trucks）	${ }^{20}$	${ }^{\text {EL }}$	U	\bigcirc	U	ט	U	U	\bigcirc	U	\bigcirc	0	U	U	U	U	ט	ט	U	U	U	\bigcirc
5859	88，02，362		${ }^{20}$	${ }^{\text {EL }}$	\bigcirc	\bigcirc	U	ט	${ }^{\circ}$	ט	＂	\bigcirc	ט	U	－	ט	U	ט	U	${ }^{\circ}$	${ }^{\circ}$	U	\bigcirc	\bigcirc
8800	${ }^{88,042,363}$	－Tanker venidess bukcemenerlories（tucks）	${ }^{20}$	${ }^{\text {EL }}$	－	U	＂	－	U	U	U	\bigcirc	U	U	\bigcirc	U	U	0	－	U	U	0	U	\bigcirc
8601	${ }^{88,024,364}$		${ }^{20}$	${ }_{\text {EL }}$	U	\bigcirc	U	ט	U	U	U	U	\bigcirc	U	U	0	U	－	U	U	U	\checkmark	U	\bigcirc
8602	${ }^{88,02,2,355}$	－Hokifil lomes（tuoks）	${ }^{20}$	${ }^{\text {EL }}$	\bigcirc	－	U	ט	\bigcirc	U	\bigcirc	U	\bigcirc	－	ט	0		－	－	U	\bigcirc	U	\bigcirc	\bigcirc
8803	${ }^{88,02,2366}$	－ Oumpers	${ }^{20}$	${ }^{\text {EL }}$	0	0	0	\bigcirc	\bigcirc	\bigcirc	\bigcirc	U	\bigcirc	－	\bigcirc	\bigcirc	\bigcirc	0	\bigcirc	\bigcirc	\bigcirc	U	0	\bigcirc
8804	88，02，239	Other	${ }^{20}$	${ }^{\text {EL }}$	\bigcirc	－	0	\bigcirc	\bigcirc	\bigcirc	\bigcirc	U	\bigcirc	U	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	－	\bigcirc	U	U	\bigcirc
8805	88，04，371	\cdots－Reifigeated lories（tuckes）	${ }^{20}$	${ }^{\text {EL }}$	\bigcirc	U	U	\bigcirc	\bigcirc	\bigcirc	\bigcirc	U	\bigcirc	U	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	U	U	\bigcirc
${ }^{8066}$	${ }^{88,02,379}$	－other	${ }^{20}$	${ }^{\text {EL }}$	\bigcirc	0	－	\bigcirc	\bigcirc	\bigcirc	\bigcirc	U	\bigcirc	U		\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	U	\bigcirc	\bigcirc
3807	87，042，381	－．．．．Rerifigeataed oriese（turucs）	${ }^{20}$	${ }^{\text {EL }}$	\bigcirc	－	U	－	\bigcirc	\bigcirc	\bigcirc	U	\bigcirc	U	\checkmark	\bigcirc	\bigcirc	ט	－	ט	\bigcirc	U	U	\bigcirc
${ }^{8008}$	${ }^{87,02,382}$	Retusegganagage oclectiotion venicics having a	${ }^{20}$	EL	0	\bigcirc	U	\bigcirc	\bigcirc	\bigcirc	U	－	\bigcirc	\bigcirc	\checkmark	\bigcirc	U	U	\bigcirc	－	\bigcirc	U	\bigcirc	\bigcirc
8809	87，02，238		${ }^{20}$	${ }^{\text {EL }}$	U	u	U	U	U	U	\checkmark	\checkmark	\bigcirc	U	\checkmark	\bigcirc	U	U	u	\bigcirc	\checkmark	U	\bigcirc	0
${ }^{8610}$	${ }^{87,042,384}$		${ }^{20}$	${ }^{\text {EL }}$	U	0	U	－	0	0	U	0	，	U	－	U	U	U	－	${ }_{0}$	\bigcirc	U	U	0
8811	${ }^{87,02,235}$		${ }^{20}$	EL	U	0	U	0	U	U	U	0		0	U	\bigcirc	，	0	U	U	\bigcirc	0	\bigcirc	\bigcirc
8612	${ }^{88,024,236}$	${ }^{- \text {Dumpers }}$	${ }^{20}$	${ }^{\text {EL }}$	U	\bigcirc	U	0	U	\bigcirc	U	U	\bigcirc	U	U	\bigcirc	U	－	\bigcirc	ט	U	U	U	\bigcirc
${ }^{6613}$	88，042，389	\cdots	${ }^{20}$	${ }^{\text {EL }}$	\bigcirc	\bigcirc	0	\bigcirc	\bigcirc	\bigcirc	\bigcirc	U	\bigcirc	\bigcirc	U	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	U	0	\bigcirc
8814	88，04，111	\cdots Refigeated lorres（tucks）	${ }^{30}$	NT1	${ }^{28 \%}$	${ }^{25 \%}$	20\％	15\％	10\％	${ }^{8}$	5\％	\％	\％	\％	0\％	\％	\％	0\％	0\％	0\％	\％	\％	0\％	\％
8815	88，04，119	\cdots Other	${ }^{30}$	NT1	28\％	${ }^{25 \%}$	20\％	15\％	10\％	8%	5\％	0\％	0\％	0\％	0\％	0\％	0\％	0\％	0\％	\％	0\％	0\％	0\％	0\％
${ }^{8616}$	88，04，121	－Refigeraled lories（rucks）	${ }^{30}$	NT1	${ }^{28 \%}$	${ }^{25 \%}$	20\％	15\％	10\％	8%	5\％	0\％	0\％	0\％	\％\％	0\％	0\％	0\％	0\％	\％	0\％	0\％	\％	\％\％
${ }^{8617}$	87，04，122		${ }^{30}$	NT1	28\％	25\％	${ }^{20 \%}$	${ }^{5 \%}$	10\％	${ }^{8 \%}$	5\％	\％	\％	0\％	\％	0\％	0\％	\％	\％	\％	\％	\％	\％	\％
${ }^{8618}$	${ }^{88,04,123}$		${ }^{30}$	NT1	28\％	25\％	20\％	${ }^{\text {5\％\％}}$	10\％	${ }^{8 \%}$	5\％	\％	0\％	0\％	0\％	\％	0\％	0\％	\％	\％	\％	\％\％	0\％	\％
${ }^{8619}$	．04， 124		${ }^{30}$	${ }^{\text {HSL }}$	$3{ }^{30 \%}$	30%	30\％	${ }^{30 \%}$	${ }^{30 \%}$		${ }^{30 \%}$	30\％	${ }^{30 \%}$	${ }^{30 \%}$	${ }^{30 \%}$	${ }^{30 \%}$	${ }^{30 \%}$	30\％	30\％	30%	30\％	30\％	30\％	30\％
8620	88，04， 125	\cdots－Hookit broies（tucks）																		30%	30\％	30\％	30\％	30\％

香港•ASEAN FTAにかかる調査報告書

別添2－4 原産地品の関税撤廃スケジュール
（ラオス）

6621	${ }^{88,04,129}$	Onter	30	HSL	${ }^{30 \%}$	${ }^{30 \%}$	30\％	30\％	13\％	${ }^{30 \%}$	${ }^{30 \%}$	130\％	130\％	30\％	30\％	130\％	30\％	130\％	130\％	30\％	130\％	130\％	130\％	${ }^{30 \%}$
8822	87，043，211	Refigerated lories（tucks）	${ }^{20}$	EL	\bigcirc	U	\bigcirc	U	\bigcirc	U	U	U	U	U	ט	U	U	U	U	U	U	U	U	U
8823	87，04，219	Other	${ }^{20}$	EL	U	ט	0	\bigcirc	ט	U	0	0	－	U	U	U	U	0	U	U	0	0	U	0
8824	${ }^{87,043,221}$	\cdots Refingealaed lories（tucks）	${ }^{20}$	EL		U	U	0	U	U	U	U	U	U	U	0	U	U	U	U	U	U	U	U
8825	87，043，222	－．．．．Refiselgartage collection venicices having a	${ }^{20}$	EL	\bigcirc	\bigcirc	U	U	U	U	0	\checkmark	\bigcirc	0	U	U	U	U	U	U	0	U	U	U
$8{ }^{826}$	${ }^{88,04,238}$	－Tankere venicess，buk cement tories（tucks）	${ }^{20}$	${ }^{\text {el }}$	U	U	u	\square°	U	\checkmark	\square°	U	U	U	U	U	U	U	U	U	U	U	U	U
8827	88，04，324		${ }^{20}$	EL	U	U	，	U	U	，	U	U	U	U	U	U	U	U	U	U	U	U	U	U
828	${ }^{88,04,225}$	－Hookititories（tucks）	20	EL	U	U	U	U	U	U	U	U	U	U	U	0	U	U	U	U	U	U	0	U
8629	${ }^{88,043,29}$	－Oner	${ }^{20}$	${ }^{\text {EL }}$	\bigcirc	\bigcirc	0	\bigcirc	\bigcirc	0	\bigcirc	U	0	\bigcirc	\bigcirc	0	\bigcirc	\bigcirc	\bigcirc	U	U	\bigcirc	\bigcirc	\bigcirc
8830	${ }^{88,04,231}$	－．．．－Refifgeataed lories（tucks）	${ }^{20}$	${ }^{\text {EL }}$	\bigcirc	0	0	0	U	O	0	O	0	\bigcirc	U	\bigcirc	\bigcirc	\bigcirc	U	ט	U	\bigcirc	U	U
${ }^{8631}$	${ }^{87,043,239}$	－O－Oner	${ }^{20}$	EL	ט	\bigcirc	U	\bigcirc	U	\bigcirc	\bigcirc	－	U	\bigcirc	\bigcirc	U	\bigcirc	\bigcirc	U	U	U	\bigcirc	U	U
8632	${ }^{87,043,241}$	－．－．－Refigearaed lories（tucks）	${ }^{20}$	EL	\checkmark	ט	\bigcirc	\checkmark	U	\checkmark	\checkmark	U	U	U	U	U	ט	ט	U	U	U	\checkmark	ט	U
${ }^{8633}$	87，043，242	Refuse／garbage collection vehicles having a refuse compressing device	${ }^{20}$	EL	0	0	ט	0	0	0	ט	\checkmark	0	\bigcirc	\checkmark	\checkmark	\bigcirc	0	0	¢	\bigcirc	\bigcirc	0	\bigcirc
${ }^{8634}$	${ }^{87,043,243}$		${ }^{20}$	${ }^{\text {EL }}$	U	U	U	U	U	U	，	U	U	U	U	U	U	U	U	U	U	0	U	U
${ }^{8635}$	${ }^{87,043,244}$	valuabes Amoued carso venices fortasporting	${ }^{20}$	EL	U	U	u	0	U	U	0	U	U	U	U	U	U	U	0	U	u	u	U	U
${ }^{8636}$	${ }^{88,04,2,245}$	vauabs	${ }^{20}$	EL	U		U	U	U	U	U	U	，	U	U	0	U	U	U	U	U	0	0	U
${ }^{8637}$	${ }^{87,04,246}$	g．v．e．exceding 6 t but notexeesing 100	${ }^{20}$	${ }^{\text {EL }}$	\checkmark	\bigcirc	0	0	\checkmark	\bigcirc	0	U	\bigcirc	0	U	ט	U	U	U	U	\checkmark	0	0	0
${ }^{8638}$	${ }^{88,043,249}$	Other	${ }^{20}$	EL	U	－	－	U	U	O	，	\bigcirc	ט	U	U	U	U	U	U	U	U	U	U	ט
8639	87，043，251	\cdots ．－Refigeatedel orieses（turcks）	${ }^{20}$	EL	U	\bigcirc	－	0	\bigcirc	0	0	¢	0	¢	0	U	¢	U	ט	U	U	，	\bigcirc	0
8640	${ }^{8,7,04,259}$	\cdots Oner	${ }^{20}$	${ }^{\text {EL }}$	－	\bigcirc	\bigcirc	\bigcirc	U	\bigcirc	U	\bigcirc	U	U	\bigcirc	0	\bigcirc	－	O	U	\bigcirc	\bigcirc	\bigcirc	\bigcirc
884	${ }^{87,043,261}$	\cdots Refigealaed lories（tucks）	${ }^{20}$	EL	U	ט	U	\bigcirc	U	U	\bigcirc	U	U	U	U	U	U	ט	U	U	U	\checkmark	U	U
${ }^{8642}$	87，043，262	－．．．．Refisse／garatage collection venicices having a	${ }^{20}$	EL	U	0	\bigcirc	0	U	\bigcirc	0	\checkmark	U	\bigcirc	U	U	U	U	U	U	\bigcirc	\bigcirc	ט	O
${ }^{8643}$	${ }^{8,7,04,263}$	－T．－Tankerevenicess bukkementlories（tucks）	${ }^{20}$	EL	U	－	U	U	U	U	U	U	－	U	U	\bigcirc	U	U	U	U	U	U	\bigcirc	U
864	87，043，264		${ }^{20}$	EL	\checkmark	U	\bigcirc	U	u	u	u	u	U	U	u	U	U	U	u	u	u	u	u	U
8845	${ }^{8,7,04,265}$	－Hookit lomies（tucks）	20	EL	\bigcirc	－	\bigcirc	O	U	－	－	O	\bigcirc	U	U	\bigcirc	U	U	0	U	U	\bigcirc	\bigcirc	0
${ }^{8646}$	${ }^{87,043,269}$	Oner	${ }^{20}$	${ }^{\text {EL }}$	U	0	U	U	U	U	U	U	U	ט	U	ט	\bigcirc	ט	ט	U	U	U	U	U
${ }^{8647}$	${ }^{88,04,272}$	Refigigaraed lories（tucks）	${ }^{20}$	EL	\bigcirc	0	0	\bigcirc	U	0	\bigcirc	U	0	\bigcirc	0	\bigcirc	\bigcirc	0	\bigcirc	U	0	\bigcirc	\bigcirc	0
${ }^{8648}$	${ }^{8,7,043,279}$	Onter	${ }^{20}$	EL	\bigcirc	U	0	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	0	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
8649	${ }^{87,043,281}$	Refigearaed lories（tucks）	${ }^{20}$	EL	U	U	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	ט	\bigcirc	U	\bigcirc	ט	\bigcirc	\bigcirc	\bigcirc	U	\bigcirc	U	\bigcirc
8550	${ }^{87,043,882}$	Refuse／garbage collection vehicles having a refuse compressing device	${ }^{20}$	EL	0	\bigcirc	ט	O	O	0	O	\bigcirc	\bigcirc	0	\bigcirc	\bigcirc	\bigcirc	0	0	0	0	0	0	\bigcirc
8851	${ }^{87,043,283}$	$\cdots \cdots$ Tankerevenicess bukkecenent tories（tucks）	${ }^{20}$	EL	U	U	${ }^{\circ}$	U	U	U	U	U	U	U	U	U	0	U	U	U	${ }^{\circ}$	0	U	U
${ }^{8552}$	${ }^{87,043,84}$		${ }^{20}$	${ }^{\text {EL }}$	U	\bigcirc	U	U	U	U	U	U	0	U	U	U	U	U	U	0	U	U	U	${ }^{0}$
${ }^{8653}$	87，043，285	\cdots－Hokifit ories（tucks）	${ }^{20}$	EL	U	U	U	\bigcirc	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U
${ }^{8654}$	${ }^{87,043,286}$	Dumpers	${ }^{20}$	EL	\bigcirc	U	\bigcirc	U	U	\bigcirc	0	U	ט	0	\bigcirc	\bigcirc	\bigcirc	\bigcirc	U	0	－	\bigcirc	－	\bigcirc
8655	87，043，289	\cdots Onter	${ }^{20}$	Et	U	U	0	0	\checkmark	0	－	U	U	\cup	\cup	U	U	\bigcirc	\bigcirc	U	0	U	U	0
${ }^{8656}$	${ }^{87,043,291}$	\cdots－Refigearaled lomeses（tuckes）	${ }^{20}$	EL	ט	U	－	U	U	U	\bigcirc	U	U	U	U	U	U	－	0	U	0	O	0	\bigcirc
$8{ }^{8657}$	${ }^{87,043,292}$	－other	${ }^{20}$	EL	\bigcirc	U	0	0	\bigcirc	\bigcirc	\bigcirc	\bigcirc	0	0	\bigcirc	\checkmark	0	0	0	U	0	0	0	\bigcirc
${ }^{8658}$	87，043，293	－Refirigataed lomies（tuducs）	${ }^{20}$	EL	0	U	－	\bigcirc	U	U	\checkmark	U	\checkmark	\bigcirc	U	ט	0	ט	U	U	U	\bigcirc	U	U
8859	${ }^{87,043,294}$	－．．．．Refisus／garbage collection venicicles having a	${ }^{20}$	EL	${ }^{\circ}$	\bigcirc	＂	－	${ }^{\circ}$	${ }^{\circ}$	O	U	－	\bigcirc	\bigcirc	U	U	${ }^{\circ}$	－	U	${ }^{\circ}$	${ }^{\circ}$	ט	${ }^{0}$
8860	${ }^{88,043,295}$	－－Tankerevenioses bukkementlories（tucks）	${ }^{20}$	${ }^{\text {EL }}$	U	－	U	U	U	U	\bigcirc	\bigcirc	\bigcirc	U	－	U	U	U	U	U	U	U	\bigcirc	U
${ }^{8661}$	87，043，296	$\cdots \mathrm{Al}$ Amoured caso vencices	${ }^{20}$	EL	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	\checkmark	U	U	U
8662	${ }^{87,04,297}$	－Hookit bromes（tuckes）	20	EL	－	，	\bigcirc	\bigcirc	－	－	O	\bigcirc	\bigcirc	U	U	\bigcirc	\bigcirc	\bigcirc	0	－	0	－	\bigcirc	U
${ }^{8663}$	${ }^{87,043,298}$	Dumpers	${ }^{20}$	EL	\bigcirc	U	\bigcirc	\bigcirc	U	\checkmark	\bigcirc	\bigcirc	ט	\bigcirc	\bigcirc	\bigcirc	U	\bigcirc	\bigcirc	U	¢	\bigcirc	\bigcirc	\bigcirc
${ }^{8664}$	${ }^{88,043,299}$	Onter	${ }^{20}$	EL	\bigcirc	U	O	\bigcirc	U	－	O	\bigcirc	U	\bigcirc	ט	\bigcirc	\bigcirc	O	\bigcirc	U	ט	\bigcirc	\bigcirc	－
${ }^{8665}$	87，04，010	－Compelay Knocked down	${ }^{20}$	${ }^{\text {EL }}$	\checkmark	U	－	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	ט	\checkmark	\checkmark	\bigcirc	\checkmark	－	\bigcirc	\bigcirc	\checkmark	\bigcirc	\bigcirc	\checkmark
${ }^{8666}$	${ }^{87,04,091}$	－g．v．w．notexceeding 5t	${ }^{20}$	EL	\bigcirc	U	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	ט	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\checkmark	\bigcirc	\bigcirc	\bigcirc
8667	87，049，092	g．v．w．exeeeding 5 tout notexeeding $10 t$	${ }^{20}$	Et	U	U	U	U	U	0	U	U	U	ט	ט	ט	\bigcirc	0	\checkmark	U	U	U	0	0
${ }^{8668}$	87，04，093	g．v．e exceeding 10 t but note exeeding 20t	${ }^{20}$	${ }^{\text {EL }}$	\bigcirc	U	0	0	U	\bigcirc	\bigcirc	U	U	\bigcirc	\bigcirc	\bigcirc	U	\checkmark	U	U	\checkmark	U	\bigcirc	\bigcirc
8669	87，04，094		${ }^{20}$	${ }^{\text {EL }}$	U	U	u	U	U	U	\checkmark	\checkmark	0	U	\checkmark	U	U	U	U	U	U	U	U	U
8870	87，049，099	Oner	${ }^{20}$	EL	\bigcirc	0	U	0	U	U	U	U	U	U	U	U		0	\bigcirc	U	U	0	\bigcirc	0
8871	87，05，000	－Cane lomies	5	${ }^{\text {T1 }}$	4\％	4\％	4%	3\％	3\％	${ }^{2 \%}$	${ }^{2 \%}$	0\％	0\％	\％	0\％	0\％	0\％	0\％	0\％	\％	0\％	\％	\％	0\％
8872	87，052，000	－Mobile dining dericks	5	T1	4\％	4\％	4\％	3\％	3\％	2%	2%	\％	0\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％
${ }^{8673}$	87，05，000	－Fie fighing venices	5	V1	$4{ }^{4 \%}$	4%	4\％	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	0\％	0\％	0\％	\％	0\％	\％	\％	\％	\％	\％	\％	\％
8874	87，054，000	－Concerem mixerelories	5	NT1	$4{ }^{4 \%}$	4%	4\％	${ }^{3 \%}$	3\％	2\％	2\％	\％	0\％	0\％	\％	0\％	0\％	\％	\％	\％	\％\％	\％	\％	\％\％
8875	${ }^{87,059,50}$	－Street leaning venicless；cespool emptiers； mobile clinics；spraying lories of al kininds	5	NT1	4\％	4\％	4\％	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	0\％	0\％	0\％	0\％	\％	\％	\％	\％	\％\％	\％	\％	\％
$8{ }^{8876}$	87，059，090	－－omer	5	V1	$4{ }^{4 \%}$	4\％	4\％	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	0\％	0\％	0\％	0\％	0\％	0\％	\％	\％	\％	\％	\％	\％	\％\％
8877	87，06，011	- For agricultural tractors of subheading 8701.10 or 8701.90	${ }^{20}$	${ }^{\text {EL }}$	ט	U	－	U	U	\checkmark	－	U	U	－	－	U	\checkmark	U	\bigcirc	U	¢	U	\bigcirc	\bigcirc
$8{ }^{8678}$	87，060，019	－－omer	${ }^{20}$	EL	\bigcirc	，	U	U	U	\bigcirc	U	\bigcirc	，	\bigcirc	\bigcirc	\bigcirc	\bigcirc	U	\bigcirc	\bigcirc	U	－	\bigcirc	U
887	${ }^{8,7,060,021}$		${ }^{20}$	${ }^{\text {E }}$	U	U	U	\bigcirc	U	U	\bigcirc	U	\bigcirc	＂	－	U	\checkmark	U	\checkmark	\bigcirc	U	－	－	\bigcirc
8880	87，060，029	－Oner	${ }^{20}$	EL	\checkmark	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\checkmark	\checkmark	\bigcirc	\bigcirc	\bigcirc	\checkmark	\bigcirc	\bigcirc	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
${ }^{8881}$	${ }^{8,060,031}$	－For gotaras and gofic ars，inculing gof buggies	${ }^{40}$	$\stackrel{\text { ISL }}{ }$	20\％	${ }^{40 \%}$	20\％	40%	20\％	20\％	10\％	${ }^{40 \%}$	20\％	20\％	40\％	${ }^{40 \%}$	40\％\％	40\％	${ }^{40 \%}$	${ }^{40 \%}$	${ }^{40 \%}$	${ }^{40 \%}$	${ }^{40 \%}$	10\％
${ }^{8682}$	${ }^{8,7,060,032}$	－－Forambunas	${ }^{40}$	IsL	40%	20\％	${ }^{40 \%}$	100%	40%	${ }^{40 \%}$	40%	${ }^{40 \%}$	20\％	${ }^{40 \%}$	${ }^{40 \%}$	${ }^{40 \%}$	${ }^{40 \%}$	${ }^{40 \%}$	${ }^{40 \%}$	${ }^{40 \%}$	40%	${ }^{40 \%}$	${ }^{40 \%}$	${ }^{40 \%}$
${ }^{8683}$	${ }^{8,7,060,033}$	－For motor cars（including station wagons，SUVs and sports cars，but not including vans）		Ist	40%	40\％	40\％	20\％	40\％	20\％	${ }^{40 \%}$	40\％	40%	${ }^{40 \%}$	20\％	40%	40%	40\％	40\％	40\％	40%	40\％	20\％	20\％
${ }^{8684}$	${ }^{87,060,039}$	－－other	${ }^{40}$	${ }^{\text {IsL }}$	40\％	20\％	${ }^{40 \%}$	20\％	40\％	20\％	40\％	40\％	20\％	20\％	${ }^{40 \%}$	${ }^{40 \%}$	40%	20\％	40%	40%	${ }^{40 \%}$	20\％\％	20\％	${ }^{40 \%}$
8865	${ }^{88,060,040}$	－For venicices of teading 87.04	${ }^{20}$	${ }^{\text {EL }}$	U	\bigcirc	${ }^{\text {u }}$	U	U	${ }^{\text {u }}$	${ }^{\text {u }}$	u	U	ט	U	\square°	${ }^{\circ}$	u	${ }^{\text {u }}$	0^{0}	u	${ }^{\text {u }}$	${ }^{\text {u }}$	\bigcirc
${ }^{8686}$	${ }^{87,060,050}$	－For venicices of treaing 87.05	${ }^{20}$	${ }^{\text {EL }}$	\bigcirc	\bigcirc	U	\bigcirc	\bigcirc	U	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	U	\bigcirc	U	\bigcirc	\bigcirc	\bigcirc	\bigcirc
${ }^{8687}$	${ }^{8077.0 .10}$	－For gokats and got cras，in induing got buggis	${ }^{40}$	Ist	20\％	10\％	${ }^{40 \%}$	${ }^{40 \%}$	10\％	20\％	40%	40\％	${ }^{100 \%}$	${ }^{20 \%}$	40%	40%	40%	20\％	40\％	0\％\％	10\％	40\％	40\％	20\％
${ }^{8688}$	${ }^{8077.10 .20}$	－Forambuances	${ }^{40}$	HSL	40%	20\％	${ }^{40 \%}$	40\％	40\％	${ }^{40 \%}$	40%	40\％	40%	40\％	${ }^{40 \%}$	40\％	${ }^{40 \%}$	40\％	40%	${ }^{40 \%}$	${ }^{40 \%}$	40\％	${ }^{40 \%}$	${ }^{40 \%}$
${ }^{8689}$	${ }^{88,071,090}$	－－oner	${ }^{40}$	${ }^{\text {ISL }}$	40\％	10\％	40\％	40\％	40\％	40\％	40\％	40\％	40\％	20\％	${ }^{40 \%}$	40\％	40\％	20\％	40\％	${ }^{40 \%}$	${ }^{40 \%}$	40\％	20\％	${ }^{40 \%}$
8890	87，07，010	－FFr renicies of heainge 87.01	${ }^{20}$	EL	ט	\bigcirc	U	U	\checkmark	－	U	，	\bigcirc	\bigcirc	\checkmark	ט	\checkmark	\checkmark	\checkmark	\bigcirc	\bigcirc	\checkmark	U	\bigcirc
	87，07，021		${ }^{40}$	EL	U	－	－	\bigcirc	－	\bigcirc	\bigcirc	－	－	－	－	－	－	－	－	－	\bigcirc	－	－	\bigcirc
8892	87，07，029	Onler	40	EL	\bigcirc	\bigcirc	\bigcirc	0	\bigcirc	\bigcirc	，	－	\bigcirc	\bigcirc	－	－	\bigcirc	U	U	，	－	－	－	U
${ }^{8693}$	${ }^{88,07,030}$	－Forvenicies of theading 87.05	${ }^{20}$	${ }^{\text {EL }}$	\bigcirc	U	U	\bigcirc	\bigcirc	\bigcirc	－	\bigcirc	\bigcirc	\bigcirc	U	\bigcirc	\bigcirc	U	0	\bigcirc	U	\bigcirc	\bigcirc	U
${ }^{8694}$	${ }^{8,7,07,090}$	－－ ther	${ }^{20}$	${ }^{\text {EL }}$	\bigcirc	\bigcirc	0	\bigcirc	\bigcirc	\bigcirc	－	\bigcirc	\bigcirc	\bigcirc	\bigcirc	－	\bigcirc	－	0	0	\bigcirc	\bigcirc	0	\bigcirc
${ }^{8695}$	${ }^{8708.00 .10}$	－FForvenices of heaing 87．01	10	EL	\bigcirc	\bigcirc	U	－	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	－	－	\bigcirc	－	－	－	\checkmark	\bigcirc	－	\bigcirc
${ }^{8696}$	87，081，990	－Other	10	EL	\bigcirc	\bigcirc	ט	\bigcirc	\bigcirc	\bigcirc	－	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	U	\bigcirc	\bigcirc	\checkmark	\bigcirc	U	\bigcirc
${ }^{8697}$	${ }^{8,7,082,100}$	Satery seat bels	10	EL	－	－	，	－	－	－	－	U	－	U	－	\bigcirc	¢	U	－	\bigcirc	－	U	U	\bigcirc
8698	${ }^{88,0229911}$	－Forvenicicses of teading 87.01	${ }^{10}$	${ }^{\text {EL }}$	U	U	U	－	U	U	U	U	U	U	U	\bigcirc	U	U	U	－	U	U	\bigcirc	\bigcirc
869	${ }^{87,082,912}$	\cdots Forveniceso of teading 87.03	10	${ }^{\text {EL }}$	\bigcirc	${ }^{\circ}$	U	\bigcirc	\bigcirc	\bigcirc	－	\bigcirc	\bigcirc	－	\bigcirc	\bigcirc	U	\checkmark	\bigcirc	\bigcirc	\bigcirc	U	U	\checkmark
8700	87，082，914		10	${ }^{\text {EL }}$	\bigcirc	\bigcirc	－	\bigcirc	，	\bigcirc	\bigcirc	\bigcirc	U	U	U	\bigcirc	U	\bigcirc	U	U	U	U	\bigcirc	U
8801	${ }^{87,082,919}$	\cdots Oher	10	${ }^{\text {EL }}$		\bigcirc	，	\bigcirc	\bigcirc	0	\bigcirc	，	\bigcirc	U	U	\bigcirc	U	－	－	U	－	，	－	－
8702	87，082，220	－Patso fotater seat bells	10	EL	U	0	0	U	U	0	U	0	0	－	O	0	U	U	U	U	U	U	U	\bigcirc
878	${ }^{87,0829992}$	Forvenides of heading 87.01	10	EL	U	\bigcirc	U	U	U	\bigcirc	\bigcirc	U	0	U	U	\bigcirc	U	U	U	\bigcirc	U	U	U	0

香港•ASEAN FTAにかかる調査報告書
 別添2－4 原産地品の関税撤廃スケジュール

（ラオス）

8704	87，02，993	juads	10	EL	ט	\bigcirc	ט	U	U	ט	0	\bigcirc	ט	U	U	U	U	0	U	U	\bigcirc	0	U	U
8705	87，082，94	Hood rods	10	${ }^{\text {EL }}$	\bigcirc	U	U	U	U	U	U	U	U	\bigcirc	\bigcirc	\bigcirc	U	\bigcirc	\bigcirc	\bigcirc	\bigcirc	U	U	U
8706	88，02，295	Onher	10	${ }^{\text {EL }}$	U	U	U	U	U	O	U	U	U	U	U	U	U	U	U	U	U	U	0	U
$8{ }^{807}$	88，02，296	hieior tim	10	${ }_{\text {EL }}$		U							\bigcirc	0	U	U	U	0	U	U	U	U	U	0
378	88，02，997	Hood rods	10		\checkmark	0	U	U	U	，	O	0	ט	，	U	U	\bigcirc	，	U	U	\bigcirc	－	U	\bigcirc
8709	87，082，988	－oner	10	EL	\square_{0}	\bigcirc	U	U	U	0		U	U	U	U	U	U	U	U	U	U	U	U	\bigcirc
8770	88，02，299	Other	10	${ }^{\text {EL }}$	U	\bigcirc	U	\bigcirc	\bigcirc	U	0	U	\bigcirc	U	U	U	U	U	U	U	\checkmark	U	U	\bigcirc
${ }^{8711}$	88，03，010	Forvenicies of theadigg 87.01	10	sL	10\％	10\％	10\％	0\％	\％	10\％	10\％	10\％	8%	7\％	6\％	${ }^{5 \%}$	${ }^{4 \%}$	3\％	${ }^{2 \%}$	1\％	\％	\％	\％	\％
${ }^{8712}$	88，08，021	－－Brake dums，brake discs of raike pipes	10	st	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	${ }_{8 \%}$	\％	6\％	${ }^{5 \%}$	$4{ }^{4}$	3\％	${ }^{2 \%}$	1\％	\％	\％	\％	0\％
${ }^{8773}$	87，08，029	Other	10	st	10\％	10%	10\％	0\％	10\％	10\％	10\％	10\％	${ }_{8 \%}$	7\％	6\％	${ }^{5 \%}$	4%	3\％	2%	1\％	\％	\％	\％	0\％
8874	88，08，3030	－－Brake drums，brake discs or brake pipes for vehicles of heading 87.02 or 87.04	${ }^{10}$	${ }^{\text {sL }}$	${ }^{10 \%}$	${ }^{10 \%}$	${ }^{10 \%}$	${ }^{10 \%}$	${ }^{10 \%}$	${ }^{10 \%}$	10\％	10\％	${ }^{8 \%}$	${ }^{7 \%}$	${ }^{6 \%}$	${ }^{5 \%}$	${ }^{4 / 8}$	\％	${ }^{2 \%}$	${ }^{1 \%}$	\％	\％	\％	${ }^{0 \%}$
875	88，08，090	－．other	10	sL	10\％	10%	10\％	10\％	10\％	10\％	10%	10\％	$8{ }^{8}$	${ }^{7 \%}$	6\％	${ }^{5 \%}$	${ }^{4 \%}$	${ }^{3}$	${ }^{2 \%}$	\％	0\％	0\％	\％	\％
8776	87，04，011	Forvenicices of heading 87.03	10	sL	10\％	10\％	10\％	0\％	10\％	10\％	10\％	10\％	8\％	${ }^{7 \%}$	6\％	5\％	4\％	3\％	${ }^{2 \%}$	1\％	\％	\％	\％	\％
887	87，04，013	－Forveicices of heading 87．0400 87．05	10	st	0\％	10\％	10\％	0\％	10\％	10\％	10\％	10\％	，	\％\％	\％	\％	\％	\％	\％	0\％	\％	\％\％	0\％	0\％
${ }^{8778}$	87，04，014	－Forvenices of treading 87.01	10	sL	10\％	0\％	10\％	10\％	10%	10\％	10\％	10\％	${ }^{8 \%}$	${ }^{7 \%}$	6\％	${ }^{5 \%}$	${ }^{4 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{1 \%}$	0\％	0\％	\％	\％
8719	87，04，019	Onter	10	st	10\％	10\％	10\％	0\％	10\％	10\％	10\％	10\％	${ }^{8 \%}$	7\％	6\％	5\％	${ }^{4 \%}$	3\％	${ }^{2 \%}$	1\％	\％	\％	\％	0\％
8720	87，04，025	－Forvenicices of treading 8 7．01	10	sL	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	${ }^{8 \%}$	${ }^{7 \%}$	6\％	${ }^{5 \%}$	${ }^{4 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{1 \%}$	\％	0\％	\％	\％
${ }^{8721}$	88，04，026	\cdots－．Forvenicices of heading 87.03	10	sL	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	8%	7\％	6\％	5\％	4%	3\％	${ }^{2 \%}$	1\％	\％	0\％	0\％	\％
${ }^{8722}$	${ }^{87,04,027}$	For venicies of theading 87．040 887.05	${ }^{10}$	${ }^{\text {sL }}$	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10%	${ }^{8 \%}$	${ }^{7} \%$	${ }^{6 \%}$	5\％	${ }^{4 / 8}$	3\％	${ }^{2 \%}$	1\％	\％	\％	\％	\％
${ }^{8723}$	87，04，029	Onner	10	st	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	${ }^{8} \%$	7\％	6\％	5\％	4%	3\％	2\％	1\％	\％	\％	\％	\％
8824	87，04，091	Forvenicies of heading 87.01	10	Ist	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	0\％	0\％	10\％	0\％	10\％	\％\％	0\％	10\％	10\％	0\％	\％	\％\％
8825	87，04，092	Forvenicses of heading 87.03	10	${ }^{\text {sL }}$	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	8%	7\％	6\％	5\％	${ }^{4 \%}$	3\％	2\％	1\％	\％	0\％	0\％	\％
${ }^{8276}$	87，04，099	Onter	10	sL	10\％	0\％	\％	\％\％	10\％	10\％	10\％	10\％	8\％	${ }^{7} \%$	6\％	${ }^{5 \%}$	${ }^{4 \%}$	3\％	${ }^{2 \%}$	${ }^{1} \%$	\％	\％\％	0\％	0\％
${ }^{327}$	87，05，011	－Forvenicies of treading 87.03	10	st	0\％	0\％	\％	10\％	0\％	0\％	10\％	10\％	0\％	0\％	10\％	0\％	0\％	0\％	10\％	10\％	0\％	0\％	0\％	\％
${ }^{8728}$	87，05，013		10	IsL	10\％	10\％	10\％	0\％	10\％	10\％	10\％	10\％	0\％	10\％	10\％	10\％	0\％	10\％	10\％	10\％	10\％	0\％	10\％	10\％
${ }^{8729}$	88，05，015	－Forvenicics of theading 87.01	10	st	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	8\％	7\％	6\％	5\％	4%	3\％	2\％	1\％	0\％	0\％	0\％	\％
8730	88，05，019	－Other	10	st	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	8%	7\％	6\％	5\％	4%	3\％	${ }^{2 \%}$	1\％	0\％	0\％	0\％	\％
${ }^{8331}$	87，05，022	Forvenicies of heading 87.01	${ }^{10}$	${ }^{\text {ISL }}$	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％
${ }^{8732}$	87，06，020	For venicies of heading 87.03	10	HL	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％
${ }^{8733}$	88，06，027		10	HSL	10\％	10\％	10\％	0\％	10\％	10\％	10\％	10\％	\％	0\％	10\％	0\％	0\％	10\％	10\％	10\％	10\％	\％\％	\％\％	10\％
883	87，05，029	－other	10	sL	10\％	10\％	10\％	0\％	10\％	10\％	10\％	10\％	8\％	7\％	6\％	5\％	4\％	3\％	2%	1\％	0\％	0\％	0\％	\％
8735	88，06，091	Crown weese and pinions	10	st	10\％	0\％	10\％	10\％	10\％	10\％	10\％	10\％	0\％	0\％	\％	0\％	\％	10\％	10\％	10\％	\％	\％	10\％	0\％
${ }^{8336}$	87，05，992	Onter	10	sL	10\％	10\％	10\％	0\％	10\％	10\％	10\％	10\％	${ }^{8 \%}$	${ }^{7}$	${ }^{6 \%}$	${ }^{5 \%}$	$4{ }^{4 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{1 \%}$	\％	0\％	0\％	\％
${ }^{8377}$	87，06，909	Forvenicse of heading 8 7．03	10	sL	10\％	10\％	10\％	0\％	10\％	10\％	10\％	10\％	${ }_{8} \%$	${ }^{7} \%$	6\％	${ }^{5 \%}$	4%	3\％	${ }^{2 \%}$	1\％	\％	0\％	\％	\％
${ }^{8738}$	88，06，099	Other	10	sL	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	${ }^{8 \%}$	${ }^{7 \%}$	${ }^{6 \%}$	${ }^{5 \%}$	4\％	3\％	${ }^{2 \%}$	${ }^{1 \%}$	\％	\％	0\％	\％
8739	88，08，015	－Forvenicies of theadig 87.01	10	Ist	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％
${ }^{8740}$	88，07，016	For veilices of heading 87．03	${ }^{10}$	HsL	10\％	10%	10\％	10\％	10\％	10\％	10\％	10\％	${ }^{10 \%}$	10\％	10\％	10\％	10\％	10\％	${ }^{10 \%}$	${ }^{10 \%}$	10\％	10\％	10%	${ }^{10 \%}$
${ }^{8741}$	87，07，017	Forvenicies of theading 87.020 cr 8 ．04	10	HL	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％
8742	87，07，019	Oner	10	sL	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	8\％	7\％	6\％	5\％	4\％	3\％	2\％	1\％	\％	0\％	\％	\％
8773	88，08，021	－Forvenicices of heading 87．01	10	st	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％
874	88，08，022	Forveicices of neading 87．03	10	sL	10\％	10\％	10\％	10\％	0\％	10\％	${ }^{10 \%}$	10\％	${ }^{8 \%}$	${ }^{7} \%$	6\％	${ }^{5 \%}$	${ }^{4 \%}$	${ }^{3} \%$	${ }^{2 \%}$	\％	\％\％	0\％	0\％	\％\％
${ }^{8745}$	88，07，029	Onher	10	st	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	\％	10\％	10\％	10\％	0\％	10\％	10\％	10\％	10\％	10\％	10\％	0\％
${ }^{8746}$	88，08，031	Forveniose of heading 87.01	10	sL	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	${ }_{8} 8$	7\％	6\％	5\％	4%	${ }^{3 \%}$	${ }^{2 \%}$	1\％	\％	0\％	\％	\％
${ }^{8747}$	${ }^{88,08,032}$	Forvenioses of heading 87.03	${ }^{10}$	sL	${ }^{10 \%}$	10%	10\％	10\％	10\％	10\％	10\％	10\％	${ }^{8 \%}$	${ }^{7} \%$	6\％	${ }^{5 \%}$	4%	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{1 \%}$	\％	\％	0\％	\％
${ }^{8778}$	88，08，039	Ohter	10	sL	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	8%	7\％	6\％	5\％	4\％	3\％	2\％	1\％	0\％	0\％	0\％	\％
${ }^{8749}$	88，08，095	Forverinoso of heading 87．01	10	sL	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	${ }^{8 \%}$	7\％	${ }^{6 \%}$	${ }^{5 \%}$	4\％	${ }^{3 \%}$	${ }^{2 \%}$	1\％	\％	\％	\％	\％
8750	${ }^{88,07,096}$		10	sL	10\％	10\％	${ }^{10 \%}$	10\％	10\％	10\％	${ }^{10 \%}$	10\％	${ }_{8 \%}$	7\％	6\％	${ }^{5 \%}$	4\％	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{1 \%}$	\％	\％	\％	\％
8751	87，08，097	FForvenicos of theading 8 7．03	10	st	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	8\％	7\％	6\％	5\％	4\％	3\％	${ }^{2 \%}$	1\％	\％	\％	\％	\％
${ }^{8752}$	87，07，099	－－Onmer	10	sL	10\％	10\％	10\％	0\％	10\％	10\％	10\％	10\％	8\％	${ }^{\text {7\％}}$	6\％	${ }^{5 \%}$	${ }^{4 \%}$	${ }^{3}$	${ }^{2 \%}$	1\％	\％	\％	\％	\％
${ }^{8753}$	88，08，015	Forvenices of teading 87.01	10	${ }_{\text {IsL }}$	10\％	10\％	10\％	\％\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％
${ }^{8354}$	87，08，016	Forvenioses of heading 87．03	10	HL	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％
8755	87，08，017	$\begin{array}{\|l\|l\|l\|} \hline \text { B77.05 Venicles of subheading } 8704.10 \text { or heading } \\ \hline \end{array}$	10	HL	10\％	10\％	10\％	0\％	10\％	10\％	10\％	10\％	\％	0\％	10\％	10\％	0\％	10\％	10\％	10\％	10\％	0\％	0\％	10\％
${ }^{8756}$	87，08，019	－omer	10	Ist	10\％	${ }^{10 \%}$	${ }^{10 \%}$	0\％	10\％	10\％	10\％	10\％	${ }^{10 \%}$	0\％	10\％	${ }^{10 \%}$	10\％	${ }^{10 \%}$	${ }^{10 \%}$	${ }^{10 \%}$	${ }^{10 \%}$	10\％	10\％	10\％
${ }^{8757}$	88，08，091	$\cdots{ }^{-}$Forvenicies of theading 87.01	${ }^{10}$	HSL	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％
${ }^{8758}$	88，08，092	－Forvenicoso of heading 87．03	10	st	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	${ }_{8 \%}$	7\％	${ }^{6 \%}$	${ }^{5 \%}$	4%	${ }^{3 \%}$	${ }^{2 \%}$	1\％	\％	0\％	\％	\％
8759	88，08，099	Other	10	st	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	${ }^{8 \%}$	${ }^{7 \%}$	6\％	5\％	4\％	${ }^{3} \%$	2\％	1\％	0\％	0\％	\％	\％
${ }^{8780}$	87，08， 115	Forvenicse of heading 87.01	10	HsL	10\％	10\％	10\％	10\％	10\％	10\％	${ }^{10 \%}$	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％
${ }^{8761}$	${ }^{88,09,9,116}$	Forvenciose of heading 8 8．03	${ }^{10}$	HSL	10\％	${ }^{10 \%}$	10\％	10\％	10\％	10\％	10\％	${ }^{10 \%}$	10\％	10\％	${ }^{10 \%}$	0\％	10\％	10\％	${ }^{10 \%}$	10\％	10\％	10\％	10\％	${ }^{10 \%}$
${ }^{8762}$	${ }^{88,09,117}$	${ }^{-}$For velicies of theading 87.020 or 8	${ }^{10}$	Ist	10\％	10\％	10\％	0\％	10\％	10\％	${ }^{10 \%}$	${ }^{10 \%}$	0\％	\％\％	10\％	10\％	${ }^{10 \%}$	10\％	${ }^{10 \%}$	10\％	${ }^{10 \%}$	\％\％	0\％	10\％
${ }^{8763}$	87，09， 119	Onher	10	sL	10\％	10\％	10\％	10\％	0\％	0\％	10\％	10\％	${ }^{8 \%}$	${ }^{7 \%}$	6\％	${ }^{5 \%}$	4\％	${ }^{3 \%}$	${ }^{2 \%}$	1\％	\％	\％	\％	\％
${ }^{8764}$	87，08，191	\cdots Forvenicles of heading 87.01	10	Hst	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	${ }^{10 \%}$	${ }^{10 \%}$	${ }^{10 \%}$	${ }^{10 \%}$	${ }^{10 \%}$	10\％	${ }^{10 \%}$	\％
${ }^{8765}$	88，09，192	Forveicioss of heading 87．03	10	${ }^{\text {st }}$	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	${ }^{8 \%}$	${ }^{7 \%}$	${ }^{6 \%}$	${ }^{5 \%}$	$4{ }^{4 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	1\％	\％	0\％	\％	\％\％
${ }^{8766}$	88，09，199	Other	10	S	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	${ }^{8 \%}$	7\％	6\％	5\％	4%	3\％	2\％	1\％	0\％	\％\％	\％\％	\％\％
${ }^{3877}$	${ }^{88,09,210}$	For venicies of reading 87.01	10	IsL	10\％	10\％	10%	10\％	10\％	10\％	${ }^{10 \%}$	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％
${ }^{8768}$	87，09，220	For venicies of heading 87.03	10	sL	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	8%	${ }^{7 \%}$	6\％	5\％	4\％	3\％	2\％	1\％	\％	\％	\％	0\％
${ }^{8769}$	${ }^{88,098,240}$		${ }^{10}$	${ }^{\text {ISL }}$	${ }^{10 \%}$	${ }^{10 \%}$	${ }^{10 \%}$	10\％	10\％	10\％	${ }^{10 \%}$	10\％	10\％	10\％	10\％	10\％	${ }^{10 \%}$	${ }^{10 \%}$	10\％	10\％	${ }^{10 \%}$	10\％	0\％	10\％
${ }^{8770}$	${ }^{87,099290}$	Onher	${ }^{10}$	${ }^{\text {sL }}$	10\％	${ }^{10 \%}$	10\％	\％\％	10\％	10\％	10\％	${ }^{10 \%}$	${ }^{8 \%}$	${ }^{7 \%}$	6\％	${ }^{5 \%}$	${ }^{4 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	1\％	0\％	0\％	\％\％	\％\％
8771	88，09，350	For venicices of heading 87.01	10	Ist	10\％	10\％	10\％	0\％	10\％	10\％	10\％	10\％	\％	10\％	10\％	10\％	\％\％	10\％	10\％	10\％	10\％	0\％	\％	10\％
${ }^{8772}$	87，09，360	For reficies of heading 8.03	10	IsL	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	0\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％
${ }^{8773}$	${ }^{88,09,3,30}$		10	fsL	10\％	10\％	10\％	${ }^{10 \%}$	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	${ }^{10 \%}$	${ }^{10 \%}$	${ }^{10 \%}$	${ }^{10 \%}$	10\％	10\％	${ }^{10 \%}$	10\％
${ }^{3774}$	87，09，390	Oner	10	st	10\％	10\％	10\％	10\％	10\％	10\％	10\％	${ }^{10 \%}$	${ }^{8 \%}$	${ }^{7 \%}$	6\％	5\％	4%	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{1 \%}$	\％	0\％	0\％	\％
${ }^{8775}$	88，09，410	－Steeing whees with airiag assemblies	10	－ssi	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％
${ }^{8776}$	87，09，494	For renicies of theaing 8 8．01	10	HLL	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％
8777	87，09，495	FForvenices of heading 8 8．03	10	HsL	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％
${ }^{8778}$	87，094，499	Onher	10	HL	10\％	${ }^{10 \%}$	${ }^{10 \%}$	10\％	10\％	10\％	${ }^{10 \%}$	${ }^{10 \%}$	${ }^{10 \%}$	${ }^{10 \%}$	${ }^{10 \%}$	${ }^{10 \%}$	${ }^{10 \%}$	${ }^{10 \%}$	${ }^{10 \%}$	${ }^{10 \%}$	${ }^{10 \%}$	10\％	${ }^{10 \%}$	${ }^{10 \%}$
879	${ }^{88,09,510}$	－Saiel aitagas with inlaee sssiem	${ }^{10}$	st	10\％	${ }^{10 \%}$	10\％	10\％	10\％	10\％	10\％	${ }^{10 \%}$	10\％	10\％	10\％	10\％	10\％	10\％	${ }^{10 \%}$	10\％	10\％	10\％	${ }^{10 \%}$	${ }^{10 \%}$
${ }^{8780}$	87，09，590	Pans	10	fsL	10\％	10\％	${ }^{10 \%}$	10\％	10\％	10\％	10\％	${ }^{10 \%}$	10\％	10\％	10\％	10\％	${ }^{10 \%}$	10\％	10\％	10\％	10\％	10\％	10\％	10\％
${ }^{8781}$	88，09，910	Forvericies of heading 87．01	${ }^{10}$	${ }_{\text {HSL }}$	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10%	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％
${ }^{8782}$	88，09，927	－Fuelaras	10	fst	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	${ }^{10 \%}$	10\％	10\％	10\％	10\％	10\％	10\％
${ }^{8783}$	87，09，923	Pans	10	st	${ }^{10 \%}$	10\％	10\％	${ }^{10 \%}$	10\％	10\％	10\％	${ }^{10 \%}$	${ }^{8 \%}$	${ }^{7 \%}$	${ }^{6 \%}$	${ }^{5 \%}$	4%	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{1 \%}$	\％	0\％	\％	\％
${ }^{8784}$	88，09，930	Accelerato，brake or cluth pedala	10	st	10\％	10\％	10\％	10\％	10\％	10\％	10\％	${ }^{10 \%}$	${ }^{8 \%}$	\％	6\％	${ }^{5 \%}$	4%	${ }^{3 \%}$	${ }^{2 \%}$	1\％	\％	\％	\％	\％
${ }^{8785}$	．089，940	Baterer cearies of rtays and brackest ther	10	st	10\％	10\％	10\％	0\％	10\％	10\％	10\％	10\％	${ }^{8 \%}$	7\％	6\％	5\％	${ }^{4 / 8}$	${ }^{3 \%}$	${ }^{2 \%}$	1\％	\％	\％	\％	\％
${ }^{8786}$	87，09，950	Radiars shous	10	st	10\％	10\％	${ }^{10 \%}$	${ }^{10 \%}$	10\％	10\％	10\％	10\％	8\％	${ }^{7 \%}$	${ }^{6 \%}$	${ }^{5 \%}$	${ }^{4 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	1\％	0\％	\％	\％	\％
${ }^{8877}$	${ }^{88,09,961}$	FForvencidse of heading 87.02	${ }^{10}$	st	10\％	10\％	${ }^{10 \%}$	10\％	10\％	10\％	${ }^{10 \%}$	${ }^{10 \%}$	${ }_{8 \%}$	${ }^{\text {7\％}}$	6\％	${ }^{5 \%}$	${ }^{4 \%}$	${ }^{3} \%$	${ }^{2 \%}$	${ }^{1 \%}$	\％	\％\％	\％	\％
${ }^{8788}$	87，09，962	Forvenicies of heading 87.03	10	st	10\％	10\％	10\％	10\％	10\％	10\％	${ }^{10 \%}$	${ }^{10 \%}$	${ }_{8}^{8 \%}$	${ }^{7 \%}$	${ }^{6 \%}$	${ }^{5 \%}$	${ }^{4 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{1 \%}$	\％	\％	\％	0\％
${ }^{8789}$	${ }^{87,09,983}$	FForveniose of heading 8 7．04	10	st	10\％	10\％	10\％	${ }^{10 \%}$	10\％	10\％	${ }^{10 \%}$	10\％	${ }^{8}$	${ }^{7} \%$	6\％	5\％	${ }^{4 / 8}$	${ }^{\text {3\％}}$	${ }^{2 \%}$	1\％	\％	\％	0\％	\％
8790	87，09，970	Onher	10	st	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	${ }^{8 \%}$	${ }^{7} \%$	\％	${ }^{5 \%}$	${ }^{4 \%}$	${ }^{\text {\％}}$	${ }^{2 \%}$	${ }^{1 \%}$	\％	0\％	\％	0\％
${ }^{391}$	87，09，990	Other	10	st	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10%	${ }_{8} 8$	7\％	${ }^{6 \%}$	${ }^{5 \%}$	$4{ }^{4}$	3\％	${ }^{2 \%}$	${ }^{1 \%}$	\％	\％	\％	\％
${ }^{8792}$	88，09，100	Electrical	10	st	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	${ }_{8 \%}$	\％	6\％	${ }^{5 \%}$	${ }^{4 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{1 \%}$	\％	\％	\％	\％
${ }^{8793}$	87，01，900	Onher	10	s	${ }^{10 \%}$	10\％	10\％	10\％	10\％	10\％	10\％	10%	8\％	${ }^{7 \%}$	6\％	${ }^{5 \%}$	4\％	3\％	${ }^{2 \%}$	1\％	\％	0\％	\％	0\％
878	88，09，000	Pats	10	s	10\％	10%	10%	10%	10%	10%	10%	$1{ }^{10 \%}$	\％\％	${ }^{7 \%}$	\％	${ }^{5 \%}$	${ }^{4 \%}$	3\％	${ }^{2 \%}$	1\％	\％	\％	\％	\％

香港•ASEAN FTAにかかる調査報告書
 別添2－4 原産地品の関税撤廃スケジュール

（ラオス）

8795	${ }^{88,100,000}$	Tanks and other armoured fighting vehicless， mototised，whenther r or tift tited with weapons， and parts of such vehicles．	${ }^{10}$	el	\checkmark	\checkmark	\checkmark	\checkmark	\cup	\cup	\cup	\checkmark	\checkmark	\cup	\checkmark	\cup	\cup	\cup	\cup	\checkmark	\cup	\cup	\checkmark	\cup
${ }^{8796}$	${ }^{8711.10 .12}$	Mopess and moorises bilicrles	${ }^{30}$	EL	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	0	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	U	\bigcirc	\bigcirc	\bigcirc	\checkmark	\bigcirc	\bigcirc	U	\bigcirc
8897	${ }^{8711.10 .13}$	－Oiner molocrycles and molor scoiels	${ }^{30}$	EL	\bigcirc	U	\bigcirc	\bigcirc	\bigcirc	\bigcirc	U	\bigcirc	U	\bigcirc	U	U	－	U	U	U	ט	U	U	\bigcirc
8798	8711．10．19	－．other	${ }^{30}$	EL	U	O	－	0	\bigcirc	－	0	0	\bigcirc	0	0	－	0	0	\bigcirc	U	U	\bigcirc	0	\bigcirc
3899	${ }^{88,11,092}$	Mopeds and moorised bicrles	${ }^{30}$	EL	U	\bigcirc	\bigcirc	U	U	U	ט	\bigcirc	\bigcirc	ט	ט	U	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	U	\bigcirc
8800	${ }^{87,11,093}$	\cdots Oheremolocryles and molors soolers	${ }^{30}$	EL	ט	0	－	\bigcirc	ט	ט	0	ט	U	ט	ט	U	\bigcirc	ט	ט	U	U	U	U	U
8801	88，11，099	\cdots	${ }^{30}$	EL	O	U	U	U	0	O	0	0	0	0	O	0	0	U	O	O	O	U	U	\bigcirc
8802	88，12，010	－Molocross moloryclies	40	EL	\checkmark	U	\bigcirc	，	ט	U	U	U	\bigcirc	U	U	ט	0	U	U	U	\checkmark	U	U	\cup
883	${ }^{88,12,020}$		${ }^{40}$	EL	\checkmark	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\checkmark	\bigcirc	\bigcirc	\bigcirc	\checkmark	\bigcirc	\checkmark	\bigcirc	\bigcirc	\bigcirc	\checkmark	\checkmark	\bigcirc	\bigcirc	\bigcirc
${ }^{8804}$	${ }^{87,12,031}$	$-\cdots$－Of a cylinder capacity exceeding 150 cc but not exceeding 200 cc	${ }^{40}$	EL	\bigcirc	－	\bigcirc	\bigcirc	\bigcirc	\bigcirc	ט	\bigcirc	\bigcirc	0	－	ט	\bigcirc	0	\bigcirc	\bigcirc	\checkmark	U	U	U
${ }^{8805}$	88，12，032	Of a cylinder capacity exceeding 200 cc but not exceeding 250 cc	${ }^{40}$	${ }^{\text {EL }}$	${ }^{\circ}$	0	${ }^{0}$	${ }^{0}$	${ }^{0}$	0	0	0	U	U	U	U	${ }^{\circ}$	U	U	U	\bigcirc	${ }^{\circ}$	U	${ }_{0}$
8806	88，12，039	\cdots－Onher	${ }^{40}$	EL	U	\bigcirc	\bigcirc	U	\checkmark	\checkmark	U	\bigcirc	\bigcirc	\checkmark	U	U	－	\bigcirc	\bigcirc	\checkmark	\checkmark	U	\bigcirc	U
8807	${ }^{88,12,045}$		${ }^{40}$	${ }^{\text {EL }}$	0	U	0	U	\bigcirc	－	0	\bigcirc	0	\bigcirc	0	O	\bigcirc	O	－	U	U	U	U	\bigcirc
8808	88，12，049	－other	${ }^{40}$	EL	U	U	U	ט	U	0	0	0	ט	0	0	U	\bigcirc	U	\bigcirc	ט	U	\bigcirc	U	\bigcirc
8809	$1{ }^{12,051}$	$-\cdots$ ．Of a cylinder capacity exceeding 150 cc but not exceeding 200 cc	${ }^{40}$	EL	－	ט	\checkmark	\checkmark	0	\bigcirc	U	\bigcirc	\bigcirc	\bigcirc	U	－	\bigcirc	U	－	U	\bigcirc	0	U	\bigcirc
8810	112，052	Of a cylinder capacity exceeding 200 cc but not	40	${ }^{\text {EL }}$	U	${ }_{0}$	0	U	U	${ }^{\circ}$	0	U	U	\bigcirc	U	0	\bigcirc	U	U	U	0	0	U	0
8811	88，12，059	\cdots－Onher	${ }^{40}$	EL	\bigcirc	0	0	0	\bigcirc	\bigcirc	0	\bigcirc	\bigcirc	0	U	U	\bigcirc	，	\bigcirc	－	U	0	U	U
8812	${ }^{87,12,090}$	Oner	${ }^{40}$	EL	U	\bigcirc	\bigcirc	U	U	\bigcirc	\bigcirc	U	U	－	U	\bigcirc	U	U	\bigcirc	U	－	\bigcirc	U	\bigcirc
8813	88，11，010	－Molocoss molorycles	40	EL	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	ט	0	0	\bigcirc	ט	0	\bigcirc	\bigcirc	ט	\bigcirc	\checkmark	U	ט	\bigcirc	\bigcirc
8814	${ }^{88,13,030}$	－Oner，Completey Koocked oown	${ }^{40}$	EL	\checkmark	0	0	0	\bigcirc	\bigcirc	0	0	0	\bigcirc	\bigcirc	\bigcirc	0	\bigcirc	\bigcirc	\bigcirc	\bigcirc	0	0	\bigcirc
8815	${ }^{87,13,090}$	－Onter	${ }^{40}$	EL	ט	0	0	U	U	\checkmark	ט	\bigcirc	0	\checkmark	－	\bigcirc	\checkmark	U	\bigcirc	ט	U	\bigcirc	ט	\bigcirc
8816	88，14，010	ocross motorcyles	${ }^{40}$	EL	\bigcirc	\bigcirc	\bigcirc	0	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	－	\bigcirc	，	\checkmark	U	0	\bigcirc
8817	88，14，020	－Onera，Completey Koocked Down	${ }^{40}$	EL	\bigcirc	－	\bigcirc	ט	－	\bigcirc	－	\bigcirc	O	\bigcirc	－	\bigcirc	\bigcirc	U	\bigcirc	ט	U	U	U	\bigcirc
8818	88，14，090	Other	40	EL	\bigcirc	\bigcirc	0	\bigcirc	U	\bigcirc	U	\bigcirc	U	\bigcirc	\bigcirc	\bigcirc	\bigcirc	U	0	U	U	\bigcirc	0	\bigcirc
8819	88，15，020	Complealy Knocked down	${ }^{40}$	EL	ט	－	\bigcirc	－	－	\bigcirc	－	\bigcirc	－	0	－	\bigcirc	\bigcirc	O	－	ט	U	\bigcirc	U	\bigcirc
8820	88，15，090	Oner	${ }^{40}$	EL	ט	ט	ט	ט	U	ט	U	ט	\bigcirc	ט	ט	ט	\bigcirc	ט	ט	U	U	\bigcirc	U	U
8821	88，119，040	－sidecars	40	EL	U	\bigcirc	－	U	\bigcirc	－	0	0	0	－	0	U	0	0	\bigcirc	U	\bigcirc	\bigcirc	U	\bigcirc
8822	${ }^{88,19,051}$	－Eletricilly powered mo	${ }^{40}$	EL	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	O	\bigcirc	U
${ }^{8823}$	88，19，0，52	\ldots Other，of a cylinder capacity not exceeding 2000 c	${ }^{40}$	EL	U	${ }^{\circ}$	－	\bigcirc	0	\bigcirc	\bigcirc	${ }^{0}$	\bigcirc	＂	ט	ט	0	0	\bigcirc	${ }^{\circ}$	\bigcirc	${ }^{\circ}$	＂	\bigcirc
8824	88，19，053	－－Other，of a cylinder capacity exceeding 200cc but not exceeding 500cc	40	EL	\checkmark	U	\bigcirc	0	0	\checkmark	\checkmark	\bigcirc	0	\checkmark	\checkmark	\bigcirc	\bigcirc	U	\bigcirc	\checkmark	\checkmark	\checkmark	\bigcirc	\bigcirc
8825	${ }^{88,119,054}$	\cdots Onter，of a culinder capacily exceesing 500cc	${ }^{40}$	EL	${ }_{0}$	${ }_{0}$	ט	，	U	${ }^{0}$	0°	U	U	${ }^{\circ}$	0	ט	U	U	ט	ט	0	U	U	U
1826	88，19，091	－Electicaly powered motorycles	${ }^{40}$	EL	0	\bigcirc	0	0	0	0	U	－	0	0	\bigcirc	0	0	U	U	0	U	0	0	\bigcirc
8827	88，19，0，099	－－Other	40	EL	ט	0	U	0	0	ט	U	0	0	ט	0	0	0	0	0	U	U	U	U	\bigcirc
8828	$88,120,010$	Racing bicres	${ }^{40}$	EL	\bigcirc	0	0	0	0	0	0	0	0	0	0	0	－	0	0	U	U	0	0	\bigcirc
8882	87，12，020	－Bicreses designed tobe ididen by chiliten	${ }^{40}$	EL	\bigcirc	－	\bigcirc	－	\bigcirc	\bigcirc	ט	\bigcirc	O	\bigcirc	\bigcirc	\bigcirc	－	O	\bigcirc	ט	U	\bigcirc	\bigcirc	\bigcirc
1880	${ }^{87,12,0,30}$	Oner bicyles	${ }^{40}$	EL	u	ט	ט	U	U	ט	U	0	U	ט	ט	ט	ט	U	ט	U	U	U	U	U
1883	87，12，090	－other	40	EL	U	－	O	O	0	ט	0	0	0	U	0	0	0	0	O	U	U	U	U	U
8832	${ }^{87,13,000}$	Not mechancalily popopled	${ }^{5}$	NT1	${ }^{4 \%}$	4\％	4%	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	2\％	\％	\％	\％	\％	\％	\％	0\％	\％	\％	\％	\％	\％	\％
${ }^{883}$	${ }^{87,13,000}$	Other	5	NT1	4%	4%	${ }^{4 \%}$	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％	\％	\％	0\％	0\％	\％	\％	\％	\％	\％\％	\％
${ }^{834}$	${ }^{8774.10,10}$	－sados	${ }^{20}$	EL	\bigcirc	\bigcirc	\bigcirc	－	－	\bigcirc	－	\checkmark	－	\bigcirc	\bigcirc	－	\bigcirc	－	\bigcirc	0	\checkmark	\bigcirc	－	\bigcirc
8835	${ }^{8774.1020}$	－Spokes and ipples	${ }^{20}$	EL	\bigcirc	\bigcirc	\bigcirc	ט	\bigcirc	\bigcirc	－	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	ט	ט	U	－	\bigcirc
${ }^{8386}$	${ }^{88,41,090}$	－other	${ }^{20}$	EL	\bigcirc	ט	\bigcirc	0	－	\bigcirc	U	\bigcirc	U	\bigcirc	\bigcirc	\bigcirc	\bigcirc	U	\bigcirc	U	U	U	\bigcirc	U
8887	87，142，011		5	NT1	4%	4\％	4\％	3\％	3\％	2\％	2\％	\％	\％	\％	\％	\％	\％	\％\％	\％	\％	0\％	\％	0\％	\％
${ }^{8838}$	88，12，012	－Of a diameter（including tyres）exceeding 100 mm but not exceeding 250 mm ，provided that the width of any wheel or tyre fitted thereto is not less than 30 mm than 30 mm	5	NT1	4\％	4\％	4\％	3\％	3\％	2\％	2\％	\％	\％	\％	\％	\％	\％	\％	0\％	0\％	\％	0\％	\％	\％
8839	88，42，019	－Other	5	V1	${ }^{4 \%}$	4%	4\％	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％\％	\％	0\％	\％	\％	0\％	\％\％	\％	0\％	\％	0\％
${ }^{8840}$	${ }^{87,14,2,900}$	Onter	5	T1	$4{ }^{4 \%}$	4%	${ }^{4 \%}$	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％\％	\％	\％	\％	\％	\％	\％\％	\％	\％\％	\％	\％	\％	\％
${ }^{884}$	${ }^{88,149,110}$		${ }^{10}$	${ }^{\text {EL }}$	0	\bigcirc	－	\checkmark	\bigcirc	\bigcirc	ט	\bigcirc	U	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\checkmark	\checkmark	ט	U	\bigcirc
3842	88，49，191	Pars Sof fors	10	EL	U	\bigcirc	U	\bigcirc	U	0	0	－	U	\bigcirc	\bigcirc	\bigcirc	\bigcirc	U	\bigcirc	\bigcirc	U	U	U	0
${ }^{884}$	${ }^{87,149,199}$	Ohner	10	EL	\bigcirc	\bigcirc	\bigcirc	0	\bigcirc	\bigcirc	－	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	U	U	U	\bigcirc	\bigcirc
8844	${ }^{88,149,210}$	\cdots For bicyles of stubeading 8712.00 .20	10	EL	U	U	U	U	0	ט	，	0	0	0	0	0	U	U	0	U	U	U	U	\bigcirc
${ }^{8845}$	${ }^{88,149,290}$	－－Other	10	EL	U	\bigcirc	0	\bigcirc	\bigcirc	\bigcirc	U	\bigcirc	\bigcirc	，	，	－	\bigcirc	\bigcirc	\bigcirc	U	U	\bigcirc	－	，
8886	${ }^{87,44,310}$	\cdots For bicy cles of stubheading 8712.00 .20	10	st	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	${ }^{8} \%$	${ }^{7}$	6\％	5\％	4%	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{1 \%}$	\％\％	0\％	\％	\％
8887	87，49，390	－Other	10	st	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	8%	${ }^{7} \%$	6\％	5\％	4\％	3\％	${ }^{2 \%}$	1\％	0\％	\％	\％	\％
8888	${ }^{8,749,410}$		10	st	10\％	0\％	10\％	10\％	10\％	10\％	10\％	10\％	${ }^{8 \%}$	${ }^{7 \%}$	6\％	5\％	${ }^{4 / 8}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{1 \%}$	\％	\％	\％	\％
8849	${ }^{87,14,490}$	－omer	10	st	10\％	10\％	10\％	0\％	0\％	10\％	10\％	10\％	${ }^{8 \%}$	${ }^{7 \%}$	6\％	5\％	4\％	3\％	${ }^{2 \%}$	${ }^{1 \%}$	\％	\％	\％	\％
8850	${ }^{8,74,5,510}$		10	st	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	${ }_{8} \%$	${ }^{7} \%$	6\％	5\％	4%	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{1 \%}$	\％	\％	\％	\％
3851	${ }^{87,49,590}$	－other	10	st	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	${ }^{8 \%}$	${ }^{7} \%$	6\％	${ }^{5 \%}$	$4{ }^{4}$	3\％	${ }^{2 \%}$	${ }^{1 \%}$	\％	\％	\％	\％
8852	${ }^{8,7,149,610}$	\cdots For bicyles of stubeading 871200.20	10	sL	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	8\％	7\％	6\％	5\％	4%	3\％	${ }^{2 \%}$	1\％	\％\％	0\％	0\％	0\％
${ }^{8853}$	${ }^{88,149,990}$	Onher	10	st	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	${ }^{8 \%}$	${ }^{7 \%}$	6\％	5\％	4%	3\％	${ }^{2 \%}$	1\％	\％\％	\％	\％	0\％
${ }^{8854}$	87，49，911	Handle bars，pillars，mudguards，reflectors， carriers，control cables，lamp brackets or bracket lugs；other accessories	10	st	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	${ }^{8 \%}$	${ }^{7} \%$	6\％	5\％	4%	3\％	${ }^{2 \%}$	1\％	0\％	\％	0\％	0\％
${ }^{8855}$	88，14，9，912	\cdots	10	st	10\％	10\％	${ }^{10 \%}$	10\％	10\％	10\％	10%	10\％	8%	${ }^{7 \%}$	6\％	5\％	4\％	3\％	2\％	1\％	\％	0\％	\％\％	0\％
${ }^{8856}$	${ }^{887,49,991}$	Handle bars，pillars，mudguards，reflectors， carriers，control cables，lamp brackets or bracket lugs；other accessories	10	st	${ }^{10 \%}$	${ }^{10 \%}$	${ }^{10 \%}$	${ }^{10 \%}$	10\％	${ }^{10 \%}$	${ }^{10 \%}$	${ }^{10 \%}$	${ }^{8 \%}$	${ }^{7 \%}$	6\％	${ }^{5 \%}$	4%	3\％	${ }^{2 \%}$	${ }^{1 \%}$	0\％	\％	\％	0\％
${ }^{8857}$	887，49，992	Chain weeses and cranks onere pats	10	st	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	8\％	${ }^{7} \%$	6\％	5\％	4\％	3\％	2\％	1\％	0\％	0\％	0\％	0\％
${ }^{8858}$	${ }^{8,150,000}$	Baby carrigese and parts theroot．	${ }^{10}$	st	10\％	10\％	10\％	${ }^{10 \%}$	${ }^{10 \%}$	10\％	10\％	10\％	${ }^{8 \%}$	${ }^{7 \%}$	6\％	5\％	4%	3\％	${ }^{2 \%}$	1\％	0\％	0\％	0\％	\％
8859	88，61，000	－Trailers and semi－trailers of the caravan type，for housing or camping	10	st	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	${ }^{8 \%}$	${ }^{7 \%}$	6\％	${ }^{5 \%}$	4%	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{1 \%}$	\％	\％	\％	\％
1880	88，12，000	－Self－loading or self－unloading trailers and semi－ trailers for agricultural purposes	10	NT2	${ }^{9 \%}$	${ }^{9}$	${ }^{8 \%}$	${ }^{8 \%}$	6\％	6\％	5\％	5\％	4%	${ }^{4 \%}$	${ }^{3 \%}$	3\％	${ }^{2 \%}$	${ }^{2 \%}$	0\％	\％	0\％	\％	\％	\％
8861	${ }^{87,16,100}$		10	st	10\％	10\％	10\％	10\％	${ }^{10 \%}$	10\％	10\％	10\％	${ }_{8 \%}$	${ }^{7 \%}$	6\％	5\％	4%	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{1 \%}$	\％\％	\％	\％	\％
8862	${ }^{88,163,940}$	\cdots	${ }^{10}$	st	10\％	10\％	10\％	10\％	${ }^{10 \%}$	10\％	10\％	10\％	${ }^{8 \%}$	${ }^{7} \%$	6\％	5\％	$4{ }^{4 \%}$	3\％	${ }^{2 \%}$	${ }^{1 \%}$	0\％	0\％	0\％	0\％
${ }^{8863}$	87，66，991		10	sL	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	${ }^{8}$	${ }^{7 \%}$	6\％	5\％	4\％	3\％	${ }^{2 \%}$	${ }^{1 \%}$	\％	\％	0\％	\％
${ }^{8864}$	${ }^{87,16,9,999}$	\cdots Other	10	st	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	${ }^{8 \%}$	${ }^{7 \%}$	6\％	${ }^{5 \%}$	${ }^{4 \%}$	3\％	${ }^{2 \%}$	1\％	\％\％	0\％	\％	\％
${ }^{8865}$	${ }^{88,164,000}$	Oher tralers and semitralales	10	sL	${ }^{10 \%}$	10\％	10\％	10\％	${ }^{10 \%}$	10\％	10\％	10\％	${ }^{8 \%}$	${ }^{7 \%}$	6\％	5\％	4%	3\％	${ }^{2 \%}$	${ }^{1 \%}$	\％\％	0\％	\％	0\％
${ }^{8866}$	88，168，010	－Carts and wagons，sack trucks，hand trolleys and similar hand－propelled vehicles of a kind used in factories or workshops，except wheelbarrows	10	HSL	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％
8887	${ }^{87,18,020}$	－Wheelarows	10	${ }^{\text {Hst }}$	${ }^{10 \%}$	10\％	${ }^{10 \%}$	${ }^{10 \%}$	10\％	10\％	10\％	10\％	10\％	10\％	${ }^{10 \%}$	10\％	${ }^{10 \%}$	${ }^{10 \%}$	${ }^{10 \%}$	10\％	10\％	${ }^{10 \%}$	10\％	${ }^{10 \%}$
${ }^{8868}$	${ }^{87,168,090}$	－other	${ }^{10}$	${ }^{\text {HSL }}$	${ }^{10 \%}$	10\％	${ }^{10 \%}$	${ }^{10 \%}$	${ }^{10 \%}$	${ }^{10 \%}$	${ }^{10 \%}$	${ }^{10 \%}$	${ }^{10 \%}$	${ }^{10 \%}$	${ }^{10 \%}$	${ }^{10 \%}$	${ }^{10 \%}$	${ }^{10 \%}$	${ }^{10 \%}$	${ }^{10 \%}$	${ }^{10 \%}$	${ }^{10 \%}$	${ }^{10 \%}$	0\％
8889	${ }^{87,169,013}$	${ }^{- \text {For goods of stibheading } 8716.20}$	${ }^{10}$	st	${ }^{10 \%}$	10\％	10\％	10\％	10\％	${ }^{10 \%}$	10\％	10\％	8%	${ }^{7 \%}$	6\％	5\％	${ }^{4 \%}$	3\％	${ }^{2 \%}$	1\％	0\％	0\％	0\％	0\％
8870	${ }^{87,169,019}$	Oher	10	sL	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	${ }_{8 \%}$	${ }^{7 \%}$	${ }^{6 \%}$	${ }^{5 \%}$	${ }^{4 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	1\％	\％\％	\％	\％	\％
${ }^{8871}$	88，69，092	\cdots Castors，of a diameter（including tyres） exceeding 100 mm but not more than 250 mm provided the width of the wheel or tyre fited thereto is more than 30 mm	10	st	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	8\％	7\％	6\％	5\％	4\％	3\％	${ }^{2 \%}$	1\％	0\％	0\％	0\％	\％
8872	88，16，093	\cdots－Oner	10	s	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	${ }_{8 \%}$	${ }^{7} \%$	6\％	5\％	4%	${ }^{3 \%}$	${ }^{2 \%}$	1\％	\％\％	\％	\％	\％
8873	${ }^{88,169,094}$	Sopoke and nippes	10	sL	10\％	10%	10%	10%	10%	10%	10%	10%	${ }^{8 \%}$	${ }^{7} \%$	6\％	5\％	4%	3\％	2%	1\％	\％\％	0\％	\％	0\％

88	$87,169.05$	\cdots Castors，for goods of subheading 8716.80 .90 of a diameter（includiding tyres）exceeding 100 mm but not more than 250 mm provided the width of the wheee or tyre fitted thereto is more than 30 mm	10	sL	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	8\％	\％	6\％	5\％	4\％	3\％	2\％	\％	\％	0\％	0\％	\％
8875	88，16，096	－Onher casois	10	st	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	8%	${ }^{7}$	6\％	5\％	${ }^{4 \%}$	3\％	2\％	1\％	0\％	\％	\％	0\％
8876	87，69，099	\cdots Oner	10	st	10\％	10\％	10\％	10\％	10\％	0\％	10\％	10\％	${ }^{8 \%}$	7\％	6\％	5\％	4%	${ }^{3 \%}$	${ }^{2 \%}$	－	${ }^{\circ}$	\％	\％	0\％
8877	88，01，000	Balloons and dirigibles；gliders，hang gliders	10	EL	\bigcirc	－	\bigcirc	\checkmark	${ }^{\circ}$	U	－	U	\checkmark	\bigcirc	\bigcirc	\checkmark	\checkmark	－	U	U	U	U	ט	\checkmark
8878	38，021，100	－－Ot a undeden weght rote exceeding 2．000 kg	10	${ }^{\text {EL }}$	，	，	－	U	U	，	U	U	U	，	0	U	U	U	U	U	U	U	U	U
8879	${ }^{88,02,200}$	－Ot a unlader weigh exceeding 2.000 kg	10	${ }^{\text {EL }}$	ט	0	U	U	U	U	U	U	U	U	U	U	U	－	U	U	U	U	，	0
8880	88，02，010	－Aeropanes	10	EL	\bigcirc	－	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	ט	ט	ט	U	ט	U	U	\bigcirc	U	\bigcirc	U	U	\bigcirc
${ }^{8881}$	88，02， 090	－oner	10	EL	ט	\bigcirc	\bigcirc	－	U	\bigcirc	U	U	\bigcirc	\bigcirc	ט	－	\bigcirc	\bigcirc	\bigcirc	U	\bigcirc	U	U	U
8882	88，02，010	－Aeropanes	10	EL	0	0	¢	O	U	0	O	¢	－	0	0	O	O	0	O	0	0	O	－	\bigcirc
883	88，02，${ }^{\text {a }}$ O	－－oner	10	EL	\bigcirc	\bigcirc	\bigcirc	U	U	\bigcirc	U	¢	\bigcirc	－	\bigcirc	U	\bigcirc	\bigcirc	U	U	U	\bigcirc	U	\bigcirc
${ }_{8884}$	88，024，010	－Aeropanes	10	EL	O	O	U	\bigcirc	0	0	U	U	O	O	0	O	O	U	O	U	U	0	U	U
8885	88，024，090	－oner	10	EL	U	0	U	U	U	0	U	U	U	U	U	U	U	U	U	U	U	U	U	U
8886	8，026，000	－Spacecraft（including satellitits）and suborbital and spacecraft launch vehicles	10	${ }_{\text {EL }}$	U	U	U	－	U	U	＂	U	－	－	U	\bigcirc	U	＂	＂	U	U	U	${ }^{\circ}$	U
${ }^{8887}$	88，31，000	－Poopelies and diotos and parts theeot	10	EL	\bigcirc	ט	－	U	U	\bigcirc	U	U	U	U	\bigcirc	ט	ט	\bigcirc	U	0	0	\bigcirc	\bigcirc	\bigcirc
${ }^{8888}$	88，03，2000	－Undercaraiges and pants theoef	10	EL	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	U	U	－	0	\bigcirc
8889	88，03，000	－Oner pears of eaeropanes or ericiopelers	${ }^{10}$	EL	\checkmark	\checkmark	\bigcirc	\checkmark	U	\checkmark	\checkmark	－	－	\checkmark	－	ט	\checkmark	U	\checkmark	U	ט	U	\checkmark	\bigcirc
58	88，03，010	－orteeocommuniaions satelies	10	EL	\bigcirc	\bigcirc	\bigcirc	\bigcirc	U	0	U	0	\bigcirc	0	0	U	U	0	\bigcirc	U	U	U	U	U
8891	88，03，020	－Of talionon，Ifiders orkites	10	EL	U	0	U	U	0	0	U	U	－	0	0	O	0	0	U	U	0	U	0	－
8892	88，039，900	－Onter	10	EL	\checkmark	\bigcirc	U	U	0	0	\checkmark	U	0	U	\bigcirc	U	U	U	U	U	U	U	U	\cup
889	88，040，010	－Rooochuses and pars fereof	10	sL	10\％	\％	\％	10\％	\％	\％	10\％	10\％	${ }^{8 \%}$	\％	${ }^{6 \%}$	5\％	${ }^{4 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	1\％	\％	\％	\％	\％
889	88，04，090	－Onter	10	sL	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	${ }^{8} \%$	7\％	6\％	5\％	4\％	${ }^{3} \%$	${ }^{2 \%}$	1\％	\％	\％	\％	\％
${ }^{8995}$	88，051，000	Aircraft launching gear and parts thereof；deck－ arrestor or similar gear and parts thereof	10	EL	${ }^{0}$	${ }^{\circ}$	${ }^{\circ}$	${ }^{\circ}$	${ }^{\circ}$	${ }^{\circ}$	${ }^{\circ}$	${ }^{0}$	－	U	0	0	0	0	－	${ }^{\circ}$	${ }^{0}$	${ }^{\circ}$	${ }^{\circ}$	\bigcirc
8896	$88.052,100$	－Ar combat simulats and parst hereof	10	EL	\bigcirc	\bigcirc	U	\bigcirc	U	U	U	\bigcirc	\bigcirc	\bigcirc	\bigcirc	－	U	\square	\bigcirc	U	\bigcirc	U	ט	ט
${ }^{8897}$	${ }^{88,05,929}$	－Ground lying tainels	10	EL	0	0	0	U	0	0	0	0	0	0	0	0	0	0	U	0	U	－	\bigcirc	0
${ }^{8898}$	${ }^{88,052,990}$	－－Other	10	El	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	U	ט	\bigcirc	\bigcirc	\bigcirc	ט	\bigcirc	\bigcirc	\bigcirc	U	U	ט	\bigcirc	\bigcirc
889	${ }^{8001.10 .10}$	\cdots Of a goss tomage notexeeding 26	10	st	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	${ }^{8 \%}$	7\％	6\％	5\％	4\％	3\％	${ }^{2 \%}$	${ }^{1 \%}$	\％	\％	\％	\％
8900	8001．10，20	- Of a gross tonnage exceeding 26 but not exceeding 500	${ }^{10}$	${ }^{\text {sL }}$	10\％	10\％	10\％	0\％	\％	10\％	10\％	10\％	8\％	${ }^{7 \%}$	6\％	5\％	${ }^{4 \%}$	3\％	${ }^{2 \%}$	${ }^{1 \%}$	0\％	\％	\％	\％
8901	89，01， 060	- Of a gross tomnage exceeding 500 but not exceeding 1,000	10	sL	10\％	10\％	10\％	${ }^{10 \%}$	${ }^{10 \%}$	${ }^{10 \%}$	10\％	${ }^{10 \%}$	${ }^{\text {\％}}$	${ }^{7}$	6\％	${ }^{5 \%}$	${ }^{4 \%}$	3\％	${ }^{2 \%}$	1\％	\％	\％	\％	0\％
8902	8，01，070	$\begin{aligned} & \text { - - Of a gross tonnage exceeding } 1,000 \text { but not } \\ & \text { exceeding } 4,000 \end{aligned}$	${ }^{10}$	${ }^{\text {sL }}$	10\％	${ }^{10 \%}$	\％	${ }^{10 \%}$	${ }^{10 \%}$	${ }^{10 \%}$	${ }^{10 \%}$	${ }^{10 \%}$	${ }^{8 \%}$	${ }^{7 \%}$	6\％	5\％	${ }^{4 \%}$	3\％	${ }^{2 \%}$	${ }^{1 \%}$	\％	\％	\％	0\％
8903	8，011，080	－Of a gross tonnage exceeding 4，000 but not exceeding 5,000	10	${ }^{\text {sL }}$	10\％	10\％	\％	${ }^{10 \%}$	10\％	10\％	10\％	10%	${ }^{8 \%}$	${ }^{7}$	6\％	${ }^{5 \%}$	4\％	3\％	${ }^{2 \%}$	1\％	0\％	0\％	\％	\％
${ }^{2904}$	39，011，090		${ }^{10}$	sL	0\％	10\％	10\％	\％\％	10\％	10\％	10\％	10\％	${ }^{8 \%}$	${ }^{7} \%$	${ }^{6 \%}$	${ }^{5 \%}$	${ }^{4 \%}$	${ }^{3 \%}$	${ }^{20}$	1\％	\％\％	\％	\％	\％
905	39，012，050	－Of a gross tomage note exeeding 5，000	10	st	10\％	10\％	10\％	10\％	10\％	0\％	10\％	10\％	8\％	\％	6\％	${ }^{5 \%}$	${ }^{4 \%}$	3\％	${ }^{2 \%}$	1\％	\％	\％	\％	\％
\cdots	89，012，070	－Of a gross tonnage exceeding 5,000 but not	${ }^{10}$	sL	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	8\％	7\％	6\％	5\％	4\％	3\％	${ }^{2 \%}$	1\％	0\％	\％	\％	\％
8907	8，012，080	－－Of agoss tomage exceeding 50，00	10	st	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	${ }^{8} \%$	${ }^{7}$	6\％	5\％	4\％	3\％	2%	1\％	\％\％	\％	\％	0\％
8908	${ }^{89,013,550}$	－Of a goss tomage notexceeding 5 5，000	10	st	10\％	10\％	${ }^{10 \%}$	${ }^{10 \%}$	10\％	10\％	10\％	10\％	8\％	7\％	\％	5\％	4%	${ }^{3 \%}$	${ }^{2 \%}$	1\％	\％	\％	0\％	\％
8909	8，01，070	$\begin{array}{\|l} - \text {-Of a aross tonnage exceeding } 5,000 \text { but not } \\ \text { exceeding } 50,000 \\ \hline \end{array}$	${ }^{10}$	sL	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	${ }^{8} \%$	7\％	6\％	5\％	4\％	3\％	${ }^{2 \%}$	1\％	\％	\％	\％\％	\％
8910	89，01，080	－Ot a goss tomage exceeding 50,000	10	sL	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	8\％	\％	6\％	5\％	4%	3\％	2\％	1\％	0\％	0\％	0\％	0\％
${ }^{2911}$	${ }^{89,019,011}$	\cdots Ofa gross tomage note exeesing 26	${ }^{10}$	st	10\％	10\％	${ }^{10 \%}$	${ }^{10 \%}$	10\％	10%	10\％	10\％	${ }^{8 \%}$	\％	6\％	5\％	4%	${ }^{3 \%}$	${ }^{2 \%}$	1\％	\％	\％	\％	\％
8912	89，01，012	Of a gross tonnage exceeding 26 but not	10	${ }^{\text {sL }}$	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	${ }^{8 \%}$	7\％	6\％	5\％	4%	3\％	${ }^{2 \%}$	1\％	\％\％	\％	\％	0\％
${ }^{2913}$	${ }^{89,019,014}$		10	st	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	8%	7\％	6\％	5\％	${ }^{4 \%}$	3\％	${ }^{2 \%}$	${ }^{1 \%}$	\％	\％	\％	0\％
8914	89，01，031	－Of a goss tomage note exeesing 26	10	sL	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	${ }^{8} \%$	7\％	${ }^{6 \%}$	${ }^{5 \%}$	4%	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{1 \%}$	\％	\％	\％	\％
8915	89，01，032	$\begin{array}{\|l\|l\|} \hline \text { exceed afross } 500 \\ \hline \text { ennage exceeding } 26 \text { but not } \\ \hline \end{array}$	${ }^{10}$	sL	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	8%	7\％	6\％	${ }^{5 \%}$	${ }^{4 \%}$	3\％	${ }^{2 \%}$	${ }^{1 \%}$	\％	\％	\％	0\％
8916	89，019，033		10	${ }^{\text {sL }}$	10\％	0\％	10\％	0\％	\％	10\％	10\％	10\％	${ }^{8 \%}$	${ }^{7 \%}$	6\％	${ }^{5 \%}$	${ }^{4 \%}$	3\％	2\％	${ }^{1 \%}$	\％	0\％	\％	\％
897	39，019，034	－Of a gross tonnage exceeding 1,000 but not	10	${ }^{\text {sL }}$	10\％	10\％	0\％	0\％	10\％	10\％	10\％	10\％	${ }^{8 \%}$	${ }^{7} \%$	${ }^{6 \%}$	${ }^{5 \%}$	${ }^{4 \%}$	3\％	${ }^{2 \%}$	${ }^{1 \%}$	\％	\％	0\％	\％
8918	3，0，19，035	$\begin{aligned} & \text { - - Of a gross tonnage exceeding } 4,000 \text { but not } \\ & \text { exceeding } 5,000 \\ & \hline \end{aligned}$	${ }^{10}$	st	0\％	10%	\％	10\％	10\％	10\％	10\％	10\％	${ }^{8 \%}$	${ }^{7 \%}$	\％	${ }^{5 \%}$	${ }^{4 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{106}$	\％	0\％	\％	${ }^{0 \%}$
89	3，0，19，036	$-\cdots$ Of a gross tonnage exceeding 5,000 but not exceeding 50,000	10	${ }^{\text {sL }}$	10\％	${ }^{10 \%}$	\％	10\％	${ }^{10 \%}$	${ }^{10 \%}$	${ }^{10 \%}$	${ }^{10 \%}$	${ }^{8 \%}$	7\％	${ }^{6 \%}$	${ }^{5 \%}$	${ }^{4 \%}$	3\％	${ }^{2 \%}$	${ }^{1 \%}$	\％	\％\％	\％	${ }^{\circ} \%$
8920	${ }^{89,019,0,077}$		${ }^{10}$	sL	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	8%	${ }^{7} \%$	6\％	5\％	$4{ }^{4 \%}$	3\％	${ }^{2 \%}$	1\％	0\％	0\％	0\％	0\％
892	89，02，021	－－Of a goss tomage notexeesing 26	10	st	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	${ }^{8 \%}$	\％	6\％	5\％	4%	3\％	2\％	1\％	\％	\％	0\％	0\％
892	89，020，022	－Of a goss Ommage exceeding 26 but ess than 4	${ }^{10}$	st	10\％	10\％	10\％	10\％	10\％	${ }^{10 \%}$	10\％	10\％	8%	\％	6\％	5\％	4%	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{1 \%}$	\％	\％	0\％	\％
8923	20，023	－Of a gross tonnage of 40 or more but not exceeding 250	10	${ }^{\text {sL }}$	10\％	10\％	0\％	\％ 0	0\％	\％	10%	10\％	${ }^{8 \%}$	${ }^{\text {\％\％}}$	6\％	5\％	${ }^{4 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{1 \%}$	0\％	\％	\％	0\％
892	20，024		10	st	${ }^{10 \%}$	10\％	10\％	${ }^{10 \%}$	10\％	10\％	10\％	10\％	8%	${ }^{\text {\％\％}}$	6\％	5\％	4%	3\％	${ }^{2 \%}$	${ }^{1 \%}$	\％	\％	\％	\％
8925	30，020，025	$\begin{aligned} & \text {-Of afrosst tonnage exceeding } 1,000 \text { but not } \\ & \text { exceeding } 4,000 \end{aligned}$	10	st	10\％	10\％	\％	\％\％	10\％	10\％	${ }^{10 \%}$	${ }^{10 \%}$	${ }^{8 \%}$	${ }^{7 \%}$	6\％	${ }^{5 \%}$	${ }^{4 \%}$	3\％	${ }^{2 \%}$	${ }^{1 \%}$	0\％	\％	\％	\％
${ }^{922}$	${ }^{89,020,026}$	－－OTa gross tomage exceeding 4，000	10	sL	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	${ }^{8 \%}$	\％	6\％	5\％	4%	${ }^{3 \%}$	${ }^{2 \%}$	1\％	\％\％	\％	\％	\％
${ }^{827}$	8，020，091	－－Of a gross tomage notexeeseding 26	10	sL	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	${ }^{8} \%$	7\％	${ }^{6 \%}$	5\％	4\％	${ }^{3 \%}$	${ }^{2 \%}$	1\％	\％	\％	\％	\％
${ }^{28}$	20，092	Of a gros tomage exceeding 26 but Itess than 40	10	sL	10\％	10\％	${ }^{10 \%}$	${ }^{10 \%}$	10\％	${ }^{10 \%}$	10\％	${ }^{10 \%}$	${ }^{8 \%}$	7\％	6\％	${ }^{5 \%}$	${ }^{46 \%}$	3\％	${ }^{2 \%}$	1\％	\％	\％	\％	0\％
892	8，020，03	－Of a gross tonnage of 40 or more but not exceeding 250	10	${ }^{\text {sL }}$	\％\％	10\％	10\％	10\％	10\％	10%	${ }^{10 \%}$	10\％	8\％	7\％	6\％	${ }^{5 \%}$	${ }^{4 \%}$	${ }^{3}$	${ }^{2 \%}$	1\％	\％	\％	\％	0\％
8930	$88,020,04$	－Of a gross tonnage exceeding 250 but not exceeding 1,000	10	sL	0\％	10\％	109\％	${ }^{10 \%}$	10\％	10\％	10\％	10\％	${ }^{8 \%}$	${ }^{7} \%$	6\％	${ }^{5 \%}$	${ }^{4 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{1 \%}$	\％	\％	\％	\％
${ }^{\text {8931 }}$	88，02，095	－Of a gross tonnage exceeding 1，000 but not	${ }^{10}$	${ }^{\text {sL }}$	0\％	0\％	10\％	10\％	10\％	10\％	10\％	10\％	${ }^{8 \%}$	${ }^{7 \%}$	6\％	${ }^{5 \%}$	${ }^{4 \%}$	3\％	${ }^{2 \%}$	${ }^{1 \%}$	\％	\％	\％	0\％
8932	89，020，096		10	st	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	8\％	7\％	6\％	5\％	4%	3\％	2\％	1\％	\％\％	0\％	\％	\％
${ }^{2933}$	89，03，，000	－mlatable	10	st	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	8\％	7\％	6\％	5\％	4\％	${ }^{3 \%}$	2\％	1\％	\％	\％	\％	0\％
${ }^{2934}$	${ }^{8,03,100}$	－Saiboals，witho r without axixiay motor	10	st	10\％	10\％	${ }^{10 \%}$	${ }^{10 \%}$	${ }^{10 \%}$	10\％	10\％	10\％	${ }^{8 \%}$	${ }^{7} \%$	${ }^{6 \%}$	${ }^{5 \%}$	${ }^{4 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{1 \%}$	\％	\％	\％	\％
8935	8，03，200	－Molotooats，other than outboad motoboals	10	st	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	8\％	7\％	6\％	5\％	4\％	3\％	${ }^{2 \%}$	1\％	\％	\％	\％	0\％
${ }^{8936}$	30，039，900	－Oner	10	st	10\％	10\％	10\％	${ }^{10 \%}$	10\％	10\％	10\％	10\％	${ }^{8 \%}$	\％	${ }^{6 \%}$	${ }^{5 \%}$	4%	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{+18}$	\％\％	\％	\％	\％
${ }^{9337}$	${ }^{89,040,010}$	－Ot a goss tomage note exeesing 26	10	st	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	${ }^{8 \%}$	\％	6\％	5\％	4%	3\％	2\％	1\％	0\％	\％	0\％	0\％
${ }^{2938}$	80，04，031	－Ofa power not exceeding 4，000 hp	10	st	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	${ }^{8} \%$	\％	6\％	5\％	4%	3\％	2\％	1\％	0\％	\％	\％	\％
8939	8，000，039	－OMer	10	st	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	${ }^{8 \%}$	7\％	6\％	5\％	4\％	${ }^{\text {\％}}$	${ }^{2 \%}$	1\％	\％	\％	\％	\％\％
${ }^{2940}$	${ }^{8,0,51,000}$	－Dreagers	${ }^{10}$	st	${ }^{10 \%}$	10\％	${ }^{10 \%}$	${ }^{10 \%}$	10\％	${ }^{10 \%}$	${ }^{10 \%}$	10\％	8\％	7\％	6\％	5\％	4\％	${ }^{\text {3\％}}$	${ }^{2 \%}$	${ }^{1 \%}$	\％	\％	\％\％	0\％
8891	89，052，000	Floating or submersible drilling or production platforms	10	sL	10%	10\％	10\％	\％\％	10\％	10\％	10\％	10%	8\％	7\％	6\％	5\％	4\％	3\％	${ }^{2 \%}$	${ }^{1 \%}$	0\％	\％	\％	\％
${ }^{3942}$	${ }^{89,05,0010}$	－FFoaing docks	${ }^{10}$	st	10\％	10\％	${ }^{10 \%}$	10\％	10\％	10\％	10\％	10\％	8\％	\％	6\％	5\％	4%	3\％	2\％	1\％	0\％	0\％	0\％	0\％
${ }^{894}$	8，05，900	－Oner	10	st	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	${ }_{8 \%}$	\％	6\％	5\％	$4{ }^{4 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{\text {1\％}}$	\％	\％	\％	\％
${ }^{894}$	${ }^{89,06,000}$	Wastips	${ }^{10}$	st	10\％	10\％	${ }^{10 \%}$	${ }^{10 \%}$	10\％	10\％	10\％	10\％	${ }^{8 \%}$	\％	6\％	5\％	$4{ }^{4 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	1\％	0\％	0\％	0\％	0\％
${ }^{894}$	39，069，010	－Of a aispacement note xceeding 30 t	${ }^{10}$	st	10\％	10%	10\％	${ }^{10 \%}$	10\％	10\％	10\％	${ }^{10 \%}$	8\％	${ }^{7 \%}$	\％\％	5\％	4%	${ }^{3 \%}$	${ }^{2 \%}$	1\％	0\％	\％	\％	\％
${ }^{8946}$	89，069，020	$\begin{array}{\|l} - \text { Of a displacement exceeding } 30 \text { t but not } \\ \hline \text { exxceeding } 300 \mathrm{t} \\ \hline \end{array}$	10	sL	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	${ }^{8} \%$	7\％	6\％	${ }^{5 \%}$	${ }^{4 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{1 \%}$	\％	\％	\％	\％
${ }^{894}$	${ }^{8,0969,090}$	－－oter	10	sL	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	8\％	7\％	6\％	5\％	4\％	3\％	2\％	1\％	\％	0\％	0\％	0\％
${ }^{8948}$	${ }^{8,071,000}$	－－rilatabe rats	10	st	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	${ }^{8} \%$	\％	${ }^{6 \%}$	5\％	4\％	${ }^{3 \%}$	${ }^{2 \%}$	1\％	\％	\％	\％	\％
8949	8，079，010	${ }^{- \text {Buoys }}$	10	st	10\％	10\％	${ }^{10 \%}$	10\％	10\％	10\％	10\％	10\％	${ }^{8 \%}$	7\％	6\％	5\％	4\％	${ }^{\text {\％}}$	${ }^{2 \%}$	${ }^{1 \%}$	\％	\％	\％	\％\％
${ }^{8950}$	${ }^{89,079,090}$	Other	10	st	10\％	10\％	${ }^{10 \%}$	${ }^{10 \%}$	10\％	10\％	10\％	${ }^{10 \%}$	8\％	7\％	6\％	5\％	${ }^{4 \%}$	${ }^{\text {\％\％}}$	${ }^{2 \%}$	${ }^{1 \%}$	\％	\％	\％\％	0\％
${ }^{2951}$	89，08，000	Vessels and other floating structures for breaking up．	10	st	10\％	10\％	10\％	\％\％	10\％	10\％	10\％	10\％	${ }^{8 \%}$	${ }^{7 \%}$	6\％	5\％	4\％	3\％	${ }^{2 \%}$	${ }^{1 \%}$	0\％	\％	\％	\％
8952	${ }^{\text {20001．10．10 }}$	－For telecommuncaioins and other eleetrical use	${ }^{5}$	NT1	4\％	${ }^{4 \%}$	${ }^{4 \%}$	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	0\％	0\％	0\％	\％	0\％	\％	\％	\％	\％	0\％	\％	\％	\％
${ }^{2953}$	${ }^{90,011,090}$	－－oner	${ }^{5}$	NT1	${ }^{4 \%}$	$4{ }^{46}$	$4{ }^{4 \%}$	3\％	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	0\％	0\％	0\％	0\％	\％\％	\％	0\％	\％	\％\％	0\％	\％	0\％	0\％
895	90，012，000	Sheels and plates of polirising material	5	NT1	${ }^{4 \%}$	${ }^{4 \%}$	${ }^{4 \%}$	${ }^{3 \%}$	3\％	${ }^{2 \%}$	${ }^{2} \%$	0\％	\％	\％	\％	0\％	\％	\％	\％	0\％	0\％	0\％	\％	\％

（ラオス）

${ }^{8955}$	${ }^{\text {0，0，01，000 }}$	Conacalerses	5	NT1	4\％	4\％	4\％	3\％	3\％	2\％	${ }^{2 \%}$	0\％	\％	0\％	0\％	0\％	\％	0\％	0\％	0\％	0\％	\％\％	\％	
${ }^{2956}$	90，04，000	－Spectacele ereses of flass	5	NT1	4\％	4\％	4\％	3\％	3\％	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％
${ }^{2957}$	90，05，000	－Spectacele lenses of other maierals	5	NT1	$4{ }^{46}$	${ }^{4 \%}$	${ }^{4 \%}$	${ }^{3 \%}$	${ }^{3 \%}$	2\％	${ }^{2 \%}$	0\％	\％	\％	\％	\％	0\％	\％	\％	\％	0\％	\％	\％	0\％
${ }^{2958}$	90，01，0010	－For photographic or c cinematographic cameras or	5	T1	${ }^{4 \%}$	4%	${ }^{4 \%}$	3\％	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	0\％	\％	\％	\％	\％	\％	\％\％	\％	\％	\％	0\％	\％	\％\％
8959	90，09，900	－－other	5	N1	${ }^{4 \%}$	${ }^{4 \%}$	$4{ }^{4 \%}$	3\％	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	0\％	\％	0\％	\％	0\％	0\％	0\％	0\％	0\％	\％	\％\％	\％	0\％
8860	2002．11．10	For cinemaiographic projectors	5	NT1	4\％	4\％	4\％	3\％	3\％	2\％	2\％	0\％	\％	0\％	\％	\％	\％	0\％	\％	\％	\％	\％	\％	\％
${ }^{2961}$	90，021，190	－omer	5	N1	4%	4%	4\％	3\％	3\％	2%	${ }^{2 \%}$	0\％	\％	0\％	0\％	\％	\％	\％	0\％	\％\％	\％	\％	\％	\％
8962	${ }^{90,021,900}$	Other	5	N1	4%	4\％	${ }^{4 \%}$	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％\％	\％	\％	\％\％	\％\％	\％	0\％	\％	\％	\％	\％	\％	\％\％
${ }^{63}$	${ }^{0,02,020}$	－For cinemaiogapicic pojecoios	5	V1	$4{ }^{4 \%}$	$4{ }^{4 \%}$	$4{ }^{4 \%}$	${ }^{3 \%}$	${ }^{3 \%}$	2\％	2\％	0\％	\％	\％	0\％	\％\％	\％	\％	\％	0\％	\％	\％	\％	\％\％
894	00，022，020	- For cinematographic cameras，photographic cameras and other projectors	${ }^{5}$	NT1	4%	${ }^{4 \%}$	${ }^{4 \%}$	3\％	${ }^{3} \%$	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％	0\％	\％	\％	\％	${ }^{0 \%}$	\％	\％\％	\％	\％\％	${ }^{0 \%}$
${ }^{2965}$	90，02， 3030	${ }^{-}$Fortiessorose or micosocopes	5	V1	${ }^{4 \%}$	4%	${ }^{4 \%}$	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	0\％	\％\％	0\％	0\％	\％	\％	\％	\％	\％	\％	0\％
${ }^{9866}$	${ }^{90,022,090}$	－－other	5	NT1	4\％	4\％	4%	${ }^{3 \%}$	3\％	2\％	${ }^{2 \%}$	0\％	0\％	0\％	0\％	0\％	\％	0\％	0\％	\％\％	\％\％	0\％	0\％	0\％
${ }^{8967}$	90，02，020	－For cinematogaphic procecours	5	NT1	4%	4%	4%	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	0\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％\％	0\％	\％
${ }^{988}$	90，029，030	－For cinematographic cameras，photographic cameras and other projectors	5	T1	4\％	4\％	$4{ }^{46}$	3\％	3\％	${ }^{2 \%}$	${ }^{2 \%}$	\％\％	\％	\％	\％	\％	0\％	\％	0\％	0\％	\％	\％	\％	0\％
8969	90，02，900	－－omer	5	V1	4%	${ }^{4 \%}$	4\％	3\％	3\％	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％	0\％	\％	\％	\％	0\％	0\％	\％	\％	\％	0\％
8970	${ }^{0,037,100}$	－or pasatis	10	${ }^{\text {st }}$	10\％	10\％	10\％	0\％	10\％	10\％	10\％	10\％	${ }^{8 \%}$	${ }^{7 \%}$	6\％	${ }^{5 \%}$	${ }^{4 \%}$	3\％	${ }^{2 \%}$	1\％	\％	\％	\％	\％
8971	00，031，900	－ototerematerals	10	st	0\％	10\％	0\％	0\％	10\％	10\％	10\％	10\％	8\％	${ }^{7 \%}$	6\％	5\％	4\％	3\％	2%	1\％	\％	\％	\％	\％
8972	90，039，000	－Pats	10	st	\％\％	0\％	0\％	\％\％	10\％	10\％	10\％	10\％	${ }^{8 \%}$	7%	${ }^{6} \%$	5\％	${ }^{4 \%}$	3\％	${ }^{2 \%}$	${ }^{1 \%}$	\％	0\％	\％	\％
${ }^{2973}$	90，04，，000	－Sungasses	10	st	10\％	10\％	\％\％	\％\％	10\％	10\％	10\％	10\％	${ }^{8 \%}$	${ }^{7}$	6\％	${ }^{5 \%}$	${ }^{4 / 8}$	3\％	${ }^{2 \%}$	1\％	0\％	\％	0\％	\％
8974	90，04，010	－Corective speataces	5	V1	4%	${ }^{4 \%}$	4\％	3\％	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	0\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	0\％
8975	${ }^{\text {90，04，950 }}$	－Protedive $\operatorname{soggles}$	5	V1	4\％	4\％	4%	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	0\％
8976	90，049，990	－－other	5	V1	4\％	4\％	4%	3\％	3\％	2\％	2\％	0\％	0\％	0\％	\％	\％	0\％	0\％	0\％	0\％	0\％	0\％	0\％	\％
8977	00，05，000	－Binoculars	0	st	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	${ }^{8 \%}$	${ }^{7}$	6\％	${ }^{5 \%}$	4%	3\％	2%	${ }^{1 \% 6}$	0\％	0\％	\％	\％
8978	90，05，0010	－－Astronomical instruments，excluding instruments for radio－astronomy	10	sL	10\％	10\％	10\％	\％\％	10\％	10\％	10\％	10\％	${ }^{8 \%}$	7\％	6\％	5\％	${ }^{4 \%}$	3\％	2%	1\％	\％	\％\％	\％	0\％
8979	90，05，090	－－omer	10	st	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	8\％	${ }^{7 \%}$	6\％	${ }^{5 \%}$	${ }^{4 / 8}$	3\％	${ }^{2 \%}$	1\％	\％	\％	\％	\％
2880	${ }^{00,05,0,010}$	For astronomical instruments，excluding	10	st	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	${ }^{8 \%}$	${ }^{7 \%}$	6\％	5\％	${ }^{4 \%}$	3\％	${ }^{2 \%}$	1\％	\％	\％	\％\％	\％
${ }^{2981}$	90，059，90	－Oother	10	st	0\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	8\％	${ }^{7 \%}$	6\％	5\％	${ }^{4 \%}$	3\％	2\％	1\％	\％	0\％	\％	\％
3892	${ }^{\text {90066．10．10 }}$	- Lasere pootopotaters	10	${ }^{\text {sL }}$	10\％	10\％	0\％	0\％	10\％	10\％	10\％	\％\％	8\％	${ }^{7 \%}$	6\％	5\％	${ }^{4 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	1\％	\％	\％	\％	\％
${ }^{2983}$	90，061，090	－Onter	10	st	10\％	10\％	10\％	10\％	10\％	\％	10\％	10\％	${ }^{8 \%}$	${ }^{\text {\％}}$	6\％	${ }^{5 \%}$	${ }^{4 \%}$	3\％	${ }^{2 \%}$	${ }^{1 \%}$	0\％	0\％	\％	\％\％
288	90，06， 000	－Cameras specially designed for underwater use， for aerial suvvey or formedicico or surgical examination of internal organs；comparison cameras for forensic or criminological purposes	10	st	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	${ }^{8 \%}$	7\％	6\％	5\％	4\％	${ }^{3 \%}$	2\％	\％	\％	\％\％	0\％	\％\％
${ }^{8985}$	00，06，000	－ －nsantr pint cameras	10	st	10\％	10\％	10\％	0\％	10\％	10\％	10\％	10\％	8\％	7\％	6\％	5\％	${ }^{4 \%}$	3\％	2%	${ }^{1 \%}$	\％	\％	0\％	\％
${ }^{2986}$	00，065，100		${ }^{10}$	${ }^{\text {st }}$	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	${ }^{8 \%}$	${ }^{7 \%}$	6\％	5\％	4\％	3\％	$2{ }^{2 \%}$	1\％	\％	\％	\％	\％
${ }^{988}$	${ }^{90,065,200}$	－－Other，for rolltim of a width hess than 35 mm	10	st	10\％	10\％	\％\％	0\％	10\％	10\％	10\％	\％\％	${ }^{8 \%}$	${ }^{7 \%}$	6\％	${ }^{5 \%}$	4\％	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{10 \%}$	0\％	\％$\%$	0\％	\％\％
${ }^{2988}$	00，06，5，300	－Onter，for roll fim of a width of 3 mm	10		10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	${ }^{8 \%}$	${ }^{7 \%}$	6\％	5\％	${ }^{4 \%}$	3\％	2%	1\％	0\％	\％	\％	\％
8889	${ }^{0,0.065,910}$	－－－Laser photoplotters or image setters with a raster image processor	10	sL	10\％	10\％	0\％	10\％	10\％	10\％	10\％	10\％	${ }^{8 \%}$	${ }^{7 \%}$	6\％	5\％	${ }^{4 \%}$	3\％	${ }^{2 \%}$	${ }^{1 \%}$	\％	\％	\％	\％\％
8990	${ }^{90,06,990}$	‥－omer	10	${ }^{\text {sL }}$	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	${ }^{8 \%}$	${ }^{7}$	6\％	${ }_{5 \%}$	${ }^{4 \%}$	${ }^{3 \%}$	2\％	${ }^{1 \%}$	0\％	0\％	0\％	0\％
${ }^{2991}$	${ }^{90,066,100}$	- －Discharge lamp（＂electronic＂） flashlight apparatus	10	${ }^{\text {sL }}$	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	${ }^{8 \%}$	7%	6\％	${ }^{5 \%}$	${ }^{4 \%}$	3\％	${ }^{2 \%}$	1\％	0\％	\％	\％	\％
8992	00，06，900	－OMmer	10	st	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	${ }^{8}$	${ }^{7 \%}$	6\％	5\％	4\％	3\％	2\％	1\％	\％	0\％	\％	\％
${ }^{893}$	90，099，110	－．．．For laser photopoploters of subheading	10	${ }^{\text {sL }}$	10\％	10\％	10\％	0\％	10\％	10\％	10\％	10\％	8\％	7\％	6\％	5\％	4\％	3\％	2%	1\％	\％	\％	\％	\％
899	90，069，130	\cdots Other．for cameras of subheadings	10	${ }^{\text {s．}}$	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	${ }^{8 \%}$	${ }^{7 \%}$	6\％	${ }^{5 \%}$	${ }^{46}$	${ }^{3}$	${ }^{2 \%}$	${ }^{1 \%}$	\％	\％	0\％	\％
8995	${ }^{0.069,190}$	\cdots	10	${ }^{\text {sL }}$	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	${ }^{8 \%}$	${ }^{7} \%$	6\％	5\％	${ }^{4 \%}$	3\％	${ }^{2 \%}$	1\％	\％	\％	0\％	\％
${ }^{2996}$	${ }^{\text {0，0，06，910 }}$	\cdots	10	${ }^{\text {sL }}$	10\％	10\％	10\％	\％	10\％	10\％	10\％	10\％	${ }^{8 \%}$	${ }^{7 \%}$	${ }^{6 \%}$	${ }^{5 \%}$	${ }^{4 \%}$	3\％	${ }^{2 \%}$	1\％	\％	\％	\％	\％
${ }^{2997}$	90，06，990	Other	10	st	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	${ }^{8}$	${ }^{7}$	6\％	5\％	$4{ }^{4 \%}$	3\％	2\％	${ }^{1 \%}$	\％	\％	\％	\％
8998	00，07，000	－Cameas	10	st	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	8\％	${ }^{7 \%}$	6\％	5\％	4%	3\％	2\％	1\％	\％	0\％	\％	\％
8999	${ }^{90,072,010}$	－－Forifim of less han 16 mmin wath	10	st	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	${ }^{8 \%}$	${ }^{7 \%}$	6\％	${ }^{5 \%}$	${ }^{4 \%}$	3\％	${ }^{2 \%}$	1\％	\％	\％	\％	0\％
9000	${ }^{90,02,090}$	－Onter	10	st	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	8\％	${ }^{7} \%$	6\％	5\％	4%	3\％	${ }^{2 \%}$	${ }^{1 \%}$	\％	\％\％	0\％	\％
9001	${ }^{90,09,900}$	${ }^{- \text {－For cameas }}$	10	st	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	${ }^{8 \%}$	${ }^{7}$	6\％	${ }^{5 \%}$	$4{ }^{4}$	3\％	${ }^{2 \%}$	${ }^{1 \%}$	\％\％	0\％	\％	${ }^{\circ}$
5002	00，07，200	－Forpoijecoros	10	st	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	${ }^{8 \%}$	${ }^{7 \%}$	6\％	5\％	${ }^{4 \%}$	3\％	2%	1\％	\％	\％	\％	0\％
9003	90，085，010	－Microfilm，microfiche or other microform readers， whethe or not capable of producing copies	10	sL	10\％	10\％	10\％	\％\％	10\％	10\％	10\％	10\％	${ }^{8 \%}$	7%	6\％	5\％	${ }^{4 \%}$	3\％	2%	1\％	0\％	\％	0\％	\％
9504	90，05， 090	－other	10	sL	${ }^{10 \%}$	10%	10\％	${ }^{10 \%}$	10\％	10\％	10\％	10\％	8\％	7\％	6\％	${ }^{5 \%}$	4%	${ }^{3}$	${ }^{2 \%}$	1\％	\％	\％	\％	\％\％
5005	00，08，020	－－Of photographic（other than cinematographic）	10	sL	10\％	10\％	10\％	10\％	10\％	\％\％	\％\％	10\％	${ }^{8 \%}$	${ }^{\text {7\％}}$	6\％	${ }^{5 \%}$	${ }^{4 \%}$	3\％	${ }^{2 \%}$	${ }^{1 \%}$	0\％	\％	\％	\％
5006	90，089，090	－－Oter	10	${ }^{\text {sL }}$	10\％	0\％	0\％	0\％	10\％	0\％	10\％	10\％	${ }^{8 \%}$	7\％	6\％	5\％	${ }^{4 / 6}$	3\％	${ }^{2 \%}$	${ }^{1 \%}$	0\％	0\％	\％	0\％
	20，010，000		5	NT1	4\％	4\％	4\％	3\％	3\％	2\％	2%	\％	0\％	\％	\％	\％	\％	\％\％	0\％	\％	0\％	\％	\％	0\％
2008	90，10，0010		10	st	0\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	8\％	7\％	6\％	5\％	4\％	3\％	2\％	1\％	0\％	\％\％	0\％	0\％
2009	90，05，900	－other	10	st	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	8\％	7\％	6\％	${ }^{5 \%}$	$4{ }^{4}$	3\％	${ }^{2 \%}$	${ }^{1 \%}$	\％	\％	\％	\％
9010	90，00，010	Or 300 inches or mole	10	st	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	8\％	${ }^{7} \%$	6\％	5\％	4%	3\％	2%	1\％	0\％	0\％	0\％	\％
9011	90，00，900	－Oner	10	st	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	${ }^{8 \%}$	${ }^{7}$	6\％	5\％	${ }^{4 \%}$	3\％	2%	1\％	\％\％	0\％	0\％	\％
9012	${ }^{00,10,0,010}$	－Of goods of stubeading 9010．10 or 9010.60	5	V1	4\％	4%	4\％	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％	\％	0\％	\％	0\％	\％	\％	\％\％	\％	\％	\％
${ }^{2013}$	90，109，030	- Parts and accessories of apparatus for the projection or drawing of circuit patterns on sensitized substrates of the manufacture of printed circuit boardsprpinted wiring boards	5	NT1	4\％	4\％	4\％	3\％	${ }^{3 \%}$	2\％	2\％	\％\％	\％	0\％	\％	0\％	\％	\％	\％	0\％	0\％	\％	\％	\％
9014	00，10，0，90	－other	5	T1	4\％	4\％	4\％	3\％	3\％	2\％	2\％	0\％	\％	0\％	0\％	\％	0\％	\％	0\％	0\％	0\％	0\％	\％	\％
20015	${ }^{00,111,000}$	－Sterosocopic micosocopes	5	T1	4%	4%	4%	${ }^{3 \%}$	${ }^{3 \%}$	2%	${ }^{2 \%}$	0\％	\％	0\％	0\％	0\％	\％\％	0\％	\％	\％\％	\％	0\％	\％	0\％
9016	90，112，000	Other microscopes，for photomicrography， cinephotomicrography or microprojection	5	${ }^{\text {NT1 }}$	4\％	${ }^{4 \%}$	$4{ }^{4 \%}$	3\％	3\％	2\％	${ }^{2 \%}$	0\％	\％\％	0\％	\％\％	0\％	\％	0\％	0\％	0\％	\％\％	\％	\％	0\％
9017	90，118，000	－Other micosocopes	5	NT1	4\％	${ }^{4 \%}$	4\％	${ }^{3 \%}$	3\％	${ }^{2 \%}$	${ }^{2 \%}$	0\％	\％	\％	0\％	\％	0\％	\％	\％	0\％	\％\％	\％	0\％	\％
9018	90，119，000	－Pats and acoessories	5	NT1	4%	4\％	4%	${ }^{3 \%}$	${ }^{3 \%}$	2\％	2\％	0\％	0\％	0\％	\％	\％	0\％	\％	0\％	0\％	\％	0\％	0\％	0\％
2019	00，121，000	$\begin{array}{\|l} \hline \begin{array}{l} \text { - Microscopes other than optical microscopes; } \\ \text { diffraction apparatus } \end{array} \\ \hline \end{array}$	${ }^{5}$	T1	4%	4\％	4\％	${ }^{3 \%}$	${ }^{3 \%}$	2\％	${ }^{2 \%}$	\％	\％	\％	\％	\％	\％	\％	0\％	\％	\％	0\％	\％	\％
9020	90，129，000	－Parts and acessories	5	NT1	4\％	4\％	4\％	3\％	${ }^{3 \%}$	2%	${ }^{2 \%}$	\％\％	0\％	\％\％	\％\％	0\％	0\％	0\％	0\％	\％\％	\％	\％\％	0\％	\％
929	90，13，000	－Telescopic sights for fiting to arms；periscopes； telescopeses designed to form parts of machines， appliances，instruments or apparatus of this Chapter or Section XVI	5	NT1	4\％	4\％	4\％	${ }^{3 \%}$	${ }^{3 \%}$	2\％	2\％	\％\％	0\％	0\％	\％\％	0\％	\％	\％	0\％	\％	\％	\％\％	0\％	\％
0022	90，132，000	－Lasers，other than lasereriodes	5	NT1	4%	4\％	4\％	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	2\％	0\％	\％	0\％	\％	0\％	\％	0\％	0\％	0\％	\％	0\％	0\％	\％
9023	90，13，010	－－Optical error verification and repair apparatus for printed circuit boards／printed wiring boards and printed circuit assemblies	${ }_{5}$	NT1	4\％	4\％	${ }^{4 \%}$	3\％	3\％	2\％	${ }^{2 \%}$	0\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％\％
9024	90，18，0，20	－LLquid cossald devices	5	NT1	4\％	4\％	4\％	${ }^{3 \%}$	3\％	${ }^{2 \%}$	${ }^{2 \%}$	0\％	\％	0\％	\％	\％	\％	\％	\％	\％\％	\％	\％	\％	\％
025	00，18，090	－other	5	NT1	4\％	4\％	4\％	3\％	3\％	2\％	${ }^{2 \%}$	0\％	0\％	0\％	0\％	\％	\％	\％	0\％	0\％	\％	\％	\％	0\％
9206	90，13，0010	－Of goods fo stuheading 9013.20	5	NT1	4%	4%	4%	3\％	3\％	2%	2%	0\％	\％	0\％	\％	0\％	\％	0\％	\％	0\％	0\％	\％	\％	\％\％
9027	${ }^{00,13,950}$	－Of goods of stubeading 9013，80，20	5	V1	4%	${ }^{4 \%}$	$4{ }^{4 \%}$	${ }^{3} \%$	3\％	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％
9028	${ }^{90,13,090}$	－Ot goods of stubeading 9013． 80.10	5	NT1	4\％	4\％	4\％	${ }^{3 \%}$	3\％	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	0\％	0\％	0\％	0\％	\％	\％	\％	0\％	\％	\％	\％
9202	90，13，9090	－Oner	5	NT1	4%	4%	4\％	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	0\％	\％	\％	\％	\％	0\％	\％	\％	\％	\％	\％\％	\％	0\％
9030	00，14，000	onf fining compasses	5	${ }^{\text {N11 }}$	4%	4%	$4{ }^{4 \%}$	3\％	${ }^{3 \%}$	${ }^{2 \%}$	2\％	0\％	\％	\％	\％	\％	\％	\％	0\％	0\％	\％	\％	\％	\％

P031	142，000	I－	5	NT1	${ }^{4 \%}$	${ }^{4 \%}$	${ }^{4 \%}$	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	0\％	\％	0\％	\％	0\％	0\％	0\％	\％	0\％	\％	\％	${ }^{\circ}$	
2032	010	－Of a kind used on ships，incorporating or working in coniunction with an automatic data processing machine	5	N1	${ }^{4 \%}$	${ }^{4 \%}$	${ }^{4 \%}$	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	0\％	\％	\％	\％	0\％	0\％	\％	\％	0\％	\％	\％	\％
903	90， 488,090	－．other	5	T1	${ }^{4 \%}$	4%	446	3\％	${ }^{3 \%}$	2\％	${ }^{2 \%}$	\％	0\％	0\％	\％	0\％	0\％	0\％	\％\％	\％	0\％	0\％	0\％	\％
9034	90， 499,10	- Of instruments and apparatus，of a kind used on ships， processing ming mach conine	5	NT1	4\％	4%	4\％	3\％	3\％	${ }^{2 \%}$	${ }^{2 \%}$	\％	0\％	0\％	0\％	0\％	\％	\％	\％	\％	\％	\％	\％	\％
9035	90，149，90	－Oner	5	T1	$4{ }^{4 \%}$	4%	4%	3\％	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	0\％	0\％	0\％	0\％	0\％	0\％	0\％	0\％	\％	0\％	0\％	\％	\％\％
9036	9095.10 .10	Of a kind used in phoogagaphy ocrinemalogaphy	5	NT1	4\％	4\％	4\％	3\％	3\％	2\％	${ }^{2 \%}$	0\％	\％	\％	\％	0\％	\％\％	\％	\％	\％	0\％	\％	0\％	\％
${ }^{9037}$	90， $51,0,00$	Oher	5	V1	${ }^{4 \%}$	4%	${ }^{4 \%}$	${ }^{3 \%}$	3\％	${ }^{2 \%}$	${ }^{2 \%}$	0\％	0\％	\％	0\％	0\％	\％	\％	\％	\％	\％	\％	\％	\％
2038	90，152，000	－Theodoles and tatymeters（acheometes）	5	v1	${ }^{4 \%}$	${ }^{4 \%}$	${ }^{4 \%}$	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	0\％	0\％	\％	\％\％	0\％	0\％	0\％	\％	0\％	0\％	\％	\％	\％
9039	90，153，000	－Levels	5	NT1	${ }^{4 \%}$	${ }^{4 \%}$	$4{ }^{46}$	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	2\％	0\％	\％	0\％	0\％	0\％	0\％	0\％	0\％	0\％	\％	\％	\％	\％\％
9040	90，154，000	－Photogrammetrical surveying instruments and appiainces	5	N1	${ }^{4 \%}$	$4{ }^{4 \%}$	${ }^{46}$	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	0\％	0\％	0\％	0\％	0\％	0\％	0\％	0\％	0\％	\％	\％	\％	0\％
9041	${ }^{90,158,010}$	－－Raiososone and rado wind appataus	5	T1	${ }^{4 \%}$	4\％	${ }^{4 \%}$	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	0\％	0\％	0\％	0\％	\％	0\％	0\％	\％	0\％	0\％	0\％	0\％	0\％
9042	90，158，90	－Other	5	vi1	4\％	4\％	4\％	${ }^{3 \%}$	3\％	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％	\％	\％	\％	\％	\％	0\％	\％	\％	\％	\％
${ }^{2043}$	90，159，000	Parts and accossories	5	NT1	$4{ }^{4 \%}$	4%	4%	3\％	3\％	${ }^{2 \%}$	${ }^{2 \%}$	0\％	\％	\％	0\％	\％	\％	\％	\％	\％	\％	\％	\％	\％\％
9094	$90,60,000$	Balances of a sensitivity of 5 cg or better，with or without weights．	5	NT1	4%	4\％	4\％	${ }^{3} \%$	3\％	${ }^{2 \%}$	${ }^{2 \%}$	\％	0\％	0\％	0\％	0\％	\％	\％	\％	0\％	\％	\％	\％	0\％
9045	${ }^{\text {9017．0．0．10 }}$	－－Poters	5	N1	${ }^{4 \%}$	${ }^{4 \%}$	${ }^{4 \%}$	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	0\％	\％	0\％	0\％	0\％	0\％	0\％	\％	\％	0\％	0\％	0\％	0\％
9046	${ }^{90,771,090}$	Other	5	NT1	4%	4%	4%	${ }^{3 \%}$	3\％	${ }^{2 \%}$	${ }^{2 \%}$	\％\％	\％	\％	0\％	\％	\％	\％	\％	\％	\％	\％	0\％	\％
9047	${ }^{90,172,010}$	－Ruers	5	NT1	4%	4\％	4%	${ }^{3 \%}$	3\％	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％	0\％	\％	\％	\％	\％	\％	0\％	\％	\％	\％
9048	90， 172,330		${ }^{5}$	NT1	${ }^{4 \%}$	4\％	4\％	3\％	${ }^{3 \%}$	2\％	${ }^{2 \%}$	0\％	\％	\％	\％	\％\％	\％	\％	\％	\％	\％\％	\％	\％	\％
5049	90，772，40	- Photoplotters for the manufacture of printed circcit boards／printed wiring boards	5	NT1	$4{ }^{4 \%}$	4%	$4{ }^{4 \%}$	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	0\％	0\％	\％	\％	0\％	0\％	\％	\％	0\％	0\％	\％	\％
2050	${ }^{90,172,0,50}$	－Onter poteres	${ }^{5}$	NT1	${ }^{4 \%}$	4\％	${ }^{4 / 8}$	3\％	3\％	${ }^{2 \%}$	${ }^{2 \%}$	0\％	0\％	0\％	\％	0\％	0\％	0\％	\％	\％	0\％	0\％	\％	\％
9051	90，172，900	－other	5	v1	4%	4%	4%	3\％	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	0\％	\％	\％	\％	\％	0\％	\％	0\％	\％	\％	\％	\％
9052	90， 173,000	Micomeieis，calieres and gaves	5	v1	${ }^{46}$	4%	4%	3\％	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％	0\％	0\％	0\％	\％	\％	\％	\％	\％	\％	\％
${ }^{2053}$	90，178，000	Onter instumens	5	NT1	${ }^{4 \%}$	4\％	4\％	3\％	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	0\％	\％	0\％	\％	\％	\％	\％	0\％	0\％	\％	\％
9054	90，179，20		5	NT1	4\％	4\％	4\％	3\％	3\％	2\％	2%	0\％	\％	0\％	0\％	\％\％	0\％	\％	\％	\％	\％\％	0\％	\％	\％
2055	90，179，30	- －Parts and accessories of photopoloters for the mantuactur of printed circuit boardspronted w wing boords	${ }^{5}$	N1	4%	4\％	4%	${ }^{3 \%}$	3\％	2\％	2\％	\％\％	\％\％	\％\％	0\％	\％	0\％	\％	\％	0\％	\％	\％	\％	\％
9056	90，179，040	－－Parts and accessories，including printed circuit assemblies，of other plotters	${ }^{5}$	NT1	4\％	4\％	4\％	3\％	3\％	${ }^{2 \%}$	2\％	\％	\％	0\％	\％	0\％	\％	\％	\％	0\％	\％	\％	\％	\％
${ }^{2057}$	${ }^{90,179,900}$	－Other	5	NT1	4\％	4\％	4\％	${ }^{3 \%}$	3\％	2\％	${ }^{2 \%}$	\％	\％	\％	\％	\％\％	\％	\％	\％	\％	\％	\％	0\％	0\％
9058	90，81，100	－Eecrococariogapans	5	N1	4\％	4\％	4\％	3\％	3\％	2%	${ }^{2 \%}$	\％	\％\％	0\％	\％	\％\％	\％	\％\％	\％	0\％	\％	\％	\％	0\％
9059	90，81，200	Utrasonic scaming apparats	5	NT1	4%	$4{ }^{4 \%}$	$4{ }^{46}$	${ }^{3 \%}$	${ }^{3 \%}$	2%	${ }^{2 \%}$	0\％	\％	\％	0\％	\％	\％	\％	\％	0\％	\％	0\％	\％	0\％
9060	${ }^{90,181,300}$	－Magneicic esonanei imaging apparatus	5	NT1	$4{ }^{4 \%}$	${ }^{4 \%}$	$4{ }^{4 \%}$	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％\％	\％\％	0\％	\％	\％	\％	\％	0\％	\％	\％	\％	\％
9061	90，18，4，00	Scinigapicic apparatus	5	${ }^{\text {N11 }}$	4%	4%	$4{ }^{4 \%}$	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	0\％	\％	0\％	0\％	\％	\％	\％	\％	\％	\％	\％	\％	\％
9062	90，181，900	－other	5	NT1	4%	4\％	4%	3\％	3\％	2\％	2\％	\％	\％	\％	0\％	0\％	0\％	\％	\％	\％	0\％	\％	\％	0\％
9063	90，182，000	Ulta volote or infareed ray apparaus	5	NT1	4\％	4%	4%	3\％	3\％	2%	${ }^{2 \%}$	\％	0\％	\％	\％	0\％	\％\％	\％	\％	\％	\％	\％	0\％	0\％
2064	90， 883,10	${ }^{\text {Disposale syinges }}$	5	T1	$4{ }^{4 \%}$	${ }^{4 \%}$	${ }^{4 \%}$	${ }^{3 \%}$	3\％	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	0\％	\％	0\％
2065	${ }^{90,183,190}$	－Other	5	T1	$4{ }^{4 \%}$	4%	4%	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	0\％	0\％	\％	\％	\％	0\％	\％	0\％	0\％	0\％	\％	0\％
2066	${ }^{0,18,18,200}$	－Tiuluar meal neodiles and nea	5	V1	${ }^{4 / 6}$	$4{ }^{4 \%}$	4%	3\％	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％	0\％	\％\％	\％	\％	\％	\％	0\％	\％	\％	\％\％
9067	90，183，910	－Catales	5	NT1	4%	4\％	4%	${ }^{3} \%$	3\％	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％	\％	\％\％	\％	\％	\％	\％	\％	\％	\％	\％
9068	90，183，900	Onher	5	NT1	4%	4%	4\％	${ }^{3 \%}$	3\％	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％	0\％	\％	\％	\％	\％	\％	\％	\％	\％	\％\％
9069	${ }^{90,184,100}$	－Dental drill engines，whether or not combined on a single base with other dental equipment	5	NT1	4\％	4\％	4%	3\％	${ }^{3} \%$	${ }^{2 \%}$	2\％	\％	0\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％
2970	${ }^{90,184,900}$	－Other	${ }^{5}$	NT1	4%	4\％	$4{ }^{4}$	${ }^{3 \%}$	3\％	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％\％	\％	0\％	\％	\％	\％	\％	0\％	\％	\％	\％	\％
9071	90，85，000	Oner ophnhamimi istuments and appliances	5	NT1	4%	4%	4%	${ }^{3 \%}$	3\％	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％	0\％	\％	\％	\％	\％	\％	0\％	\％	\％	\％
9072	90，189，20	－Intavenous asministaioio sels	5	${ }^{\text {NT1 }}$	4%	4\％	4%	${ }^{3 \%}$	3\％	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％
9073	90，189，30	－Electronic istrumens and appliances	5	NT1	4%	4%	4%	${ }^{3 \%}$	3\％	${ }^{2 \%}$	2\％	\％	\％	0\％	\％	\％\％	\％	\％	\％	\％	\％	\％	\％	\％
9074	90，189，90	－oner	5	N1	4\％	4%	4%	3\％	3\％	${ }^{2 \%}$	${ }^{2 \%}$	\％	0\％	0\％	\％	\％	\％	0\％	\％	0\％	0\％	\％	0\％	\％
9075	9019：00．10	－Eeatronic	5	N1	${ }^{4 / 8}$	4%	4%	3\％	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	0\％	\％	\％	\％\％	\％	\％	\％	\％	\％	\％	\％	\％
9076	90，091，90	Onher	5	N1	${ }^{4 \%}$	4%	4%	3\％	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	0\％	0\％	0\％	\％	0\％	0\％	\％	\％	0\％	0\％	0\％	\％	0\％
9077	90，122，000	－Ozone therapy，oxygen therapy，aerosol therapy， artificial respiration or other therapeutic respiration apparatus	5	NT1	4%	4\％	4\％	${ }^{3 \%}$	3\％	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％	\％	\％	\％	0\％	\％	\％	\％	\％	\％	\％
2078	00，20，000	Other breathing appliances and gas masks， excluding protective masks having neither mechanical parts nor replaceable filters．	${ }^{5}$	NT1	4%	4\％	4\％	3\％	3\％	2\％	2\％	\％	\％	\％	0\％	\％	\％	\％	\％	0\％	\％	\％	\％	\％\％
9079	90，211，000	－oftropadico oftracture appliances	5	NT1	4%	4\％	4%	${ }^{3 \%}$	3\％	2\％	2\％	0\％	\％	\％	0\％	\％	\％	\％	\％	0\％	\％	\％	\％	\％
2080	${ }^{90,212,100}$	Aftificil teenh	5	N1	4%	4%	4\％	3\％	3\％	2\％	2\％	0\％	0\％	0\％	\％	0\％	0\％	0\％	\％	0\％	\％	0\％	0\％	0\％
9081	90，212，900	－Other	5	NT1	${ }^{4 \%}$	4%	4%	${ }^{3 \%}$	3\％	${ }^{2 \%}$	2\％	\％\％	\％	0\％	\％	0\％	\％	\％	\％	0\％	\％	\％\％	\％	0\％
2082	${ }^{90,213,100}$	AAfiticaljoins	${ }^{5}$	NT1	4%	4%	4%	${ }^{3 \%}$	${ }^{3} \%$	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％\％	\％\％	0\％	\％\％	\％	\％	\％	0\％	\％	\％	\％	\％
2083	90，213，900	－Other	5	NT1	4\％	4\％	4\％	3\％	3\％	2\％	2\％	\％	\％	0\％	\％	\％	\％	0\％	\％	\％	\％	\％	\％	\％
2084	90，214，000	－Heaing ans，excluding parts and accessories	${ }^{5}$	N1	${ }^{4 \%}$	4%	4%	3\％	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	0\％	\％	\％	\％	0\％	\％	\％	0\％	0\％	\％	\％
9085	90，215，000	Pacemakers for stimulating heart muscles， excluding parts and accessories	5	N1	${ }_{4}$	${ }^{4 \%}$	${ }^{4 \%}$	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	0\％	\％\％	\％	\％	0\％	\％	\％	0\％	\％	\％	\％	\％	0\％
9086	90，219，000	－other	5	N1	4\％	4\％	4%	3\％	3\％	2\％	${ }^{2 \%}$	0\％	\％	\％	\％	0\％	\％\％	\％	\％	\％	\％	\％	0\％	\％
${ }^{2087}$	${ }^{90,221,200}$	－Computed tomogaphy apparaus	5	NT1	4%	4%	$4{ }^{46}$	3\％	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％
2088	${ }^{90,221,300}$	Other，Ifromenal uses	5	NT1	$4{ }^{4 \%}$	4%	4%	${ }^{3 \%}$	3\％	${ }^{2 \%}$	2\％	0\％	0\％	\％	\％	\％	\％	\％	\％	\％	0\％	0\％	\％	\％
008	${ }^{0,2221,400}$	－Onerer tor medical，sugical orveterinay Lses	5	NT1	${ }^{4 \%}$	4\％	4%	3\％	3\％	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％	0\％	\％\％	\％	\％	\％\％	\％	0\％	\％	0\％	\％
2090	90，221，90	- X－ray apparatus for the physical inspection of solder joints an printed circuit board／printed wiring board assemblies	5	NT1	4\％	$4{ }^{4 \%}$	4\％	3\％	3\％	2\％	${ }^{2 \%}$	0\％	0\％	\％	\％	0\％	0\％	0\％	\％	0\％	\％	\％	\％	\％\％
2091	90，221，990	－－other	5	NT1	4\％	4%	4\％	3\％	3\％	2\％	2\％	0\％	0\％	0\％	\％	\％\％	\％\％	0\％	\％	0\％	\％\％	0\％	0\％	0\％
9092	222，100	For medalal，suggal，denala orveeterinay uses	5	NT1	${ }^{4 \%}$	4\％	${ }^{4 \%}$	3\％	${ }^{3 \%}$	${ }^{2 \%}$	2\％	\％	\％	\％	0\％	0\％	\％	\％	\％	\％	\％	\％	\％	0\％
9093	90，222，900	Forother sses	5	NT1	4\％	4\％	4\％	3\％	3\％	2\％	2\％	0\％	\％\％	0\％	0\％	0\％	0\％	0\％	\％	0\％	\％\％	\％	\％	0\％
9094	90，223，00	－－ray ubes	5	NT1	4%	4%	4\％	3\％	3\％	2\％	2\％	0\％	0\％	0\％	\％	0\％	0\％	0\％	\％	0\％	\％	0\％	0\％	0\％
2095	90，229，010	- Parts and accessories of X－ary apparatus for the physical inspection assembies	5	${ }^{\text {NT1 }}$	4\％	4\％	4\％	3\％	${ }^{3} \%$	2\％	${ }^{2 \%}$	0\％	0\％	0\％	\％	\％	\％	\％	\％	0\％	\％	\％	\％	\％
2096	0，29，090	－Other	${ }^{5}$	NT1	4%	4\％	4%	3\％	3\％	${ }^{2 \%}$	2\％	\％	\％\％	0\％	0\％	\％	\％	\％\％	\％	0\％	\％	\％	\％	\％
${ }^{2097}$	90，230，000	Instruments，apparatus and models，designed for demonstrational purposes for example，in education or exhibitions），unsuitable for other uses．	5	NT1	4\％	4\％	4\％	3\％	${ }^{3} \%$	2\％	2\％	\％	\％	\％	\％	\％	0\％	\％	\％	\％	0\％	\％	\％	\％
2098	9024，0．10	－Electicaly operaled	5	${ }^{\text {NT1 }}$	${ }^{4 \%}$	4\％	${ }^{4 \%}$	3\％	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％\％	\％	\％	\％\％	\％	\％	\％\％	\％	\％	\％	\％	\％
2099	${ }^{\text {9024，10．20 }}$	Votecericilly operaled	5	NT1	${ }^{4 \%}$	4%	4%	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％	0\％	\％	\％	\％	\％	0\％	\％	\％	\％	\％
9100	${ }^{90,248,0,0}$	－Eecrically operated	5	V1	${ }^{4 \%}$	4%	4%	3\％	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％\％	0\％	\％\％	\％	\％\％	\％\％	\％	\％	\％	\％	\％	0\％	0\％
9101	90，248，20	－Not etecticially operated	5	NT1	$4{ }^{4 \%}$	4%	4%	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	${ }^{0}$	0\％	\％	\％	\％\％	\％	\％	\％	\％	\％	\％	0\％	\％
9102	90，29，0，010	－For electically opeated machines and appliance	5	NT1	${ }^{4 \%}$	4\％	${ }^{4 \%}$	3\％	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	${ }^{0 \%}$	0\％	\％\％	0\％	\％	\％	\％	\％	0\％	\％	\％	0\％
${ }^{9103}$	0，249，020	- For non－electrically operated machines and	${ }^{5}$	T1	${ }^{4 \%}$	${ }^{4 \%}$	4\％	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	0\％	\％	\％	0\％	0\％	0\％	0\％	0\％	0\％	0\％	\％\％	0\％	0\％
9104	90，251，100	－Liouidiflied，tor direct Peading	5	N1	4%	4\％	4\％	3\％	3\％	2\％	${ }^{2 \%}$	0\％	0\％	0\％	0\％	0\％	0\％	0\％	\％\％	0\％	\％\％	0\％	0\％	0\％
9105	${ }^{90,251,911}$	Tenperatue gavges or molor vencices	5	NT1	4%	4%	$4{ }^{46}$	${ }^{3 \%}$	3\％	2\％	${ }^{2 \%}$	0\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％
9106	90，251，999	Other	5	NT1	4%	4\％	${ }_{4} 46$	3\％	3\％	2\％	${ }^{2 \%}$	\％	\％	\％	\％	0\％	0\％	0\％	\％	\％	0\％	0\％	\％	0\％

香港•ASEAN FTAにかかる調査報告書
 別添2－4 原産地品の関税撤廃スケジュール

（ラオス）

9107	${ }^{00,251,220}$	－No etectricall opeated	5	NT1	4\％	4\％	${ }^{4 \%}$	${ }^{\text {3\％}}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	0\％	\％	\％	0\％	0\％	\％\％	\％\％	0\％	\％\％	\％	\％	\％	\％\％
9108	${ }^{90,258,020}$	－Electically pepaled	5	NT1	4\％	4\％	${ }^{4 / 8}$	3\％	${ }^{3 \%}$	${ }^{2 \%}$	2\％	\％	\％	\％	\％	\％	0\％	\％	\％	\％	\％	\％	0\％	\％
9109	90，25，030	－Note electically operaled	5	NT	4\％	${ }^{4 \%}$	${ }^{4 \%}$	3\％	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	0\％	0\％	0\％	\％	\％\％	\％\％	0\％	\％	\％	\％	0\％	\％\％
9110	90，259，010	For feecticaly operated isstumens	5	T1	4\％	$4{ }^{4 \%}$	$4{ }^{4 \%}$	3\％	3\％	${ }^{2 \%}$	${ }^{2 \%}$	\％	0\％	0\％	\％	\％	0\％	\％	0\％	0\％	0\％	0\％	\％	\％
911	90，25，020	－For ronemetectically peatied instumens	5	NT	4\％	4%	4%	${ }^{\text {3\％}}$	3\％	2\％	${ }^{2 \%}$	\％\％	\％	0\％	0\％	0\％	\％	\％	\％	\％	\％	0\％	\％	\％
9112	028．10．10	－Level gauges for motor vehicles，electrically operated	5	NT1	${ }^{4 \%}$	${ }^{4 \%}$	${ }^{4 \%}$	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	0\％	\％	0\％	0\％	0\％	0\％	\％	\％	\％	\％	\％	\％	\％
${ }^{911}$	026．10．20	－－Level gauges for motor vehicles，not electrically operated	5	NT1	4\％	4\％	${ }^{4 \%}$	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％\％	\％	\％	0\％	\％	\％	\％	\％	\％	0\％	0\％	0\％	\％
9114	${ }^{90226.10 .30}$	－OHere，eleetrically operated	5	NT1	4\％	4\％	${ }^{4 \%}$	${ }^{3 \%}$	3\％	${ }^{2 \%}$	${ }^{2 \%}$	0\％	0\％	0\％	\％	0\％	\％	0\％	0\％	\％\％	0\％	\％	\％	0\％
9115	${ }^{90,26,1,90}$	－Oner，note eletricaly operaled	5	NT1	4\％	4\％	$4{ }^{4 \%}$	3\％	3\％	${ }^{2 \%}$	2\％	0\％	0\％	0\％	0\％	0\％	0\％	\％	\％	\％\％	\％	\％	\％	\％\％
9116	62，010	Peessure eauges tor motor venicios，electicially	5	NT1	4\％	4\％	4\％	3\％	3\％	2\％	${ }^{2 \%}$	0\％	0\％	\％	\％	0\％	\％	\％	\％	\％	0\％	0\％	\％	0\％
917	2，020	－－Pressure gauges for motor vehicles，not electrically operated	5	NT1	${ }^{4 \%}$	4\％	${ }^{4 \%}$	3\％	3\％	${ }^{2 \%}$	${ }^{2} \%$	\％	0\％	0\％	0\％	\％	\％	\％	\％	0\％	\％	0\％	\％	\％
9118	${ }^{90,262,3030}$	－Other，electicialy operated	5	NT1	4\％	4\％	$4{ }^{4 \%}$	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	0\％	\％	0\％	\％	\％	0\％	\％	\％	\％	\％	\％	0\％	0\％
9119	${ }^{90,262,040}$		5	NT1	4\％	4\％	${ }^{4 \%}$	${ }^{3 \%}$	3\％	${ }^{2 \%}$	${ }^{2 \%}$	\％\％	\％	\％	\％	\％	\％	\％	\％	\％\％	0\％	\％\％	\％	\％\％
9120	${ }^{90,268,010}$	－Eeactically operated	5	NT1	4\％	4\％	${ }^{4 \%}$	${ }^{3 \%}$	3\％	${ }^{2 \%}$	2\％	\％\％	\％	\％	\％	\％	\％\％	\％\％	\％	\％\％	0\％	\％\％	\％	\％\％
9121	${ }^{90,28,0,20}$	－－－otelectically operated	5	NT1	4\％	4\％	$4{ }^{4 \%}$	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	0\％	\％
912	${ }^{90,26,0,10}$	－For electically operaled instuments and	${ }^{5}$	N1	4\％	4%	4\％	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％	\％	\％	\％	0\％	\％	\％	\％	\％	\％	\％
912	20，020	- For none lecticicaly operated instumenns and	${ }^{5}$	NT1	4\％	4\％	4\％	${ }^{3 \%}$	3\％	${ }^{2 \%}$	2\％	0\％	\％	\％	\％	\％	\％	\％	\％	\％	0\％	\％	\％	\％
919	9027．0．10	－EEctrically operaled	5	NT	4\％	4\％	${ }^{4 \%}$	${ }^{3 \%}$	3\％	${ }^{2 \%}$	2\％	0\％	0\％	\％	\％	0\％	\％\％	0\％	\％	\％	0\％	0\％	\％	\％\％
9125	${ }^{9027.10 .20}$	－Notelectriclly operaled	5	NT1	4\％	4\％	$4{ }^{4 \%}$	${ }^{3 \%}$	${ }^{3 \%}$	2%	${ }^{2 \%}$	\％	0\％	0\％	\％\％	\％	\％\％	\％	\％	\％	\％	\％	\％\％	\％
9126	${ }^{90.272 .010}$	－Electically opealed	5	NT1	4\％	4\％	$4{ }^{4 \%}$	3\％	3\％	${ }^{2 \%}$	2%	\％	\％	\％	0\％	\％	0\％	\％	\％	\％	\％	\％	0\％	\％
9127	90，272，020	Not eactricaly operated	5	NT1	4\％	4\％	4\％	${ }^{3 \%}$	3\％	2\％	${ }^{2 \%}$	0\％	\％	0\％	\％	\％	\％	\％	\％	\％	0\％	0\％	0\％	0\％
${ }^{9128}$	${ }^{90,273,010}$	－Eecricicall operaled	5	NT1	4\％	4%	${ }^{4 \%}$	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	2\％	\％\％	0\％	0\％	\％	\％	0\％	0\％	\％	\％	0\％	0\％	\％\％	\％\％
9129	90，27，，20	－No etectricaly operated	5	NT1	${ }^{4 \%}$	4\％	$4{ }^{4 \%}$	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％	\％	\％	0\％	\％	\％	0\％	\％	\％	\％	\％
9130	${ }^{90.27,0,010}$	－Electrially pepaled	5	NT1	4\％	4\％	$4{ }^{4 \%}$	${ }^{3 \%}$	${ }^{3 \%}$	2%	2\％	\％	0\％	\％	\％	\％	0\％	\％\％	\％	\％	0\％	\％	\％	\％\％
${ }^{9131}$	${ }^{90,275,020}$	－Noteectricaly operated	5	NT1	4\％	4%	$4{ }^{4 \%}$	3\％	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	0\％	\％	\％	\％	\％\％	\％	\％	\％	\％	\％	\％	\％
932	${ }^{90,278,010}$	－Eposurem meles	5	NT1	4\％	4%	$4{ }^{4 \%}$	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	0\％	\％	\％	\％\％	\％\％	\％	\％	\％	\％	\％	\％	\％
${ }^{913}$	${ }^{90,278,030}$	－Onere，electically operated	5	NT1	4\％	4\％	$4{ }^{4 \%}$	3\％	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％	\％	\％	\％\％	\％	\％	\％	\％	\％	\％	\％
$9{ }^{913}$	${ }^{90,278,040}$	Oner，noteacericaly operaled	5	NT1	4\％	4\％	4\％	3\％	3\％	2\％	${ }^{2 \%}$	0\％	\％	\％	0\％	\％	0\％	0\％	\％	\％	\％	\％	\％	0\％
${ }^{9135}$	90，279，010	－－Parts and accessories，including printed circuit assemblies for products of heading 90.27, other than for gas or smoke analysis apparatus or microtomes	5	NT1	4\％	4\％	4\％	3\％	3\％	2\％	2\％	0\％	0\％	0\％	\％	0\％	\％	0\％	0\％	0\％	0\％	0\％	\％	\％
${ }^{9136}$	${ }^{90,279,091}$	\cdots Eectically operated	5	NT1	4\％	${ }^{4 \%}$	4\％	${ }^{\text {3\％}}$	${ }^{3 \%}$	${ }^{2 \%}$	2\％	0\％	0\％	\％	0\％	\％	0\％	0\％	\％	\％	\％	\％	\％	\％
${ }^{937}$	90，27，099	－Oher	5	NT1	4\％	4\％	${ }^{4 \%}$	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％	0\％	\％	\％\％	\％	0\％	0\％	0\％	0\％	\％\％	0\％
${ }^{9138}$	${ }^{9028.10 .10}$	－Gas meters of a k knd mounted on ons con	5	N1	4\％	4\％	${ }^{4 \%}$	3\％	3\％	2\％	${ }^{2 \%}$	\％\％	\％	\％	\％	\％	\％	\％\％	\％	\％	\％	0\％	\％	0\％
9139	90，81，090	－other	5	NT1	4\％	4\％	${ }^{4 \%}$	${ }^{3 \%}$	${ }^{3 \%}$	2\％	2\％	0\％	0\％	0\％	0\％	\％	0\％	\％	\％	0\％	\％	0\％	0\％	0\％
940	${ }^{90,882,020}$	－Water meets	5	NT1	4\％	4%	$4{ }^{4 \%}$	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	0\％	\％	\％	\％\％	\％\％	\％	\％	\％	\％	\％	\％	\％
9141	${ }^{90,882,090}$	－other	5	NT1	4\％	4%	4\％	${ }^{3 \%}$	3\％	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％	0\％	\％	\％\％	\％	\％	\％	\％	\％	\％	\％
$9{ }^{914}$	${ }^{90,283,010}$	－Kilowat hour meers	5	NT1	4\％	4\％	$4{ }^{4 \%}$	${ }^{3 \%}$	3\％	2\％	${ }^{2 \%}$	\％\％	0\％	\％	\％	\％	0\％	\％	\％	\％	\％	0\％	\％\％	0\％
${ }^{9143}$	${ }^{90,28,090}$	－otner	5	NT1	4\％	4%	${ }^{4 \%}$	3\％	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％\％	\％	\％	\％	\％	0\％	\％\％	\％	\％	0\％	0\％	\％\％	\％\％
914	${ }^{90,28,0,10}$	Waler meter hosisins or bodies	5	NT1	${ }^{4 \%}$	4%	${ }^{4 \%}$	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	0\％	0\％	\％	\％	0\％	\％	\％	\％	\％	\％	\％\％	0\％	0\％
$9{ }^{9145}$	90，289，900	－other	5	NT1	4\％	4\％	4／8	3\％	${ }^{3 \%}$	2\％	2\％	\％	\％	\％	0\％	\％	\％	\％	\％	\％	\％	\％	\％	\％
9146	${ }^{9029.10 .20}$	－Taximeles	5	NT1	4\％	4\％	4%	3\％	3\％	2\％	2\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％
${ }^{9147}$	${ }^{90,29,090}$	－other	5	NT1	4\％	4%	$4{ }^{4 \%}$	3\％	3\％	${ }^{2 \%}$	2\％	\％\％	0\％	0\％	0\％	0\％	0\％	0\％	0\％	0\％	0\％	0\％	0\％	\％\％
9148	${ }^{90,292,010}$	－Speesomelest tor moior veicices	5	NT1	4\％	4\％	$4{ }^{4 \%}$	3\％	3\％	${ }^{2 \%}$	2\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％\％	\％	\％
9149	${ }^{90,292020}$	－Tachomeers tor moior veicios	5	NT1	4\％	4\％	4\％	3\％	3\％	${ }^{2 \%}$	2%	\％	\％	\％	0\％	\％	0\％	\％	\％	\％	\％	\％	\％	\％
9150	${ }^{90,292,090}$	－Oner	5	V1	${ }^{4 \%}$	4\％	${ }^{4 \%}$	${ }^{3 \%}$	3\％	${ }^{2 \%}$	${ }^{2 \%}$	\％\％	0\％	0\％	\％\％	\％	\％\％	\％\％	0\％	\％\％	0\％	0\％	\％	\％
9151	${ }^{90,299,010}$	$\begin{aligned} & \text { - - Of goods of subheading } 9029.10 \text { or of } \\ & \text { stroboscopes of subheading } 9029.20 \end{aligned}$	${ }^{5}$	V1	$4{ }^{4 \%}$	4\％	$4{ }^{4 \%}$	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	0\％	0\％	\％	0\％	0\％	\％	0\％	\％	\％	\％	0\％	\％
9152	${ }^{90,29,020}$	－Ofother soods of stubeading 9029.20		NT1	4\％	4\％	$4{ }^{4 \%}$	${ }^{3 \%}$	3\％	2\％	${ }^{2 \%}$	0\％	0\％	0\％	\％	0\％	0\％	0\％	\％	\％\％	0\％	0\％	\％	0\％
915	${ }^{90,30,000}$	$\begin{aligned} & \text { - Instruments and apparatus for measuring or } \\ & \text { detecting ionising radiations } \\ & \hline \end{aligned}$	5	NT1	4\％	4%	4\％	3\％	${ }^{3 \%}$	${ }^{2 \%}$	2\％	0\％	\％	0\％	0\％	\％	0\％	\％	\％	0\％	\％	\％	\％	0\％
9154	${ }^{9,3020,000}$	－osilloscopes and osesllogaphs	5	NT1	4\％	4\％	$4{ }^{4 \%}$	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	2\％	\％	0\％	\％	\％\％	\％	\％	\％	\％	0\％	\％	\％	0\％	\％
9155	${ }^{90,303,100}$	－Mutimetess without recording device	5	NT1	4\％	4\％	$4{ }^{4 \%}$	3\％	3\％	2\％	2\％	\％	0\％	0\％	0\％	\％	0\％	0\％	\％	0\％	0\％	0\％	0\％	\％\％
9156	${ }^{90,303,200}$	－Mutimeites with areorsing device	5	NT1	4\％	4\％	$4{ }^{4 \%}$	3\％	3\％	${ }^{2 \%}$	2\％	\％	0\％	0\％	\％	\％\％	\％\％	\％	\％	\％	\％	\％	\％	\％
9157	90，30，310		5	NT1	4\％	4\％	4\％	3\％	3\％	2\％	2\％	\％	0\％	0\％	0\％	\％	0\％	\％	\％	\％\％	\％	\％	\％	0\％
${ }^{9158}$	9，00，320	－－－Impedance－measuring instruments and apparatus designed to provide visual and／or audible warning of electrostatic discharge conditions that can damage electronic circuits；apparatus for testing electrostatic control equipment and electrostatic grounding devices／fixtures	5	NT1	4\％	4\％	4\％	3\％	3\％	2\％	2\％	\％\％	0\％	\％\％	\％	\％	0\％	0\％	\％\％	\％\％	0\％	0\％	\％\％	\％\％
9159	${ }^{90,30,3,30}$	\cdots Ammeers and volmeers tor moor venicies	5	NT1	${ }^{4 \%}$	${ }^{4 \%}$	${ }^{4 \%}$	${ }^{\text {3\％}}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％	0\％	0\％	\％	\％	\％	0\％	\％	\％	\％	\％
9160	${ }^{90,303,390}$	Oner	5	NT1	4\％	${ }^{4 \%}$	${ }^{4 \%}$	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％\％	\％	\％	\％	0\％	0\％	\％\％	\％	\％\％	\％	\％	0\％	\％
9161	${ }^{90,303,900}$	Onher，wina a ecororing device	5	NT1	${ }^{4 \%}$	${ }^{4 \%}$	4%	${ }^{3 \%}$	${ }^{3}$	${ }^{2 \%}$	${ }^{2 \%}$	0\％	0\％	\％	\％	0\％	0\％	0\％	0\％	\％\％	0\％	0\％	\％\％	0\％
9162	90，304，000	－Other instruments and apparatus，specially designed for telecommunications（for example， cross－talk meters，gain measuring instruments， distortion factor meters，psophometers）	5	NT1	4\％	4\％	4\％	3\％	3\％	2\％	2%	\％\％	0\％	0\％	\％	\％	\％	\％\％	\％	\％\％	\％	\％	\％\％	\％\％
9163	${ }^{90,308,210}$	Waler probers	${ }^{5}$	NT1	4\％	4\％	4%	${ }^{3 \%}$	3\％	${ }^{2 \%}$	${ }^{2 \%}$	\％\％	0\％	\％	\％\％	\％	\％\％	\％	0\％	\％	\％	0\％	\％	\％\％
9164	${ }^{90,308,290}$	－Oher		${ }^{\text {N11 }}$	4\％	4%	4\％	3\％	3\％	${ }^{2 \%}$	2\％	\％	\％	\％	0\％	0\％	0\％	\％	\％	\％	\％	0\％	\％	\％\％
9165	${ }^{90,30,410}$	－－Instruments and apparatus for measuring or checking electrical quantities on printed circuit boards／printed wiring boards and printed circuit assemblies	5	NT1	4\％	4\％	4\％	3\％	3\％	2\％	2\％	0\％	0\％	\％	\％	\％	0\％	0\％	0\％	0\％	\％	\％	0\％	0\％
9166	${ }^{90,308,490}$	－－Other	5	NT1	4\％	4\％	$4{ }^{4 \%}$	3\％	3\％	2\％	2\％	0\％	0\％	0\％	0\％	0\％	0\％	0\％	\％	\％\％	0\％	0\％	0\％	0\％
9167	9，30，910		5	NT1	4\％	4\％	4\％	3\％	3\％	2%	2\％	\％\％	0\％	0\％	0\％	\％	0\％	0\％	\％\％	0\％	\％	\％	0\％	0\％
9168	${ }^{90,308,990}$	Other	5	${ }^{\text {NT1 }}$	4\％	4\％	$4{ }^{4 \%}$	3\％	3\％	2\％	2\％	0\％	0\％	\％	0\％	\％	0\％	\％	\％	0\％	\％	\％	0\％	0\％
9169	${ }^{90,30,0,010}$	－－Parts and accessories（including printed circuit assemblies）of goods of subheading 9030.40 or 9030.82	5	NT1	4\％	4\％	4\％	3\％	3\％	${ }^{2 \%}$	${ }^{2 \%}$	\％	0\％	\％	\％	\％	0\％	\％	\％	\％	\％	\％	\％	0\％
9170	90，300，300		5	NT1	4\％	4\％	4\％	3\％	3\％	2\％	${ }^{2}$	0\％	\％	\％	0\％	0\％	0\％	\％	\％	\％	\％	0\％	0\％	0\％
977	90，30，940	－－Parts and accessories of other instruments and apparatus for measuring or checking electrical quantities on printed circuit boards／printed wiring boards and printed circuit assemblies	5	NT1	4\％	4\％	4\％	3\％	3\％	2\％	2\％	0\％	0\％	\％	\％\％	\％	\％	0\％	\％	0\％	0\％	0\％	\％\％	0\％
9172	${ }^{90,30,9090}$	－omer	5	NT1	4\％	4\％	4\％	${ }^{3 \%}$	3\％	${ }^{2 \%}$	${ }^{2 \%}$	0\％	0\％	0\％	\％	\％	\％	\％\％	\％	0\％	\％	0\％	\％	\％\％
${ }^{973}$	${ }^{\text {90331．0．10 }}$	－Electically operaled	5	N1	4\％	4%	4%	${ }^{3}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	0\％	0\％	0\％	0\％	0\％	\％	\％	\％\％	\％	\％	\％	\％
9174	${ }^{0031.10 .20}$	－Noteestricaly poeataed	5	${ }^{\text {NT1 }}$	4\％	4\％	4\％	3\％	3\％	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％	0\％	\％	\％	\％	\％	\％	\％	\％	\％	\％
975	${ }^{90,312,010}$	－Electricaly operated	5	NT1	4\％	4%	${ }^{4 \%}$	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％\％	\％	\％	\％	\％	\％\％	\％	\％	\％	\％	\％	\％	\％
97	${ }^{90,312,202}$	－Not electricall operated	5	NT1	4\％	4\％	4%	3\％	3\％	2\％	2%	0\％	\％	\％	\％	0\％	\％	\％	\％	\％	\％	0\％	\％	0\％

（ラオス）

P177	00，34， 100	－For inspecting semiconductor wafers or devices or for inspecting photomasks or reticles used in manufacturing semiconductor devices	5	NT1	4\％	4\％	4\％	3\％	3\％	2\％	2%	0\％	0\％	0\％	0\％	\％	\％\％	\％	\％	\％	\％\％	\％	\％	\％
977	00，34，910	－Optical instruments and appliances formeasuring surface particulate contamination on semiconductor wafers	5	NT1	4%	4%	4%	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％
979	00，34，920	$\cdots-$ Optical error verification and repair apparatus for printed circuit boards／printed wiring boards and printed circuit assemblies	5	NT1	4\％	4\％	4\％	${ }^{3 \%}$	${ }^{3 \%}$	2\％	${ }^{2 \%}$	\％	\％	\％	\％	\％	\％	0\％	\％	\％	\％	\％	\％	\％
9980	00，314，930	measuring op orcal inecking printed and appliait boarces for wiring boords and printed circtit assemblies	5	NT1	4\％	4\％	4\％	3\％	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	0\％	0\％	0\％	\％	\％	\％	\％	\％	\％	\％\％	\％	\％	\％
9181	00，314，990	－oner	5	NT1	4\％	4\％	4\％	3\％	3\％	${ }^{2 \%}$	${ }^{2 \%}$	\％\％	0\％	0\％	0\％	\％	\％\％	\％\％	\％	\％	\％	\％	\％	0\％
9182	00，38，010	Cabal esesers	5	NT1	4%	$4{ }^{4}$	$4{ }^{4 \%}$	3\％	3\％	2%	${ }^{2 \%}$	0\％	0\％	\％	\％	0\％	0\％	\％	0\％	0\％	0\％	\％	0\％	0\％
9183	90，38，090	－Onter	5	NT1	4%	$4{ }^{4}$	4%	3\％	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	0\％	\％	\％	\％	\％	\％	\％	\％\％	0\％	\％	\％\％
9984	00，31，011	－－Parts and accessories including printed dirccuit assemblies of optical instruments and appliances for inspecting semiconductor wafers or devevices or for inspecting masks，photomasks or reticles used in manufacturing semiconductor devices；parts and ancessories of optical instruments and appliances for measuring surface particulate contamination on semiconductor wafers	5	NT1	4\％	4%	4\％	3\％	3\％	2\％	${ }^{2 \%}$	\％\％	0\％	\％\％	\％\％	\％	\％	\％	0\％	0\％	\％\％	0\％	0\％	0\％
9895	00，31，012	-- Of optical error verification and repair apparatus for printed circuit boards／printed wiring boards and printed circuit assemblies	5	${ }^{\text {NT1 }}$	4\％	4\％	4\％	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	0\％	0\％	0\％	\％\％	0\％	0\％	0\％	\％	\％	\％	0\％	\％	0\％
${ }^{9186}$	00，319，013		5	NT1	4%	4%	4%	3\％	3\％	2%	${ }^{2 \%}$	\％	0\％	0\％	\％	0\％	\％	\％	0\％	\％	\％	\％	0\％	0\％
9187	${ }^{0,3,31,019}$	Onher	5	${ }^{\text {NT1 }}$	4\％	${ }^{4 \%}$	4\％	3\％	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	0\％	\％\％	\％	\％	\％\％	\％	\％	\％	0\％	\％	\％
9188	90，319，020	－For ronereactiraly oferaiede equiment	5	NT1	4%	4\％	4\％	3\％	3\％	2\％	${ }^{2 \%}$	\％	0\％	0\％	0\％	0\％	\％	\％	\％	\％	\％	\％	\％	0\％
998	${ }^{032} 10.10 .10$	－Electically peerated	5	NT1	4%	4\％	4\％	3\％	3\％	2\％	${ }^{2 \%}$	0\％	0\％	0\％	\％	0\％	\％	\％	\％	0\％	0\％	\％	\％	0\％
9990	${ }^{\text {Oos210：20 }}$	－No etedericaly operaed	5	NT1	4%	4\％	4%	\％	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	0\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	0\％
991	00，32，010	Electically opeated	5	NT1	4%	$4{ }^{4 \%}$	$4{ }^{4 \%}$	3\％	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	0\％	\％	\％	0\％	0\％	\％	\％	\％	\％	\％	\％	\％	0\％
999	00，32，020	－Not electricaly opeated	5	NT1	4%	4\％	4\％	${ }^{3} \%$	3\％	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％	\％	0\％	\％	\％	\％	0\％	\％	\％	\％	\％
$9{ }^{993}$	00，38，100	－Hydraulico or peumaic	5	NT1	$4{ }^{4 \%}$	4%	4%	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％
9194	00，38，910		5	NT1	4\％	4\％	4\％	3\％	3\％	2\％	2%	0\％	0\％	0\％	0\％	0\％	\％	\％	0\％	0\％	0\％	0\％	0\％	0\％
$9{ }^{9195}$	00，38，920	－．Automatic instruments and apparatus for regulating or controlling chemical or electrochemical solutions in the manutacture of printed circuit boardsldprinted wiring boards or printed circuit assemblies	5	NT1	4\％	4\％	4\％	3\％	3\％	2\％	${ }^{2 \%}$	\％\％	\％	\％	\％\％	0\％	\％	\％	\％	\％\％	\％\％	\％	\％	0\％
99	${ }^{0,3,32,931}$	－．．．Automaiciregulining volige units stabilises）	5	NT1	4\％	4\％	4%	3\％	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％\％	\％	0\％	\％\％	\％	\％	0\％	0\％	\％	\％\％	\％	\％	0\％
997	${ }^{0,382,939}$	Onter	5	NT1	4%	4%	4%	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％	\％	0\％	\％	\％	\％	\％	\％	\％	\％	\％\％
998	00，38，990	Oher	5	NT1	4%	$4{ }^{4}$	4%	${ }^{3} \%$	${ }^{3} \%$	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％	\％	0\％	\％	\％	0\％	\％	0\％	\％	\％	\％
9199	${ }^{0,32,0,010}$	－of soods of stubeading 903289．10	5	${ }^{\text {NT1 }}$	4\％	${ }^{4 \%}$	${ }^{4 \%}$	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％	\％	0\％	\％	\％	\％	\％	\％	\％	\％	\％
3200	${ }^{0,329,020}$	－of goods of stuheading 90328920	5	NT1	4\％	4\％	4\％	${ }^{3 \%}$	3\％	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	0\％	\％	\％	\％	\％\％	\％	\％	\％	0\％	\％	\％
3201	90，32，0，30	－Ot onere fectrically opeated goods	5	NT1	4\％	4\％	4\％	3\％	3\％	2\％	2\％	0\％	0\％	0\％	\％	0\％	\％	0\％	\％	\％	\％	\％	\％	0\％
3202	90，32，900	－－other	5	NT1	4\％	4\％	4%	3\％	3\％	2\％	2%	0\％	0\％	0\％	\％	0\％	\％	\％	\％	\％	\％	\％	\％	\％\％
3203	90，30，010	For electricaly opeataedeauiment	5	${ }^{\text {NT1 }}$	4\％	4\％	4%	3\％	3\％	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％\％	\％	\％	\％	\％	\％\％	\％	\％	\％\％	\％\％	\％	0\％
9204	00，30，020	For noneleectricaly opeatede equipment	5	NT1	4%	4%	4%	${ }^{3} \%$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％	0\％	0\％	\％	0\％	\％	0\％	\％	\％	0\％	0\％
2205	${ }^{9,1,01,1,00}$	With meranaical aispay ony	10	sL	\％\％	${ }^{10 \%}$	10\％	10\％	10\％	${ }^{10 \%}$	10\％	10\％	${ }^{8 \%}$	${ }^{7} \%$	6\％	${ }^{5 \%}$	${ }^{4 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{1 \%}$	\％	\％	\％	\％
2206	${ }^{9,1,01,900}$	Other	10	sL	10\％	${ }^{10 \%}$	10\％	10\％	10\％	${ }^{10 \%}$	${ }^{10 \%}$	10\％	8\％	${ }^{7} \%$	6\％	5\％	4\％	3\％	2\％	1\％	0\％	0\％	0\％	0\％
2207	${ }^{91,02,100}$	Witaulomaic wining	10	st	${ }^{10 \%}$	10\％	10\％	10\％	10\％	10\％	10\％	10\％	${ }^{8}$	${ }^{7} \%$	6\％	${ }^{5 \%}$	4\％	3\％	${ }^{2 \%}$	${ }^{1 \%}$	\％	\％	\％	\％
3208	${ }^{91,01,2,900}$	－oner	10	st	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	8\％	${ }^{7} \%$	6\％	5\％	4\％	3\％	${ }^{2 \%}$	1\％	0\％	\％	0\％	0\％
3209	91，09， 100	－Eiecrically operaed	10	st	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	8%	${ }^{7} \%$	6\％	5\％	4\％	3\％	2\％	1\％	0\％	0\％	0\％	0\％
9210	91，09，900	－Other	10	sL	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	${ }^{8} \%$	${ }^{7}$	6\％	5\％	4\％	3\％	${ }^{2 \%}$	${ }^{1 \%}$	\％	0\％	\％	\％
3211	${ }^{9,1,021,100}$	－With mefanaicalisisply ony	${ }^{10}$	st	10\％	10\％	10\％	${ }^{10 \%}$	10\％	10\％	${ }^{10 \%}$	10\％	8\％	${ }^{7} \%$	6\％	5\％	4\％	3\％	${ }^{2 \%}$	1\％	\％	\％	\％	\％
3212	9，02，200	－Wit opoo．efectronic disphy ony	10	sL	10\％	${ }^{10 \%}$	10\％	10\％	10\％	10\％	${ }^{10 \%}$	10\％	8\％	${ }^{7 \%}$	6\％	5\％	4\％	3\％	${ }^{2 \%}$	1\％	\％	0\％	\％	\％
${ }^{2213}$	9，1，02，，000	－other	10	sL	\％	${ }^{10 \%}$	10\％	${ }^{10 \%}$	10\％	${ }^{10 \%}$	10\％	10\％	8\％	7\％	6\％	5\％	4\％	3\％	2\％	1\％	\％	\％	\％	\％
3214	9，02，100	－Witaulomaic winding	10	st	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	8\％	7\％	6\％	5\％	4\％	3\％	2\％	1\％	\％	\％	\％	\％
9215	91，02，2，00	－－other	10	sL	0\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	${ }^{8 \%}$	${ }^{7 \%}$	6\％	${ }^{\text {5\％}}$	4\％	3\％	${ }^{2 \%}$	${ }^{1 \%}$	\％	\％	\％	\％
3216	${ }^{9,02,19,10}$	－Stoo－watches	${ }^{10}$	sL	10\％	10\％	10\％	${ }^{10 \%}$	10\％	10\％	10\％	10\％	${ }^{8} \%$	${ }^{7}$	6\％	5\％	4\％	3\％	${ }^{2 \%}$	1\％	\％	\％	0\％	\％
227	${ }^{9,1029,190}$	－Other	10	sL	10\％	${ }^{10 \%}$	10\％	10\％	10\％	10\％	10\％	10\％	8\％	${ }^{7} \%$	6\％	5\％	${ }^{4 \%}$	3\％	${ }^{2 \%}$	1\％	0\％	0\％	\％\％	0\％
9218	${ }^{9,1,02,900}$	－Oner	10	sL	10\％	${ }^{10 \%}$	10\％	${ }^{10 \%}$	10\％	10\％	10\％	10\％	${ }^{8 \%}$	${ }^{7} \%$	6\％	${ }^{5 \%}$	${ }^{4 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{1 \%}$	\％	\％	\％	\％
3219	91，03，000	Electricaly operaled	10	st	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	8\％	7\％	6\％	5\％	4\％	3\％	${ }^{2 \%}$	1\％	0\％	0\％	0\％	0\％
9220	91，03，000	Other	10	sL	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	8\％	${ }^{7} \%$	6\％	5\％	4\％	3\％	${ }^{2 \%}$	1\％	0\％	\％	\％	\％
3221	91，00，010	－Forvenicos	${ }^{10}$	sL	10\％	10\％	10\％	${ }^{10 \%}$	10%	10\％	10\％	10\％	${ }^{8 \%}$	${ }^{7}$	${ }^{6 \%}$	${ }^{5 \%}$	${ }^{4 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{1 \%}$	\％	\％	\％	\％
3222	${ }^{9,1,00,020}$	－Foraicrat	10	st	10\％	${ }^{10 \%}$	10\％	${ }^{10 \%}$	10\％	10\％	10\％	10\％	${ }^{8} \%$	${ }^{7 \%}$	6\％	5\％	4\％	3\％	${ }^{2 \%}$	1\％	\％	0\％	\％	\％
3223	99，00，0，30	－Forvessels	10	sL	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	8\％	${ }^{7 \%}$	6\％	5\％	4\％	3\％	${ }^{2 \%}$	1\％	\％	\％	\％	0\％
9224	9，000，090	Other	10	sL	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	8\％	7\％	6\％	5\％	4%	3\％	${ }^{2 \%}$	1\％	\％	\％	\％	\％
3225	9，051，100	－Eearcirally opeated	10	sL	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	8\％	${ }^{7 \%}$	6\％	5\％	4\％	3\％	${ }^{2 \%}$	1\％	0\％	0\％	\％	0\％
2926	${ }^{9,0,51,900}$	－Oner	10	sL	10\％	${ }^{10 \%}$	10\％	10\％	10\％	10\％	10\％	10\％	${ }^{8 \%}$	${ }^{7} \%$	${ }^{6 \%}$	${ }^{5 \%}$	4\％	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{1 \%}$	\％\％	\％	\％	\％
3227	${ }^{91,052,100}$	Electically operated	10	sL	10\％	10%	10\％	10%	10\％	10\％	10\％	10\％	8%	${ }^{7 \%}$	6\％	5\％	4\％	3\％	${ }^{2 \%}$	1\％	0\％	0\％	\％\％	0\％
2228	91，05，2，00	Other	10	st	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	8%	${ }^{7} \%$	6\％	5\％	4\％	3\％	2\％	1\％	0\％	0\％	\％	0\％
3229	9，05， 9 ，10	－Maine choonomemers	10	sL	10\％	10\％	10\％	${ }^{10 \%}$	10\％	10\％	10\％	10\％	${ }^{\text {\％}}$	${ }^{7 \%}$	6\％	${ }^{5 \%}$	4\％	3\％	${ }^{2 \%}$	1\％	\％	\％	\％	\％
9230	${ }^{9,1059,190}$	\cdots	10	sL	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	8\％	7\％	6\％	5\％	4\％	3\％	${ }^{2 \%}$	1\％	0\％	0\％	\％	0\％
${ }^{2231}$	${ }^{9,0,05,9910}$	\cdots Maine crooromemeles	10	${ }^{\text {sL }}$	10\％	10\％	10\％	10%	10\％	10\％	10\％	10\％	${ }^{8 \%}$	${ }^{7} \%$	6\％	5\％	4\％	3\％	${ }^{2 \%}$	${ }^{1 \%}$	\％	\％	\％	\％
${ }^{232}$	91，05，990	－Omer	${ }^{10}$	sL	10\％	10\％	10\％	${ }^{10 \%}$	10\％	${ }^{10 \%}$	${ }^{10 \%}$	${ }^{10 \%}$	${ }^{8 \%}$	${ }^{7} \%$	6\％	${ }^{5 \%}$	${ }^{4 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{1 \%}$	\％	\％	\％	\％
2233	9，06，0，000	Tmeregosises：ine－recorders	${ }^{10}$	sL	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	8\％	${ }^{7 \%}$	6\％	5\％	4\％	3\％	${ }^{2 \%}$	${ }^{1 \%}$	\％	0\％	\％	\％
9234	9，0，09，010	－Pakking meaters	10	sL	10\％	10\％	10\％	${ }^{10 \%}$	10\％	10\％	10\％	10\％	8\％	7\％	6\％	5\％	4\％	3\％	${ }^{2 \%}$	1\％	\％	\％	\％	0\％
2935	${ }^{9,1069,900}$	－other	10	sL	10\％	10\％	10\％	${ }^{10 \%}$	10\％	10\％	10\％	10\％	8\％	${ }^{7 \%}$	6\％	5\％	${ }^{4 \%}$	3\％	${ }^{2 \%}$	${ }^{1 \%}$	0\％	0\％	\％	0\％
926	91，070，000	Time switches with clock or watch movement or with synchronous motor．	10	sL	\％	10\％	10\％	10\％	${ }^{10 \%}$	10\％	10\％	10\％	8\％	${ }^{7 \%}$	6\％	5\％	4\％	3\％	${ }^{2 \%}$	${ }^{1 \%}$	\％	\％	0\％	\％
237	99，08，100		10	sL	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	8\％	${ }^{7} \%$	6\％	5\％	4\％	${ }^{3 \%}$	2\％	${ }^{1 \%}$	\％	\％	\％	\％
2938	99，08，200	－Wilt opoposeletronicid isplay ony	10	st	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	8\％	${ }^{7} \%$	6\％	5\％	4\％	3\％	2\％	1\％	0\％	0\％	\％	0\％
9239	9，08，9，900	－Onter	10	sL	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	8\％	${ }^{7}$	6\％	5\％	4\％	3\％	2\％	1\％	\％	\％	\％	\％
9240	${ }^{9,1,08,000}$	Withautomitic wining	10	sL	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	8\％	7\％	6\％	5\％	4\％	3\％	${ }^{2 \%}$	1\％	0\％	0\％	\％	\％\％
${ }^{2241}$	${ }^{9,1089,000}$	Onter	10	st	10\％	10\％	${ }^{10 \%}$	${ }^{10 \%}$	10\％	${ }^{10 \%}$	${ }^{10 \%}$	${ }^{10 \%}$	8\％	${ }^{7} \%$	6\％	5\％	4\％	3\％	${ }^{2 \%}$	1\％	0\％	0\％	0\％	0\％
2242	91，091，000	Electically perated	10	st	10\％	10\％	10\％	10%	10\％	10\％	10\％	10\％	8\％	${ }^{7 \%}$	6\％	5\％	4\％	3\％	2\％	1\％	0\％	0\％	0\％	0\％
2243	99，09，000	Other	10	st	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	8\％	7\％	6\％	5\％	4\％	3\％	2\％	1\％	0\％	0\％	\％	0\％
${ }^{224}$	9，101，100	－Complete movements，unassembled or partly	10	sL	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	8\％	7%	6\％	5\％	4\％	3\％	${ }^{2 \%}$	${ }^{1 \%}$	\％	\％	0\％	\％\％
2245	90，01，200	－hoompleie movemens，assenbled	10	st	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	8\％	7\％	6\％	5\％	4\％	3\％	2\％	1\％	0\％	0\％	\％	\％
${ }^{2246}$	${ }^{9,101,900}$	－Roug movenents	10	sL	10\％	10\％	10\％	${ }^{10 \%}$	10\％	${ }^{10 \%}$	10\％	10\％	8\％	${ }^{7 \%}$	6\％	${ }^{5 \%}$	4\％	3\％	${ }^{2 \%}$	${ }^{1 \%}$	\％	0\％	\％	\％
${ }^{2247}$	${ }^{91,109,000}$	－oher	${ }^{10}$	sL	10\％	10\％	10\％	10\％	${ }^{10 \%}$	10\％	10\％	${ }^{10 \%}$	8\％	${ }^{7 \%}$	6\％	5\％	${ }^{4 \%}$	3\％	${ }^{2 \%}$	${ }^{1 \%}$	0\％	0\％	0\％	0\％
${ }^{9248}$	9，111，000	－Cases of precious metal or of metal clad with precious metal		sL	10\％	10\％	${ }^{10 \%}$	10\％	10\％	10\％	${ }^{10 \%}$	10\％	8\％	7\％	6\％	5\％	4\％	3\％	${ }^{2 \%}$	${ }^{1 \%}$	0\％	\％	${ }^{0}$	${ }^{0}$
229	90，12，000	$\begin{aligned} & \text { - Cases of base metal, whether or onot gold- or siver- } \\ & \text { plated } \end{aligned}$	${ }^{10}$	st	10\％	10\％	${ }^{10 \%}$	10\％	10\％	10\％	10\％	10\％	8\％	${ }^{7}$	6\％	5\％	4\％	3\％	${ }^{2 \%}$	${ }^{1 \%}$	\％	\％	\％	\％

香港•ASEAN FTAにかかる調査報告書

別添2－4 原産地品の関税撤廃スケジュール
（ラオス）

${ }^{2250}$	${ }^{9,1118,000}$	－Oner cases	10	st	10\％	10%	10\％	10\％	10\％	10\％	10\％	${ }^{10 \%}$	${ }^{8 \%}$	${ }^{7 \%}$	6\％	${ }^{5 \%}$	${ }^{4 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{\text {1\％}}$	\％\％	\％\％	\％	\％
9251	9，119，000	－Pars	10	sL	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	${ }^{8 \%}$	${ }^{7} \%$	${ }^{6 \%}$	5\％	4\％	${ }^{3} \%$	${ }^{2 \%}$	1\％	\％	\％	\％	0\％
925	9，122，000	－cases	10	N2	${ }^{9 \%}$	9\％	${ }_{8}^{8}$	${ }^{8 \%}$	6\％	6\％	5\％	5\％	4\％	4%	${ }^{3} \%$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％	\％	\％	\％
925	9，12，000	－Pats	10	ज2	${ }^{9 \%}$	9\％	${ }^{8 \%}$	8\％	6\％	6\％	5\％	${ }^{5 \%}$	${ }^{4 \%}$	4\％	3\％	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％	\％	\％	0\％
${ }^{2254}$	${ }^{9,13,10,00}$	－Of precious metal or of metal clad with precious metal	${ }^{10}$	sL	\％	${ }^{10 \%}$	10\％	10\％	10\％	10\％	10\％	\％	${ }^{8 \%}$	${ }^{7 \%}$	6\％	${ }^{\text {5\％}}$	${ }^{4 \%}$	3\％	${ }^{2 \%}$	${ }^{\text {\％}}$	\％\％	\％	\％	\％
925	9，132，000	－Of base melal，wentere or not gold－orsiverpplatd	10	sL	10\％	0\％	10\％	10\％	10\％	10\％	10\％	\％	${ }_{8 \%}$	${ }^{7 \%}$	6\％	5\％	4\％	3\％	${ }^{2 \%}$	1\％	\％	\％	\％	0\％
9256	9，139，000	－Oner	10	st	10\％	10\％	10\％	10\％	10\％	10\％	10\％	\％	${ }^{8 \%}$	${ }^{7 \%}$	6\％	${ }^{5 \%}$	4\％	${ }^{3 \%}$	${ }^{2 \%}$	1\％	0\％	\％	\％	\％
9237	9，141，000	－Spings，inculing nairspings	10	st	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	${ }^{8 \%}$	7\％	6\％	5\％	4\％	${ }^{3 \%}$	${ }^{2 \%}$	1\％	\％	\％	\％	\％
${ }^{2258}$	9，14，3，000	－Dias	10	st	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	${ }^{8 \%}$	${ }^{7 \%}$	6\％	5\％	4\％	3\％	${ }^{2 \%}$	1\％	\％	\％	\％	\％
925	9，14，0，00	－Pales andibiges	10	st	10\％	10\％	10\％	10\％	10\％	10\％	10\％	${ }^{10 \%}$	${ }^{8 \%}$	7\％	${ }^{6 \%}$	5\％	$4{ }^{4 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{1 \%}$	\％	\％	\％	${ }^{0}$
9260	${ }^{9,1449,000}$	－other	10	sL	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	8\％	7\％	6\％	5\％	4%	3\％	${ }^{2 \%}$	1\％	0\％	0\％	0\％	0\％
9261	92，011，000	－Urightranos	10	st	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	${ }^{8 \%}$	7\％	6\％	5\％	4%	3\％	${ }^{2 \%}$	${ }^{1 \%}$	\％	\％	\％	\％
${ }^{262}$	${ }^{92,012,000}$	－Garan Pamos	10	st	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	${ }^{8 \%}$	7\％	6\％	5\％	4%	3\％	${ }^{2 \%}$	1\％	\％	\％	\％	\％
926	${ }^{92,019,000}$	－omer	10	st	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	8%	7\％	6\％	5\％	4%	3\％	2\％	1\％	0\％	\％	\％	\％
9264	92，021，000	－Payed wita bow	10	st	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	8%	\％	6\％	5\％	4%	3\％	2%	1\％	\％	\％	\％	0\％
926	92，029，000	－Other	10	st	\％	10\％	10%	0\％	10\％	10\％	10\％	\％	${ }^{8 \%}$	${ }^{7 \%}$	6\％	${ }^{5 \%}$	4%	${ }^{3 \%}$	${ }^{2 \%}$	1\％	0\％	\％	\％	\％\％
926	${ }^{92,051,000}$	－Brasswind istument	10	st	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	${ }^{8 \%}$	7\％	6\％	5\％	4%	3\％	${ }^{2 \%}$	1\％	\％	\％	\％	0\％
${ }^{267}$	${ }^{9,0,059,10}$	－Keyboard pipe organs；harmoniums and similar keyboard instruments with free metal reeds	10	st	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	${ }_{8}^{8 \%}$	7\％	6\％	5\％	4%	3\％	${ }^{2 \%}$	${ }^{1 \%}$	\％	\％	\％	\％
${ }^{2288}$	${ }^{92,059,090}$	－Other	10	st	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	${ }^{8 \%}$	7\％	6\％	5\％	$4{ }^{4 \%}$	3\％	${ }^{2 \%}$	1\％	\％	0\％	0\％	\％
926	92，060，000	Percussion musical instruments（for example， drums，xylophones，cymbals，castanets， maracas）．	10	sL	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	8\％	7\％	6\％	5\％	4\％	3\％	${ }^{2 \%}$	1\％	\％	\％	\％	\％
9270	92，071，000	－Keboard isturumis，ofter tran acocrioins	10	st	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	${ }^{8 \%}$	\％	6\％	5\％	4%	3\％	2\％	${ }^{\text {1\％}}$	\％	\％\％	\％	\％
9271	${ }^{92,079.000}$	－oner	10	st	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	${ }^{8 \%}$	7\％	6\％	${ }^{5 \%}$	$4{ }^{4 \%}$	3\％	${ }^{2 \%}$	1\％	\％	\％	\％	\％
9272	${ }^{92,081,000}$	－Musial boxes	10	st	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	8%	7\％	6\％	5\％	4\％	3\％	2\％	1\％	\％	\％	\％	\％
${ }^{9273}$	92，089，010	－Decoy calls，whistles，call horn and other mouth－ blown sound signaling instruments	${ }^{10}$	${ }^{\text {sL }}$	10\％	10\％	10\％	${ }^{10 \%}$	10\％	10\％	10\％	10\％	8\％	${ }^{7 \%}$	6\％	5\％	$4{ }^{4 \%}$	3\％	2%	${ }^{1 \%}$	\％	\％	\％	0\％
9274	${ }^{92,089,090}$	－－other	10	st	0\％	10\％	10\％	10\％	10\％	10\％	10\％	\％	8\％	7\％	6\％	${ }^{5 \%}$	4\％	3\％	${ }^{2 \%}$	1\％	0\％	\％	\％	0\％
${ }^{2275}$	${ }^{92,093,000}$	－Mssal instumen string	${ }^{10}$	sL	0\％	0\％	\％\％	10%	10\％	${ }^{10 \%}$	10\％	\％\％	${ }^{8 \%}$	${ }^{7 \%}$	${ }^{6 \%}$	${ }^{5 \%}$	4\％	3\％	${ }^{2 \%}$	${ }^{1 \%}$	\％	\％\％	\％	\％\％
9276	${ }^{92,099,10}$	$\begin{array}{\|l\|} \hline- \text { Strung backs, keyboards and metal frames for } \\ \text { upright pianos } \\ \hline \end{array}$	10	sL	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	${ }^{8 \%}$	${ }^{7} \%$	6\％	5\％	4%	3\％	${ }^{2 \%}$	${ }^{1 \%}$	\％	\％	\％	${ }^{0 \%}$
${ }^{927}$	${ }^{92,099,190}$	…oter	${ }^{10}$	st	10\％	10\％	${ }^{10 \%}$	10\％	${ }^{10 \%}$	10\％	10\％	${ }^{10 \%}$	8\％	7\％	${ }^{6 \%}$	5\％	4\％	3\％	${ }^{2 \%}$	1\％	0\％	\％	0\％	0\％
78	92，099，200	－Parts and accessories for the musical instruments of heading 92.02	10	sL	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	8\％	7\％	6\％	5\％	4%	3\％	2\％	1\％	\％	\％	\％	\％\％
9279	20，99，400	－Parts and accessories for the musical instruments of heading 92.07	10	sL	\％	10\％	10\％	\％	0\％	10\％	10\％	10\％	${ }^{8 \%}$	${ }^{7 \%}$	6\％	5\％	4\％	3\％	${ }^{2 \%}$	${ }^{1 \%}$	\％	\％	\％	\％
9280	${ }^{92,099,900}$	－－other	10	st	0\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	8%	${ }^{7} \%$	6\％	5\％	4\％	3\％	${ }^{2 \%}$	1\％	0\％	0\％	0\％	0\％
${ }^{281}$	${ }^{93,011,000}$	－Atiliery weapons（for example，guns，howitzers and motars）	${ }^{30}$	EL	\bigcirc	0	－	\bigcirc	\bigcirc	0	U	\bigcirc	U	\bigcirc	0	\checkmark	0	0	－	0	－	0	0	U
9282	9，012，000	－Rocket launchers；flame－throwers；grenade launchers；torpedo tubes and similar projectors	${ }^{30}$	${ }^{\text {EL }}$	\bigcirc	U	U	U	\checkmark	\checkmark	U	\checkmark	U	\bigcirc	U	U	U	U	\bigcirc	\checkmark	\bigcirc	U	\checkmark	\bigcirc
${ }^{2283}$	${ }^{93,019,000}$	－orner	${ }^{30}$	EL	ט	\bigcirc	\bigcirc	ט	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	ט	\bigcirc	\bigcirc	\checkmark	\bigcirc	\bigcirc	\bigcirc	\checkmark	\bigcirc	\bigcirc
${ }^{9284}$	93，020，000		${ }^{30}$	EL	\bigcirc	\bigcirc	\bigcirc	0	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	0	U	\checkmark	\bigcirc	\bigcirc	0	\checkmark	\bigcirc	U	\bigcirc	－
9285	9，03， 1000	－Mrzzelieadigig fieams	${ }^{30}$	EL	U	U	U	U	U	U	U	U	\bigcirc	U	0	U	U	U	U	0	U	\checkmark	U	\bigcirc
${ }^{9286}$	93，032，000	－Other sporting，hunting or target－shooting shotguns，including combination shotgun－rifles	${ }^{30}$	EL	0	0	0	\bigcirc	\bigcirc	0	\bigcirc	0	0	ט	O	－	\bigcirc	0	0	ט	\bigcirc	\bigcirc	0	0
${ }^{2887}$	${ }^{9,03,03,000}$		${ }^{30}$	EL	\bigcirc	0	\bigcirc	0	\bigcirc	0	0	0	－	\bigcirc	ט	0	\bigcirc	U	0	U	U	\bigcirc	\bigcirc	\bigcirc
${ }^{9288}$	${ }^{93,039,000}$	－orner	${ }^{30}$	${ }^{\text {EL }}$	\bigcirc	U	U	\bigcirc	U	U	\checkmark	\checkmark	\bigcirc	U	U	\bigcirc	\bigcirc	\checkmark	U	U	0	U	0	\bigcirc
${ }^{289}$	93，040，010	- Air guns，operating at a pressure of less than 7 kgf／cm2	${ }^{30}$	EL	0	\bigcirc	0	\bigcirc	0	0	\bigcirc	－	\bigcirc	\bigcirc	\bigcirc	－	－	＂	0	0	\bigcirc	－	－	U
929	9，040，090	－Oner	${ }^{30}$	EL	ט	0	ט	0	U	ט	U	0	U	U	U	0	0	\bigcirc	ט	U	\bigcirc	0	\bigcirc	\bigcirc
${ }^{2921}$	${ }^{9,050,000}$	－Of revovers or pisios	${ }^{30}$	EL	\bigcirc	－	－	ט	，	\bigcirc	－	，	U	，	U	－	U	－	－	U	U	－	U	\bigcirc
9292	${ }^{93,052,000}$	Of shotuns or rilles of heading 93.03	${ }^{30}$	EL	\bigcirc	－	U	U	\bigcirc	0	U	U	0	ט	U	ט	ט	U	0	ט	0	U	U	0
${ }^{293}$	${ }^{93,059,110}$	－－Of leatere or fextile materal	${ }^{30}$	EL	\bigcirc	0	0	\bigcirc	0	0	0	0	0	0	0	U	U	0	0	0	0	0	0	0
${ }^{229}$	${ }^{93,059,190}$	－－Other	${ }^{30}$	EL	\bigcirc	ט	－	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	－	ט	U	\bigcirc	\bigcirc	ט	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
${ }^{2925}$	${ }^{93,059,911}$	\cdots Of leatere or texile material	${ }^{30}$	EL	\bigcirc	0	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	0	U	－	－	ט	\bigcirc	\bigcirc	\bigcirc	\bigcirc	
929	9，059，919	Onter	${ }^{30}$	EL	U	U	U	U	U	0	U	U	0	U	0	U	，	U	U	U	\bigcirc	\bigcirc	U	\bigcirc
929	9，059，991	\cdots Of leatere or exexile materal	${ }^{30}$	EL	0	0	O	U	0	\bigcirc	\checkmark	0	0	\bigcirc	U	U	－	0	0	0	－	U	ט	0
${ }^{2988}$	${ }^{3,05,59,999}$	Other	${ }^{30}$	EL	0	U	\bigcirc	0	\bigcirc	0	U	0	\bigcirc	－	0	\bigcirc	\bigcirc	\bigcirc	U	0	－	\bigcirc	O	\bigcirc
${ }^{229}$	${ }^{93,062,100}$	－Catitiges	${ }^{30}$	EL	ט	U	U	U	\bigcirc	\checkmark	\checkmark	U	\bigcirc	U	\checkmark	U	ט	ט	U	U	U	\checkmark	\checkmark	\bigcirc
${ }^{3300}$	${ }^{3,0622,900}$	－－other	${ }^{30}$	EL	\bigcirc	－	－	\bigcirc	\bigcirc	\bigcirc	\bigcirc	－	\bigcirc	\bigcirc	U	\bigcirc	\bigcirc	\bigcirc	\bigcirc	－	\bigcirc	－	\bigcirc	\bigcirc
9301	${ }^{93,03,0,011}$		${ }^{30}$	EL	\bigcirc	U	－	\bigcirc	U	－	U	－	\bigcirc	ט	ט	U	U	－	U	U	\bigcirc	U	\bigcirc	\bigcirc
${ }^{3302}$	${ }^{93,063,019}$	－．－other	${ }^{30}$	EL	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	0	0	0	\bigcirc	0	U	\bigcirc	0	0	U	\bigcirc	0	－	\bigcirc
9303	9，0，03，20	Cartidges tor fiveting or simialia tools of for captive－bot humane kilers and parts thereof	${ }^{30}$	EL	\bigcirc	＂	＂	O	O	－	＂	O	${ }^{\circ}$	O	U	U	＂	U	＂	${ }^{\circ}$	${ }^{\circ}$	U	＂	\bigcirc
${ }^{3304}$	${ }^{93,063,091}$	\cdots	${ }^{30}$	EL	\bigcirc	U	\bigcirc	\bigcirc	ט	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	U	U	ט	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
9305	${ }^{93,063,099}$	…oner	${ }^{30}$	EL	0	0	O	U	0	U	0	0	0	\bigcirc	U	U		，	O	0	0		O	\bigcirc
9306	93，099，000	－other	${ }^{30}$	EL	\bigcirc	0	0	\bigcirc	0	0	0	U	U	\bigcirc	U	¢	U	0	\bigcirc	\checkmark	0	0	0	0
9307	93，070，000	Swords，cutlasses，bayonets，lances and similar arms and parts thereof and scabbards and sheaths therefor	${ }^{30}$	EL	U	－	\checkmark	－	U	－	－	U	\bigcirc	\checkmark	U	U	U	U	－	U	\checkmark	U	\bigcirc	\bigcirc
${ }^{3008}$	94，011，000	－Seals of a kind used for arcrath	10	st	10%	10\％	10\％	10\％	${ }^{10 \%}$	10\％	${ }^{10 \%}$	${ }^{10 \%}$	${ }^{8 \%}$	${ }^{7 \%}$	6\％	5\％	$4{ }^{4 \%}$	3\％	${ }^{2 \%}$	${ }^{1 \%}$	0\％	\％\％	0\％	\％
3309	${ }^{94,012,010}$		10	${ }^{\text {sL }}$	10\％	10\％	${ }^{10 \%}$	10\％	${ }^{10 \%}$	10\％	10\％	${ }^{10 \%}$	${ }^{8 \%}$	${ }^{7 \%}$	${ }^{6 \%}$	5\％	${ }^{4 \%}$	3\％	${ }^{2 \%}$	${ }^{1 \%}$	0\％	\％\％	0\％	\％
9310	94，012，090	－－oner	10	st	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	0\％	10\％	10\％	0\％	10\％	10\％	10\％	\％\％	10\％	\％
${ }^{3311}$	94，013，000	－Swive seast with vaiaide neightadisisment	10	st	10\％	10\％	10\％	10\％	10\％	10\％	${ }^{10 \%}$	${ }^{10 \%}$	${ }^{8 \%}$	7\％	${ }^{6 \%}$	5\％	$4{ }^{4 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{1 \%}$	\％	0\％	\％	\％
3312	94，014，000	－Seats other than garden seats or camping equipment，convertible into beds	10	st	10\％	10\％	0\％	10\％	\％	10\％	0\％	\％\％	${ }^{8 \%}$	\％	6\％	5\％	$4{ }^{4 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{1 \%}$	\％	\％	\％	\％
${ }^{9313}$	94，015，100	－O b bamboo or ratan	40	EL	\bigcirc	\bigcirc	\bigcirc	\bigcirc	U	\bigcirc	0	\bigcirc	U	\bigcirc	0	U	0	U	\bigcirc	U	\bigcirc	0	U	\bigcirc
${ }^{3314}$	94，015，900	－－omer	${ }^{40}$	EL	\bigcirc	U	\checkmark	U	\bigcirc	\bigcirc	\bigcirc	－	\bigcirc	\bigcirc	U	U	\bigcirc	\bigcirc	－	\bigcirc	\bigcirc	\bigcirc	U	－
9315	94，016，100	－Uporosisered	${ }^{40}$	EL	－	U	0	U	U	U		U	U	ט	U	U	，	U	U	U	\bigcirc	U	\bigcirc	\bigcirc
9316	94，016，900	－－oner	${ }^{40}$	EL	U	\bigcirc	O	－	\bigcirc	\bigcirc	O	－	\bigcirc	\bigcirc	U	\bigcirc	－	\bigcirc	\bigcirc	\bigcirc	\bigcirc	－	－	－
${ }^{3317}$	${ }^{94,017,100}$	－Uphossisered	${ }^{20}$	${ }^{\text {EL }}$	\bigcirc	\bigcirc	\square°	U	\bigcirc	\bigcirc	\bigcirc	\bigcirc	U	U	U	\bigcirc	－	，	\bigcirc	\checkmark	\checkmark	U	\bigcirc	\bigcirc
${ }^{3318}$	${ }^{94,017,900}$	Oher	${ }^{20}$	${ }^{\text {EL }}$	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\checkmark	\bigcirc	U	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
${ }^{3319}$	94，018，000	－Onereseals	${ }^{20}$	EL	\bigcirc	U	U	\bigcirc	－	－		0	\bigcirc	U	U	U	U	\bigcirc	0	U	U	U	\bigcirc	\bigcirc
${ }^{332}$	${ }^{94,0,9,9010}$	－OI seals of stubeading 9001．10．00	${ }^{20}$	EL	\bigcirc	U	－	，	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	－				\bigcirc	－		\bigcirc	－	\bigcirc	\bigcirc
9321	94，019，031	$\underset{9401.20 .10}{\text { Heat }}$ ．	${ }^{20}$	EL	\bigcirc	U	0	0	\bigcirc	O	－	\bigcirc	0	O	＂	＂	＂	＂	\bigcirc	＂	${ }^{\circ}$	U	＂	\bigcirc
9322	${ }^{94,019,0,039}$	－－．other	${ }^{20}$	EL	0	0	U	\bigcirc	\bigcirc	0	0	\bigcirc	U	\bigcirc	0	U	0	U	U	U	\bigcirc	0	0	\bigcirc
${ }^{9323}$	${ }^{94,0,9,9,40}$	－Of seals of stubeading 9001．30．00	${ }^{20}$	EL	\bigcirc	ט	\bigcirc	\bigcirc	－	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	ט	U	\bigcirc	\bigcirc	－	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
${ }^{932}$	94，019，092	\cdots Of pasicis	${ }^{20}$	EL	\checkmark	U	－	\bigcirc	\bigcirc	\bigcirc	\checkmark	－	\checkmark	\bigcirc	U	U	\bigcirc	\checkmark	\checkmark	\bigcirc	\bigcirc	\bigcirc	\checkmark	\bigcirc
${ }^{9325}$	94，019，099	\cdots	${ }^{20}$	EL	0	\bigcirc	U	\bigcirc	\bigcirc	\bigcirc	\bigcirc	U	\bigcirc	\bigcirc	ט	U	－	U	U	\bigcirc	－	U	U	0
${ }^{9326}$	${ }^{9402 \cdot 10.10}$	－－Denisiss shais and parts thereof	5	v1	4\％	4\％	4\％	3\％	${ }^{3 \%}$	2%	${ }^{2 \%}$	\％	\％	\％	\％	\％\％	\％	0\％	\％	\％	\％	\％	\％	\％
${ }^{3227}$	${ }^{9402 \cdot 10.30}$	－Barbess charis and parst theeof	5	vi	4%	4%	$4{ }^{4 \%}$	${ }^{3} \%$	${ }^{3 \%}$	${ }^{2 \%}$	2%	\％	0\％	\％	\％	\％	0\％	\％	\％	\％	\％	\％\％	\％	\％
${ }^{9328}$	94，021，090	－－oner	5	NT1	4%	4\％	$4{ }^{4 \%}$	3\％	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	0\％	0\％	0\％	\％	\％	\％	\％	\％	\％	\％	0\％	\％
${ }^{332}$	94，29，010		10	st	\％\％	10\％	10\％	10\％	10\％	10\％	\％	\％	${ }^{8 \%}$	${ }^{7 \%}$	6\％	5\％	4\％	3\％	${ }^{2 \%}$	${ }^{1 \%}$	\％	\％	\％	\％
9330	94，029，90	－other	10	st	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	8\％	7\％	6\％	5\％	4%	3\％	2\％	1\％	0\％	\％	\％	\％
${ }^{9331}$	94，03， 000	－Meat itumitue of a kind usedin offices	10	sL	10\％	10\％	10%	10%	10%	10%	10%	10%	8\％	7\％	6\％	5\％	4%	3\％	${ }^{2 \%}$	1\％	\％	\％	\％	\％

香港•ASEAN FTAにかかる調査報告書

別添2－4 原産地品の関税撤廃スケジュール
（ラオス）

\％932	${ }^{\text {94，032，010 }}$	－Fume cupboads	10	st	10\％	10%	10%	${ }^{10 \%}$	10\％	10\％	10\％	${ }^{10 \%}$	${ }^{8 \%}$	\％	6\％	${ }^{5 \%}$	4%	${ }^{3 \%}$	${ }^{2 \%}$	1\％	\％	\％	\％	\％
983	94，02，2900	－other	10	sL	10\％	10\％	10\％	${ }^{10 \%}$	10\％	10\％	10\％	10\％	${ }^{8 \%}$	${ }^{7 \%}$	6\％	${ }^{5 \%}$	${ }^{4 \%}$	${ }^{3} \%$	${ }^{2 \%}$	1\％	\％	\％	\％	\％
9334	94，03，000	Wooden turiture of a kind usedi iofticos	40	EL	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	0
	94，04，000	Wooden tumitue of a kind s sed in the kicten	${ }^{40}$	EL	0	0	0	U	O	U	U	U	U	U	ט	U	U	U	\bigcirc	U	U	，	O	\bigcirc
9336	94，05，000	den fumitur of a kind usedi in the beforom	${ }^{40}$	${ }^{\text {EL }}$	\bigcirc	U	－	0	U	－	U	0	0	0	U	－	U	0	U	U	0	0	U	U
9337	94，06，010	－Fume cupboards	${ }^{40}$	${ }^{\text {EL }}$	U	0	0	U	\bigcirc	0	U	\bigcirc	U	\bigcirc	0	\bigcirc	U	U	\bigcirc	\bigcirc	\bigcirc	\bigcirc	U	U
${ }^{9388}$	94，06，090	Oiner	${ }^{40}$	${ }^{\text {EL }}$	\bigcirc	\bigcirc	\bigcirc	\bigcirc	U	－	\bigcirc	U	U	\bigcirc	\bigcirc	U	U	\bigcirc	U	U	U	U	－	U
9339	94，03，010	Baby wakers	${ }^{40}$	${ }^{\text {EL }}$	U	0	U	U	U	0	U	U	U	U	ט	ט	U	U	\bigcirc	ט	U	U	U	U
9390	94，07，020	－Fume cupboars	40	EL	0	0	0	U	0	0	0	U	U	U	0	ט	U	U	\bigcirc	ט	U	U	0	0
${ }^{9341}$	94，07，090	－Other	${ }^{40}$	EL	U	0	0	\bigcirc	0	0	0	\bigcirc	0	0	0	ט	U	O	0	ט	U	\bigcirc	0	\bigcirc
9342	94，08，100	－Of bamboo oratan	${ }^{40}$	EL	0	0	0	\bigcirc	0	0	0	\bigcirc	0	\bigcirc	\bigcirc	\bigcirc	0	0	U	\bigcirc	\bigcirc	\bigcirc	0	\bigcirc
${ }_{934}$	94，08，9，90	－－Fume cupoads	${ }^{40}$	EL	U	U	ט	\bigcirc	U	0	\bigcirc	\bigcirc	0	\bigcirc	\bigcirc	\bigcirc	0	0	U	\bigcirc	U	U	ט	\bigcirc
934	94，08，990	－－Other	${ }^{40}$	${ }^{\text {EL }}$	U	0	U	U	ט	ט	U	－	ט	\bigcirc	\bigcirc	\bigcirc	U	U	U	ט	U	U	ט	U
${ }^{3} 85$	94，03，010	－Of baby wakers of stubheaing 9403．70．10	40	EL	\bigcirc	\bigcirc	ט	ט	\bigcirc	－	－	ט	U	－	\bigcirc	ט	U	0	U	－	U	－		U
9346	94，09， 090	－other	${ }^{40}$	EL	0	0	0	0	\bigcirc	0	0	0	0	0	\bigcirc	U	0	0	U	－	U	U	0	U
9347	94，04， 000	－Mattess suppors	${ }^{20}$	EL	U	0	U	ט	U	\bigcirc	U	\bigcirc	U	\bigcirc	，	\bigcirc	0	－	U	\bigcirc	0	U	ט	\bigcirc
${ }^{9348}$	94，02，100	$\begin{aligned} & \text { - Of cellular rubber or plastics, whether or not } \\ & \text { covered } \end{aligned}$	${ }^{20}$	EL	U	\bigcirc	\bigcirc	U	U	\bigcirc	\bigcirc	0	U	0	\bigcirc	\bigcirc	U	0	U	U	0	0	O	U
339	94，02，910	－Spring matresses	${ }^{20}$	${ }^{\text {EL }}$	U	U	\bigcirc	\bigcirc	U	U	U	\bigcirc	U	\bigcirc	U	\bigcirc	\bigcirc	\bigcirc	U	U	0	\bigcirc	U	\bigcirc
9350	94，042，220	Onere hyperthemia／hyonotemia tye	${ }^{20}$	EL	U	0	U	0	\bigcirc	0	0	U	U	\bigcirc	O	\bigcirc	U	U	U	\bigcirc	U	－	，	－
9351	94，042，990	－other	${ }^{20}$	EL	U	U	U	U	U	\bigcirc	U	0	U	ט	ט	ט	U	ט	U	ט	U	ט	U	\bigcirc
935	94，03，000	Seeping bags	${ }^{20}$	EL	\bigcirc	U	\bigcirc	\bigcirc	U	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	U	\bigcirc	－	U	\bigcirc	\bigcirc
${ }^{9353}$	94，09，010	－Oults，bespreads and mattess．polocecols	${ }^{20}$	EL	U	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0		U	0	\bigcirc
${ }^{9354}$	94，09，090	－other	${ }^{20}$	EL	0	U	U	U	0	ט	0	U	U	0	0	0	U	\bigcirc	U	\bigcirc	\bigcirc	－	U	\bigcirc
${ }^{9355}$	${ }^{9405.10 .20}$	－Lamps tor opeating fooms	5	v1	${ }^{4 \%}$	4\％	4\％	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％\％	\％	\％\％	\％\％	\％	\％	0\％	\％	\％	\％	\％	\％	\％
${ }^{9356}$	${ }^{99051.10 .30}$	Spolights	5	T1	4\％	4\％	4\％	3\％	3\％	2\％	2\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％
${ }^{9357}$	${ }^{\text {94，0，0，} 040}$	\cdots	5	T1	4%	4\％	4%	3\％	${ }^{3 \%}$	2\％	${ }^{2 \%}$	\％\％	\％\％	\％\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％
${ }^{9358}$	94，05，9，90	－other	5	T1	4\％	4\％	4\％	3\％	3\％	2\％	2\％	\％\％	\％	\％	\％	\％	\％	\％	\％	0\％	0\％	\％	\％	0\％
9359	94，05，010	Lamps tor operating soms	5	T1	${ }^{4 \%}$	4\％	4\％	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	0\％	\％	\％	\％	\％	\％	\％\％	\％	\％	\％	\％	0\％
9360	94，052，090	－Oner	5	T1	4%	4\％	4%	3\％	${ }^{3 \%}$	2\％	${ }^{2 \%}$	\％	\％	\％	\％	\％	\％	0\％	\％	\％	\％	\％	\％	\％
${ }^{3861}$	94，05，000	－Lighting sels ofa kind used ior Chisismas tres	5	NT1	${ }^{4 \%}$	4\％	4\％	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％\％	\％\％	\％	\％	\％	\％	0\％	\％	\％	\％	\％	\％	\％
936	94，04，020	Seachilighs	5	T1	4\％	4\％	4\％	3\％	3\％	2\％	2\％	0\％	0\％	0\％	0\％	\％	\％	0\％	\％	\％	\％	\％	\％	0\％
${ }^{9363}$	94，05，4，40	－Oner spolight	5	NT1	4%	4\％	4\％	${ }^{3 \%}$	${ }^{3 \%}$	2%	${ }^{2 \%}$	\％	0\％	\％	\％	\％	0\％	\％	\％	\％	\％	\％	\％	\％
9364	94，04， 5 ，50	－－Other，of a kind used for lighting public open spaces or thoroughfares	5	T1	4\％	4\％	4\％	${ }^{3 \%}$	3\％	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	0\％	\％	\％	\％	\％	\％	\％	\％	\％\％	\％	\％
${ }^{9865}$	94，54，0，06		5	NT1	${ }^{4 \%}$	4\％	4%	3\％	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	0\％	0\％	\％	0\％	0\％	\％	\％	\％\％	\％	\％	0\％	\％	0\％
${ }^{3966}$	94，54，070	Non－flashing aerodrome beacons；lamps for railway rolling stock，locomotives，aircraft，ships，or lighthouses，of base metal	${ }_{5}$	NT1	4\％	4\％	4\％	${ }^{3 \%}$	${ }^{3 \%}$	2%	${ }^{2 \%}$	0\％	\％	\％	\％	\％	\％	\％	\％	0\％	\％	\％	\％	\％
${ }^{9367}$	54，080	Pilot lamps with fittings for electro－thermic domestic appliances of heading 85.16	5	N1	${ }^{4 \%}$	${ }^{4 \%}$	${ }^{4 \%}$	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	0\％	0\％	\％	0\％	0\％	0\％	\％	\％	0\％	\％\％	\％	0\％	0\％
9868	94，054，091	Fibre－optic headband lamps of a kind designed for medical use	5	N1	${ }^{4 \%}$	${ }^{4 \%}$	${ }^{4 \%}$	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	0\％	\％\％	\％	0\％	0\％	\％	\％	\％	\％	\％\％	\％	0\％	\％
936	94，04，0，99	－－－oter	5	T1	4%	4\％	4\％	${ }^{3 \%}$	${ }^{3} \%$	${ }^{2 \%}$	${ }^{2 \%}$	\％\％	\％	\％\％	\％	\％	\％	\％	\％	0\％	\％	\％	\％	\％\％
9370	94，05，011		5	NT1	4\％	4\％	4\％	3\％	3\％	2\％	${ }^{2 \%}$	0\％	0\％	0\％	\％	0\％	0\％	\％	\％	0\％	\％	\％	\％	\％
9871	94，05，019	－．other	5	NT1	4\％	4\％	4\％	3\％	3\％	2\％	2\％	0\％	0\％	0\％	\％	0\％	0\％	0\％	\％	0\％	0\％	\％	0\％	\％
9372	94，05，940	－Huricanelamps	5	$\sqrt{11}$	${ }^{4}$	4\％	4\％	3\％	3\％	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％
${ }^{9373}$	94，05，990	－－omer	5	T1	$4{ }^{4 \%}$	${ }^{4 \%}$	4\％	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％	\％	\％	\％	\％	\％	0\％	\％	\％	\％	\％
9374	94，06，010	\cdots Warning signs，street name signs，road and traftic	5	T1	4\％	4\％	4%	${ }^{\text {3\％}}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％	\％	\％	\％	\％	\％	\％	0\％	\％	\％	\％
9375	94，06，090	－OMher	5	NT1	4\％	4\％	4\％	3\％	${ }^{3 \%}$	2\％	2\％	\％	\％	\％	0\％	\％	\％	0\％	\％	0\％	0\％	0\％	\％	\％
${ }^{9376}$	94，59，110	－For lamps tor pepeaing fooms	5	NT1	${ }^{4 \%}$	4\％	4\％	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％\％	\％	\％	\％	\％	\％	\％	\％	0\％	\％	\％	\％	\％
9377	94，05，120	\cdots－For sponiolits	5	NT1	4%	4\％	4\％	${ }^{3 \%}$	3\％	${ }^{2 \%}$	${ }^{2 \%}$	\％\％	0\％	\％	\％	\％	0\％	0\％	\％	0\％	\％	\％	\％	\％
${ }^{9378}$	94，59， 140	－GGbos or chimeeys	5	NT1	4%	4\％	4%	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％	\％	\％	\％	\％	\％	0\％	\％	\％	\％	\％
9379	94，05，150	\cdots－Forsaeachights	5	${ }^{\text {NT1 }}$	$4{ }^{4 \%}$	4\％	4\％	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％
${ }^{9380}$	94，05，190	－other	5	NT1	4%	4\％	4\％	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	0\％	\％	\％	\％	0\％	\％	\％	\％	\％	\％	\％	\％
${ }^{9881}$	94，05，210	F－Forlamps tor opeatiag fooms	5	NT1	$4{ }^{4 \%}$	4\％	4\％	3\％	3\％	2\％	${ }^{2 \%}$	0\％	\％	\％	0\％	\％	\％	0\％	0\％	\％	\％\％	\％	\％	0\％
9832	${ }^{\text {94，059，220 }}$	\cdots For spolight	5	NT1	${ }^{4 \%}$	4\％	4\％	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％
${ }^{983}$	94，09，230	－For searchionts	5	T1	${ }^{4 \%}$	4\％	4\％	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％
${ }^{9884}$	94，05，290	Other	5	T1	$4{ }^{4 \%}$	4\％	4\％	3\％	3\％	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％	0\％	\％	\％	\％	\％	0\％	\％	\％	\％	0\％
9835	94，05，910	Lampshades of texile mateial	5	NT1	4\％	4\％	4%	${ }^{\text {3\％}}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％
${ }^{9886}$	94，05，920	Lampenades of ot ther maleial		NT1	4%	4\％	4%	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％\％	\％	\％	\％	0\％	\％	\％	\％	0\％	\％	\％	\％	\％
${ }^{988}$	94，05，930	$\begin{aligned} & \text { - Of lamps of subheading 9405.50.11 or } \\ & 9405.50 .19 \end{aligned}$	5	NT1	4%	4%	4\％	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	2%	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％
${ }^{9388}$	94，059，90	\cdots For searchight of ofonolghts	5	NT1	4\％	4\％	4%	3\％	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	0\％	0\％	\％	\％	\％	\％\％	0\％	\％	0\％	\％	\％	\％	0\％
988	94，05，990	\cdots	5	NT1	4%	4%	4%	3\％	3\％	${ }^{2 \%}$	${ }^{2 \%}$	0\％	\％	\％	\％	\％	0\％	\％	\％	0\％	\％	\％	\％	\％
${ }^{9390}$	94，66，011	－or pasaics	${ }^{10}$	st	10\％	10\％	10%	10\％	${ }^{10 \%}$	${ }^{10 \%}$	10\％	10\％	${ }^{8 \%}$	${ }^{7 \%}$	${ }^{6 \%}$	${ }^{5 \%}$	${ }^{4 \%}$	${ }^{3} \%$	${ }^{2 \%}$	${ }^{1 \%}$	\％	\％	\％	\％
9391	94，06，019	－Other	10	st	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	${ }^{8 \%}$	${ }^{7} \%$	6\％	5\％	4\％	${ }^{3 \%}$	${ }^{2 \%}$	1\％	\％	\％	\％	\％
${ }^{2392}$	94，06，092	－－ot wood	10	st	10\％	0\％	10\％	10\％	10\％	0\％	10\％	10\％	8\％	${ }^{7 \%}$	6\％	5\％	4%	3\％	2\％	1\％	\％	\％	\％	\％
9393	94，06，094	－－of iono orstel	10	st	10\％	0\％	10\％	10\％	10\％	10\％	10\％	10\％	8\％	${ }^{7 \%}$	6\％	5\％	4\％	3\％	2\％	${ }^{1 \%}$	\％	\％	\％	0\％
${ }^{239}$	94，06，095	－－ot possics or of alumium	10	st	10\％	\％	0\％	10\％	10\％	0\％	0\％	10\％	$8{ }^{8 \%}$	${ }^{7} \%$	6\％	5\％	4\％	${ }^{3 \%}$	${ }^{2 \%}$	1\％	\％	\％	\％	\％
${ }^{2935}$	94，06，096	Of concele or of arificial sione	${ }^{10}$	st	10\％	\％\％	0\％	10\％	10\％	0\％	0\％	${ }^{10 \%}$	${ }^{8}$	\％	${ }^{6 \%}$	5\％	4\％	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{1 \%}$	\％	\％	\％	\％
${ }^{9396}$	94，06，099	－other	10	st	10\％	0\％	10\％	10\％	10\％	0\％	10\％	10\％	8\％	${ }^{7 \%}$	6\％	5\％	4\％	${ }^{3 \%}$	2\％	1\％	0\％	0\％	0\％	\％
${ }^{3397}$	95，03，010	Tricycles，scooters，pedal cars and similar wheeled toys；dolls＇carriages	5	T1	4\％	4\％	4\％	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％
${ }^{9398}$	95，30，021	－－Dolls，whenere or orod dessed	5	NT1	4\％	4\％	4\％	3\％	${ }^{3 \%}$	2%	${ }^{2 \%}$	\％	\％\％	\％	\％	\％	\％	\％	\％	0\％	\％	\％	\％	\％
939	95，03，022	-- Garments and garment accessories；footwear and headgear	5	T1	4%	4\％	4\％	3\％	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	0\％	\％	\％	\％	\％	\％	\％	0\％	\％	\％	\％	\％
9900	95，00，029	－．onter	5	T1	4%	4\％	4\％	3\％	3\％	2\％	2\％	0\％	0\％	0\％	0\％	\％	0\％	0\％	\％	0\％	0\％	0\％	\％\％	\％
${ }^{901}$	95，00，030		10	sL	10\％	\％	10\％	10\％	10\％	10\％	10\％	10\％	8\％	${ }^{7 \%}$	\％	${ }^{5 \%}$	4／8	${ }^{3 \%}$	2%	1\％	\％	\％	\％	\％
9402	95，03，040	－Reduced size（＂scale＂）models and similar recreational models，working or not	10	st	10\％	0\％	10\％	10\％	10\％	0\％	10\％	10\％	${ }^{8 \%}$	${ }^{7 \%}$	6\％	${ }^{5 \%}$	${ }^{4 \%}$	${ }^{3 \%}$	2\％	${ }^{1 \%}$	\％	\％	\％	\％
${ }^{9003}$	95，03， 505	－Other construction sets and constructional toys，of materials other than plastics	10	st	10\％	0\％	10\％	${ }^{10 \%}$	10\％	0\％	10\％	10\％	${ }^{8 \%}$	${ }^{7 \%}$	6\％	${ }^{5 \%}$	${ }^{4 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{1 \%}$	\％	0\％	\％	${ }^{0 \%}$
9904	5，030，060	－Stuffed toys representing animals or non－human creatures	10	st	${ }^{10 \%}$	0\％	${ }^{10 \%}$	${ }^{10 \%}$	10\％	0\％	10\％	10\％	${ }^{8 \%}$	${ }^{7 \%}$	6\％	${ }^{5 \%}$	${ }^{4 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	1\％	0\％	0\％	0\％	0\％
${ }^{9005}$	95，03，070	－Puzzes ofal lknds	10	sL	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	${ }^{8 \%}$	7\％	6\％	5\％	4%	3\％	2\％	1\％	\％	\％	\％	\％
${ }^{9006}$	95，00，091	Numerical，alphabetical or animal blocks or cut－ outs；word builder sets；word making and talking sets；toy printing sets ；toy counting frames（abaci）； toy sewing machines；toy typewriters	10	sL	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	${ }^{8 \%}$	7\％	6\％	5\％	4\％	3\％	2\％	1\％	0\％	0\％	\％	\％
9907	95，08，092	－Skiping ropes	10	${ }^{\text {sL }}$	${ }^{10 \%}$	10\％	10\％	${ }^{10 \%}$	10\％	10\％	${ }^{10 \%}$	10\％	${ }^{8 \%}$	${ }^{7 \%}$	6\％	${ }^{5 \%}$	4\％	${ }^{3 \%}$	${ }^{2 \%}$	1\％	\％	\％	\％	0\％
9908	${ }^{95,08,093}$	－Matbes	10	${ }^{\text {st }}$	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	${ }^{8 \%}$	${ }^{7 \%}$	6\％	5\％	4\％	3\％	${ }^{2 \%}$	1\％	\％	\％	\％	\％\％
${ }^{9099}$	95，00，099	Other	10	${ }^{\text {sL }}$	10\％	10\％	10\％	10\％	${ }^{10 \%}$	10\％	10\％	10\％	${ }^{8 \%}$	${ }^{7 \%}$	6\％	5\％	4\％	3\％	2\％	${ }^{1 \%}$	\％	\％	\％	\％
940	95，04，2020	－Tales sorobiliars of a alkins	${ }^{30}$	${ }^{\text {EL }}$	\checkmark	，	－	${ }^{\text {u }}$	\checkmark	${ }^{\text {u }}$	\bigcirc	U	\checkmark	\bigcirc	${ }^{\circ}$	\bigcirc	\checkmark	\bigcirc	${ }^{\circ}$	\bigcirc	\bigcirc	\bigcirc	－	\bigcirc
${ }^{9411}$	${ }^{95,02,2303}$	－Biliad crank	${ }^{30}$	EL	U	\bigcirc	ט	－	－	\bigcirc	U	－	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	，	U	\bigcirc	－	－	－	\bigcirc
${ }^{9412}$	95，042，090	－Other	${ }^{30}$	EL	U	0	U	\bigcirc	U	U	U	U	U	0	\bigcirc	\bigcirc	0	0	U	\bigcirc	U	U	－	\bigcirc
${ }^{9413}$	95，08，010	－Prmabes or sol machines	${ }^{40}$	EL	\bigcirc	\bigcirc	ט	\bigcirc	\bigcirc	\bigcirc	ט	\bigcirc	ט	\bigcirc	\bigcirc	\bigcirc		\bigcirc	\bigcirc	\bigcirc	\bigcirc		ט	\bigcirc
${ }^{9414}$	95，94， 202	Patso f wood，papere or plasics	${ }^{40}$	${ }^{\text {EL }}$	U	0	U	0	U	0	U	U	0	－	U	O	0	U	U	O	0	U	U	0
9415	95，04，${ }^{\text {a }}$ O	－Oner	${ }^{40}$	EL	U	U	U	U	U	U	\bigcirc	U	\bigcirc	U	U	U	\bigcirc	U	U	\bigcirc	\bigcirc	－	U	\bigcirc
9446	${ }^{95,044,000}$	${ }^{-P \text { Plajig caras }}$	${ }^{30}$	EL	O	U	0	0	O	U	0	0	U	\bigcirc	0	0	U	\bigcirc	O	ט	U	U	0	U

917	195，04，000	－Video game consoles and machines，other than those of subheading 9504.30	40	${ }^{\text {EL }}$	0	O	－	U	0	－	－	U	O	－	${ }^{0}$	${ }^{\circ}$	U	${ }^{0}$	${ }^{\circ}$	U		U		${ }^{\circ}$
9418	95，04，0，10	－－Bowing requises of alk kins	${ }^{30}$	${ }^{\text {EL }}$	\bigcirc	0	0	U	\bigcirc	0	0	\bigcirc	\bigcirc	\bigcirc	\bigcirc	ט	U	U	\bigcirc	ט	\checkmark	\bigcirc	\bigcirc	0
9419	95，49，9，20	－Dars and pans and accessories hereitor	${ }^{30}$	${ }^{\text {EL }}$	U	\bigcirc	\bigcirc	${ }^{\circ}$	\bigcirc	，	\bigcirc	U	\bigcirc	，	\bigcirc	0	0	U	\square°	0	U	0	U	0
929	［49，031		${ }^{30}$	EL	U	\bigcirc	\checkmark	ט	\bigcirc	\checkmark	ט	U	ט	－	－	U	U	U	ט	U	u	U	U	\bigcirc
9241	95，04，0，39	－other	${ }^{30}$	EL	\bigcirc	\bigcirc	\bigcirc	U	\bigcirc	U	\bigcirc	U	\bigcirc	U	\bigcirc	\cup	\cup	－	\bigcirc	\cup	\cup	U	ט	\bigcirc
942	${ }^{59,04,9,92}$	$\cdots \mathrm{Of}$ Wod of of pasaics	${ }^{30}$	${ }^{\text {EL }}$	U	U	0	ט	0	\bigcirc	\checkmark	U	\bigcirc	\bigcirc	\bigcirc	\checkmark	－	\checkmark	\checkmark	\checkmark	U	－	\bigcirc	\bigcirc
${ }^{9223}$	95，04，9，93	\cdots Onter	${ }^{30}$	EL	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	0	\bigcirc	U	\bigcirc	\bigcirc	\bigcirc	\bigcirc	ט	ט	U	\bigcirc	U	\bigcirc	0	\bigcirc
924	${ }^{95,04,9,094}$	$\cdots \mathrm{Ol}$ wod or of plasitics	${ }^{30}$	EL	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\checkmark	\checkmark	\checkmark	\bigcirc	\checkmark	\bigcirc	\checkmark	\bigcirc	u	\checkmark	U	ט	\checkmark	\checkmark	\checkmark	\bigcirc
929	95，04，9，99	\cdots Oner	${ }^{30}$	EL	－	\bigcirc	0	－	\bigcirc	\bigcirc	－		\bigcirc	\bigcirc	\bigcirc	－	－	U	U	U	ט	U	U	\bigcirc
9246	95，05，000	－Antices tor Chisismas esesivies	10	Ist	0\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	\％\％	10\％	10\％	10\％	10\％	10\％	10\％	0\％	10\％	0\％
${ }^{9427}$	95，55，000	－Other	10	IsL	0\％	\％\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	0\％	10\％	0\％	0\％	\％	10\％	0\％	0\％	\％\％
929	95，061，100	－Sks	5	T1	${ }_{4 \%}$	4\％	4\％	3\％	${ }^{3 \%}$	${ }^{2 \%}$	2\％	\％	0\％	\％\％	0\％	0\％	\％\％	0\％	\％\％	\％\％	0\％	0\％	\％	\％
9429	${ }^{95,061,200}$	－Skfraseinings sskbibindings	5	T1	4%	4%	$4{ }^{4 \%}$	3\％	${ }^{3 \%}$	${ }^{2 \%}$	2\％	0\％	\％	\％	\％	0\％	0\％	0\％	\％	\％	\％	\％	0\％	0\％
9380	99，06，900	－other	5	T1	4%	4%	4%	3\％	3\％	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	0\％	0\％	\％	\％	\％	\％	\％	\％	\％	\％	\％
9331	95，02，100	Salioards	5	NT1	4\％	4%	${ }^{4 \%}$	${ }^{3} \%$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％
9432	95，02，200	－Other	5	NT1	4%	4\％	4\％	3\％	3\％	2\％	2%	\％	0\％	0\％	0\％	\％	\％	0\％	0\％	\％	\％	0\％	0\％	\％
${ }^{933}$	95，06， 100	Cubs，complele	10	sL	\％	\％	10\％	10\％	10\％	10\％	10\％	10\％	8%	${ }^{7 \%}$	6\％	5\％	4%	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{1 \%}$	\％	0\％	0\％	0\％
${ }^{9334}$	${ }^{95,06,200}$	：Bals	10	st	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	\％	${ }^{7} \%$	6\％	5\％	4\％	${ }^{3}$	${ }^{2 \%}$	${ }^{1 \%}$	\％	\％	\％	\％
9395	95，06，900	Oner	10	st	10\％	0\％	10\％	10\％	10\％	10\％	10\％	10\％	${ }^{8} \%$	${ }^{7 \%}$	6\％	5\％	$4{ }^{4 \%}$	3\％	${ }^{2 \%}$	${ }^{1 \%}$	\％	\％	\％	\％
9396	95，064，010	－Tables	10	sL	10\％	0\％	10\％	10\％	10\％	10\％	10\％	10\％	8%	${ }^{7 \%}$	6\％	5\％	4\％	3\％	2\％	1\％	\％	\％	0\％	0\％
9387	95，064，900	－－oner	10	st	\％\％	\％	10\％	10\％	10\％	10\％	10\％	10\％	8%	${ }^{7 \%}$	6\％	5\％	4\％	3\％	2\％	1\％	\％	\％	\％	\％
${ }^{9388}$	95，06， 100	${ }_{\text {Lawheneme }}$	5	${ }^{\text {T1 }}$	4\％	4\％	${ }^{4 \%}$	3\％	3\％	${ }^{2 \%}$	${ }^{2 \%}$	0\％	\％	\％	0\％	\％	\％	\％	0\％	\％	\％	\％	\％	0\％
9339	95，65，900	－other	5	T1	4\％	4%	4%	3\％	${ }^{\text {3\％}}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％	\％	\％	\％	0\％	\％	0\％	\％	0\％	0\％	\％
940	95，06，100	－Lawn－temis bals	5	T1	4\％	4\％	4%	3\％	3\％	${ }^{2 \%}$	2\％	\％	\％	\％	0\％	\％\％	\％	\％\％	\％	\％\％	0\％	0\％	0\％	\％
944	${ }^{95,066,200}$	－－nlatable	5	NT1	4\％	4%	4\％	3\％	3\％	2\％	2\％	\％\％	\％\％	0\％	0\％	\％\％	\％	0\％	0\％	0\％	0\％	0\％	\％	\％
${ }^{944}$	95，66，900	－－other	5	NT1	4\％	4%	4%	3\％	${ }^{3 \%}$	2\％	2\％	\％	0\％	\％	0\％	\％	\％	\％	\％	\％	\％	\％	\％	\％
943	95，06，700	－Ice skates and roller skates，including skating boots with skates attached	5	T1	4\％	4\％	4\％	3\％	3\％	2\％	2\％	\％	\％	\％	0\％	\％	\％	\％	0\％	\％	0\％	0\％	\％	\％
${ }^{944}$	95，06，100	－Aricices and equiument tor general physical	5	v1	${ }^{4 \%}$	${ }^{4 \%}$	${ }^{4 \%}$	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	0\％	0\％	0\％	\％	0\％	0\％	\％\％	\％	\％	\％	\％	\％	0\％
944	95，69，900	－Oher	5	T1	4\％	4%	4%	3\％	3\％	${ }^{2 \%}$	2%	\％\％	0\％	0\％	0\％	0\％	\％	\％	\％	0\％	${ }^{\circ}$	0\％	0\％	0\％
${ }^{9446}$	${ }^{95,07,000}$	－Fsing oods	10	st	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	\％	${ }^{7 \%}$	6\％	5\％	4\％	3\％	${ }^{2 \%}$	${ }^{1 \%}$	\％	\％	\％	\％
${ }^{947}$	95，02，2000	－Fsshrooks，whenere or rot selled	${ }^{10}$	st	10\％	10%	10\％	10\％	10\％	10\％	10\％	${ }^{10 \%}$	${ }^{8 \%}$	${ }^{7 \%}$	6\％	5\％	4\％	3\％	${ }^{2 \%}$	1\％	\％\％	\％\％	0\％	0\％
9448	955，73，000	－Fsting reels	10	sL	10\％	0\％	10\％	10\％	10\％	10\％	10\％	10\％	8\％	${ }^{7 \%}$	6\％	5\％	4\％	3\％	2\％	1\％	\％	\％	\％	\％\％
949	95，07，．000	－oner	10	st	0\％	0\％	\％	10\％	10\％	0\％	0\％	0\％	$8{ }^{8 \%}$	7\％	6\％	5\％	$4{ }^{4 \%}$	3\％	${ }^{2 \%}$	1\％	\％	\％	\％	0\％
$9{ }^{955}$	95，08，000	－Traveling circuses and taveling menageies	10	st	0\％	0\％	0\％	10\％	10\％	10\％	0\％	10\％	\％	${ }^{7}$	6\％	\％	4\％	${ }^{3 \%}$	${ }^{2 \%}$	1\％	\％	0\％	0\％	\％
$9{ }^{9451}$	95，09，000	－other	10	st	10\％	0\％	10\％	10\％	10\％	${ }^{10 \%}$	10\％	10\％	8\％	${ }^{7 \%}$	6\％	5\％	4\％	3\％	2\％	1\％	\％	\％	\％	0\％
945	99，01，000	－Worked wory and aticles of ivor	10	EL	\bigcirc	－	\bigcirc	－	－	\bigcirc	U	－	\bigcirc	\bigcirc	ט	\bigcirc	－	－	U	ט	\bigcirc	－	U	\bigcirc
${ }^{9453}$	90，019，010	－Worked mothero－f．pear or or tortoise－shell and	5	${ }^{\text {EL }}$	0	0	O	ט	0	0	－	O	\bigcirc	0	0	ט	0	0	ט	U	ט	0		U
${ }^{9354}$	90，09，091	igar or cigarette cases，tobacco jars； ornamental articles	${ }^{5}$	${ }^{\text {EL }}$	\bigcirc	\bigcirc	－	U	0	U	U	u	－	U	U	U	\checkmark	U	U	${ }^{\circ}$	O	U	U	0
945	90，019，099	\cdots	5	EL	\bigcirc	0	0	U	\bigcirc	\bigcirc	\bigcirc	\bigcirc	0	\bigcirc	0	\bigcirc	\bigcirc	\bigcirc	0	\bigcirc	\bigcirc	\bigcirc	U	\bigcirc
${ }^{9356}$	98，02，010	－Gealin capasus or or hamameunical proouls	5	T1	4\％	4%	4%	3\％	3\％	2\％	2%	\％\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	0\％	0\％
9457	90，020，020	Cigar or cigarette cases，tobacco jars；ornamental articles	5	NT1	4\％	4\％	4\％	3\％	${ }^{3}$	2\％	2\％	0\％	\％	\％	0\％	0\％	\％	\％	0\％	\％	\％	\％	\％	0\％
${ }^{9458}$	90，02，090	－Oner	5	NT1	4%	4\％	4\％	3\％	3\％	2\％	${ }^{2 \%}$	\％\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％
9459	9060．10．10	－Busses	10	HSL	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％
9460	9003．10．20	Broms	10	IsL	10\％	10\％	10\％	10\％	10\％	${ }^{10 \%}$	10\％	10\％	10\％	10\％	\％	0\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％
${ }^{9661}$	${ }^{98,032,100}$	－Tooth bushes，inculding denalaplate bushe	10	${ }^{\text {sL }}$	10\％	${ }^{10 \%}$	10\％	10\％	10\％	${ }^{10 \%}$	10\％	10\％	8\％	${ }^{7}$	6\％	5\％	4\％	${ }^{3 \%}$	${ }^{2 \%}$	1\％	\％\％	\％	\％	\％
${ }^{2462}$	98，032，900	－Onter	${ }^{10}$	st	${ }^{10 \%}$	\％	10\％	10\％	10\％	$1{ }^{10 \%}$	10\％	10\％	${ }_{8 \%}$	\％	${ }^{6 \%}$	${ }^{5 \%}$	${ }^{46}$	3\％	${ }^{2 \%}$	${ }^{1 \%}$	\％	0\％	\％	\％
${ }^{2463}$	90，03， 000	－Artists＇brushes，writing brushes and similar brushes for the application of cosmetics	10	st	10\％	0\％	10\％	10\％	10\％	10\％	10\％	10\％	\％	${ }^{7}$	6\％	5\％	${ }^{4 \%}$	3\％	${ }^{2 \%}$	${ }^{1 \%}$	${ }^{0 \%}$	\％$\%$	\％	\％
$9{ }^{984}$	99，034，000	－Paint，distemper，varnish or similar brushes（other than brushes of subheading 9603．30）；paint pads and rollers	10	sL	10\％	\％	10\％	10\％	10\％	10\％	10\％	10\％	${ }^{8 \%}$	${ }^{7 \%}$	6\％	5\％	4\％	3\％	${ }^{2 \%}$	${ }^{1 \%}$	\％	0\％	\％	\％
946	99，03，000	－Other brushes constituting parts of machines， appliances or vehicles	${ }^{10}$	st	0\％	0\％	10\％	10\％	10\％	10\％	10\％	10\％	8%	${ }^{7 \%}$	6\％	5\％	4\％	3\％	${ }^{2 \%}$	${ }^{1 \%}$	0\％	0\％	0\％	0\％
${ }^{9666}$	90，03，010	$\begin{aligned} & \text {-- Prepared knots and tufts for broom or brush } \\ & \text { making } \\ & \hline \end{aligned}$	${ }^{10}$	${ }^{\text {sL }}$	10\％	\％\％	10\％	10\％	10\％	0\％	10\％	10\％	${ }^{8 \%}$	${ }^{7 \%}$	6\％	${ }^{5 \%}$	${ }^{4 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{1 \%}$	\％	\％	\％	0\％
${ }^{9647}$	98，03， 202	－Hand－operated mechanical floor sweepers，not motorised	10	${ }^{\text {sL }}$	0\％	10\％	10\％	10\％	10\％	10\％	0\％	10\％	${ }^{8 \%}$	${ }^{7} \%$	6\％	5\％	4\％	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{1 \%}$	0\％	0\％	0\％	0\％
${ }^{9468}$	99，03， 090	－OOter busses	10	Ist	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	0\％	0\％	10\％	\％\％	0\％	0\％	10\％	0\％	0\％	\％
946	98，03，9，90	－Oner	10	st	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	${ }^{8 \%}$	7\％	6\％	5\％	4\％	${ }^{3 \%}$	${ }^{2 \%}$	1\％	\％	\％	0\％	\％
9470	99，00，0，10	－or meal	10	st	${ }^{10 \%}$	10\％	10\％	10\％	10\％	10\％	10\％	10\％	${ }^{8 \%}$	${ }^{7} \%$	6\％	5\％	${ }^{4 \%}$	3\％	${ }^{2 \%}$	1\％	\％	\％	\％	0\％
9871	98，00，0900	－other	10	st	10\％	10\％	10\％	10\％	10\％	${ }^{10 \%}$	10\％	10\％	8%	${ }^{7 \%}$	6\％	5\％	4%	3\％	${ }^{2 \%}$	1\％	\％	\％	\％	\％
9472	98，50，000	Travel sets for personal toilet，sewing or shoe or clothes cleaning．	10	${ }^{\text {sL }}$	10\％	10\％	10\％	10\％	10\％	${ }^{10 \%}$	10\％	10\％	\％	${ }^{7 \%}$	6\％	5\％	${ }^{4 / 8}$	3\％	${ }^{2 \%}$	${ }^{1 \%}$	\％	\％	\％	\％
${ }^{9473}$	9006．10．10	－ot plasics	10	st	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	${ }^{8 \%}$	${ }^{7}$	6\％	5\％	4%	${ }^{3 \%}$	${ }^{2 \%}$	1\％	\％	\％	\％	\％
${ }^{9774}$	90，061，090	－omer	${ }^{10}$	sL	10\％	10\％	${ }^{10 \%}$	${ }^{10 \%}$	${ }^{10 \%}$	10\％	${ }^{10 \%}$	10\％	${ }^{8 \%}$	${ }^{7 \%}$	6\％	5\％	${ }^{4 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{1 \%}$	0\％	0\％	0\％	\％
9475	90，062，100	－Of plasiscs，not covered wint iexilie material	10	NT2	9\％	9\％	8\％	8\％	6%	6\％	5\％	5\％	4\％	4\％	3\％	3\％	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％	\％	\％	0\％
${ }^{9476}$	98，062，200	－－Of base meal，not covered wift extie mateial	10	${ }^{\text {sL }}$	\％	\％\％	10\％	10\％	10\％	10\％	10\％	${ }^{10 \%}$	${ }^{8 \%}$	7\％	6\％	${ }^{5 \%}$	4\％	${ }^{\text {\％}}$	${ }^{2 \%}$	${ }^{1 \%}$	0\％	\％	0\％	0\％
${ }^{9477}$	98，62，2000	－Onter	10	sL	\％	\％	10\％	10\％	10\％	10\％	10\％	${ }^{10 \%}$	${ }^{8 \%}$	${ }^{7} \%$	6\％	5\％	${ }^{4 \%}$	3\％	${ }^{2 \%}$	1\％	0\％	0\％	\％	\％
978	98，06，0，010	－－ot pasics	10	st	10\％	\％	10\％	10\％	10\％	10\％	\％	10\％	${ }^{8 \%}$	${ }^{7} \%$	6\％	${ }^{5 \%}$	4\％	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{1 \%}$	\％\％	0\％	0\％	\％
979	98，06，3090	－－omer	10	st	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	${ }^{8 \%}$	${ }^{7}$	6\％	5\％	4\％	3\％	${ }^{2 \%}$	${ }^{1 \%}$	\％	\％	\％	\％
9880	98，07，100	\cdots FFtied wit chain scopos of tose meal	10	st	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	${ }_{8 \%}$	${ }^{7 \%}$	6\％	5\％	4\％	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{\text {\％}}$	\％	\％	\％	0\％
${ }^{9881}$	98，07， 000	－Oner	10	st	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	${ }^{8 \%}$	${ }^{7 \%}$	6\％	5\％	4%	${ }^{3 \%}$	${ }^{2 \%}$	1\％	0\％	0\％	\％	\％
9882	98，02， 000	－Pats	10	st	0\％	0\％	10\％	10\％	10\％	${ }^{10 \%}$	10\％	10\％	${ }^{8 \%}$	\％	6\％	5\％	4%	3\％	${ }^{2 \%}$	\％	\％	\％	\％	\％
${ }^{983}$	${ }^{9000.10,10}$	Of pasics		NT1	4\％	4%	${ }^{4 \%}$	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	0\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％
${ }^{9884}$	98，08，，900	－－Oher		NT1	4%	4\％	4%	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	2%	0\％	\％	\％	0\％	0\％	\％	\％	\％	\％	\％	\％	\％	\％
9885	90，082，000	－Felt tiped and other poroustipped pens and markers	5	NT1	4%	4\％	4\％	3\％	3\％	${ }^{2 \%}$	2\％	\％	\％	0\％	0\％	\％\％	\％	0\％	\％	0\％	0\％	\％	\％	\％
${ }^{9886}$	${ }^{98,08,0,010}$	－－Mdodan ink crawng pens	5	NT1	4\％	4\％	4%	${ }^{3 \%}$	3\％	${ }^{2 \%}$	${ }^{2 \%}$	0\％	0\％	\％\％	0\％	0\％	0\％	\％\％	0\％	\％\％	\％	\％\％	0\％	0\％
${ }^{9887}$	98，03，9090	－Oner	5	NT1	4\％	4%	4%	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	2\％	0\％	\％\％	\％\％	\％	\％	\％	\％\％	\％\％	\％	\％	\％	\％	\％
${ }^{9888}$	98，04，000	－Propeling orsididin penclis		NT1	4%	4%	4%	${ }^{3 \%}$	3\％	${ }^{2 \%}$	${ }^{2 \%}$	\％	0\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％
9889	90，05，000	－Stis of aricles from two or more of the foregoing subheadings	${ }^{5}$	NT1	4\％	4\％	4%	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％\％	\％	\％$\%$
9490	90，08，010	－－Of pasics		NT1	4\％	4%	4%	3\％	3\％	${ }^{2 \%}$	2%	\％\％	0\％	\％\％	0\％	\％\％	0\％	0\％	0\％	0\％	\％	\％	0\％	\％
${ }^{949}$	90，08，090	Onher	5	NT1	4%	4\％	4\％	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	2%	\％\％	\％	\％	\％	\％\％	\％	0\％	\％	\％\％	\％	\％	\％	\％\％
9492	${ }^{98,09,110}$	－Of godo or goctrplaed		NT1	4\％	4\％	4%	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	2%	0\％	0\％	\％\％	0\％	0\％	0\％	0\％	0\％	0\％	0\％	0\％	0\％	0\％
${ }^{2993}$	98，09，190	－－Other	5	NT1	4\％	4%	4%	${ }^{3 \%}$	${ }^{3 \%}$	2\％	${ }^{2 \%}$	0\％	0\％	\％	\％	\％	\％	0\％	\％	\％	\％	\％	\％	\％
994	98，09，9，90	－Duplicaing stuos		NT1	${ }^{4 \%}$	4%	${ }^{4 \%}$	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％	0\％	\％	0\％	0\％	\％	\％	\％	\％	0\％	\％
945	98，09，991			NT1	${ }^{4 \%}$	4%	$4{ }^{4 \%}$	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	${ }^{2 \%}$	\％	\％	\％	\％	\％	\％	0\％	\％	\％	\％	\％	\％	\％
${ }^{2996}$	98，899，999	Other	5	NT1	4\％	4\％	4%	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	2%	\％\％	\％	0\％	0\％	\％\％	0\％	\％\％	0\％	0\％	0\％	\％\％	0\％	0\％
${ }^{9497}$		－Bacar penclis	5	NT1	4\％	4\％	4%	${ }^{3 \%}$	${ }^{3 \%}$	${ }^{2 \%}$	2%	\％\％	\％	\％\％	0\％	\％\％	\％\％	\％\％	\％\％	\％\％	\％	\％\％	0\％	0\％
${ }^{2998}$	98，09，0，90	－Onter	5	NT1	4\％	4%	4%	${ }^{3 \%}$	3\％	${ }^{2 \%}$	${ }^{2 \%}$	0\％	0\％	\％	\％\％	\％	\％	\％	\％	\％	\％	\％	\％	\％
949	90，02， 000	－Pencil eads，blacko ocoloured		NT1	4\％	4\％	4\％	${ }^{3 \%}$	3\％	${ }^{2 \%}$	2\％	\％	\％	\％\％	\％	\％	\％\％	\％	\％	\％\％	0\％	0\％	\％	\％
9500	90，09，010	Slate penenis ior scrool satas	${ }^{20}$	EL	0	U	－	ט	\bigcirc	－	0	0	－	0	ט	U	－	U	U	0	－	－	0	\bigcirc
9501	90，09， 030	$\begin{array}{\|l} \hline- \text { Pencils and crayons other than those of } \\ \text { subheading } 9609.10 \\ \hline \end{array}$	${ }^{20}$	${ }^{\text {EL }}$	\bigcirc	\bigcirc	0	\bigcirc	U	\bigcirc	0	U	U	\bigcirc	\bigcirc	\checkmark	\bigcirc	\bigcirc	\bigcirc	\checkmark	\checkmark	\bigcirc	\bigcirc	\bigcirc
5502	90，09，091	Wining of diawing chaks	${ }^{20}$	EL	0	0	0	U	0	\bigcirc	U	－	0	0	U	\bigcirc	U	0	\bigcirc	\bigcirc	0	0	\bigcirc	\bigcirc

香港•ASEAN FTAにかかる調査報告書
別添2－4 原産地品の関税撤廃スケジュール
（ラオス）

9503	96，09，099	Other	${ }^{20}$	EL	U	U	U	U	U	U	U	U	U	u	U	U	U	u	U	U	u	U	U	U
9504	96，100，010	－School satas	5	NT1	4\％	4\％	4\％	3\％	3\％	2\％	2\％	0\％	0\％	0\％	0\％	0\％	0\％	0\％	0\％	0\％	\％	0\％	0\％	0\％
9505	96，10，090	－Other	5	NT1	4\％	4\％	4\％	3\％	3\％	2\％	2\％	0\％	0\％	0\％	0\％	0\％	0\％	0\％	0\％	0\％	0\％	0\％	0\％	\％
9506	96，110，000	Date，sealing or numbering stamps，and the like （including devices for printing or embossing labels），designed for operating in the hand；hand－ operated composing sticks and hand printing sets incorporating such composing sticks．	5	${ }^{\text {NT1 }}$	4\％	4\％	4\％	3\％	3\％	2\％	2\％	0\％	0\％	0\％	0\％	0\％	0\％	0\％	0\％	0\％	0\％	0\％	0\％	0\％
9507	9612.10 .10	Of texile fabic	5	NT1	4\％	4\％	4\％	3\％	3\％	2\％	2\％	0\％	0\％	0\％	0\％	\％	0\％	0\％	0\％	0\％	0\％	0\％	0\％	0\％
9508	96，121，090	Other	5	NT1	4\％	4\％	4\％	3\％	3\％	2\％	2\％	0\％	0\％	0\％	0\％	\％	0\％	0\％	0\％	0\％	0\％	0\％	0\％	0\％
9509	96，122，000	－$n \mathrm{nk}$－pads	5	NT1	4\％	4\％	4\％	3\％	3\％	2\％	2\％	0\％	0\％	0\％	\％	0\％	0\％	0\％	0\％	0\％	0\％	0\％	0\％	0\％
9510	9613.10 .10	－Of plastics	10	HSL	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％
9511	96，131，090	－Other	10	HSL	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％
9512	96，132，010	－Of plastics	10	HSL	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％
9513	96，132，990	－Other	10	HSL	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％
9514	96，138，010	－Piezo－electric lighters for stoves and ranges	10	HSL	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％
9515	96，138，020	－－Cigarette lighters or table lighters of plastics	10	HSL	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％
9516	96，138，030	- Cigarette lighters or table lighters，other than of plastics	10	HSL	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％
${ }^{9517}$	96，138，090	－Other	10	HSL	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％
9518	96，139，010	－－Refillable cartridges or other receptacles，which constitute parts of mechanical lighters，containing liquid fuel liquid fuel	10	HSL	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％
9519	96，139，090	－－Other	10	HSL	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％
9520	96，140，010	－Roughly shaped blocks of wood or root tor the manuracture of pipes	10	SL	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	8\％	7\％	6\％	5\％	4\％	3\％	2\％	1\％	0\％	0\％	0\％	0\％
9521	96，140，090	－Other	10	SL	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	8\％	7\％	6\％	5\％	4\％	${ }^{3 \%}$	2\％	1\％	\％	0\％	0\％	0\％
9522	9615．11．20	－－Of hard rubber	10	SL	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	8\％	7\％	6\％	5\％	4\％	3\％	2\％	1\％	0\％	0\％	0\％	0\％
9523	9615.11 .30	－－Of plastics	10	SL	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	${ }^{8 \%}$	7\％	6\％	5\％	4\％	3\％	2\％	1\％	0\％	0\％	0\％	0\％
9524	96，15，，900	－Other	10	SL	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	8\％	7\％	6\％	5\％	4\％	3\％	2\％	${ }^{1 \%}$	0\％	0\％	0\％	0\％
9525	96，159，011	－Of aluminium	10	SL	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	8\％	7\％	6\％	5\％	4\％	3\％	2\％	1\％	0\％	0\％	0\％	0\％
9526	96，159，012	－Of iron or steel	10	SL	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	8\％	7\％	6\％	5\％	4\％	3\％	2\％	1\％	0\％	0\％	0\％	0\％
9527	96，159，013	－Of plastics	10	SL	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	${ }^{8 \%}$	7\％	6\％	5\％	4\％	3\％	2\％	1\％	0\％	0\％	0\％	0\％
9528	96，159，019	－Other	10	SL	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	${ }^{8 \%}$	7\％	6\％	5\％	4\％	3\％	2\％	1\％	0\％	0\％	0\％	0\％
9529	96，159，021	\bigcirc Of plastics	${ }^{10}$	SL	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	${ }^{8 \%}$	7\％	6\％	5\％	4\％	3\％	2\％	1\％	0\％	0\％	0\％	0\％
9530	96，159，022	－Of iron or steel	10	SL	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	8\％	7\％	6\％	5\％	4\％	3\％	2\％	1\％	0\％	0\％	0\％	0\％
9531	96，159，023	－Of aluminium	10	SL	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	8\％	7\％	6\％	5\％	4\％	3\％	2\％	1\％	0\％	0\％	0\％	0\％
9532	96，159，029	－Other	10	SL	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	8\％	7\％	6\％	5\％	4\％	3\％	2\％	1\％	0\％	0\％	0\％	0\％
9533	96，159，091	\cdots Of aluminium	10	SL	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	${ }^{8 \%}$	7\％	6\％	5\％	4\％	3\％	2\％	1\％	0\％	0\％	0\％	0\％
9534	96，159，092	－Of iron or steel	10	SL	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	8\％	7\％	6\％	5\％	4\％	3\％	2\％	${ }^{1 \%}$	0\％	0\％	0\％	0\％
9535	96，159，093	－Of plastics	10	SL	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	8\％	7\％	6\％	5\％	4\％	3\％	2\％	${ }^{1 \%}$	0\％	0\％	0\％	0\％
9536	96，159，099	－Other	10	SL	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	${ }^{8 \%}$	7\％	6\％	5\％	4\％	3\％	2\％	${ }^{1 \%}$	0\％	0\％	0\％	0\％
9537	9616.10 .10	－Sprays	10	SL	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	${ }^{8 \%}$	7\％	6\％	5\％	4\％	3\％	2\％	${ }^{1 \%}$	0\％	0\％	0\％	0\％
9538	9616.10 .20	－Mounts and heads	10	SL	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	8\％	7\％	6\％	5\％	4\％	3\％	2\％	1\％	0\％	0\％	0\％	0\％
9539	96，162，000	－Powder－puffs and pads for the application of cosmetics or toilet preparations	10	SL	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	8\％	7\％	6\％	5\％	4\％	3\％	2\％	1\％	0\％	0\％	0\％	0\％
9540	96，170，010	－Vacuum flasks and other vacuum vessels	10	SL	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	8\％	7\％	6\％	5\％	4\％	3\％	2\％	1\％	0\％	0\％	0\％	0\％
${ }^{9541}$	96，170，020	－Pars	10	SL	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	8\％	7\％	6\％	5\％	4\％	${ }^{3 \%}$	2\％	1\％	0\％	0\％	0\％	0\％
9542	96，180，000	Tailors＇dummies and other lay figures； automata and other animated displays used for shop window dressing．	10	SL	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	8\％	7\％	6\％	5\％	4\％	3\％	2\％	1\％	0\％	0\％	0\％	0\％
${ }^{9543}$	96，190，011	－－With an absorbent core of wadding of textile materials	10	SL	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	8\％	7\％	6\％	5\％	4\％	3\％	2\％	1\％	0\％	0\％	0\％	0\％
9544	96，190，019	－Other	10	HSL	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％
9545	96，190，091	－－Knited or crocheled	10	SL	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	8\％	${ }^{7 \%}$	6\％	5\％	4\％	${ }^{3 \%}$	${ }^{2 \%}$	1\％	0\％	0\％	0\％	0\％
${ }^{9546}$	96，190，099	－－Other	10	SL	10\％	10\％	10\％	10\％	10\％	10\％	10\％	10\％	8\％	7\％	6\％	5\％	4\％	3\％	2\％	1\％	0\％	0\％	0\％	0\％
9547	97，011，000	－Paintings，drawings and pastels	5	NT1	4\％	4\％	4\％	3\％	3\％	2\％	2\％	0\％	0\％	0\％	0\％	0\％	0\％	0\％	0\％	0\％	0\％	0\％	0\％	0\％
${ }^{9548}$	97，019，000	－Other	5	NT1	4\％	4\％	4\％	${ }^{3 \%}$	3\％	${ }^{2 \%}$	2\％	0\％	0\％	0\％	0\％	0\％	0\％	0\％	\％	0\％	\％	0\％	0\％	0\％
9549	97，02，000	Original engravings，prints and lithographs．	5	${ }^{\text {NT1 }}$	4\％	4\％	4\％	3\％	3\％	2\％	2\％	0\％	0\％	0\％	0\％	0\％	0\％	0\％	0\％	0\％	0\％	0\％	0\％	0\％
9550	97，03，0010	－of metal	5	NT1	4\％	4\％	4\％	3\％	3\％	2\％	2\％	0\％	0\％	0\％	0\％	0\％	0\％	0\％	0\％	0\％	0\％	0\％	0\％	0\％
9551	97，03，020	－of stone	5	NT1	4\％	4\％	4\％	3\％	3\％	2\％	2\％	0\％	0\％	0\％	0\％	0\％	0\％	0\％	0\％	0\％	0\％	0\％	0\％	0\％
9552	97，03，030	－Of plastics	5	NT1	4\％	4\％	4\％	3\％	3\％	2\％	2\％	0\％	0\％	0\％	0\％	0\％	0\％	0\％	0\％	0\％	0\％	0\％	0\％	0\％
9553	97，03，040	－of wood	5	NT1	4\％	4\％	4\％	3\％	3\％	2\％	2\％	0\％	0\％	0\％	0\％	0\％	0\％	0\％	0\％	0\％	0\％	0\％	0\％	0\％
9554	97，03，050	－Of clay	5	NT1	4\％	4\％	4\％	3\％	3\％	2\％	2\％	0\％	0\％	0\％	0\％	0\％	0\％	0\％	0\％	0\％	0\％	0\％	0\％	0\％
955	97，03，090	－Of other materials	5	NT1	4\％	4\％	4\％	3\％	3\％	2\％	2\％	0\％	0\％	0\％	0\％	0\％	0\％	0\％	0\％	0\％	0\％	0\％	0\％	0\％
9556	97，040，000	Postage or revenue stamps，stamp－postmark first－day covers，postal stationery（stamped paper），and the like，used or unused，other than those of heading 49.07	5	${ }^{\text {NT1 }}$	4\％	4\％	4\％	3\％	3\％	2\％	2\％	0\％	0\％	0\％	0\％	0\％	0\％	0\％	0\％	0\％	0\％	0\％	0\％	0\％
9557	97，05，000	Collections and collectors＇pieces of zoological， botanical，mineralogical，anatomical，historical， archaeological，palaeontological，ethnographic or numismatic interest．	5	EL	u	u	u	u	u	u	u	u	u	u	u	u	u	u	u	u	u	u	u	u
9558	97，06，000	Antiques of an age exceeding one hundred years．	5	EL	U	U	U	U	U	U	U	U	U	U	U	U	\bigcirc	U	U	U	\bigcirc	U	\checkmark	\bigcirc

